Публикации

2015

Буссаид Н., 492, On spectral stability of the nonlinear Dirac equation. http://arXiv.org/abs/1211.3336 http://arxiv.org/abs/1211.3336
Куевас-Маравер Й., Кеврекидис П.Г., Саксена А., Купер Ф., Харе А., 492, Бендер К., Solitary waves of a PT-symmetric Nonlinear Dirac equation (with J. Cuevas--Maraver, P.G. Kevrekidis, A. Saxena, F. Cooper, A. Khare, and C. Bender). Journal of Selected Topics in Quantum Electronics (the IEEE Photonics Society), 22 (2016), no. 5, 1--9. DOI:10.1109/JSTQE.2015.2485607 http://arXiv.org/abs/1508.00852 http://dx.doi.org/10.1109/JSTQE.2015.2485607
Берколайко Г., 492, Symmetry and Dirac points in graphene spectrum. http://arXiv.org/abs/1412.8096 http://arxiv.org/abs/1412.8096
492, Фан Т., Стефанов А., Asymptotic stability of solitary waves in generalized Gross--Neveu model. Annales de l"Institute Henri Poincaré (Analyse non linéaire). DOI:10.1016/j.anihpc.2015.11.001 http://dx.doi.org/10.1016/j.anihpc.2015.11.001 http://arXiv.org/abs/1407.0606 http://dx.doi.org/10.1016/j.anihpc.2015.11.001
492, Global Attraction to Solitary Waves, chapter in the book Quantization, PDEs, and Geometry. The Interplay of Analysis and Mathematical Physics. Advances in Partial Differential Equations 251, 117--152. Birkhäuser, Berlin, 2015. ISBN 978-3-319-22407-7 http://www.springer.com/us/book/9783319224060
Берколайко Г., 492, Сухтаев А., Vakhitov-Kolokolov and energy vanishing conditions for linear instability of solitary waves in models of classical self-interacting spinor fields Nonlinearity 28 (2015), 577--592 DOI:10.1088/0951-7715/28/3/577 MR3311594 http://arxiv.org/abs/1306.5150 http://dx.doi.org/10.1088/0951-7715/28/3/577

2014

492, Гуан М., Густафсон С., On linear instability of solitary waves for the nonlinear Dirac equation Annales de l"Institute Henri Poincaré (Analyse non linéaire), 31 (2014), 639--654 DOI:10.1016/j.anihpc.2013.06.001 MR3208458 http://arXiv.org/abs/1209.1146 http://dx.doi.org/10.1016/j.anihpc.2013.06.001

2013

492, Зубков М.А., Polarons as stable solitary wave solutions to the Dirac-Coulomb system Journal of Physics A: Mathematical and Theoretical 46 (2013) 435201 (21pp) DOI:10.1088/1751-8113/46/43/435201 MR3118823 http://arXiv.org/abs/1207.2870 http://dx.doi.org/10.1088/1751-8113/46/43/435201
492, Weak attractor of the Klein-Gordon field in discrete space-time interacting with a nonlinear oscillator. Discrete and Continuous Dynamical Systems -- Series A 33 (2013), no. 7, 2711--2755. DOI:10.3934/dcds.2013.33.2711 http://arxiv.org/abs/1203.3233 http://dx.doi.org/10.3934/dcds.2013.33.2711

2012

492, On global attraction to solitary waves. Klein-Gordon field with mean field interaction at several points. Journal of Differential Equations, 252 (2012), 5390--5413. DOI:10.1016/j.jde.2012.02.001 http://dx.doi.org/10.1016/j.jde.2012.02.001
Берколайко Г., 492, On Spectral Stability of Solitary Waves of Nonlinear Dirac Equation in 1D. Mathematical Modelling of Natural Phenomena , Volume 7 (2012) Issue 02 , pp 13-31 Cambridge University Press DOI:10.1051/mmnp/20127202 http://arxiv.org/abs/0910.0917 http://dx.doi.org/10.1051/mmnp/20127202

2009

492, Global Attraction to Solitary Waves (Habilitation), Technische Universität Darmstadt, Darmstadt, 2009 http://tuprints.ulb.tu-darmstadt.de/1411/

2007

492, Кукканья С., Пелиновский Д., Nonlinear instability of a critical traveling wave in the generalized Korteweg -- de Vries equation. SIAM J. Math. Anal. 39 (2007), no. 1, 1--33 DOI:10.1137/060651501 http://arxiv.org/abs/math.AP/0609010 http://dx.doi.org/10.1137/060651501

2005

492, Куевас Й., Кеврекидис П., Discrete peakons, Phys. D 207 (2005), no. 3-4, 137--160. DOI:10.1016/j.physd.2005.05.019 http://arxiv.org/abs/nlin.PS/0502002 http://dx.doi.org/10.1016/j.physd.2005.05.019
492, Руденко С., Estimates on Level Set Integral Operators in Dimension Two, J. Geom. Anal. 15 (2005), no. 3, 405--423. DOI:10.1007/BF02930979 http://dx.doi.org/10.1007/BF02930979

2004

492, Lp-Lq regularity of Fourier integral operators with caustics, Trans. Amer. Math. Soc. 356 (2004), no. 9, 3429--3454. DOI:10.1090/S0002-9947-04-03570-6 http://arxiv.org/abs/math.AP/0609024 http://dx.doi.org/10.1090/S0002-9947-04-03570-6

2003

492, Пелиновский Д., Purely nonlinear instability of standing waves with minimal energy, Comm. Pure Appl. Math 56 (2003), no. 11, 1565--1607. DOI:10.1002/cpa.10104 http://dx.doi.org/10.1002/cpa.10104
492, Кукканья С., On Lp continuity of singular Fourier Integral Operators, Trans. Amer. Math. Soc. 355 (2003), no. 6, 2453--2476. DOI:10.1090/S0002-9947-03-02929-5 http://dx.doi.org/10.1090/S0002-9947-03-02929-5
492, Type conditions and Lp-Lp, Lp-Lp" regularity of Fourier integral operators, Contemp. Math. 320 (2003), 91--109. DOI:10.1090/conm/320/05601 http://dx.doi.org/10.1090/conm/320/05601

2000

492, Кукканья С., Integral operators with two-sided cusp singularities, Internat. Math. Res. Notices 2000, no. 23, 1225--1242. DOI:10.1155/S107379280000061 http://dx.doi.org/10.1155/S107379280000061

1999

492, Optimal regularity of Fourier integral operators with one-sided folds, Comm. Partial Differential Equations 24 (1999), no. 7 & 8, 1263--1281. DOI:10.1080/03605309908821465 http://arxiv.org/abs/math.AP/0609025 http://dx.doi.org/10.1080/03605309908821465

1998

492, Sobolev Estimates for Radon Transform of Melrose and Taylor, Comm. Pure Appl. Math 51 (1998), no. 5, 537--550. DOI:10.1002/(SICI)1097-0312(199805)51:5<537::AID-CPA4>3.0.CO;2-9. http://dx.doi.org/10.1002/(SICI)1097-0312(199805)51:5<537::AID-CPA4>3.0.CO;2-9
492, Damping estimates for oscillatory integral operators with finite type singularities, Asymptot. Anal. 18 (1998), no. 3 & 4, 263--278 http://iospress.metapress.com/content/64d4eak411ledgj2/?p=07fcca8fda474eaaa1f77433ca757128&pi=3

1997

492, Oscillatory Integral Operators in Scattering Theory, Comm. Partial Differential Equations 22 (1997), 841--867. DOI:10.1080/03605309708821286. http://dx.doi.org/10.1080/03605309708821286
492, Integral operators with singular canonical relations, chapter (pp. 200--248) in a book Spectral Theory, Microlocal Analysis, Singular Manifolds (M. Demuth, E. Schrohe, B.-W. Schulze, J. Sjostrand, eds.). Akademie Verlag, Berlin, 1997. ISBN 978-3527401208. http://www.amazon.com/Spectral-Microlocal-Analysis-Singular-Manifolds/dp/3527401202
492, Asymptotic Estimates for Oscillatory Integral Operators, PhD. Thesis. Columbia University, New York, 1997 http://app.cul.columbia.edu:8080/ac/handle/10022/AC:P:2850