|
 |
2021 ã. Àâòîðû: Ì.Ë. Ëàòàø, Òàëèñ Â.Ë.Bernstein’s Philosophy of Time: An Unknown Manuscript by Nikolai Bernstein (1949),Motor Control; Volume 25: Issue 2; 315–336 Ïåðåéòè ê ïóáëèêàöèè Çàãðóçèòü (559.8 KB) |
 |
2021 ã. Àâòîðû: Øèëîâñêèé Ã.À., Ïóòÿòèíà Ò.Ñ., Ìîðãóíîâà Ã.Â., Ñåëèâåðñòîâ À.Â., Àøàïêèí Â.Â., Ñîðîêèíà Å.Â., Ìàðêîâ À.Â., Ñêóëà÷åâ Â.Ï.A crosstalk between the biorhythms and gatekeepers of longevity: dual role of glycogen synthase kinase-3. Biochemistry Moscow. 2021. V. 86. P. 433-448.
DOI: 10.1134/S0006297921040052
Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Ïîñèöåëüñêèé Ë.Å.Quasi-coherent torsion sheaves, the coderived category, and the cotensor product. Ýëåêòðîííûé ïðåïðèíò arXiv:2104.05517 [math.AG], 59 ñòð. Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Manko O.M., Gracheva M., Rozhkova G., Smoleevsky A.E., Nadezhda V.Assessment of visual functions during a 4-month isolation in the SIRIUS-19 project. XXIII International Symposium HUMANS IN SPACE (April 5-9, Moscow, Russia). Aerospace and Environmental Medicine. 2021. V. 55 ¹ 1/1 special issue, p. 90.
|
 |
2021 ã. Àâòîðû: Panyushev D.Nilpotent orbits and mixed gradings of semisimple Lie algebras, Indagationes Mathematicae, 32 (2021) Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Ëåâèí Ì.Ø.Combinatorial planning framework for geological exploration. Information Processes, 21(1), 65-81, 2021. Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: ×î÷èà Ï.À.Chochia P.A. Image decomposition based on region-constrained smoothing // Del Bimbo et al. (eds). 25th Int. Conf. Pattern Recognition. ICPR Int. Workshops and Challenges. ICPR 2020, Part V. Lecture Notes in Computer Science, vol. 12665. Cham: Springer, Switzerland, 2021, pp. 103-111. Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Davydov A., Marcugini S., Pambianco F.Twisted cubic and plane-line incidence matrix in PG(3,q), electronic preprint, arXiv:2103.11248v3 [math.CO], 29 pages, 2 tables, 24 references, Mar. 2021 Ïåðåéòè ê ïóáëèêàöèè Çàãðóçèòü (319.9 KB) |
 |
2021 ã. Àâòîðû: Davydov A., Marcugini S., Pambianco F.Twisted cubic and orbits of lines in PG(3,q), electronic preprint, arXiv:2103.12655v2 [math.CO], 27 pages, 19 references, Mar. 2021
Ïåðåéòè ê ïóáëèêàöèè Çàãðóçèòü (277.8 KB) |
 |
2021 ã. Àâòîðû: Òàëèñ Â.Ë.Talis V. "Nikolai Bernstein in 1947: From summarizing to planning". In "Bernstein"s Construction of Movements Original Text and Commentaries". M.Latash Routledge, 2020:223-234. Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Davydov A., Marcugini S., Pambianco F.On cosets weight distributions of the doubly-extended Reed-Solomon codes of codimension 4, electronic preprint, arXiv:2007.08798v2 [cs.IT], 20 pages, 2 tables, 37 references, Feb. 2021 Ïåðåéòè ê ïóáëèêàöèè Çàãðóçèòü (239.8 KB) |
 |
2021 ã. Àâòîðû: Davydov A., Marcugini S., Pambianco F.On the weight distribution of the cosets of MDS codes, electronic preprint,
arXiv:2101.12722 [cs.IT], 26 pages, 40 references, Jan. 2021 Ïåðåéòè ê ïóáëèêàöèè Çàãðóçèòü (312.5 KB) |
 |
2021 ã. Àâòîðû: Âüþãèí Â.Â.Â.Â.Âüþãèí. Ìàòåìàòè÷åñêèå îñíîâû ìàøèííîãî îáó÷åíèÿ è ïðîãíîçèðîâàíèÿ, 2018, Èçä. ÌÖÍÌÎ, 384ñ. (ýëåêòðîííàÿ âåðñèÿ 484ñ. Îáíîâëåíà 18.04.2020) Çàãðóçèòü (2.3 MB) |
 |
2021 ã. Àâòîðû: Ïîñèöåëüñêèé Ë.Å., Øòîâè÷åê ß.Derived, coderived, and contraderived categories of locally presentable abelian categories. Ýëåêòðîííûé ïðåïðèíò arXiv:2101.10797 [math.CT], 45 ñòð. Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Rozhkova G., Alexander B., Gracheva M., Ershov E., Nikolaev P.A simple method for comparing peripheral and central color vision by means of two smartphones. bioRxiv 2021.01.12.426150; doi: https://doi.org/10.1101/2021.01.12.426150 Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Çàé÷èêîâà À.À., Äàìÿíîâè÷ È., Ìàêñèìîâ Ï.Â., Àëèïåð À.Ò., Ìàêñèìîâà Å.Ì.Íåéðîíû tectum opticum ðûá, ýëåêòðè÷åñêàÿ àêòèâíîñòü è ïîäáîð àäåêâàòíîé ñòèìóëÿöèè // Ñåíñîðíûå ñèñòåìû, 35 (2021), ¹ 1, ñ. 11–22. doi: 10.31857/S0235009221010108 Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Ïîñèöåëüñêèé Ë.Å.Exact categories of topological vector spaces with linear topology. Ýëåêòðîííûé ïðåïðèíò arXiv:2012.15431 [math.CT], 70 ñòð. Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Maximova E., Aliper A., Damjanović I., Zaichikova A., Maximov P.Ganglion Cells with Sustained Activity in the Fish Retina and Their Possible Function in Evaluation of Visual Scenes. Neurosci Behav Physi 51, 123–133 (2021). Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 106, No. 4, pp. 486–503 (2020). doi: 10.1007/s11055-020-01047-1
Full text (for online reading) Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Kudina L., Andreeva R. Evidence of two modes of spiking evoked in human firing motoneurones by Ia afferent electrical stimulation. Exp Brain Res (2021) 239: 719-730. doi: 10.1007/s00221-020-05998-2.
|
 |
2021 ã. Àâòîðû: Ñåëèâåðñòîâ À.Â.Ýâðèñòè÷åñêèå àëãîðèòìû ðàñïîçíàâàíèÿ íåêîòîðûõ êóáè÷åñêèõ ãèïåðïîâåðõíîñòåé. Ïðîãðàììèðîâàíèå. 2021. ¹ 1. Ñ. 65–72. DOI: 10.31857/S0132347421010106 Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Enayat A., Kanovei V.An unpublished theorem of Solovay, on OD partitions of reals into two non-OD parts, revisited.
Journal of Mathematical Logic, 2021. Online ready 26 December 2020.
DOI: 10.1142/S0219061321500148
WoS Q1. Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Ïîñèöåëüñêèé Ë.Å., Øíþðåð Î.Unbounded derived categories of small and big modules: Is the natural functor fully faithful? Journ. of Pure and Appl. Algebra 225 ¹11 (2021), 106722, 23 ñòð. Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Ïîñèöåëüñêèé Ë.Å.Remarks on derived complete modules and complexes. Ýëåêòðîííûé ïðåïðèíò arXiv:2002.12331 [math.AC], 40 ñòð. Ïðèíÿò ê ïå÷àòè â æóðíàëå Mathematische Nachrichten. Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Ïîñèöåëüñêèé Ë.Å.Pseudo-dualizing complexes of bicomodules and pairs of t-structures. Ýëåêòðîííûé ïðåïðèíò arXiv:1907.03364 [math.CT], 42 ñòð. Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Êàíîâåé Â.Ã., Ëþáåöêèé Â.À.Ìîäåëè òåîðèè ìíîæåñòâ, â êîòîðûõ òåîðåìà îòäåëèìîñòè íåâåðíà.
Èçâåñòèÿ Ðîññèéñêîé àêàäåìèè íàóê. Ñåðèÿ ìàòåìàòè÷åñêàÿ, 2021, òîì 85, ¹6,
ïðèíÿòà ê ïå÷àòè.
DOI: 10.1070/IM8937
WoS Q2 Ïåðåéòè ê ïóáëèêàöèè Çàãðóçèòü (231 KB) |
 |
2021 ã. Àâòîðû: Kanovei V., Schindler R.Definable Hamel bases and ACω(R).
Fundamenta Mathematicae, 2021, 253, 3, p. 239-256.
DOI 10.4064/fm909-6-2020
WoS Q3 Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Kanovei V., Lyubetsky V.Factoring Solovay-random extensions, with application to the Reduction property.
Monatshefte fur Mathematik, 2021, 194, 1, pp. 105–117.
DOI: 10.1007/s00605-020-01482-9
WoS Q2. Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Kanovei V., Lyubetsky V.The full basis theorem does not imply analytic wellordering,
Annals of pure and applied logic, 2021, volume 172, issue 4, paper no 102929.
DOI: 10.1016/j.apal.2020.102929
WoS Q1 Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Ïîñèöåëüñêèé Ë.Å.Contramodules over pro-perfect topological rings. Ýëåêòðîííûé ïðåïðèíò arXiv:1807.10671 [math.CT], 51 ñòð. Ïåðåéòè ê ïóáëèêàöèè |
 |
2021 ã. Àâòîðû: Ïîñèöåëüñêèé Ë.Å., Øòîâè÷åê ß.The tilting-cotilting correspondence. Internat. Math. Research Notices 2021, ¹1, ñòð.189-274. Ïåðåéòè ê ïóáëèêàöèè |
 |
2020 ã. Àâòîðû: Ñåëèâåðñòîâ À.Â.Î êðóãîâûõ ñå÷åíèÿõ ïîâåðõíîñòè âòîðîãî ïîðÿäêà. Êîìïüþòåðíûå èíñòðóìåíòû â îáðàçîâàíèè. 2020. ¹ 4. Ñ. 59-68.
DOI: 10.32603/2071-2340-2020-4-59-68 Ïåðåéòè ê ïóáëèêàöèè Çàãðóçèòü (281.8 KB) |
 |
2020 ã. Àâòîðû: Âåäåíèíà Â.Þ., Í. Ñåâàñòüÿíîâ, Ò. ÒàðàñîâàContributions to the study of the grasshopper (Orthoptera: Acrididae: Gomphocerinae) courtship songs from Kazakhstan and adjacent territories. Zootaxa. 4895 (4): 505-527. Çàãðóçèòü (3.5 MB) |
 |
2020 ã. Àâòîðû: Ê.-Ã. Õåëëåð, Ì. Âîëëåò, Âåäåíèíà Â.Þ., À. Ìàðÿøêà-Íàäàõîâñêà, Å. Âàðøàëîâñêà-ÑëèâàA perfect duet? The acoustic behaviour of Anaulacomera almadaenis sp. nov., a species with an unusual chromosome complement, discovered in the footsteps of the explorers Spix and Martius in Brazil (Orthoptera, Tettigonioidea, Phaneropterinae). Spixiana, 43 (1): 105-118.
|
 |
2020 ã. Àâòîðû: ×î÷èà Ï.À.×î÷èà Ï.À. Êîíòóðíî-îãðàíè÷åííîå ñãëàæèâàíèå, ñîõðàíÿþùåå ñòðóêòóðó èçîáðàæåíèÿ // Èíôîðìàöèîííûå ïðîöåññû, 2020, Ò. 20, ¹ 3, Ñ. 193-204. Ïåðåéòè ê ïóáëèêàöèè |
 |
2020 ã. Àâòîðû: Øèëîâñêèé Ã.À., Ñîðîêèíà Å.Â.Îõðàòîêñèí À è èíäóêöèÿ àíòèîêñèäàíòíîé / àíòèòîêñè÷åñêîé ñèñòåìû êëåòêè òðàíñêðèïöèîííûì ôàêòîðîì NRF2 (îáçîð ëèòåðàòóðû).
Ïðîáëåìû ìåäèöèíñêîé ìèêîëîãèè,
2020, òîì 22, ¹ 4, ñòð. 3–7. Ïåðåéòè ê ïóáëèêàöèè |
 |
2020 ã. Àâòîðû: Ìîðãóíîâà Ã.Â., Øèëîâñêèé Ã.À., Õîõëîâ À.Í.Âîçðàñòíûå ðàññòðîéñòâà ìåòàáîëèçìà: îò «÷åòûð¸õ ìîäåëåé ìåäèöèíû» äî êëåòîê.
Êëèíè÷åñêàÿ ãåðîíòîëîãèÿ, 2020, òîì 26, ¹ 9–10, ñòð. 17–20.
DOI: 10.26347/1607-2499202009-10017-020 Ïåðåéòè ê ïóáëèêàöèè |
 |
2020 ã. Àâòîðû: Kozyakin V. On boundedness of infinite matrix products with alternating factors from two sets of matrices. ArXiv.org e-Print archive. 2020. October. 2010.03890 Ïåðåéòè ê ïóáëèêàöèè |
 |
2020 ã. Àâòîðû: Ñîëîìåíöåâ ß.Ê., ×î÷èà Ï.À.Solomentsev Ya.K., Chochia P.A. Application of Neural Networks for Diagnostics of Type and Parameters of Image Distortions // Journal of Communications Technology and Electronics, 2020, vol. 65, no. 12, pp. 1499-1504.
|
 |
2020 ã. Àâòîðû: Kanovei V., Lyubetsky V.On the "definability of definable" problem of Alfred Tarski.
Mathematics,
2020, Vol. 8, No. 12, Art. 2214.
DOI: 10.3390/math8122214
(WoS Q1) Ïåðåéòè ê ïóáëèêàöèè |
 |
2020 ã. Àâòîðû: Ôåîêòèñòîâà Ñ.Â., Âàñèëüåâà Í.Í., Ïðèõîäüêî Å.Â.Ôðóñòðàöèÿ ïåäàãîãîâ êàê ôàêòîð ïñèõîëîãè÷åñêîé ãîòîâíîñòè ê îïòèìàëüíîìó ïîâåäåíèþ â óñëîâèÿõ ìîäåðíèçàöèè îáðàçîâàòåëüíîé ñðåäû // Íîâîå â ïñèõîëîãî-ïåäàãîãè÷åñêèõ èññëåäîâàíèÿõ. 2020. ¹ 2. (ïðèíÿòî ê ïå÷àòè) (ÂÀÊ)
|
 |
2020 ã. Àâòîðû: Ðîæêîâà Ã.È., Âàñèëüåâà Í.Í.Èíòåãðàòèâíîå âçàèìîäåéñòâèå çðèòåëüíûõ ñåíñîðíûõ, àêêîìîäàöèîííûõ è ãëàçîäâèãàòåëüíûõ ìåõàíèçìîâ â ñòåðåîñêîïè÷åñêèõ óñëîâèÿõ âîñïðèÿòèÿ. Ñáîðíèê êîíôåðåíöèè "Èíòåãðàòèâíàÿ ôèçèîëîãèÿ 2020", 2020. (ïðèíÿòî ê ïå÷àòè). Ïåðåéòè ê ïóáëèêàöèè |
 |
2020 ã. Àâòîðû: Âàñèëüåâà Í.Í.Èíòåãðàöèÿ ìåòîäîâ ôèçèîëîãèè è ïñèõîëîãèè ïðè ðàçðàáîòêå îáðàçîâàòåëüíûõ ìàðøðóòîâ äëÿ äåòåé ñ ÎÂÇ. Ñáîðíèê êîíôåðåíöèè "Èíòåãðàòèâíàÿ ôèçèîëîãèÿ 2020", 2020. (ïðèíÿòî ê ïå÷àòè).
|
 |
2020 ã. Àâòîðû: Ãðà÷åâà Ì.À., Ðîæêîâà Ã.È., Áåëîêîïûòîâ À.Â., Åðøîâ Å.È., Íèêîëàåâ Ï.Ï.Îñîáåííîñòè âçàèìîäåéñòâèÿ çðèòåëüíûõ ìåõàíèçìîâ ïðè âîñïðèÿòèè îáúåêòîâ â öåíòðå è íà ïåðèôåðèè ïîëÿ çðåíèÿ. "Èíòåãðàòèâíàÿ ôèçèîëîãèÿ 2020": Âñåðîññèéñêàÿ êîíôåðåíöèÿ ñ ìåæäóíàðîäíûì ó÷àñòèåì, ïîñâÿù¸ííàÿ 95-ëåòèþ Èíñòèòóòà ôèçèîëîãèè èì. È.Ï. Ïàâëîâà ÐÀÍ, Ñàíêò-Ïåòåðáóðã (9-11 äåêàáðÿ 2020 ã.). – Òåçèñû äîêëàäîâ. – ÑÏá.: Èí-ò ôèçèîëîãèè èì. È.Ï. Ïàâëîâà ÐÀÍ, 2020, 2020. Ñ. 58. Ïåðåéòè ê ïóáëèêàöèè |
 |
2020 ã. Àâòîðû: Êàçàêîâà À.À., Ãðà÷åâà Ì.À., Ïîêðîâñêèé Ä.Ô., Ìåäâåäåâ È.Á.Îñòðîòà çðåíèÿ êàê èíòåãðàëüíûé ïîêàçàòåëü ñîñòîÿíèÿ çðèòåëüíîé ñèñòåìû ïî îöåíêå ïîðîãîâ ðàçðåøåíèÿ è ðàñïîçíàâàíèÿ. "Èíòåãðàòèâíàÿ ôèçèîëîãèÿ 2020": Âñåðîññèéñêàÿ êîíôåðåíöèÿ ñ
ìåæäóíàðîäíûì ó÷àñòèåì, ïîñâÿù¸ííàÿ 95-ëåòèþ Èíñòèòóòà ôèçèîëîãèè èì. È.Ï. Ïàâëîâà ÐÀÍ, Ñàíêò-Ïåòåðáóðã (9-11 äåêàáðÿ 2020 ã.). – Òåçèñû äîêëàäîâ. – ÑÏá.: Èí-ò ôèçèîëîãèè èì. È.Ï. Ïàâëîâà ÐÀÍ, 2020, 2020. Ñ. 73. Ïåðåéòè ê ïóáëèêàöèè |
 |
2020 ã. Àâòîðû: Âàñèëüåâà Í.Í., Ðîæêîâà Ã.È.Âîñïðèÿòèå âèðòóàëüíûõ ñòåðåîîáúåêòîâ: îñîáåííîñòè âçàèìîäåéñòâèÿ çðèòåëüíûõ ìåõàíèçìîâ è ïðîñòðàíñòâåííûå ïåðöåïòèâíûå ýôôåêòû. Ýêñïåðèìåíòàëüíàÿ ïñèõîëîãèÿ. 2020. 13. (ïðèíÿòî ê ïå÷àòè).
|
 |
2020 ã. Àâòîðû: Âüþãèí Â.Â.Âüþãèí Â.Â. Êîëìîãîðîâñêàÿ ñëîæíîñòü è àëãîðèòìè÷åñêàÿ òåîðèÿ èíôîðìàöèè, 271ñ. 2020 (ðàñøèðåííûé âàðèàíò îò 20.11.2020) Çàãðóçèòü (1.3 MB) |
 |
2020 ã. Àâòîðû: Ðîæêîâà Ã.È.Ôóíêöèîíàëüíûé àíàëèç ðàçëè÷íûõ ìåòîäîâ îöåíêè ôóçèîííûõ ðåçåðâîâ // Íåâñêèå ãîðèçîíòû - 2020 / «Ïèàñòð Ïëþñ». — Ñ. 111-113. Ïåðåéòè ê ïóáëèêàöèè Çàãðóçèòü (616.1 KB) |
 |
2020 ã. Àâòîðû: Gorbunov K., Lyubetsky V.Linear time additively exact algorithm for transformation of chain-cycle graphs for arbitrary costs of deletions and insertions.
Mathematics,
Vol. 8, No. 11, Art. 2001.
DOI: 10.3390/math8112001
(WoS Q1) Ïåðåéòè ê ïóáëèêàöèè |
 |
2020 ã. Àâòîðû: Ãîðáóíîâ Ê.Þ., Ëþáåöêèé Â.À.Ýâîëþöèÿ ìèòîõîíäðèàëüíûõ ãåíîìíûõ ñòðóêòóð ó Metazoa: àëãîðèòì è ïðîãðàììà.
Ìàòåðèàëû ìåæäóíàðîäíîãî ôîðóìà «Áèîòåõíîëîãèÿ: ñîñòîÿíèå è ïåðñïåêòèâû ðàçâèòèÿ»,
Ìîñêâà, 28–30 îêòÿáðÿ 2020, âûï. 18, ñòð. 260–261.
DOI: 10.37747/2312-640X-2020-18-260-262 Ïåðåéòè ê ïóáëèêàöèè |
 |
2020 ã. Àâòîðû: Ðóáàíîâ Ë.È., Øèëîâñêèé Ã.À., Ñåëèâåðñòîâ À.Â., Çâåðêî́â Î.À., Ëþáåöêèé Â.À.Ïðåäñêàçàíèå ïîòåðü ãåíîâ íà îñíîâå ãåíîìíûõ ñòðóêòóð.
Ìàòåðèàëû ìåæäóíàðîäíîãî ôîðóìà «Áèîòåõíîëîãèÿ: ñîñòîÿíèå è ïåðñïåêòèâû ðàçâèòèÿ»,
Ìîñêâà, 28–30 îêòÿáðÿ 2020, âûï. 18, ñòð. 258–259.
DOI: 10.37747/2312-640X-2020-18-258-260 Ïåðåéòè ê ïóáëèêàöèè |
|
|
|
|