Федеральное государственное бюджетное учреждение науки Институт проблем передачи информации им. А.А. Харкевича Российской академии наук

На правах рукописи

## Казнадзей Анна Денисовна

Геномная ко-локализация генов углеводного метаболизма бактерий

03.01.09 – математическая биология, биоинформатика

Диссертация на соискание учёной степени

кандидата биологических наук

Научный руководитель:

доктор биологических наук, профессор

М.С. Гельфанд

Москва – 2019

## Оглавление

| Актуальность работы                                               | 5  |
|-------------------------------------------------------------------|----|
| Цели и задачи исследования                                        | 6  |
| Научная новизна и практическая ценность                           | 7  |
| Основные результаты и положения, выносимые на защиту              | 8  |
| Структура и объем диссертации                                     | 10 |
| Список публикаций по теме диссертации                             | 10 |
| Список используемых обозначений                                   | 12 |
| Глава 1. Литературный обзор                                       | 13 |
| 1.1. Сравнение нуклеотидных последовательностей                   | 13 |
| 1.2. Организация генов углеводного метаболизма бактерий           | 20 |
| 1.3. Экспериментальная проверка предсказаний функций кассет генов | 25 |
| 1.3.1 Выбор источника углевода у бактерий и регуляция работы      |    |
| соответствующих генов                                             | 25 |
| 1.3.2. Способы утилизации лактозы у бактерии Escherichia coli     |    |
| 1.3.3. Путь утилизации лактозы у бактерий класса <i>Bacilli</i>   | 31 |
| 1.3.4. Функции <i>yih</i> -кассеты Escherichia coli               | 32 |
| Глава 2. Инструмент NSimScan для поиска удаленных сходств         |    |
| последовательностей ДНК                                           | 35 |
| 2.2. Алгоритм работы NSimScan                                     | 35 |
| 2.3. Методы оценки эффективности работы NSimScan                  | 40 |
| 2.4. Результаты сравнения производительности NSimScan с другими   |    |
| инструментами                                                     | 42 |
| 2.5. Применение NSimScan в научных исследованиях                  | 45 |
| 2.6. Заключение                                                   | 46 |
| Глава З. Организация генов углеводного метаболизма бактерий       | 47 |
|                                                                   |    |

| 3.1. Материалы и методы47                                                  | 7        |
|----------------------------------------------------------------------------|----------|
| 3.1.1. Геномы и гены47                                                     | 7        |
| 3.1.2. Классификация генов углеводного метаболизма бактерий47              | 7        |
| 3.1.3. Определение кассет генов и их анализ51                              | L        |
| 3.1.4. Анализ ко-локализационных особенностей функциональных классов52     | <u>)</u> |
| 3.1.5. Анализ ко-локализационных особенностей кластеров COG53              | 3        |
| 3.1.6. Сравнение последовательностей генов54                               | 1        |
| 3.2. Результаты и обсуждение54                                             | 1        |
| 3.2.1. Склонность генов к ко-локализации и разнообразие кассет генов54     | 1        |
| 3.2.2. Склонность генов разных функциональных классов и кластеров COG к    |          |
| формированию кассет58                                                      | 3        |
| 3.2.3. Склонность генов разных бактериальных классов к формированию        |          |
| кассет61                                                                   | Ĺ        |
| 3.2.4. Функциональный состав кассет генов углеводного метаболизма63        | 3        |
| 3.2.5. Попарные ко-локализационные тенденции представителей разных         |          |
| функциональных классов64                                                   | 1        |
| 3.2.6. Попарные ко-локализационные тенденции кластеров СОG68               | 3        |
| 3.2.7. Попарные ко-локализационные тенденции представителей одних и тех    |          |
| же функциональных классов70                                                | )        |
| 3.2.8. Роль событий локальной дупликации и образования ксенологов и        |          |
| псевдопаралогов в ко-локализации генов сходных функций                     | <u>)</u> |
| 3.2.9. Эволюционное значение попарной ко-локализации представителей        |          |
| одного функционального класса74                                            | 1        |
| 3.3. Заключение75                                                          | 5        |
| Глава 4. Участие yih-кассеты Escherichia coli в катаболизме лактозы        | 3        |
| 4.1. Сравнительный анализ консервативных кассет и экспериментальная задача |          |
| для проверки функционального предсказания78                                | 3        |

| 4.2. Методы                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.2.1. Штаммы, плазмиды и выращивание культур                                                                                                                                                                          |
| 4.2.2. Выделение белка сАМР-CRР81                                                                                                                                                                                      |
| 4.2.3. Картирование промоторов82                                                                                                                                                                                       |
| 4.2.4. Поиск сайтов связывания факторов транскрипции                                                                                                                                                                   |
| 4.2.5. Электрофорез с задержкой в геле84                                                                                                                                                                               |
| 4.2.6. Количественная ПЦР86                                                                                                                                                                                            |
| 4.3. Результаты и обсуждение86                                                                                                                                                                                         |
| 4.3.1. Сходство кассет Enterobacteriaceae и Bacilli                                                                                                                                                                    |
| 4.3.2. Промоторные области <i>yih</i> -кассеты Escherichia coli                                                                                                                                                        |
| 433. Экспрессия генов во время роста культуры на разных источниках                                                                                                                                                     |
| 1.0.0. Onempeterini renob bo bpenini poeru nyibirypbi nu pusibini nero miniari                                                                                                                                         |
| углерода                                                                                                                                                                                                               |
| углерода                                                                                                                                                                                                               |
| углерода                                                                                                                                                                                                               |
| углерода                                                                                                                                                                                                               |
| утлерода                                                                                                                                                                                                               |
| <ul> <li>10.0. Окспрессни генов во времи рости культуры на разных него шиках</li> <li>92</li> <li>4.3.4. Роль транскрипционных факторов сАМР-СRР и YihW в регуляции</li> <li>транскрипции <i>yih</i>-кассеты</li></ul> |
| <ul> <li>углерода</li></ul>                                                                                                                                                                                            |
| углерода                                                                                                                                                                                                               |
| углерода                                                                                                                                                                                                               |
| углерода                                                                                                                                                                                                               |

#### Актуальность работы

С развитием технологий секвенирования в последние годы количество данных о последовательностях ДНК растет с огромной скоростью. При этом задачи, связанные СО сравнением нуклеотидных последовательностей, не характеризующихся очень высоким уровнем сходства, по-прежнему решаются либо с помощью чувствительных и медленных, либо с помощью быстрых и малочувствительных алгоритмов. В результате либо время работы инструмента оказывается неприемлемо долгим, либо в ходе поиска теряется значительная часть результатов. Таким образом, актуальной на данный момент является разработка быстрых, но при этом точных и чувствительных методов сравнения неблизких последовательностей ДНК. Первый этап настоящей работы был посвящен разработке такого инструмента.

Одним ИЗ важнейших объектов современных исследований являются бактериальные геномы. Бактерии способны приспосабливаться к самым разным условиям среды и, в частности, катаболизировать широкий спектр углеводов. Белки, участвующие В соответствующих процессах, закодированы В бактериальных генах. Исследования, касающиеся структуры, функций и регуляции работы таких генов, а также их сочетаний, ведутся уже несколько десятков лет. Так, лактозный оперон кишечной палочки, состоящий из трех генов, стал первым описанным опероном прокариот. До сих пор, однако, не было проведено масштабных исследований, касающихся общих тенденций взаиморасположения генов углеводного метаболизма в бактериальных геномах и факторов, влияющих на эти тенденции. Второй этап данной работы был посвящен проведению такого анализа, в том числе, с применением инструмента для сравнения нуклеотидных последовательностей, разработанного на предыдущем этапе.

Известно, что консервативность сочетаний генов на хромосомах может позволять делать успешные предсказания 0 свойствах ЭТИХ генов. Экспериментальная проверка подобных предсказаний важна с точки зрения соотношения теоретических и практических знаний и вносит существенный вклад в понимание эволюционного значения геномного окружения генов. Третьим этапом данной работы стало предсказание связи кассеты генов Escherichia coli, участвующей в сульфогликолизе, с метаболизмом лактозы, которое было сделано анализа консервативных ко-локализационных тенденций генов на основе углеводного метаболизма. Предсказание было подтверждено экспериментально; в частности, была показана выраженная активация экспрессии генов кассеты *Escherichia coli* при росте на лактозе, что свидетельствовало об их вовлеченности в процесс ее утилизации. Положительный результат данного эксперимента подтвердил актуальность подобных предсказаний и позволил затронуть, в свою малоизученный мультифункциональных очередь, вопрос 0 свойствах бактериальных белков.

#### Цели и задачи исследования

Целью работы было выяснить, как организованы геномные локусы бактерий, содержащие гены углеводного метаболизма, какие факторы влияют на эту организацию, какие эволюционные механизмы стоят в ее основе, и как можно использовать данные о ко-локализации этих генов для предсказания их функций.

Были поставлены следующие задачи.

1. Оценить, как часто гены углеводного метаболизма располагаются на бактериальных хромосомах рядом, т.е. формируют в геномах кассеты, и как часто они располагаются по отдельности, а также описать разнообразие кассет.

2. Выяснить, как функциональные и структурные характеристики кодируемого белка влияют на склонность соответствующего гена к формированию кассет, а также как склонность к формированию кассет варьирует среди разных таксонов бактерий.

3. Оценить тенденции к ко-локализации генов разных функций и тенденции к ко-локализации генов сходных функций.

4. Разработать инструмент, позволяющий эффективно оценивать уровень сходства нуклеотидных последовательностей, различающихся на 10% и более, и применить этот инструмент для оценки вклада событий локальной дупликации в ко-локализацию генов сходных функций.

5. Применить анализ тенденций ко-локализации генов углеводного метаболизма для конкретного случая предсказания функций генов с последующей проверкой.

#### Научная новизна и практическая ценность

В работе рассмотрены актуальные вопросы и решен ряд задач современной сравнительной геномики.

Разработан и программно реализован биоинформатический инструмент, позволяющий проводить поиск заданных нуклеотидных последовательностей удаленного сходства в больших базах данных ДНК, который по совокупности таких параметров, как чувствительность, точность и скорость превосходит инструменты, считающиеся индустриальным стандартом.

Впервые проведен масштабный и детальный анализ ко-локализационных особенностей генов углеводного метаболизма бактерий. Выявлены основные факторы, влияющие на формирование кассет таких генов. Исследованы тенденции попарных сочетаний генов разных функциональных классов и разных

ортологических кластеров, а также тенденции ко-локализации генов сходных функций. Выявлен вклад в такие случаи событий локальной дупликации генов.

сравнительный Выдвинута гипотеза 0 TOM, ЧТО анализ сочетаний функциональных классов генов углеводного метаболизма внутри кассет может общую позволять предсказывать функцию кассеты И ee участие В соответствующем метаболическом пути. Гипотеза подтверждена для кассеты генов кишечной палочки, участвующей в сульфогликолизе и совпадающей по общему функциональному составу с консервативной кассетой, участвующей в катаболизме бактерий класса Bacilli. Впервые, лактозы v таким образом, описан альтернативный путь катаболизма лактозы у кишечной палочки, а также предсказаны мультифункциональные характеристики соответствующих белков. Также впервые были картированы промоторы генов данной кассеты и описан механизм переключения регуляции их экспрессии.

#### Основные результаты и положения, выносимые на защиту

Разработан инструмент NSimScan для поиска нуклеотидных последовательностей удаленного сходства; наилучшим образом он подходит для поиска последовательностей, различающихся на 60-90%. По совокупности таких параметров как чувствительность, точность и скорость он превосходит все стандартные инструменты в своей области.

Описана сеть эволюционных связей 148 тысяч генов углеводного метаболизма 665 видов бактерий, выраженная в форме их ко-локализационных тенденций. 53% таких генов находятся в составе кассет, то есть ко-локализованы, остальные располагаются на бактериальных геномах по отдельности.

Склонность к формированию кассет различается у разных генов; ключевыми факторами, влияющими на их ко-локализационные тенденции, являются

функциональные и структурные характеристики гена и филогенетические свойства соответствующей бактерии. Склонность к формированию кассет у разных функциональных классов составляет от 23 до 93%; у разных кластеров ортологических групп генов – 0 до 100%, у разных бактериальных классов – от 40 до 76%.

Функциональные классы могут формировать консервативные и, по всей видимости, эволюционно значимые ко-локализационные связи; всего описано 45 таких связей для 19 исследуемых классов. Количество связей для каждого класса сильно варьирует, что указывает на существенное различие в предпочтениях к непосредственному геномному окружению у генов разных функций. Гены 11 функциональных классов демонстрируют выраженное предпочтение к внутриклассовой ко-локализации, причем большинство таких случаев, повидимому, не являются результатом событий локальных дупликаций.

Исследование консервативных комбинаций внутри кассет генов углеводного метаболизма позволяет успешно предсказывать их функции. На основании сходства консервативной кассеты генов семейства Enterobacteriaceae, отвечающей катаболизм серосодержащих сахаров, с консервативной кассетой бактерий за Bacilli, **участвующей** катаболизме класса В лактозы, предсказано И экспериментально подтверждена роль кассеты Escherichia coli в утилизации лактозы. Описан, таким образом, ранее неизвестный путь катаболизма лактозы у кишечной палочки и предсказаны мультифункциональные характеристики соответствующих белков. В переключении механизмов экспрессии генов этой кассеты при смене источника углерода в среде участвуют локальный регулятор YihW и глобальный регулятор CRP.

#### Структура и объем диссертации.

Диссертация изложена на 145 страницах. Она состоит из 4 глав: "Литературный обзор", "Инструмент NSimScan для поиска удаленных сходств последовательностей ДНК", "Организация генов углеводного метаболизма бактерий", и "Участие *yih*-кассеты *Escherichia coli* в катаболизме лактозы". Работа содержит 21 рисунок и 3 таблицы. Приложение содержит 4 таблицы.

#### Список публикаций по теме диссертации

По материалам диссертации опубликовано три статьи в рецензируемых научных журналах, входящих в Web of Science:

1. V. Novichkov, A. Kaznadzey, N. Alexandrova, D. Kaznadzey (2016) NSimScan: DNA comparison tool with increased speed, sensitivity and accuracy. Bioinformatics 32(15):2380-1.

2. A. Kaznadzey, P. Shelyakin, M. Gelfand (2017) Sugar Lego: gene composition of bacterial carbohydrate metabolism genomic loci. Biology Direct 12(1):28.

3. A. Kaznadzey, P. Shelyakin, E. Belousova, A. Eremina, U. Shvyreva, D. Bykova, V. Emelianenko, A. Korosteleva, M. Tutukina, M. Gelfand (2018) The genes of the sulphoquinovose catabolism in Escherichia coli are also associated with a previously unknown pathway of lactose degradation. Scientific Reports 8(1):3177.

Результаты работы были представлены на международных и российских конференциях:

1. A. Kaznadzey (2010) Evolutional study of carbohydrate metabolism loci in bacterial genomes, Interdisciplinary School and Conference of Information Technology and Systems (ITaS'10), Геленджик.

2. A. Kaznadzey, P. Shelyakin (2011) Study of evolution and classification of genome loci of carbohydrate metabolism of bacteria. Interdisciplinary School and Conference of Information Technology and Systems (ITaS'11), Геленджик.

3. A. Kaznadzey, P. Shelyakin (2011) Evolution study and classification of carbohydrate metabolism genome loci in bacteria. International Moscow Conference on Computational Molecular Biology (MCCMB'11), Москва.

4. A. Kaznadzey, P. Shelyakin (2012) Diversity of genome loci and co-localization patterns study of the protein families from different functional classes of the bacterial carbohydrate metabolism. 8th International Conference on the Bioinformatics of Genome Regulation and Structure – Systems Biology (BGRS\SB-2012), Новосибирск.

5. A. Kaznadzey, P. Shelyakin (2012) Diversity of genome loci and co-localization patterns study of the protein families from different functional classes of the bacterial carbohydrate metabolism. Interdisciplinary School and Conference of Information Technology and Systems (ITaS'12), Петрозаводск.

6. A. Kaznadzey, P. Shelyakin (2013) Structure, classification, evolution and phylogenetics of carbohydrate metabolism gene loci in bacteria. Moscow Conference on Computational Molecular Biology (MCCMB'13), Москва.

7. A. Kaznadzey, P. Shelyakin (2015) Co-evolution of carbohydrate metabolism genes of same and different functional classes in bacteria' (ITaS'15), Сочи.

8. A. Kaznadzey, M. Tutukina, A. Eremina, E. Belousova, P. Shelyakin, M. Gelfand (2016) Escherichia coli gene cassette previously described as an operon responsible for sulphoglycolipide degradation: not an operon and has other functions as well. Interdisciplinary School and Conference of Information Technology and Systems (ITaS'16), Санкт-Петербург.

## Список используемых обозначений

COG – Cluster of Orthologous Gene groups, кластер групп ортологических генов

IMG – Integrated Microbial Genomes & Microbiomes, обобщенная база данных геномов микробов института Joint Genome Institute

ДНК – дезоксирибонуклеиновая кислота

РНК – рибонуклеиновая кислота

ORF – open reading frame, открытая рамка считывания

CRP – цАМФ-зависимый катаболит-активируемый белок

цАМФ (сАМР) – циклический аденозинмонофосфат

РЕР – фосфоенолпируват-фосфотрансферазная система

УНР – усредненное нуклеотидное расстояние

ПЦР - полимеразная цепная рекция

NGS – next generationsequencing, технологии секвенирования "нового

поколения"

HSP – high scoring segment pair, пара последовательностей с высоким сходством

п.н. – пары нуклеотидов

## Глава 1. Литературный обзор

Настоящая работа состоит из трех основных частей. Первая часть посвящена разработке биоинформатического инструмента для поиска нуклеотидных последовательностей с удаленным сходством. Вторая часть посвящена анализу колокализационных тенденций генов углеводного метаболизма бактерий; инструмент, полученный на первом этапе, применялся для оценки вклада в них событий локальной дупликации генов. Третья часть посвящена предсказанию функций генов на основании результатов второго этапа работы и проверке эволюционной значимости консервативных сочетаний генов гипотезы об углеводного метаболизма; в данном случае предсказание касалось участия сульфогликолитической кассеты Escherichia coli в катаболизме лактозы. Глава "Литературный обзор" поделена, таким образом, на три соответствующих раздела.

#### 1.1. Сравнение нуклеотидных последовательностей

Недавняя революция в технологиях секвенирования нуклеиновых кислот возвела требования к сравнению их последовательностей на новый уровень. Для успешного анализа соответствующих данных (в том числе, в рамках клинических тестирований) были разработаны эффективные методы картирования коротких фрагментов ДНК (прочтений, sequencing reads), полученных непосредственно в результате секвенирования. Под картированием в данном случае подразумевается определение местоположения и выравнивание таких прочтений с уже известной последовательностью ДНК, т.н. референсным геномом, с которым сравнивают новые фрагменты. Последовательности, которые подвергают картированию, как правило, несущественно отличаются от референсных, поэтому алгоритмы соответствующих инструментов (например, BWA [1] или Bowtie2 [2]) направлены на поиск близких совпадений между целевыми и референсными фрагментами.

Результат работы этих инструментов позволяет анализировать точечные мутации в геномах разных представителей известного вида. Например, их успешно применяют для поиска однонуклеотидных замен, а также небольших вставок и делеций в человеческих геномах; при этом стоит отметить, что различие между нуклеотидными последовательностями геномных локусов у людей составляет в среднем не более 0,1% [3] (не учитывая микросателлитные последовательности, которые характеризуются более высокой скоростью накопления эволюционных изменений по сравнению с остальным геномом [4]).

BowTie2 и BWA предназначены, таким образом, для работы с короткими (как правило, длиной до 1000 нуклеотидов), много раз повторяющимися прочтениями. Их получают в результате применения современных технологий секвенирования, таких, как NGS ("секвенирование нового поколения"). В основе алгоритмов этих инструментов лежит специализированное представление нуклеотидной последовательности референсного генома в виде суффиксного массива ("FMindex") на основе преобразования Барроуза–Уилера [5] и поиск оптимального совпадения прочтения с референсным геномом. Здесь используется жадный эвристический метод, в общем случае не гарантирующий обнаружение наилучшего выравнивания. В данном случае, однако, такой подход является оптимальным, именно из-за того, что на референсную последовательность картируют прочтения, которые должны соответствовать ей или несущественно от Соответствующие инструменты высокой нее отличаться. характеризуются скоростью работы и требуют относительно небольших затрат памяти.

Среди других инструментов, используемых для поиска почти идентичных нуклеотидных последовательностей, можно назвать также более ранние инструменты SSAHA [6] и BLAT [7]. Инструмент SSAHA, созданный в 2001 году, предназначен для работы с большими базами данных; в основе его алгоритма

таблицы местоположений k-меров лежит составление нуклеотидных последовательностей базы данных (длина k-мера по умолчанию составляет 10 нуклеотидов), что позволяет быстро отыскивать точные совпадения и совпадения с относительно редкими однонуклеотидными заменами В ИСКОМЫХ последовательностях; для поиска последовательностей с более существенными расхождениями такой инструмент не подходит. Программа BLAT, также разработанная в начале 2000-ых годов для сборки и аннотирования человеческого генома, была ориентирована на повышение скорости именно этих процессов, и оказалась приблизительно в 500 раз быстрее аналогов своего времени, используемых для работы с геномами позвоночных животных. Как и в случае SSAHA, алгоритм BLAT использует таблицу вхождений k-меров (длина k-мера в ней по умолчанию составляет 11 нуклеотидов), созданную на основе последовательностей базы данных; он позволяет находить последовательности с 95% сходством на длине от 40 нуклеотидов. Один из вариантов его применения, более медленный, также позволяет искать k-меры с однонуклеотидными заменами.

Задачи поиска нуклеотидных последовательностей удаленного сходства (последовательностей, совпадающих менее, чем на 90%) по-прежнему решаются либо с помощью чувствительных и медленных инструментов, разработанных тогда, когда приток новых геномных данных был небольшим, либо с помощью новых и быстрых, но малочувствительных алгоритмов. В первом случае критическим фактором оказывается время работы инструмента, а во втором теряется значительная часть искомых результатов. При этом благодаря быстро развивающимся технологиям секвенирования количество новых данных по последовательностям нуклеиновых кислот, требующих дальнейшего анализа, растет экспоненциально. Самым распространенным видом такого анализа является сравнение полученных последовательностей друг с другом и с большими базами

данных уже известных нуклеиновых и белковых последовательностей для выявления всевозможных структурных и эволюционных связей между ними. сейчас Инструменты, которые чаще всего применяют для поиска BLAST последовательностей удаленного [8], SSearch [9], сходства, ЭТО MegaBLAST [10] и USEARCH [11].

Наиболее чувствительный поиск сходств последовательностей возможен с помощью алгоритма Смита–Ватермана, разработанного Т. Смитом и М. Ватерманом в 1981 году [12]. Он позволяет проводить локальное выравнивание последовательностей, осуществляя выравнивание отрезков всех возможных длин и затем оптимизируя меру сходства по всем полученным выравниваниям. Здесь используется принцип динамического программирования, то есть представление сложной задачи в виде рекурсивной последовательности более простых подзадач [13]. При составлении выравниваний применяется матрица замен и система штрафов за пропуски (вставки и делеции). Один из первых инструментов, использующий данный алгоритм в исходном виде и получивший широкое распространение для сравнения нуклеотидных последовательностей ДНК (а также для сравнения "переведенных" в нуклеотидную последовательность белковых последовательностей с другими нуклеотидными последовательностями), стал FASTA [14], разработанный еще в 1987 году. Алгоритм Смита–Ватермана в нем применяется после того, как составляется словарь потенциальных кандидатов для выравнивания на основе поиска коротких совпадающих к-меров (длиной 4 или 6 нуклеотидов) каждой сравниваемых последовательностей ДЛЯ пары И определяется штраф за пропуски между найденными совпадениями.

Алгоритм Смита–Ватермана позволяет строить любые выравнивания, в том числе для неблизких или даже случайных последовательностей. В сравнении с инструментами, в ходе работы которых вначале осуществляется отбор

последовательностей базы данных с совпадающими k-мерами, сам по себе алгоритм Смита–Ватермана позволял бы проводить гораздо более чувствительных поиск. Лимитирующим фактором, однако, является время его работы: при поиске в современных крупных базах данных с нуклеотидными последовательностями оно становится практически бесконечным, возрастая пропорционально произведению длины искомой последовательности и суммарной длины последовательностей базы данных.

Поэтому многие последующие алгоритмы были созданы таким образом, чтобы полностью или частично отказаться от применения алгоритма Смита-Ватермана. В том числе, эта задача стояла при разработке широко применяемого инструмента BLAST.

В ходе работы BLAST вначале составляется словарь k-меров искомой последовательности. Длина нуклеотидного k-мера для BLAST составляет по умолчанию 11 нуклеотидов. Затем проводится поиск точных вхождений всех таких k-меров в заранее подготовленной базе данных, представленной в бинарном виде. В исходной версии BLAST найденные таким образом точные соответствия затем продлеваются в обе стороны до тех пор, пока доля сходства полученного локуса ("зародыша" или High Scoring Segment Pair, HSP) с исходной последовательностью не опускается ниже определенного порога. Доля сходства определяется из количества совпадений продлеваемой последовательности с использованием системы весов Смита-Ватермана. В современной версии BLAST для увеличения чувствительности поиска используется метод "gapped BLAST", в котором статистическая значимость HSP, располагающихся по соседству, оценивается совместно. Для оценки значимости (e-value) HSP используется экстремальное распределение Гумбеля [15]

Несмотря на то, что параметры поиска BLAST можно менять (назначая разные штрафы за пропуски, меняя длину k-мера и т.п.), обеспечить чувствительность BLAST на уровне исходного алгоритма Смита–Ватермана невозможно, однако в данном случае важен очень существенный выигрыш в скорости и возможность работы с большими базами данных.

Инструмент MegaBLAST работает с кратными четырем k-мерами длиной от 16 нуклеотидов и больше (часто используемая длина для быстрого поиска с низкой чувствительностью – 28) и также ищет вначале их точные вхождения. Он удобен для быстрого, масштабного и не очень чувствительного поиска. При поиске нескольких последовательностей он сливает их в одну, причем таким образом он может обрабатывать более пятнадцати тысяч искомых последовательностей за один запуск. Метод работы этого инструмента характеризуется, в частности, очень низкими штрафами за пропуски. Последние версии MegaBLAST используют двухуровневый индексированный словарь из нуклеотидных последовательностей базы чтобы большинства данных, так, ДЛЯ возможных ИСКОМЫХ последовательностей было достаточно одного прохождения по базе. В среднем MegaBLAST работает в 10 раз быстрее, чем BLAST, и способен относительно быстро обрабатывать крупные базы данных и последовательности очень большой длины, для чего и был создан (одним из типичных вариантов его применения является работа с метагеномами [16]).

Инструмент SSearch [17] работает на основе алгоритма выравнивания Смита– Ватермана, без дополнительных ускоряющих этапов. Для оценки значимости полученных результатов он учитывает веса выравниваний и логарифм их длины. SSearch не подразумевает необходимости наличия между искомой последовательностью и базой данных точных совпадений определенной длины,

поэтому он значительно более чувствительный, чем BLAST, но и гораздо более медленный.

Инструмент USEARCH работает примерно в 10 раз быстрее, чем BLAST. Его алгоритм основан на отборе одного или нескольких результатов с наибольшим количеством коротких точных вхождений и игнорировании всех остальных результатов (порог задается специальным параметром). Разработчики сообщают о хороших результатах работы инструмента при поиске сходств нуклеотидных последовательностей от 65% и выше, однако из-за отсечения значительной части результатов после обнаружения нескольких первых совпадений существенно повышается риск потери совпадений с равной или даже более высокой значимостью. Таким образом существенно снижается чувствительность поиска, множество подходящих последовательностей остается ненайденным.

Чувствительностью поиска называется количество истинно-положительных результатов относительно суммы истинно-положительных результатов с истинноотрицательными. Точностью поиска называется количество ошибок, т.е. доля ложно-положительных результатов среди всех найденных. Одной из целей данной работы была разработка быстрого и при этом точного и чувствительного алгоритма ДЛЯ полноценного поиска СХОДСТВ между нуклеотидными последовательностями, отличающимися друг от друга более, чем на 10%. Такие условия поиска необходимы, например, в рамках проведения филогенетических исследований и других методах сравнительного анализа, а также ДЛЯ осуществления функциональных предсказаний. В данной работе этот алгоритм использовался, в частности, для выявления событий локальной дупликации генов углеводного метаболизма.

#### 1.2. Организация генов углеводного метаболизма бактерий

Углеводный метаболизм бактерий отличается большим разнообразием, поскольку самые разные углеводы служат бактериям источниками энергии. Углеводы также участвуют во множестве ключевых клеточных процессов и являются важным структурным элементом бактериальной клетки; в частности, они клеточной [18]. Метаболизм состав стенки моносахаридов, входят В олигосахаридов и полисахаридов осуществляется у разных бактерий с помощью десятков различных метаболических путей [19–23]. Ферменты, отвечающие за разные этапы таких путей, транспортные белки, обеспечивающие доставку углеводов в клетку и из клетки, и соответствующие факторы транскрипции закодированы в бактериальных генах. В данной работе мы исследовали бактериальные геномные локусы, содержащие эти гены.

Метаболические пути – это наборы последовательных химических реакций, происходящих в клетке. Промежуточные и итоговые продукты этих реакций называются метаболитами. На метаболиты воздействуют ферменты, катализируя соответствующие реакции. Метаболической картой называют совокупность всех известных метаболических путей конкретного организма или группы организмов, форме единой сети реакций представленных В взаимосвязанных [24]. Метаболические катаболические, участвующие пути подразделяют на в деградации (распаде) химических веществ, и анаболические, участвующие в их синтезе, а соответствующие процессы называют катаболизмом и анаболизмом.

Известно, что гены, кодирующие белки, относящиеся к одному и тому же метаболическому пути, часто располагаются на бактериальной хромосоме вблизи друг от друга [25–27]. В случае, когда гены, расположенные подряд на одной хромосоме, объединены общим или несколькими общими промоторами, и РНКполимераза может считывать с них единый транскрипт, такой набор генов

называют опероном [28]. Огромное количество исследований посвящено конкретным оперонам и их эволюции среди близкородственных видов.

Одной из задач сравнительной геномики является выяснение общих причин и тенденций ко-локализации генов. Известно, в частности, что белки, физически взаимодействующие друг с другом, могут иметь тенденцию к тому, чтобы быть закодированными на хромосоме рядом и в определенном порядке [29]. Однако колокализация генов функционально связанных белков не является обязательным правилом и не всегда оказывается закрепленным с эволюционной точки зрения событием.

Было показано, тем не менее, что кластеры генов, сформированные по признаку совместного присутствия в геноме, сохранения относительного расстояния или непосредственной хромосомной ко-локализации в выборке бактериальных видов, насыщены функционально связанными элементами, т.е. гены из одного такого кластера часто кодируют белки, функции которых относятся к родственным биологическим процессам [25,30,31]. На основании анализа корреляции метаболических и ко-локализационных характеристик генов, построенных с помощью известной на тот момент карты метаболических путей Escherichia coli, проведенного в 2006 году, выяснилось, что у ферментов, участвующих в соседних реакциях метаболической карты (или расположенных на метаболической карте не далее, чем за три реакции друг от друга), примерно в 16 раз больше вероятность быть закодированными в генах, обладающих ко-локализационной связью, по сравнению с ожидаемыми значениями случайным образом перемешанной выборки [32]. Под ко-локализационной связью в данном случае подразумевается совместное присутствие генов в одних и тех же штаммах бактерий, их колокализация на хромосомах или наличие известных случаев слияния таких генов в один. В случае длинных и неразветвленных метаболических путей эта корреляция

распространяется даже на ферменты, находящиеся на расстоянии вплоть до 7 реакций друг от друга на метаболической карте.

Было также показано, однако, что при детальном сравнении эволюционных модулей генов (консервативных сочетания, сохраняющихся от вида к виду) с функциональными гены, кодирующие белки одного метаболического пути, не всегда демонстрируют склонность к консервативному окружению, т.е. эволюционные модули не обязательно тождественны функциональным [32,33]. Более того, в состав одного эволюционного модуля часто входят неполные элементы разных метаболических путей. Таким образом, ко-локализационные свойства генов не всегда определяются их непосредственной функциональной взаимосвязью.

О консервативности оперонов или иных комбинации генов говорят, когда один и тот же набор структурных или функциональных свойств генов, закодированных поблизости на хромосомах, полностью или частично совпадает у разных видов или даже более высоких классификационных таксонов бактерий. Консервативность указывает на определенные эволюционные преимущества такой организации, поскольку демонстрирует действие отбора против потока случайных транслокаций, приводящих к нарушению порядка генов в бактериальных хромосомах.

В случае, когда консервативность касается нуклеотидной последовательности генов, это часто говорит об их родстве, т.е. общем происхождении. Аналогичным образом, существование сходных комбинаций генов в разных геномах может быть связано с наличием такой комбинации у общего предка исследуемой группы бактерий. Оно также может быть связано с событиями горизонтального переноса, при котором генетический материал передается между самыми разными бактериями вне процесса клеточного деления [34,35].

комбинаций быть Анализ распространенных может важным шагом предсказания функций генов. Например, если гены, кодирующие определенные известные функции, располагаются на хромосомах рядом друг с другом, то третий ген с неизвестной функцией, часто обнаруживающийся по соседству с ними, может относится к тому же метаболическому пути [31,36–38] Первым успешным предсказанием такого рода стало определение функции гена, кодирующего шикиматкиназу у археи Methanococcus jannaschii [39]. Все гены, относящиеся к пути синтеза хоризмовой кислоты, у данного вида были гомологичны генам, кодирующим соответствующие белки V бактерий. Гена, похожего по последовательности на ген шикиматкиназы бактерий, у архей, однако, не наблюдалось. С помощью сравнительного анализа кластеров генов, относящихся к пути синтеза хоризмовой кислоты у разных архей, был выявлен другой кандидат на данную роль, который часто располагался рядом с остальными генами данного пути. Ферментативная активность продукта этого гена была подтверждена экспериментально, он действительно кодировал шикимат-киназу.

Одной из основных задач данной работы являлось исследование общих тенденций ко-локализации генов углеводного метаболизма у широкого спектра видов бактерий. Такие гены кодируют ферменты, участвующие в реакциях преобразования углеводов, т.е. в их расщеплении и синтезе – гидролазы, киназы, фосфорилазы, дегидратазы, ацетилазы и т.д.; также мы рассматривали транскрипционные факторы, регулирующие работу соответствующих оперонов, и транспортные белки, участвующие в процессах переноса углеводов через бактериальные мембраны.

Комбинации, которые такие гены формируют на бактериальных хромосомах, располагаясь на них подряд, будут в дальнейшем называться кассетами. В данном случае в определении кассеты не учитывается оперонная структура генов, их

порядок и расположение на нитях ДНК. В недавнем исследовании [40] было показано, что из 4,5 миллиона белок-кодирующих генов в большой выборке прокариотических геномов 68,7% формируют консервативные кассеты. В указанной работе под консервативностью авторы подразумевали, что кассеты, совпадающие по комбинации COG (кластеров групп ортологических генов [41,42]), встречались среди исследуемых геномов хотя бы дважды, то есть данный критерий был очень нестрогим, и тем не менее, почти треть генов выборки не прошла его порог. Таким образом, около трети всех известных прокариотических генов, по-видимому, не обладают эволюционно закрепленными связями со своими ближайшими соседями.

Это наблюдение соответствует транскрипционным данным для хорошо изученных организмов, таких, как *Escherichia coli* и *Bacillus subtilis;* известно, что около трети генов в их геномах формируют моноцистронные опероны (состоящие из одного гена) [43], и, таким образом, их транскрипция может регулироваться отдельно от остальных генов и обеспечивать некоторую их эволюционную независимость [44,45].

В настоящей работе мы хотели выяснить, в частности, каким образом приведенные выше утверждения соотносятся со структурой геномных локусов, связанных с углеводным метаболизмом бактерий.

Мы воспользовались базой данных Integrated Microbial Genomics [46] для получения выборки из 148 тысяч генов углеводного метаболизма, относящихся к 264 различным кластерам COG и принадлежащих 665 геномам бактериальных видов 30 разных классов. Нашей задачей было установить, как часто такие гены располагаются на бактериальных хромосомах в кассетах и проанализировать два фактора, которые могли бы влиять на тенденцию к формированию кассет – функцию генов и филогенетические характеристики бактерий. Мы также оценили

разнообразие кассет по размеру и составу, определили наиболее распространенные комбинации генов и сравнили их с комбинациями функций хорошо изученных метаболических путей. Кроме того, мы выявили тенденции к попарным сочетаниям генов разных функций и разных ортологических кластеров, и определили наиболее консервативные попарные связи, попадающие под действие положительного отбора. Наконец, мы изучили случаи ко-локализации генов сходных функций и оценили, насколько велик в них вклад событий локальной дупликации, используя разработанный нами ранее инструмент NSimScan для поиска нуклеотидных последовательностей удаленного сходства.

Общей целью данного этапа работы было получить полномасштабную картину, детально описывающую ко-локализационные тенденции для генов, относящихся к углеводному метаболизму бактерий, и факторы, влияющие на них.

#### 1.3. Экспериментальная проверка предсказаний функций кассет генов

Мы предположили, что сравнительный анализ состава кассет генов углеводного метаболизма, позволяющий выявить консервативные сочетания, дает возможность предсказывать общую функцию кассеты и ее участие в соответствующих метаболических путях. В результате экспериментальной проверки одного из таких предсказаний мы подтвердили наличие связи кассеты генов, кодирующих ферменты сульфогликолиза у *Escherichia coli* с катаболизмом лактозы.

## 1.3.1 Выбор источника углевода у бактерий и регуляция работы соответствующих генов

Как уже говорилось выше, многие бактерии способны усваивать широкий спектр углеводных субстратов. Бактерии эффективно подстраиваются под изменения в окружающей среде за счет быстрого переключения между разными метаболическими путями. В случае, когда в среде присутствует множество

источников углерода, бактерия выбирает оптимальный путь, который позволяет получить наибольшее количество энергии с наименьшими затратами – в первую очередь, это касается утилизации глюкозы [47,48].

Разные белки, как правило, отвечают за разные функции и могут требоваться организму в разные моменты времени. Известно, однако, что белки могут быть мультифункциональны, участвуя в разных химических реакциях с разными метаболитами; в том числе это касается и некоторых белков углеводного метаболизма бактерий. Например, термофильная CoGH1A, гидролаза принадлежащая бактерии Caldicellulosiruptor owensensis, обладает широким спектром действия, и способна катализировать гидролиз самых разных углеводов [49]. Она обладает активностью гликозидазы, экзоглюканазы, ксилозидазы, галактозидазы, а также способна к трансгалактозилированию. Полисахаридная Smlt1473, принадлежащая бактерии Stenotrophomonas maltophilia, лиаза неокислительных разрывов катализирует реакции В разных молекулах полисахаридов, в зависимости от уровня рН среды воздействуя на альгиновую кислоту, полиглюкуроновую кислоту или гиалуроновую кислоту [50]. Гексокиназа Glk/TM1469, принадлежащая бактерии Thermotoga maritima, катализирует ряд процессов углеводного фосфорилирования, причем механизм ее действия зависит от температурных условий [51]. Однако до сих пор вопрос распространенности мультифункциональных свойств среди бактериальных белков, в целом, остается открытым. Чаще всего об альтернативных функциях белков узнают в ходе экспериментальной работы с конкретными бактериями и ферментами, а исследований с масштабными предсказаниями такого рода до сих пор не проводилось.

Метаболизм большинства известных углеводов у бактерий контролируется с помощью механизма катаболитной репрессии. Принцип его действия заключается

в подавлении экспрессии генов, кодирующих ферменты метаболических путей, относящихся к отсутствующему в данный момент в среде типу углевода [52,53]. В первую очередь он нацелен на использование глюкозы, если она есть в среде, независимо от наличия других источников углерода (Рис. 1). Благодаря этому в клетке поддерживается нормальный энергетический баланс, поскольку ее ресурсы не расходуются без необходимости [54].



Рис. 1. Механизм катаболитной репрессии на примере регуляции лактозного оперона *Escherichia coli*. При низком уровне глюкозы фермент аденилатциклаза активен и вырабатывает цАМФ (сАМР), который связывается с димеризующимся белком СRP (цАМФ-зависимым катаболит-активируемым белком), и в комплексе с ним позволяет идти активной экспрессии генов *lac*-оперона, кодирующих ферменты катаболизма лактозы (отдельно стоит отметить, что экспрессия происходит только при наличии лактозы в клетке: молекула лактозы связывается с репрессором, в результате чего он перестает блокировать связывание PHK-полимеразы с промотором). При высоком уровне глюкозы, вне зависимости от наличия лактозы в клетке, аденилатциклаза неактивна, синтеза сАМР не происходит, комплекса CRP-сАМР не образуется и экспрессия генов *lac*-оперона значительно понижается.

При отсутствии основного источника углевода или в условиях стресса клетка начинает использовать альтернативные источники энергии [55]. В оперонах

*Escherichia coli* и родственных ей бактериях этот механизм переключения обычно контролируется с помощью глобального регулятора сAMP-CRP и локального регулятора, который закодирован, как правило, либо внутри оперона вместе с генами ферментов, участвующих в соответствующем метаболическом пути, либо поблизости от них на обратной нити ДНК [56–58].

Регулятор сАМР-CRP, он же CRP (цАМФ-зависимый катаболит-активируемый белок) — один из важнейших факторов транскрипции кишечной палочки и родственных ей бактерий, который регулирует инициацию транскрипции более чем сотни генов [59,60]. Это гены, отвечающие за катаболизм лактозы, галактозы, мальтозы, рибозы, лимонной и других карбоновых кислот, гены, кодирующие фосфотрансферазную систему транспорта (РЕР), различные пермеазы и другие имеющие отношение к трансмембранному транспорту белки, а также множество белков других функций. CRP работает в форме димера, как правило, в комплексе с цАМФ, и может как активировать, так и подавлять экспрессию генов. В большинстве случаев, когда его сайт связывания расположен выше относительно старта транскрипции, CRP подавляет экспрессию гена [61,62]. Активация транскрипции с помощью CRP происходит, обычно, в том случае, когда комплекс взаимодействует с сайтом, расположенным выше промотора, и непосредственно взаимодействует с РНК-полимеразой [63]. СRР также способен связываться с ДНК, не образуя комплекс с цАМФ, и это, как правило, приводит к слабому подавлению транскрипции соответствующих генов [61].

Субстрат-зависимая регуляция осуществляется за счет локального регулятора, который принадлежит к таким семействам, как LacI, RpiR, ROK, DeoR, AraC и GntR [64]. Сайты связывания локального регулятора располагаются вблизи от сайтов связывания глобального регулятора (например, CRP или CcpA у бактерий типа Firmicutes), иногда перекрываясь с ними. Часто локальные регуляторы

играют роль, противоположную роли глобальных. Локальные регуляторы, как правило, работают в форме димеров, при этом их димеризация происходит после связывания с углеводом-лигандом и приводит к переключению метаболизма бактерии. Стоит отметить, что функция зависимости активности экспрессии локальных регуляторов от наличия в среде цАМФ и углевода-лиганда может быть нелинейной и подвержена влиянию разных факторов, в том числе, здесь может играть сложную роль структура промотора локального регулятора [65].

В целом работа систем регуляции экспрессии генов углеводного метаболизма нацелена на то, чтобы бактерия использовала именно тот сахар, который в данный момент имеется в окружающей среде или который оказывается оптимален в качестве источника энергии при наличии нескольких вариантов.

#### 1.3.2. Способы утилизации лактозы у бактерии Escherichia coli

В единственном известном пути катаболизма лактозы Escherichia coli участвуют ферменты, закодированные в хорошо изученном лактозном опероне (*lac*-опероне), впервые описанном Ф. Жакобом и Ж. Моно еще в 1961 году [66]. В 1965 году по результатам этой работы исследователи получили Нобелевскую премию по физиологии и медицине "за открытия, касающиеся генетического контроля синтеза ферментов и вирусов". Описанный ими оперон состоит из трех генов, β-галактозидазу (lacZ),кодирующих β-галактозидпермеазу (lacY)И βгалактозидтрансацетилазу (lacA).β-галактозидпермеаза мембранный транспортный белок, вторичный транспортер, который переносит лактозу через клеточную мембрану внутрь бактериальной клетки; при этом происходит симпорт лактозы и протона. β-галактозидаза расщепляет лактозу на глюкозу и галактозу (Рис. 2).



Рис. 2. Лактоза переносится через клеточную мембрану *E. coli* β-галактозидпермеазой одновременно с протоном, после чего расщепляется на глюкозу и галактозу с помощью β-галактозидазы.

β-галактозидтрансацетилаза способна переносить ацетильную группу от ацетил-коА на бета-галактозиды, и ее роль до конца неизвестна, возможно, она нужна для детоксикации неметаболизируемых галактозидов, чтобы они не могли вернуться в клетку после выведения [67].

После гидролиза галактоза и глюкоза, по-видимому, сначала выводятся из клетки, а затем доставляются с помощью других транспортных систем обратно внутрь нее (было показано, что клетки с нарушенным трансмембранным транспортом глюкозы и галактозы не способны эффективно расти на лактозе; гипотеза о выведении и повторном введении метаболитов лактозы была дополнительно подтверждена радиоизотопными методами). Глюкоза подвергается фосфорилированию за счет использования PTS (PEP-транспортера, или фосфоенолпируват-фосфотрансферазной системы), и превращается в глюкозу-1-фосфат. Затем с помощью фосфоглюкомутазы она превращается в глюкозу-6-

фосфат и включается в гликолиз. Галактоза доставляется в клетку путем пассивного транспорта или за счет активных транспортеров, таких, как GalP или Mgl. Галактоза также может превращаться в глюкозу-1-фосфат [68,69].

На момент проведения работы у кишечной палочки не было описано никаких альтернативных способов утилизации лактозы.

#### 1.3.3. Путь утилизации лактозы у бактерий класса Bacilli

Для бактерий класса Bacilli, таких как *Streptococcus, Staphylococcus* и *Lactococcus* spp, характерен механизм утилизации лактозы с помощью особого метаболического пути, который отличается от распространенного у большинства других видов, в том числе кишечной палочки, где основной стадией является гидролитическое расщепление лактозы на глюкозу и галактозу с помощью β-галактозидазы. В случае класса Bacilli лактоза доставляется в клетку с помощью β-галактозидазы. В случае класса Bacilli лактоза доставляется в клетку с помощью β-галактозидазы. В случае класса Bacilli лактоза доставляется в клетку с помощью β-галактозидазы. В случае класса Bacilli лактоза доставляется в спомощью β-галактозидазы. В случае класса васій лактоза доставляется в клетку с помощью PTS, в результате чего она сразу фосфорилируется и превращается в D-лактозо-6-фосфат [70]. Затем фермент фосфо-β-галактозидаза осуществляет реакцию гидролиза, в результате чего образуется глюкоза и D-галактозо-6-фосфат [71,72]. D-галактозо-6-фосфат превращается с помощью D-галактозо-6-фосфат [71,72]. D-галактозо-6-фосфат [72], это соединение фосфорилирует D-тагатозо-6-фосфат-киназа, образуя D-тагатозо-1,6-бисфосфат [73]. После этого фермент D-тагатозо-1,6-бисфосфат альдолаза расщепляет это соединение на дигидроксиацетонфосфат и глицеральдегид-3-фосфат [74], которые далее включаются в соответствующие этапы гликолиза (Рис. 3).





Соответствующие гены закодированы в кассете генов *lacGEFDCBAR* (см. Рис. 4, а). Ген *lacR* кодирует локальный регулятор, от которого зависит экспрессия генов кассеты.

### 1.3.4. Функции yih-кассеты Escherichia coli

К. Денгер и коллеги в недавнем исследовании описали одну из функций кассеты *E. coli ompL-yihOPQRSTUVW* [75]. Эта кассета состоит из 10 генов, названия девяти из которых начинаются с "*yih*"; в дальнейшем мы будем называть ее *yih*кассетой (Рис. 4, b). Согласно их предположению, работа этих генов завершает биогеохимический цикл серы в природе, представляя, таким образом, ранее неизвестное его звено. В ходе исследования с помощью анализа ферментативной активности исследователями было показано участие четырех закодированных в *yih*-кассете белков в четырех реакциях сульфогликолитического метаболизма (YihS, YihT, YihU, YihV).

Было выдвинуто предположение, что остальные гены этой кассеты также участвуют в этом пути, а соответствующие белки осуществляют реакции гидролиза и транспорта серосодержащих соединений углеводов, а также регуляцию транскрипции кассеты. При этом механизмы регуляции транскрипции в работе не были рассмотрены, и кассета была представлена как единый оперон, несмотря на ее значительную длину; не были описаны промоторы, сайты связывания транскрипционных факторов и транскрипционный профиль генов кассеты.



Рис. 4. Кассета бактерий класса Bacilli, участвующая в катаболизме лактозы (a) и кассета семейства Enterobacteriaceae, участвующая в сульфогликолизе (b). Одинаковые цвета генов обозначают пересечение функций кодируемых белков. Белым отмечены гены, кодирующие функции, не представленные в другой кассете.

Ранее никогда не предполагалось, что гены *yih*-кассеты могут участвовать в катаболизме лактозы; наша гипотеза, касающегося такой ее функции, была

основана на результатах общего анализа консервативных кассет катаболизма углеводов, а конкретнее, на сходстве набора функций генов этой кассеты и кассеты Bacilli, участвующей в катаболизме лактозы (Рис. 4). Для того, чтобы выяснить, играют ли эти гены роль в утилизации лактозы, мы провели анализ их экспрессии при росте культуры кишечной палочки *E. coli* K-12 MG1655 на этом субстрате, сравнивая ее с экспрессией при росте на глюкозе. Кроме этого, мы описали промоторы кассеты и сайты связывания транскрипционных факторов, участвующих в переключении работы ее генов.

# Глава 2. Инструмент NSimScan для поиска удаленных сходств последовательностей ДНК

#### 2.1. Описание и область применения NSimScan

Инструмент NSimScan (Nucleotide Similarity Scanner) был разработан нами для поиска сходных нуклеотидных последовательностей в больших базах данных ДНК. Он предназначается, в том числе, для проведения филогенетического анализа, предсказания функций генов и для других сравнительных исследований, а также ДЛЯ исследования некодирующих последовательностей И детекции ЛHK. NSimScan загрязнения образцов Производительность превосходит инструменты, считающиеся индустриальным стандартом, по совокупности таких параметров, как чувствительность, точность и скорость. По чувствительности NSimScan сравним с BLAST [8] и USEARCH [11], по точности – с SSearch [9], а по скорости – с MegaBLAST [10]. Наилучшим образом он подходит для поиска последовательностей, отличающихся друг от друга на 10-40 процентов.

#### 2.2. Алгоритм работы NSimScan

Инструмент NSimScan представляет собой генератор предполагаемых участков сходства (первичных совпадений), объединенных с серией фильтров с увеличивающейся вычислительной нагрузкой, принцип организации которой соответствует ранее разработанному нами принципу для инструмента поиска сходств в белковых последовательностях (PSimScan) [76].

Последовательные этапы алгоритма приведены ниже.

1) При запуске NSimScan сначала прочитывает все искомые последовательности (queries) и составляет индексную таблицу, в которой хранит координаты всех k-

меров каждой последовательности. Величина k-мера задается в качестве вводного параметра. По умолчанию этот параметр составляет 11, оптимальный диапазон его составляет от 8 до 12. Таблица адресуется непосредственно двоично упакованным представлением последовательности k-мера. Это весьма существенный момент, отличающий инструмент NSimScan от остальных, и позволяющий значительно ускорять процедуру поиска в таблице. В случае, если включен параметр "-арргохітаte", в таблицу также вносятся неточные совпадения k-меров, с возможностью замены одного нуклеотида в любой позиции k-мера.

2) Если при составлении индексной таблицы в искомых последовательностях встречаются последовательно расположенные повторяющиеся k-меры, то в таблицу они не записываются. Рамки данного фильтра контролируются с помощью параметра "--kred". Он определяет минимальное расстояние между позициями одинаковых k-меров в искомой последовательности, при котором они еще вносятся в таблицу.

3) Как вариант, алгоритм может учитывать список частот k-меров; он читается из внешнего файла, заданного с помощью параметра "--kdistr". На основании этого списка вычисляются относительные веса k-меров. Если список не предоставлен, то веса k-меров считаются одинаковыми и составляют 100 каждый.

4) Выделяется место в памяти для списка диагоналей матрицы совпадений. Число диагоналей соответствует сумме длин искомых последовательностей и длины последовательности из базы данных, с которой проводится сравнение. Если поиск проводится по обеим нитям ДНК, число искомых позиций удваивается (по умолчанию этот параметр включен). Объект "диагональ" содержит данные по суммарному количеству совпавших k-меров на данной диагонали и нескольких соседних. Максимальная удаленность диагонали в такой группе определяется параметром "--mxshift", по умолчанию он составляет 3.
5) Последовательно прочитываются все нуклеотидные последовательности ("записи") из базы данных, в которой осуществляется поиск.

6) Для каждой каждой позиции ИЗ записи проверяется наличие соответствующего k-мера в индексной таблице. С целью ускорения работы проверяться может не каждая позиция, а каждая вторая, третья, четвертая и т.д. Шаг выборки k-меров контролируется параметром «-q» (или «--step»), по умолчанию он равен 1. При поиске последовательностей с высокой степенью сходства использование шага большего чем 1 может существенно (обратно пропорционально размеру шага) сокращать время поиска без уменьшения точности.

7) Первичные вхождения используются для обновления значений весов диагоналей матрицы сходства у каждой позиции из записи. Процедура вычисления веса диагонали использует вес k-мера, расстояние до ближайших вхождений (перекрывающихся или отдельных) на текущей и соседних диагоналях, а также может учитывать статистическую значимость вхождения И степень вырожденности окрестности вхождения. Если вхождение изолированно, то вес соответствующего k-мера добавляется к весу диагонали. Если вхождения на предыдущей позиции данной диагонали уже зафиксированы, к ним добавляется вес не перекрывающейся с ними части текущего вхождения. Если предыдущее, не перекрывающиеся с текущим, вхождение было зафиксировано на соседней диагонали, расположенной не дальше, чем значение параметра "--mxshift", то вес переносится на текущую диагональ, с вычитанием штрафа за пропуск по количеству нуклеотидов между вхождениями ("gap cost").

8) Когда вес диагонали превышает порог, заданный параметром "--kthresh" (по умолчанию он составляет 250, что приблизительно соответствует трем

перекрывающимся вхождениям k-меров с весом 100), такая диагональ успешно проходит фильтр оценки выравнивания.

9) Для фильтр прошедших первичный диагоналей далее строится субоптимальное выравнивание. Для этого используется жадный эвристический алгоритм, который составляет выравнивание за одно прохождение по диагонали путем последовательного расширения зоны сходства по текущей и нескольким соседним диагоналям в обоих направлениях, пока вес выравнивания остается положительным. Это очень быстрая процедура, поскольку она является линейной – скорость зависит только от длины выравнивания. Высокая эффективность процедуры также достигается благодаря тому, что выравнивание осуществляется с помощью битовых операций над упакованными последовательностями (искомые последовательности и записи из базы данных представлены в бинарном виде). Во время построения выравниваний величина пропусков не превышает значение задаваемого в командной строке параметра "--mxshift".

10) Полученные выравнивания пропускаются через фильтр соотношения длины и процента сходства. Данный фильтр контролируется с помощью трех параметров: минимальная длина выравнивания ("--minlen"), процент сходства последовательностей на минимальной длине ("--minthr") и процент сходства на полной длине выравнивания ("--maxthr"). Длина выравнивания прошедших фильтр должна превышать минимальную, а процент сходства должен составлять более (minlen x minthr + (alignment\_length – minlen) x maxthr).

11) Выравнивания могут также проходить проверку на наличие тандемных повторов/перепредставленности каких-либо фрагментов. В этом случае вычисляется вес выравниваний, последовательно полученных при передвижении вперед и назад по одной из нитей последовательности на число позиций, ограниченных параметром "--replen". Их вес сравнивается с весом исходного

выравнивания. Если новый вес оказывается больше, и соотношение нового и старого веса не меньше параметра "--replev", последовательность считается перепредставленной, и выравнивание не соответствует требованиям фильтра. По умолчанию эта проверка включена, параметр --replen составляет 4, а --replev составляет 50. Выключить проверку можно, указав в командной строке --replen 0.

12) Поскольку оценка параметров проводится каждый раз, когда вес диагонали оказывается выше порога --kthresh, для некоторых позиций выстраивается серия длинных и относительно хороших выравниваний, которые могут несколько различаться в силу эвристического алгоритма их построения. Из таких перекрывающихся выравниваний выбирается одно, обладающее наибольшим весом.

13) Выравнивания не могут содержать внутри себя вставки или делеции ("gaps") длиннее, чем величина параметра --mxshift. Поэтому выравнивания часто представляют собой серию коротких "доменов". Как вариант, они могут по окончанию процесса поиска сходств сливаться в единое выравнивание. Это достигается за счет включения параметра "--mdom" в командной строке; он запускает отдельный алгоритм, основанный на динамическом программировании, отыскивающий оптимальную комбинацию коротких выравниваний для слияния.

14) Последовательности из базы данных, содержащие большое количество повторов, приводят к появлению множества сходных выравниваний. Если интерес представляет только один, лучший представитель из базы данных, можно отфильтровать остальные путем включения параметра "--mrep" в командной строке.

15) Количество выравниваний на одну искомую запись ограничено параметром "--rpq". По умолчанию он составляет 500. Если количество найденных

соответствий будет его превышать, в результатах будет представлено только 500 лучших выравниваний. При необходимости его можно увеличить.

16) Количество лучших выравниваний, которые записываются и хранятся для каждой записи из базы данных, можно ограничивать, задав нужное число с помощью параметра "--rps". По умолчанию этот параметр отключен.

Таким образом, основными задаваемыми параметрами программы являются размер k-мера, весовой порог диагонали (первичный фильтр) и параметры вторичного фильтра для выравнивания: минимальная длина выравнивания, минимальная доля сходства на минимальной длине и минимальная доля сходства на полной длине. Отношение сигнала к шуму можно дополнительно улучшать, предоставив таблицу частот k-меров или объединяя k-меры, обладающие определенным количеством различий.

Инструмент NSimScan доступен для скачивания на сайте https://github.com/abadona/qsimscan. Подробное руководство по применению и примеры параметров для командной строки находятся по адресу https://github.com/abadona/qsimscan/blob/master/nsimscan\_users\_guide.txt.

### 2.3. Методы оценки эффективности работы NSimScan

Для того, чтобы оценить эффективность работы инструмента NSimScan, в качестве стандартной выборки мы использовали бактериальные гены, кодирующие рибосомные белки. Семейства таких белков достаточно консервативны и хорошо изучены [77]. Всего мы использовали 1244 бактериальных генома разных видов, для которых мы выбрали 53 семейства генов, кодирующих рибосомные белки, так, чтобы каждое из этих семейств имело более 600 аннотированных представителей. Для каждого семейства мы случайным образом выбрали по 200 представителей, получив таким образом 10600 последовательностей.

Каждую их них мы сравнивали со всем остальным набором. Совпадение с представителями своего семейства считалось истинно положительными результатом (ТР), совпадение с представителями чужих семейств – ложно положительным (FP), отсутствие совпадения между членами одного семейства – ложно-отрицательным (FN), а отсутствие совпадения между членами разных семейств – истинно-отрицательным (TN).

Для полученных совпадений, отсортированных по ожидаемым значениям (evalue – этот параметр был получен для всех возможных пар рибосомных генов с помощью инструмента SSearch [9]), мы вычислили точность, т.е. количество ошибок на каждый поиск – FP/(общее число последовательностей) и чувствительность, которая также называется покрытием – TP/(TP + FN). Соответствующие данные представлены в виде графика (Puc. 5).

Мы также протестировали скорость работы NSimScan на другой модельной задаче – в рамках филогенетического анализа большого набора метагеномных данных. Для этого мы провели поиск репрезентативных последовательностей 16S РНК для 749 таксонов из базы данных Silva версии 123 [78] против образца метагенома корней огурца SRR908208 из базы данных NCBI Short Read Archive [79], в котором содержалось 67 миллионов 200-нуклеотидных парно-концевых последовательностей.

Все тесты проводились на компьютере с процессором Intel Core i7-3820, работающем на 3.60 GHz, с 64 гигабайтами оперативной памяти DDR3 и 2террабайтным жестким диском SATA3, с операционной системой Fedora 21 Linux OS.

# 2.4. Результаты сравнения производительности NSimScan с другими инструментами



Рис. 5. Эффективность работы инструмента NSimScan, представленная в виде точности поиска (по вертикали, логарифмическая шкала) относительно его чувствительности (по горизонтали) при разных собственных параметрах (с возрастающей строгостью первичного отбора вхождений), и в сравнении с другими, стандартными в области инструментами: SSearch, USEARCH, BLAT, BLAST (современная версия BLAST plus и исходная версия Legacy BLAST) и MegaBLAST. Параметры NSimScan, указанные в легенде: *sh* – максимальный сдвиг по диагонали; *k* – размер k-мера; *kt* – порог веса диагонали; *lthr* – наименьшее совпадение на полной длине выравнивания; (*sthr* – наименьшее совпадение на минимальной длине выравнивания, составляющей 40 нуклеотидов). В скобках указано время работы каждого инструмента в секундах.

На Рис. 5 показаны результатов шести запусков инструмента NSimScan с разными параметрами первичных фильтров, а также результаты работы

стандартных инструментов, которые часто применяют в исследованиях в области сравнительной геномики. Стоит отметить, что дополнительное ужесточение вторичных параметров сдвигает часть графика с более высокой чувствительностью в сторону большей точности, а ослабление их добавляет сегмент справа, соответствующий меньшей точности, т.е. более высокому проценту ошибок.

Bo всех условий NSimScan по соотношению вариантах заданных чувствительности и точности оказался на уровне SSearch (который считается самым чувствительным инструментом среди указанных), обогнав при этом все остальные инструменты на два порядка. Даже с наименее жесткими первичными параметрами поиска (большой длиной k-мера и низким порогом веса диагонали) NSimScan работает с несколько большей чувствительностью, чем USEARCH (который демонстрирует наилучшие показатели по чувствительности среди остальных инструментов, кроме SSearch), при этом точность у NSimScan почти на два порядка выше, а скорость выше на порядок (в ходе данного сравнения USEARCH запускался без включения параметра "--usort", который увеличивал бы скорость его работы в сто раз, но приводил бы к стократной потере в чувствительности). По скорости NSimScan сопоставим с MegaBLAST при средних порогах чувствительности и с BLAST при высоких порогах. Он не уступает уровню BLAST по чувствительности, при этом скорость работы NSimScan при соответствующих параметрах оказывается в три раза выше.



Рис. 6. Распределение чувствительности поиска для последовательностей с разной долей сходства. Справа указаны использованные инструменты: SSearch (синий) и NSimScan с разными параметрами: k (величина k-мера) и kt (порог веса диагонали). По оси ординат указано количество найденных последовательностей. По оси абсцисс – доля сходства итоговых выравниваний.

На Рис. 6 представлено сравнение результатов работы инструментов NSimScan и SSearch при разной заданной доле сходства последовательностей. Выяснилось, что при доле сходства последовательностей более 70% SSearch и NSimScan показывают почти одинаковую чувствительность. Ниже 70% чувствительность NSimScan гораздо сильнее зависит от параметров, связанных со скоростью (величины k-мера и порога оценки выравнивания) и, соответственно, существенно падает при высоких скоростях.

| Tool      | Time       | MemUse  | Detected | Tx# | MissTx# | ExtraTx# |
|-----------|------------|---------|----------|-----|---------|----------|
| MegaBLAST | 5 h 18 min | 24.6 Gb | 252956   | 310 | n/a     | n/a      |
| NSimScan  | 26 min     | 5.7 Gb  | 240934   | 360 | 4.7%    | 21.6%    |

Таблица 1. Сравнение работы NSimScan и MegaBLAST в рамках филогенетического анализа. В колонках: Tool – инструмент, Time – время работы инструмента; MemUse – количество использованной оперативной памяти; Detected – количество обнаруженных фрагментов 16S PHK; Tx# – количество выявленных бактериальных таксонов, MissTx# – количество таксонов, которые обнаружены с помощью NSimScan, ExtraTx# – количество таксонов, которые обнаружены с помощью NSimScan, ExtraTx# – количество таксонов, которые обнаружены с помощью NSimScan, ExtraTx# – количество таксонов, которые обнаружены с помощью NSimScan, е моличество таксонов, которые обнаружены с помощью NSimScan, в моличество таксонов, которые обнаружены с помощью NSimScan, но не обнаружены с помощью MegaBLAST.

Результаты работы NSimScan в сравнении с инструментом MegaBLAST в эксперименте по филогенетическому анализу большого набора метагеномных данных представлены в Таблице 1. NSimScan работает в 10 раз быстрее, чем MegaBLAST, использует в 4 раза меньше оперативной памяти, и находит практически все искомые фрагменты – более 95% таксонов, которые находит MegaBLAST и существенное количество таксонов (21,6%), которые MegaBLAST не находит.

### 2.5. Применение NSimScan в научных исследованиях

NsimScan был исследовательской успешно использован группой ИЗ калифорнийского института Joint Genomic Institute для вычисления УНР (усредненного нуклеотидного расстояния) широкомасштабном В филогенетическом исследовании, включающем данные геномов 3032 видов прокариот [80]. Мы рассчитываем, что данный инструмент будет полезен и в других, самых разнообразных проектах, требующих эффективного обнаружения нуклеотидных последовательностей удаленного сходства.

В ходе данной работы инструмент NsimScan был использован для оценки количества событий дупликаций генов углеводного метаболизма в бактериальных геномах (см. Главу 3), а также для оценки сходства ортологов генов *yihT/lacD* бактерий семейства Enterobacteriaceae (см. Главу 4).

#### 2.6. Заключение

Мы провели сравнение производительности разработанного нами инструмента NSimScan для поиска нуклеотидных последовательностей удаленного сходства в больших базах инструментами, являющимися промышленным данных С области сравнительной стандартом геномики, В И продемонстрировали значительные преимущества NSimScan по совокупности таких параметров, как точность, скорость и чувствительность. NSimScan работает со скоростью, соответствующей самым быстрым инструментам из всех представленных в области, в том числе, MegaBLAST. Чувствительность поиска NSimScan сравнима с показателями самого чувствительного инструмента, SSearch. Paбота NSimScan характеризуется при этом высокой степенью точности; уровень ошибок NSimScan соответствует или оказывается ниже, чем у SSearch, и всегда ниже, чем у всех остальных протестированных инструментов. Поиск с использованием NSimScan оказывается также полноценным инструмент отыскивает все последовательности, имеющие указанную долю сходства, не теряя никаких результатов.

Наибольшее преимущество NSimScan представляет при поиске относительно далеких последовательностей (60-90% идентичности) на больших наборах данных в рамках широкомасштабных проектов анализа последовательностей ДНК.

# Глава 3. Организация генов углеводного метаболизма бактерий

### 3.1. Материалы и методы

#### 3.1.1. Геномы и гены

Всего было изучено 665 бактериальных геномов разных видов, штамм каждого вида выбирался случайным образом (см. Приложение А). Общее количество исследованных генов углеводного метаболизма бактерий составило 148 тысяч.

Данные по аннотации генов были получены из базы данных IMG [46,81]; большая часть была принадлежала категории "G" – углеводного метаболизма. Дополнительные гены были взяты из других категорий (например, категории генов с неизвестной функцией или категории генов, участвующих в построении клеточной стенки) на основании наблюдения событий слияний таких генов в некоторых бактериях с генами категории "G" (см. раздел 3.1.2). Аннотация каждого гена содержала его подтвержденные или предсказанные функции и его бактериальной хромосоме, а координаты на также указывала на его принадлежность к определенным кластерам COG.

Последовательности генов были взяты из базы данных GenBank [82].

## 3.1.2. Классификация генов углеводного метаболизма бактерий

Мы использовали двухуровневую классификацию генов. Первый ее уровень, классы, соответствовал глобальной функции гена и учитывал реакционную и субстратную специфичность соответствующих ферментов. Гены, кодирующие транспортные белки и транскрипционные факторы, были вынесены в два отдельных класса. Принадлежность ферментов к определенному классу определялась с помощью международной иерархической классификации Епzyme

Nomenclature, созданный Комиссией по ферментам при Международном союзе биохимии и молекулярной биологии IUBMB [83].

Каждый полный классификационный номер этой системы содержит последовательность из четырёх чисел, разделённых точкой. Каждое число представляет собой всё более уточняющую классификацию фермента. Первое число соответствует одному из семи главных типов ферментов – оксидоредуктазы (1), трансферазы (2), гидролазы (3), лиазы (4), изомеразы (5), лигазы (6) и транслоказы (7). Второе число характеризует основной тип субстрата. Например, у трансфераз вторая цифра указывает на природу той группы, которая подвергается переносу, у гидролаз – на тип гидролизуемой связи и т. д. Третье число более конкретно уточняет природу химических соединений доноров или акцепторов, участвующих в данной реакции. Четвертое число, как правило, определяет конкретную специфичность фермента, например, то, что он взаимодействует конкретно с альбумином или фруктозой. Так, фосфофруктокиназа имеет номер 2.7.1.56, где число 2 соответствует трансферазам, 7 – трансферазам, переносящим фосфатный остаток (фосфотрансферазам, они же киназы), 1 – фосфотрансферазам, акцептором для которых является гидроксильная группа, а 56 — киназам, переносящим фосфатный остаток на молекулы фруктозы.

Всего мы определили 19 классов функций генов, относящихся к углеводному метаболизму, в том числе гликозидазы, киназы, изомеразы и т.п. (см. Таблицу 1).

| Функциональный класс                     | Количество генов | Склонность к<br>образованию | Идентификатор<br>Enzyme |
|------------------------------------------|------------------|-----------------------------|-------------------------|
|                                          |                  | кассет                      | Nomenclature            |
| транскрипционные факторы                 | 39136            | 35,29%                      | -                       |
| (transcriptional)                        |                  |                             |                         |
| транспортные белки (transport)           | 29701            | 70,83%                      | -                       |
| гликозилтрансферазы                      | 14579            | 62,30%                      | 2.4.1.                  |
| (glycosyltransferase)                    |                  |                             |                         |
| гликозидазы (glycosidase)                | 11475            | 64,74%                      | 3.2.1.                  |
| киназы (kinase)                          | 9250             | 57,95%                      | 2.7.1.; 2.7.9           |
| изомеразы (isomerase)                    | 6458             | 55,20%                      | 5.3.1.                  |
| дегидрогеназы-OH (dehydrogenase-OH)      | 5518             | 57,67%                      | 1.1.                    |
| декарбоксилазы (decarboxylase)           | 2788             | 58,97%                      | 4.1.                    |
| нуклеотидилтрансферазы                   | 2125             | 70,96%                      | 2.7.7.; 2.7.8           |
| (nucleotydiltransferase)                 |                  |                             |                         |
| дегидратазы (dehydratase)                | 2091             | 52,75%                      | 4.2.                    |
| фосфотазы (phosphotase)                  | 2036             | 37,77%                      | 3.1.3.                  |
| эпимеразы (epimerase)                    | 1753             | 61,78%                      | 5.1.3.                  |
| деацетилазы (deacetylase)                | 1525             | 51,02%                      | 3.5.1.                  |
| трансальдолазы/транскетолазы             | 1514             | 70,54%                      | 2.2.1.                  |
| (transaldolase/transketolase)            |                  |                             |                         |
| мутазы (mutase)                          | 1502             | 40,35%                      | 5.4.2.                  |
| карбоксил-эстеразы (carboxylic-esterase) | 1153             | 63,49%                      | 3.1.1.                  |
| дегидрогеназы-О (dehydrogenase-O)        | 781              | 69,78%                      | 1.2.                    |
| нуклеозидазы (nucleosidase)              | 597              | 23,28%                      | 3.2.2.                  |
| мальто-олигозилтрегалоз-синтазы          | 100              | 93,00%                      | 5.4.99                  |
| (malto-oligosyltrehalose-synthase)       |                  |                             |                         |

Таблица 2. Функциональные классы генов углеводного метаболизма.

Второй уровень классификации соответствовал структурно-эволюционным характеристикам гена, отраженным в его принадлежности к определенному СОG (кластеру групп ортологических генов) [41,42]. В базе данных IMG гены распределяются по кластерам с помощью автоматизированной процедуры, в ходе которой осуществляется поиск нуклеотидной последовательности гена с помощью инструмента RPS-BLAST против позиционных весовых матриц PSSM (COG position-specific scoring matrices), составленной на основе базы данных консервативных доменов CDD (conserved domains database) [84]. Из этой базы

данных мы взяли 239 бактериальных кластера СОС из категории "G", которые встречались среди выбранных нами штаммов 665 видов бактерий.

Около 2% генов, относящихся Κ данным кластерам, имели также COG; идентификационные номера такой дополнительные результат автоматизированной аннотации может указывать на события слияния генов [85]. В этом случае последовательности двух разных генов, кодирующих разные белки и представленных в одних геномах по отдельности, в других геномах оказываются входящими в состав одного гена, и кодируют один белок, но с несколькими доменами. Согласно недавним исследованиям, около 6% генов бактерий и архей, по-видимому, являются результатом события слияния двух и более генов [40]. Чаще всего такие события являются свидетельством тесной функциональной связи соответствующих белков.

Поскольку нашей задачей было, в частности, изучение подобных связей, в рамках данного исследования случаи потенциальных событий слияний генов рассматривались так же, как случаи отдельных ко-локализованных генов. Анализ всех потенциальных событий слияния генов углеводного метаболизма с другими генами выявил 34 дополнительных кластера СОG, аннотации которых указывали на их возможную принадлежность к углеводному метаболизму. Большинство из них принадлежало, согласно данным базы данных IMG, к категории "М" (биосинтез клеточной стенки/мембраны), "R" (гены с предсказанной общей функцией) и "К" (транскрипция). Мы включили эти 34 кластера в исследование.

Примером такого дополнительного кластера является COG4158 из категории "R", в аннотации базы данных IMG которого предсказано, что входящие в него гены, в частности, кодируют "белки из семейства CUT2 ABC-транспортеров моносахаридов" и "ABC-транспортеры рибозы, пермеазы". Данный кластер был отнесен к в рамках нашей классификации к классу транспортеров.

В результате мы получили набор из 264 кластеров СОG (см. Приложение Б).

#### 3.1.3. Определение кассет генов и их анализ

Кассеты были определены на основании ко-локализации генов на бактериальных хромосомах. Считалось, что гены формировали кассеты, если они были включены в составленную нами классификации генов углеводного метаболизма и располагались на хромосоме подряд, причем расстояние между каждой парой не превышало 200 нуклеотидов. Данный критерий по порогу колокализации генов внутри оперонов был получен из OperonDB [86], крупной базы данных, содержащей предсказанные и подтвержденные оперонные структуры прокариот. Порядок генов в кассетах и их расположение на нитях ДНК не учитывались.

В кассете был разрешен один длинный интервал длиной 1500 нуклеотидов, что приблизительно соответствует длине одного бактериального гена и двух межгенных интервалов, его окружающих. Это позволяло включать в кассету один дополнительный ген, для которого еще не было показано участие в углеводном метаболизме, например, ген с неизвестными функциями. Исходя из окружения такого гена, можно предположить, что он тоже может иметь отношение к углеводному метаболизму [38], и такое допущение позволяло не нарушать структуру целой кассеты, не существенно увеличивая при этом количество и длину кассет в целом.

С помощью языка программирования Python мы разработали инструменты, которые позволили проводить дальнейшие исследования ко-локализационных тенденций генов, в частности, проанализировать полученные кассеты по размеру (количеству входящих в них генов) и составу в целом и в разных бактериальных таксонах, исследовать их разнообразие на уровне кластеров СОG и на уровне

функциональных классов и выявить наиболее консервативные комбинации. Эти комбинации мы также сравнивали с наборами участников известных метаболических путей, взятых из баз данных Metacyc [20] и KEGG [19].

### 3.1.4. Анализ ко-локализационных особенностей функциональных классов

Одной из целей нашего исследования был анализ ко-локализационных тенденций генов, принадлежащих к разным функциональным классам. Чтобы выявить статистическую значимость таких событий, мы сравнивали их со случайной моделью. Для этого мы случайным образом перемешали исследуемые гены 10000 раз по их позициям на бактериальных геномах (отдельно в каждом геноме) и вычислили, как часто пары генов из разных функциональных классов встречаются друг с другом в такой модели. При этом событием ко-локализации считался случай, в которой В одной кассете оба соответствующих функциональных класса были представлены хотя бы один раз.

Полученное распределение мы использовали для того, чтобы рассчитать вероятность ошибки при отклонении нулевой гипотезы (p-value или P-значения) событий ко-локализации. Р-значение для настоящих В данном случае случайная соответствует вероятности того, что величина С данным распределением примет значение, не меньшее, чем фактическое значение. Если функциональные классы вообще не встречались в случайной модели, Р-значение для данной пары приравнивалось 1/10001.

После этого к общему числу проанализированных пар мы применили поправку для множественных гипотез (поправку Бонферрони) [87] с уровнем значимости α = 0,05.

Такой же статистический анализ проводился для случаев ко-локализации генов одного и того же функционального класса. В данном случае отдельно считались

события встречи в одной кассете ровно двух представителей класса, ровно трех представителей и т.п.

## 3.1.5. Анализ ко-локализационных особенностей кластеров СОС

Мы проанализировали ко-локализационные тенденции представителей разных кластеров СОG внутри каждой пары функциональных классов. Чтобы учесть количество генов в разных СОG, мы сравнивали наблюдаемые количества событий встреч с ожидаемыми, которые зависели от размеров соответствующих СОG. Для статистической проверки с помощью критерия хи-квадрат (где согласно нулевой гипотезе количество событий ко-локализации кластеров зависит только от размера кластеров) для каждой пары было получено значение квадрата разницы между наблюдаемым и ожидаемым значениями.

Для того, чтобы разделить встречи между разными СОG на частые, редкие и промежуточные варианты, события встреч СОG в рамках каждой пары функциональных классов были кластеризованы с помощью алгоритма *k*-средних [88], реализованной на языке программирования Perl. Этот алгоритм позволяет кластеризовать числовые данные в многомерных пространствах (минимизируя суммарное квадратичное отклонение точек кластеров от центров этих кластеров).

Процесс кластеризации был повторен несколько раз с возрастающим числом кластеров и параллельно возрастающим штрафом, зависящим от квадрата количества кластеров. В результате для каждой пары функциональных классов было найдено оптимальное количество типов частоты встречаемости пар COG.

Подобная же процедура кластеризации была проведена для описанных выше значений нулевой гипотезы. Если частота встречаемости пар оказывалась существенно выше ожидаемых значений, это означало, что она определялась не только размером соответствующих СОС. Были выявлены пары СОС, которые

оказались включены в кластеры с самыми высокими значениями как в рамках первой, так и второй кластеризации, т.е. такие пары, которые встречались в одних и тех же кассетах чаще всего, и эти встречи не были случайными.

#### 3.1.6. Сравнение последовательностей генов

Чтобы выяснить, в каких случаях расположенные рядом гены, относящиеся к одному и тому же кластеру COG, являются результатом события локальной дупликации, мы сравнивали последовательности этих генов друг с другом и со всеми остальными генами того же кластера из нашей базы данных. Мы выбирали двухсторонние лучшие совпадения (bi-directional best hits), то есть пары, в которых первый ген был больше всего похож на второй, а второй больше всего похож на первый.

Для этого мы использовали разработанный нами инструмент NSimScan (см. Главу 2) со следующими параметрами: -k (размер k-мера) 7; -t (порог оценки по диагонали) 80; --it (минимальный процент сходства на минимальной допущенной длине выравнивания) 50; --xt (минимальный процент сходства на максимальной возможной длине выравнивания) 50; -mrep (данный параметр включает режим, при котором из группы найденных результатов в рамках одного и того же генома выбирается только один, самый лучший).

# 3.2. Результаты и обсуждение

### 3.2.1. Склонность генов к ко-локализации и разнообразие кассет генов

Только 53% из 148 тысяч бактериальных генов углеводного метаболизма формировали кассеты, то есть располагались рядом друг с другом на бактериальных хромосомах. Изначально мы ожидали увидеть более сильную тенденцию к ко-локализации у генов, белки которых потенциально выполняют взаимосвязанные функции [25,30,89,90]. Известно, однако, что эволюционные модули, состоящие из групп генов, всегда одновременно присутствующих или отсутствующих в геномах или даже непосредствено рядом друг с другом, не обязательно тождественны функциональным модулям [32,33]. Кроме того, как уже говорилось выше, в исследовании большой выборки прокариотических генов всевозможных функций было показано, что менее двух третей из них формируют консервативные кассеты, т.е. имеют хоть сколько-нибудь заметную склонность к эволюционной устойчивости своего окружения [40].

Всего исследуемые гены вошли в состав 26 тысяч кассет. Большая часть этих кассет были короткими; 55% состояли из двух генов, 20% – из трех (Рис. 7).





55

Распределение кассет по размеру среди разных классов бактерий, а также распределение функциональных классов генов в кассетах разных размеров показаны на Рис. 8 и Рис. 9, соответственно. Большинство представленных на этих графиках кривых соответствует тенденции, отраженной на Рис. 7, однако есть несколько исключений. Так, гены, кодирующие транспортные белки, встречаются в 2-генных кассетах почти так же часто, как и в 3-генных, что можно объяснить широким распространением крупных белковых транспортных комплексов, таких как ABC-транспортеры, которые состоят не менее, чем из 3 субъединиц [91]. У Fusobacteria, Thermotogae и Firmicutes 5- и 6-генные кассеты встречаются практически не реже, чем 4-генные.



Рис. 8. Распределение кассет по размеру среди разных типов бактерий.



Рис. 9. Распределение по размеру кассет, содержащих гены разных функциональных классов.

Всего в кассетах встречалось около 10,4 тысяч разных комбинаций кластеров СОС и около 2,5 тысяч разных комбинаций функциональных классов генов. По своему функциональному составу 45% кассет были уникальными, то есть встречались в исследуемых геномах только один раз.

Более того, только 43% всех исследованных нами генов входили в состав консервативных по составу кластеров СОС кассет (кассета считалась консервативной, если встречалась в исследованных геномах по крайней мере дважды), тогда как в упомянутых выше исследованиях для всех бактериальных

белок-кодирующих генов эта доля составляла 69%. Такие наблюдения подтверждают гипотезу о том, что значительная часть прокариотических генов не формирует эволюционно-устойчивых комбинаций на бактериальных хромосомах, причем оказывается, что внутри сегмента углеводного метаболизма их доля еще больше.

Последний эффект можно объяснить возможным формированием эволюционноустойчивых связей между аннотированными генами углеводного метаболизма и генами других функций. Последние могут кодировать ферменты, относящиеся к метаболизму нуклеотидов или иных соединений, содержащих углеводные остатки, например, гликолипидов или гликопротеинов; при этом они не взаимодействуют напрямую с углеводными остатками. В их аннотации углеводный метаболизм чаще всего не фигурирует. В нашей выборке присутствовали гены, кодирующие нуклеотидилтрансферазы, которые катализируют, в том числе, реакции переноса и присоединения углеводных остатков K нуклеотидам, нуклеозидазы, И катализирующие их отщепление. Закодированные в соседних с ними генах ферменты могут входить в состав одних с ними метаболических путей, но аннотация относит их к другим сегментам метаболизма, и в нашей выборке их нет; поэтому мы не наблюдаем соответствующих кассет.

# 3.2.2. Склонность генов разных функциональных классов и кластеров COG к формированию кассет

Долю генов, входящую в состав кассет, мы будем дальше называть склонностью к образованию кассет для данной группы генов. Функциональные классы значительно различались по этому параметру – он варьировал от 23% до 93% (см. Таблицу 2). Наименьшей склонностью к образованию кассет обладали нуклеозидазы, фосфатазы и мутазы (она составляла для них 23%, 38% и 42%, соответственно). Это можно объяснить, как уже было сказано выше, участием

продуктов таких генов в других типах метаболических путей, традиционно не относящихся к углеводному метаболизму. В ходе работы нуклеозидаз нуклеотиды подвергаются гидролизу с получением моносахаридов, поэтому нуклеозидазы имеют отношение как к углеводному метаболизму, так и к путям катаболизма и синтеза нуклеотидов, и, возможно, формируют устойчивые эволюционные комбинации только с последними.

Наибольшая склонность к образованию кассет – 93%, наблюдалась у небольшого класса мальтоолигозилтрегалозсинтаз, на втором месте оказались трансальдолазы и транскетолазы, а на третьем – транспортеры. Последнее, как уже обсуждалось выше, связано с тем, многие транспортные комплексы (такие как системы ABC и PTS) в бактериальной клетке состоят из нескольких субъединиц, гены которых часто закодированы рядом в составе единых оперонов [91,92].



Рис. 10. Склонность к образованию кассет (по вертикали) у разных кластеров СОG (размер кластера, т.е. число генов в СОG, указан по горизонтали, логарифмическая шкала). Форма и цвет значка каждого кластера указывают на функциональный класс, к которому он принадлежит (расшифровано справа).

Склонность к образованию кассет у разных кластеров СОG различалась еще сильнее, чем у функциональных классов, варьируя между 0% и 100% (см. Приложение Б, Рис. 10 и Рис. 11). Большинство крупных кластеров, содержащих более 4 тысяч генов, имели большую долю генов без соседей, относящихся к углеводному метаболизму, и склонность к образованию кассет для таких кластеров, в том числе для вторичных транспортеров суперсемейства MFS и многих транскрипционных регуляторов, составляла менее 40%. Исключением оказался большой кластер гликозилтрансфераз СОG0438, включающий 6,5 тысяч генов, кодирующих белки, участвующие в синтезе клеточной стенки, склонность к образованию кассет которого оказалась весьма значительной и составила 66%.

Склонность к образованию кассет у некоторых кластеров среднего размера, включающих от двух до четырех тысяч генов, составляла более 90% (здесь представлены, в том числе, транспортеры систем ABC).

Самые маленькие кластеры, включающих менее двух тысяч генов, с наиболее высокой склонностью к образованию кассет, принадлежали к классам дегидрогеназ, изомераз, киназ, эпимераз и трансальдолаз/транскетолаз.



Рис. 11. Распределение склонности к образованию кассет у кластеров СОG; цветом отмечено, к каким функциональным классам принадлежат кластеры.

# 3.2.3. Склонность генов разных бактериальных классов к формированию кассет

Филогенетические факторы также играли важную роль в склонности генов к формированию кассет в геномах. Для разных бактериальных классов эта склонность варьировала между 37% и 76% (Рис. 12). В данном случае для анализа мы выбрали классы, в которых было представлено не менее двух геномов нашей выборки, в каждом из которых было не меньше ста аннотированных генов углеводного метаболизма.



Рис. 12. Склонность к образованию кассет у генов, принадлежащих геномам бактерий разных классов. По вертикали указаны тип и класс бактерий. По горизонтали - склонность к образованию кассет в процентах.

Наибольшей склонностью к образованию кассет обладали представители классов Dictyoglomi и Fusobacteria (76%), Thermotogae (72%) и Bacilli (65%). Это соответствует опубликованным данным о том, что гены представителей этих классов (например, рода *Streptococcus*) часто лежат в составе длинных оперонов [44,45]. Наименьшей склонностью к образованию кассет обладали представители

классов Planctomycetia (37%), Chlamydiae (37%), Chlorobia (40%), Deferribacteres (42%) и Cyanobacteria (43%).

Среди крупных классов, в каждом из которых было аннотировано не менее восьми тысяч генов углеводного метаболизма, представители класса Deltaproteobacteria обладали наименьшей склонностью к образованию кассет (46%), средней склонностью (50%) обладали Betaproteobacteria, тогда как у Alphaproteobacteria, Gammaproteobacteria и Actinobacteria она была несколько выше, и составляла 54%, 56% и 57%, соответственно, а наибольшая склонность к образованию кассет оказалась у классов Clostridia (60%) и Bacilli (64%).

## 3.2.4. Функциональный состав кассет генов углеводного метаболизма

Наиболее распространенным участником кассет среди функциональных классов оказались гены, кодирующие транспортеры, гликозидазы и гликозилтрансферазы. Самая длинная кассета, обнаруженная в геноме *Stackebrandtia nassauensis* DSM 44728, включала 15 генов, среди которых было 11 транспортеров, 2 изомеразы, одна гликозидаза и одна гликозилтрансфераза.

Транспортеры встречались в 18% кассет, причем 10% кассет содержали не меньше двух транспортеров. Гликозидазы встречались в 19% кассет, причем 5,8% кассет имели не меньше двух гликозидаз, а 1,7% кассет имели не меньше трех. В геномах *Prevotella ruminicola* 23 и *Bifidobacterium dentium* Bd1 обнаружились кассеты с рекордным количеством гликозидаз – по семь представителей класса в каждой. Гликозилтрансферазы также встречались в 19% кассет, причем в 9,4% кассет они встречались не менее двух раз, а в 3,3% кассет – не менее трех. Наибольшее число гликозилтрансфераз обнаружилось в кассетах *Pedobacter saltans* DSM 12145 и *Bacillus weihenstephanensis* KBAB4 и составило девять генов на кассету.

Ни один из функциональных классов не оказался представлен одновременно более, чем в пятой части изученных кассет, что подчеркивает существенное разнообразие ко-локализационных тенденций генов, относящихся к углеводному метаболизму бактерий.

# 3.2.5. Попарные ко-локализационные тенденции представителей разных функциональных классов

Для того, чтобы оценить значимость событий попарной ко-локализации генов разных функциональных классов, мы сравнивали соответствующие события колокализации в кассетах с событиями случайной модели так, как описано в разделе Методы. Полученные данные представлены в Таблице 3. Ожидалось, что разнообразие эволюционно значимых связей между классами будет достаточно высоким, поскольку оно могло бы соответствовать значительному разнообразию комбинаций функций в распространенных метаболических путях. Однако из 190 возможных пар функциональных классов только у 45 (24%) число событий колокализации оказалось значительно выше, чем в случайной модели (Р-значение их составляло менее 0,0001).

| Функциональный класс             |                             | События ко-локализации | События ко-локализации сл. модели |
|----------------------------------|-----------------------------|------------------------|-----------------------------------|
| transport                        | transport                   | 5542                   | 4196,87                           |
| glycosyltransferase              | glycosyltransferase         | 2458                   | 821,40                            |
| glycosidase                      | glycosidase                 | 1533                   | 813.05                            |
| isomerase                        | kinase                      | 921                    | 594,38                            |
| dehydrogenase-OH                 | glycosyltransferase         | 809                    | 558,85                            |
| kinase                           | kinase                      | 668                    | 466,42                            |
| decarboxylase                    | kinase                      | 653                    | 265.67                            |
| nucleotydiltransferase           | glycosyltransferase         | 508                    | 230,81                            |
| nucleotydiltransferase           | dehvdrogenase-OH            | 416                    | 95.08                             |
| isomerase                        | isomerase                   | 402                    | 224.11                            |
| dehvdrogenase-OH                 | dehvdrogenase-OH            | 371                    | 139.10                            |
| dehvdrogenase-O                  | kinase                      | 354                    | 66.86                             |
| dehvdrogenase-OH                 | epimerase                   | 334                    | 82.18                             |
| isomerase                        | decarboxylase               | 333                    | 190.63                            |
| nucleotydiltransferase           | epimerase                   | 331                    | 35.44                             |
| dehydratase                      | dehydrogenase-OH            | 304                    | 101.85                            |
| transaldolase-transketolase      | transaldolase-transketolase | 288                    | 12.52                             |
| glycosyltransferase              | deacetylase                 | 244                    | 155.98                            |
| carboxylic-esterase              | dehydrogenase-OH            | 239                    | 60.85                             |
| epimerase                        | kinase                      | 229                    | 162.00                            |
| dehydratase                      | isomerase                   | 198                    | 140.25                            |
| isomerase                        | dehvdrogenase-O             | 195                    | 49.77                             |
| carboxylic-esterase              | kinase                      | 175                    | 104,64                            |
| isomerase                        | mutase                      | 164                    | 101,42                            |
| dehydratase                      | decarboxylase               | 162                    | 62,68                             |
| isomerase                        | transaldolase-transketolase | 146                    | 103,53                            |
| decarboxylase                    | transaldolase-transketolase | 131                    | 47,84                             |
| dehydrogenase-O                  | transaldolase-transketolase | 127                    | 12,81                             |
| dehydrogenase-OH                 | transaldolase-transketolase | 121                    | 73,01                             |
| decarboxylase                    | decarboxylase               | 116                    | 45,05                             |
| decarboxylase                    | epimerase                   | 107                    | 52,45                             |
| nucleotydiltransferase           | nucleotydiltransferase      | 101                    | 18,77                             |
| malto-oligosyltrehalose-synthase | glycosidase                 | 91                     | 10,40                             |
| nucleotydiltransferase           | mutase                      | 90                     | 32,98                             |
| decarboxylase                    | dehydrogenase-O             | 89                     | 22,05                             |
| carboxylic-esterase              | deacetylase                 | 87                     | 16,90                             |
| carboxylic-esterase              | dehydratase                 | 83                     | 24,88                             |
| carboxylic-esterase              | decarboxylase               | 72                     | 33,86                             |
| dehydratase                      | dehydrogenase-O             | 71                     | 17,32                             |
| carboxylic-esterase              | transaldolase-transketolase | 66                     | 16,46                             |
| dehydratase                      | dehydratase                 | 62                     | 21,56                             |
| epimerase                        | dehydrogenase-O             | 35                     | 13,86                             |
| deacetylase                      | deacetylase                 | 35                     | 13,43                             |
| malto-oligosyltrehalose-synthase | mutase                      | 18                     | 1,73                              |
| dehydrogenase-O                  | dehydrogenase-O             | 16                     | 1,91                              |

Таблица 3. События попарной ко-локализации представителей разных функциональных классов и средние значения такой ко-локализации в случайной модели. В данной таблице приведены пары классов с Р-значением не ниже 0.00001 (см. Методы)

Количество связей варьировало для каждого класса от 0 до 8 (Рис. 13). Размер класса, то есть число входящих в него генов, напрямую не влиял на это значение. Так, несмотря на большие размеры класса транспортеров, включающего более 21 тысячи генов в составе кассет, он не имел ни одной значимой связи с другими

классами. Класс трансальдолаз/транскетолаз, включающий около тысячи генов, входящих в кассеты, продемонстрировал шесть значимых связей с другими классами, тогда как сходный по размеру класс деацетилаз обладал всего тремя. Склонность к формированию кассет представителей класса, как таковая, повидимому, также не влияла напрямую на число ко-локализационных связей этого класса с другими. Класс декарбоксилаз, склонность к формированию кассет которого составляла 60%, участвовал в восьми связях, а класс гликозилтрансфераз с аналогичной склонностью участвовал всего в четырех.



Рис. 13. Ко-локализационные связи между функциональными классами генов углеводного метаболизма. Кругами представлены разные классы, размер круга соответствует относительному размеру класса. Линиями соединены классы, имеющие значимую ко-локализационную связь. Зеленым цветом отмечены классы, представители которых имеют тенденцию к ко-локализации друг с другом.

Значительная часть связей была сформирована классами декарбоксилаз, дегидрогеназ-ОН и дегидрогеназ-О (у них оказалось 8, 8 и 7 связей, соответственно). Таким образом, именно эти классы обладали наиболее разнообразными и при этом неслучайными предпочтениями по отношению к своему геномному окружению.

Большая часть связей была образована парами функций, встречающихся в распространенных и хорошо изученных метаболических путях. Так, например, изомераза и киназа одновременно присутствуют в путях, связанных с деградацией лактозы, галактозы, хитина и арабинозы. Декарбоксилаза и киназа присутствуют во всех вариациях пути Энтнера-Дудорова (путь катаболизма глюкозы, отличный от гликолиза и пентозофосфатного пути) [93]. Эпимераза и мутаза встречаются в путях гликолиза [94] и глюконеогенеза [95], а также, например, в пути деградации маннана [96]. Дегидрогеназа и карбоксил-эстераза участвуют в путях деградации галактозы [97,98].

Это наблюдение соответствует представлениям о том, что белки, участвующие в одном и том же метаболическом пути, часто закодированы в ко-локализованных генах или даже расположены в составе единого оперона [27,30,66,99]. Однако ко-локализационные события многих пар функций, присутствующих в известных метаболических путях, в рамках данного анализа не преодолели порога значимости – например, гликозидаза и киназа, совместно участвующие в гликолизе и других метаболических путях. Гены гликозидаз и киназ недостаточно часто встречались в кассетах вместе, чтобы эти события можно было отличить от случайных событий ко-локализации. Такой результат подтверждает гипотезу о том, что ко-локализация не является обязательным условием для генов, кодирующих белки с взаимосвязанными функциями.

#### 3.2.6. Попарные ко-локализационные тенденции кластеров COG

Попарные комбинации функций были сформированы, в свою очередь, попарными комбинациями представителей разных кластеров СОG. Чтобы изучить соответствующие ко-локализационные тенденции мы выявили кластеры, представители которых наиболее часто встречались рядом на бактериальных геномах. В Приложении Б, содержащем список исследованных в данной работе кластеров СОG, в качестве примера для каждого кластера в седьмой колонке таблицы мы привели список наиболее распространенных его соседей из трех наиболее часто встречающихся кассет.

После этого мы выбрали из всех наиболее часто встречающихся пар значимые с помощью критерия хи-квадрат так, как это описано в Методах. В каждой паре классов такой порог преодолевало от 0 до 2 пар кластеров СОG (Приложение В, преодолевшие порог кластеры отмечены жирным шрифтом). Такой критерий позволял отличать события неслучайной ко-локализации кластеров от событий, зависящих только от размера кластера.

Функциональные классы образовывали также и тройственные связи. Для некоторых из таких случаев, например, для киназы, изомеразы и дегидрогеназы-О, три наиболее часто встречающиеся попарные комбинации кластеров СОG были представлены тремя кластерами (дегидрогеназа – COG0057, изомераза – COG0149, киназа – COG0126). Таким образом, все три эти кластера обладали выраженным предпочтением к геномной локализации друг с другом, что указывало на возможную их эволюционную связь. Такая картина наблюдалась, однако, не для все тройственных связей. Три наиболее часто и неслучайно встречающиеся пары для классов нуклеотидилтрансфераз, гликозилтрансфераз и

дегидрогеназ-ОН оказались представлены шестью разными кластерами COG, то есть пересечений в этих парах не было. Все перекрестные комбинации, с повторяющимися участниками, встречались на два порядка реже. (см. Приложение В).

Анализ подобных эволюционных связей между функциональными классами или между кластерами СОG может предоставлять новые данные для более точной аннотации их представителей, поскольку ко-локализационные предпочтения групп генов часто отражают роль соответствующих белков в метаболических путях бактерий [29,38,39].

Так, наиболее нуклеотидилтрансфераз часто встречающаяся пара И гликозилтрансфераз представлена кластерами COG0448, оказалась аннотированным как гены глюкозо-1-фосфат аденидилтрансферазы (ЕС 2.7.7.27) и COG0297, (EC:2.4.1.21), аннотированным гены гликогенсинтазы как взаимодействующей С АДФ-глюкозой; два соответствующих фермента задействованы, например, в последовательных этапах путей метаболизма крахмала. Самая распространенная пара кластеров нуклеотидилтрансфераз и дегидрогеназ-ОН была представлена СОG1091, аннотированным как дТДФ-4дегидрорамнозоредуктаза (EC 1.1.1.133) и COG1209, аннотированным как глюкозо-1-фосфаттимидилтрансфераза (ЕС 2.7.7.24) – два соответствующих фермента являются, в частности, участниками путей биосинтеза дТДФ-6деоксигексоз. Связь между участниками наиболее часто встречающейся пары кластеров из классов гликозилтрансфераз и дегидрогеназ-ОН (COG0451 и COG0438) оказалась не так очевидна. Оба кластера содержали большое число генов – более шести тысяч и более тринадцати тысяч, соответственно. Согласно представленным в базе данных IMG аннотациям, эти гены кодируют белки с множеством разных предсказанных функций, в том числе, например, дТДФ-

представителей COG0451 дегидрорамнозоредуктазу для некоторых И гликогенсинтазу для некоторых представителей COG0438. Гены этих кластеров оказались ко-локализованы в различных бактериальных геномах более тысячи раз. Такое выраженное предпочтение к ко-локализации, вероятно, указывает на значимую функциональную и эволюционную связь между ними, и является дальнейшему поводом Κ исследованию функциональных особенностей соответствующих белков и биологической роли их взаимосвязи и, соответственно, к уточнению их аннотации.

# 3.2.7. Попарные ко-локализационные тенденции представителей одних и тех же функциональных классов

Из 45 выявленных ко-локализационных связей 12 были сформированы благодаря ко-локализации представителей одного и того же класса. Это означает, что в составе общих кассет часто присутствовали два или несколько генов, принадлежащих к одному и тому же функциональному классу, и такие события оказались неслучайны. Из 19 изученных функциональных классов, таким образом, почти две трети продемонстрировали склонность к подобной ко-локализации (Таблица 3).

Больше всего ко-локализованных генов одного класса оказались среди транспортеров, гликозидаз, транскетолаз/трансальдолаз и гликозилтрансфераз. Стоит отметить, что класс гликозилтрансфераз и класс трансальдолаз/транскетолаз были представлены в кассетах несколькими генами чаще, чем одним.

Гены одного и того же класса, ко-локализованные в кассетах, делились на две группы – гены, кодирующие разные субъединицы белковых комплексов, и гены, кодирующие отдельные белки. Наиболее распространенным примером участников первой группы являлись гены, кодирующие субъединицы транспортных

комплексов. Более того, выяснилось, что устойчивые ко-локализационные связи формируют гены транспортеров, лежащие в кассетах не менее, чем по три гена. События ко-локализации не более двух генов транспортеров при этом не прошли порога отличия от случайной ко-локализации, описанного в Методах. Это явление, вероятнее всего, объясняется мультидоменной структурой транспортных комплексов, таких, как ABC-системы, которым требуется, по меньшей мере, три гена, кодирующих три основные ее субъединицы [91].

Остальные ко-локализованные гены одного класса чаще всего кодировали самостоятельные белки, не являющиеся субъединицами белковых комплексов; в части случаев они оказывались участниками последовательных этапов метаболических путей.

Так, например, известно, что несколько гликозидаз могут участвовать в последовательных этапах деградации сложных полисахаридов. Такие гликозидазы могут быть закодированы в составе одного оперона или близлежащих оперонов. Например, утилизация ламинарина в *Gramella forsetii* осуществляется с помощью оперона, содержащего три гена, кодирующих гликозидазы. Утилизация альфа-1,4-гликанов тоже осуществляется в этой бактерии с помощью белков, закодированных в двух соседних оперонах с четырьмя генами гликозидаз [100].

Несколько гликозилтрансфераз могут участвовать в последовательных этапах путей биосинтеза клеточной стенки бактерии. Так, в геномах *Lactococcus lactis* и других лактобактерий в соответствующих оперонах встречаются иногда одновременно более семи гликозилтрансфераз, необходимых для этого процесса [101]. Трансальдолазы и транскетолазы – участники пентозофосфатного пути, и соответствующие гены могут также быть закодированы рядом, как, например, это происходит в случае генов *Escherichia coli talA* и *tktB* [45]. Две или три киназы также могут одновременно участвовать в последовательных этапах одного

метаболического пути – например, гликолиза или деградации лактозы [19]. Для других случаев, например, для декарбоксилаз, причины ко-локализации генов одного и того же функционального класса не столь очевидны.

# 3.2.8. Роль событий локальной дупликации и образования ксенологов и псевдопаралогов в ко-локализации генов сходных функций

Одним из известных механизмов, лежащих в основе ко-локализации генов сходных функций, является локальная дупликация генов [102]. Локальная дупликация — это удвоение определенного участка хромосомы, в результате которого рядом на хромосоме оказываются две изначально одинаковые или очень сходные нуклеотидные последовательности (это один из вариантов возникновения паралогов). Локальная дупликация может происходить за счет гомологической рекомбинации, например, при наличии повторов нуклеотидных В последовательностях и при нарушении работы топоизомераз. Гены, получившиеся в результате таких событий, впоследствии могут приобретать разные мутации, и их нуклеотидные последовательности со временем начинают различаться все сильнее. Нашей задачей было выяснить, как часто ко-локализованные гены, функции, имеющие сходные являются результатом событий локальной дупликации, поскольку в противном случае их ко-локализация не имеет очевидного объяснения и имеет смысл обсуждать более глубокие эволюционные или функциональные ее причины.

В 44% случаев ко-локализованные гены одного и того же функционального класса также принадлежали к одному и тому же кластеру COG, а следовательно, обладали определенным структурным сходством. Среди 264 кластеров COG нашей базы данных 189 кластеров были ко-локализованы в исследуемых геномах хотя бы однажды. Для того, чтобы оценить, как часто такие случаи были результатом ранее произошедших локальных дупликаций, мы использовали разработанный нами
инструмент NSimScan, алгоритм действия которого описан в Главе 2, с параметрами, указанными в Методах настоящей главы. Для каждого гена из колокализованной пары одного и того же кластера СОG мы отобрали лучшие совпадения среди всех представителей данного кластера в исследуемой выборке генов, а также сравнили последовательности представителей пары друг с другом. Только в 3,6% случаев гены в паре продемонстрировали наибольшее сходство друг с другом (т.е. ни для одного из участников пары не нашлось более похожего на него кандидата среди остальной выборки). Во всех остальных случаях для одного или обоих участников пары среди других представителей СОG отыскивалось более близкое совпадение, причем в 62% случаев соответствующий ген располагался не только в другой кассете, но и в другом геноме.

Известно, однако, что паралоги подвержены действию положительного естественного отбора в меньшей степени, чем ортологи [103], то есть в ходе эволюции два паралога внутри одного генома быстрее накапливают различия, чем два ортолога в разных геномах. Поэтому данные результаты не позволяют полностью отбраковывать случаи, когда два ко-локализованных гена оказываются более похожи на родственный ген в другом геноме, чем друг на друга, но при этом исходно являются результатом давнего события локальной дупликации. С другой стороны, такая ко-локализация может являться, например, результатом события горизонтального переноса (см. ниже).

Одним из альтернативных объяснений ко-локализации генов общего функционального класса и кластера СОС могут быть события ксенологической замены генов [104]. В этом случае после события локальной дупликации происходит замена одного из пары генов на другой, похожий ген, путем горизонтального переноса из другого генома. В результате ко-локализованными оказываются гены, которые называют псевдоортологами или ксенологами. Новый

ген при этом больше похож по нуклеотидной последовательности на исходный ген из другого генома, чем на тот, который оказывается с ним рядом.

Другой причиной ко-локализации генов, принадлежащих к одному кластеру COG, может быть процесс, приводящий к возникновению генов, которые называются псевдопаралоги. При этом новый ген из другого генома переносится в локус рядом с гомологичным геном, не замещая никаких его исходных гомологичных соседей. Два оказавшихся в результате рядом гена будут сходны между собой, но на исходный ген из своего генома один из них будет похож больше.

В нашей выборке, однако, менее 10% пар ко-локализованных генов из одного COG оказывались более похожими на один и тот же ген в другом геноме, чем друг на друга; в большинстве случаев они были похожи на два разных гена. Таким образом, мы можем утверждать, что ко-локализация генов близких функций в преобладающем большинстве случаев, по-видимому, не является результатом события локальной дупликации.

# 3.2.9. Эволюционное значение попарной ко-локализации представителей одного функционального класса

Мы предполагаем, что гены сходных функций, расположенные на бактериальной хромосоме рядом друг с другом (особенно многочисленными группами, как это происходит, например, у гликозилтрансфераз и гликозидаз), могут применяться одновременно в ситуациях определенного типа. Такой набор может иметь общий механизм регуляции транскрипции, и в определенных условиях его гены могут экспрессироваться одновременно, например, когда клетке необходимо включение целого ряда ферментов, участвующих в деградации или биосинтезе углеводов. Это происходит, например, при утилизации или биосинтезе

сложных полисахаридов, где разные гликозилтрансферазы или гликозидазы задействованы в рамках общих или тесно переплетенных метаболических путей [19].

Кроме того, известно, что, оказавшись в неоптимальных для роста условиях среды, клетка может активировать экспрессию сразу целой группы генов. Так, виды рода *Bacillus* в условиях голодания одновременно активируют экспрессию множества генов, ответственных за катаболизм и транспорт альтернативных источников углерода [105]. Это касается, в частности, транспортеров и гидролаз, относящихся к углеводному метаболизму. Ко-локализация генов, активирующихся в подобных стрессовых условиях, может объясняться удобством одновременной регуляции их транскрипции. Кроме того, ко-локализованные гены будет чаще совместно передаваться в другие геномы при событиях горизонтального переноса, и соответствующие комбинации могут эволюционно закрепляться как в родственных, так и в других видах бактерий.

#### 3.3. Заключение

Мы провели детальный анализ хромосомной организации локусов, относящихся к углеводному метаболизму бактерий и описали сложную сеть эволюционных связей соответствующих генов, выраженную в форме их ко-локализационных тенденций.

Из 148 тысяч проанализированных генов углеводного метаболизма в 665 бактериальных геномах только 53% оказались склонны к ко-локализации. Остальные не имели непосредственных соседей, относящихся к углеводному метаболизму. Кассеты, образованные ко-локализованными генами, варьировали по размеру и составу и включали от двух до пятнадцати генов. Большинство кассет были короткими, двух- и трех-генными. Двумя существенными факторами,

влияющих на склонность гена к формированию кассет, оказались функция гена и филогенетические характеристики вида.

В целом, мы получили полную картину тенденций к ко-локализации генов 19 основных функциональных классов, более двухсот кластеров ортологических групп генов и тридцати классов бактерий. Тенденция к формированию кассет составляла от 23 до 93% для генов разных функциональных классов, причем наибольшую склонность к ко-локализации с другими генами углеводного метаболизма продемонстрировали гены мальтоолигозилтрегалозсинтаз, трансальдолаз/транскетолаз и транспортеров. У разных бактериальных классов тенденция к формированию кассет варьировала от 40 до 76%, наибольшее число генов углеводного метаболизма находилось в составе кассет у классов Fusobacteria, Dictyoglomia и Thermotogae.

Анализ попарно встречающихся генов выявил наличие 45 эволюционно значимых связей между 19 функциональными классами генов. Количество таких связей для каждого класса варьировало от нуля до восьми, что указывает на существенную разницу в предпочтениях к хромосомному окружению у генов разных функций. Наибольшим числом связей обладали классы декарбоксилаз и дегидрогеназ – соответствующие гены продемонстрировали наиболее выраженные специфике окружения. отношению Классы предпочтения ПО Κ своего транспортеров и гликозидаз, несмотря на большой размер и участие во многих кассетах, не продемонстрировали значимых специфических предпочтений к колокализации с генами другим классов. При этом в случае этих двух и девяти других классов кассеты чаще ожидаемого содержали одновременно несколько генов одного и того же класса. Большинство таких случаев, по-видимому, не являлось результатом событий локальной дупликации.

Многие из подобных выявленных эволюционных связей объяснялись участием соответствующих генов в известных метаболических путях; другие оставляли простор для дальнейших исследований, в том числе экспериментальных, касающихся функций и взаимодействий соответствующих белков.

Мы предположили, что консервативные сочетания представителей определенных функциональных классов могут указывать на сходные функции соответствующих кассет. Для того, чтобы оценить силу подобных предсказаний, мы экспериментально проверили одно из них для случая, когда комбинация функций в консервативной кассете бактерий семейства Enterobacteriaceae, участвующей в сульфогликолизе, совпала с комбинацией консервативной кассеты класса Bacilli, участвующих в катаболизме лактозы (см. Главу 4). Глава 4. Участие *yih-*кассеты *Escherichia coli* в катаболизме лактозы

# 4.1. Сравнительный анализ консервативных кассет и экспериментальная задача для проверки функционального предсказания

Мы предположили, что сравнительный анализ комбинаций полученных нами кассет может позволить предсказывать их функции. Как уже говорилось выше, в некоторых случаях геномное окружение может позволять успешно выявлять роль генов в тех или иных процессах [31,36–38]. Для составления предсказаний мы использовали наиболее распространенные комбинации функциональных классов внутри кассет, исходя из предположения, что консерватизм будет указывать на эволюционные преимущества такой ко-локализации.

Мы сравнивали между собой не только целые кассеты, но и все возможные сочетания внутри них. Это позволило нам выявить все наиболее часто встречающиеся комбинации функциональных классов или кластеров СОG. Большинство таких консервативных сочетаний оказались, как и большинство самих кассет, короткими (двух- или трех-генными). Среди более длинных сочетаний функциональных классов в качестве кандидата для экспериментальной проверки мы выбрали комбинацию из шести функциональных классов – транспортера, регулятора транскрипции, гликозидазы, альдолазы, киназы и изомеразы. Она встречалась, в том числе, в кассетах не близкородственных бактерий, что дополнительно указывало на неслучайность подобной колокализации. Кассета с таким составом оказалась распространена как у гаммапротеобактерий семейства Enterobacteriaceae, среди которых наиболее известным представителем является кишечная палочка *Escherichia coli*, так и у бактерий класса Bacilli, среди родов *Streptococcus* и *Staphylococcus*.

В исследовании 2014 года было описано участие белков, закодированных в генах кассеты *Escherichia coli*, в метаболизме серосодержащих углеводных соединений [75]. У представителей класса Bacilli кассета с таким же набором функциональных классов кодирует белки, участвующие в катаболизме лактозы [45]. Мы предположили, что помимо редкой функции катаболизма серосодержащих углеводов и более сложных серосодержащих соединений (например, сульфогликолипидов), кассета кишечной палочки может также участвовать в утилизации лактозы, а ее гены могут, таким образом, кодировать мультифункциональные белки.

было Предположение подтверждено С помощью экспериментального исследования. Эта часть работы выполнялась в лаборатории функциональной геномики и клеточного стресса Института биофизики клетки РАН г. Пущино под руководством М.Н. Тутукиной. Выяснилось, что экспрессия генов, кодирующих в кишечной палочке альдолазу (yihT), изомеразу (yihS) и киназу (yihV) значительно После повышалась BO время роста клеток на лактозе. ЭТОГО были идентифицированы точки начала (старты) транскрипции in silico, in vitro and in vivo и показано, что из трех промоторов гена альдолазы один активировался именно при росте клеток на лактозе.

Кроме этого мы проанализировали механизм переключения регуляции транскрипции данной кассеты. Было показано, что в этом процессе участвует локальный регулятор YihW, принадлежащего к семейству регуляторов DeoR. Он служит двойным переключателем, механизм действия которого зависит от доступного клетке источника углерода. В частности, оказалось, что он поддерживает рост клеток кишечной палочки на лактозе при выключенном *lac*опероне, то есть при инактивации известных и хорошо изученных генов, участвующих в утилизации лактозы. Выяснилось также, что YihW действует в

паре с глобальным регулятором углеводного метаболизма сAMP-CRP, и в зависимости от условий среды, они могут оказывать либо комплементарное, либо противоположное воздействие на экспрессию генов кассеты.

# 4.2. Методы

#### 4.2.1. Штаммы, плазмиды и выращивание культур

Все штаммы и плазмиды, которые использовались в данной работе, перечислены в Приложении Д. Гены *yihW* и *crp* были удалены с помощью лямбдаред рекомбиназы в штамме *E. coli* BW25113 [106]. Затем мутации были перенесены в штаммы *E. coli* K-12 MG1655 и *E. coli* K-12 M182 с помощью P1трансдукции [107]. Штамм M182 получен из штамма K-12 MG1655 путем выключения *lac*-оперона [108].

Клетки растили на минимальной среде Minimal Salts (MS) с 5% или 10% LB (объемная доля, v/v) и 0,2% (доля массы к объему, w/v) исследуемого источника углерода – D-глюкозы, D-галактозы, лактозы или глицерина. Культуры растили в аэробных условиях при 37 °C и постоянном перемешивании. Клетки собирали спустя 4,5 часа роста (средняя экспоненциальная фаза роста, с оптической плотностью OD = ~0.2–0.4, варьирующей у разных штаммов при росте на разных источниках углерода).

Для получения клеток с суперпродукцией (существенным повышением экспрессии) белка сАМР-СRР клетки *E. coli* BL21\* (DE3) трансформировали плазмидой pET\_CRP, которая была разработана на основе плазмиды pET28b (Invitrogen) со вставкой гена *crp* между сайтами NdeI и Bpu1102. Клетки растили на средах LB или Terrific broth (TB) при 37 °C до достижения оптической плотности  $OD_{650} = 0,3$  и индуцировали синтез целевого белка путем добавления IPTG (изопропилтиогалактозида) очень низкой концентрации (20 мкм), чтобы

избежать токсических эффектов. Спустя 3 часа после начала индукции содержание CRP в клетке составляло ~70% от общего количества белка, а спустя 16 часов - ~80% (дорожки 1 и 4 на Рис. 14)

### 4.2.2. Выделение белка сАМР-СRР

Чтобы выделить CRP, клетки BL21\*(DE3) с рЕТ-CRP растили в 200 мл среды ТВ до OD<sub>650</sub>=0.3, индуцировали 20 мкм IPTG и затем собирали с помощью центрифугирования на 10,000 об/мин при +4 °C. Клетки отмывали от среды 1хPBS и лизировали с помощью 2 мл реактива для экстрагирования белков BugBuster (Novagen) в течение 20 минут при +4 °C. Ввиду крайне высокого уровня индукции, все белки оказывались в нерастворимой фракции даже при очень низкой концентрации IPTG (Рис. 14, дорожка 3). Чтобы выделить CRP из телец двухступенчатая лизирования: включения, выполнялась процедура после первичной обработки реактивом BugBuster, к белку добавляли 6 мл ледяного лизирующего буфера Lysis [59,63] (50 мМ К-фосфатны буфер рН 7,5; 2 мМ ЭДТА; 0,2 M NaCl; 5% (w/v) глицерин; 2 мМ ДТТ; 50 мг/мл ФМСФ), после чего клетки подвергали дополнительному разрушению ультразвуком на льду 3 раза по 30 секунд. Затем лизат очищали от остатков клеток путем центрифугирования в течение 20 минут при 15,000 об/мин и +4 °С и наносили на колонку с цАМФагарозой (Sigma). Белок элюировали с помощью 5 мМ цАМФ. В результате из 200 мл исходной культуры было получено ~20 мг очищенного CRP. Все шаги выделения CRP показаны на Рис. 14.



Рис. 14. Этапы индукции и очистки фактора CRP. Дорожки 1 и 4 – тотальный лизат спустя 16часовой индукции с 20мкМ IPTG, 2 – растворимая фракция, 3 – нерастворимая фракция, 5 – раствор после пропускания лизата через колонку с цАМФ-содержащей агарозой, 6 – очищенный лизат после обработки реактивом BugBuster и разрушения ультразвуком, 7 и 8 – очищенный CRP, элюированный 5 мМ цАМФ. В качестве маркеров молекулярного веса были использованы предокрашенные маркеры 11-190 кДа, New England Biolabs).

#### 4.2.3. Картирование промоторов

Для картирования промоторов и сайтов связывания факторов транскрипции были выбраны четыре межгенных участка генов *yih*-кассеты (*yihR/S*, *yihT/U*, *yihU/V и yihV/W*), принадлежащих Escherichia coli, Enterobacter cloacae, Salmonella enterica, Cronobacter turicensis и Pantoea anantis. Их длины составляли около 40-50 нуклеотидов. Пользуясь базой данных GenBank [82], мы получили их последовательности и добавили к каждой из них 100 нуклеотидов с обоих концов, захватывающие участки аннотированных открытых рамок считывания, чтобы учесть возможные ошибки этой аннотации. Последовательности затем были подвергнуты процедуре множественного выравнивания с помощью инструмента

T-Coffee [109]. Потенциальные промоторы для *E. coli* K-12 MG1655 (геном в базе данных GenBank U00096.2) были предсказаны с помощью инструмента PlatProm и его унифицированной версии PlatPromU, в которой не учитывалось влияние сигма-РНК-полимеразой фактора узнавание исследуемой промоторной на последовательности [110]. Связывание  $\sigma^{70}$ -РНК-полимеразы с исследуемыми областями было подтверждено с помощью электрофореза с задержкой в геле, а точки старта транскрипции были определены с помощью однократной инициации транскрипции in vitro и измерения длин продуктов Primer extension in vivo. Для Primer extension клетки выращивали в среде MS с добавлением 10% LB и 0,2% глюкозы, лактозы или глицерина и собирали их при оптической плотности OD<sub>650</sub> = 0,4. РНК выделяли из 10 мл культуры клеток с помощью реактива TRIzol (Invitrogen, США) и обрабатывали ДНКазой I (New England Biolabs, USA) по стандартному протоколу. 10 мг тотальной РНК инкубировали с 4 пкмоль [у-<sup>32</sup>Р]АТФ-мечеными праймерами (Приложение Г) и обратной транскриптазой SuperScript II (Invitrogen, США). Полученные образцы центрифугировали, растворяли в 7 мкл формамидного буфера (98% формамид, 8 мМ NaOH, 4 мМ EDTA), прогревали 5 минут при 90°С, охлаждали до 0°С и наносили на 6% денатурирующий полиакриламидный гель. В качестве контроля использовали [у-<sup>32</sup>Р]АТФ-меченые маркеры ДНК 50 п.н. (New England Biolabs, США). Затем гели визуализировали на Molecular Imager (Bio-Rad, CША).

## 4.2.4. Поиск сайтов связывания факторов транскрипции

Потенциальные сайты связывания транскрипции были выявлены в межгенных участках с помощью метода филогенетического футпринта и базы данных Virtual Footprint [111]. Сайты искали в области -250/+50 от аннотированных точек начала транскрипции. Полученные сайты сортировали по их показателю качества (score) и степени консервативности среди видов семейства Enterobacteriaceae. Для дальнейшего анализа отбирали самые консервативные сайты с лучшими показателями качества.

## 4.2.5. Электрофорез с задержкой в геле

Для оценки эффективности связывания РНК-полимеразы с регуляторными областями генов yih-кассеты мы использовали метод электрофореза с задержкой в геле (EMSA). Фрагменты ДНК, содержащие потенциальные промоторные последовательности *yih*-генов, амплифицировали с помощью ПЦР (метода полимеразной цепной реакции). Для этого для каждого гена мы подобрали последовательности прямых и обратных праймеров (отмечены в Приложении Г как R и F, соответственно). 1 пмоль каждого фрагмента ДНК, содержащего потенциальные промоторы, инкубировали при 37 °С в транскрипционном буфере (Transcription buffer) [112] в течение 10 минут, после чего к нему добавляли очищенную  $\sigma^{70}$ -РНК-полимеразу в разных соотношениях с ДНК, от 1:1 до 4:1 (M:M). Спустя еще 30 минут инкубации при 37 °С полученные комплексы загружали в 5% полиакриламидный гель, предварительно разогретый до 37 °C, и подвергали электрофорезу в буфере 1xTBE, в результате чего белковые комплексы с ДНК отделялись от остальной ДНК. В качестве положительного контроля использовали фрагмент ДНК с известным  $\sigma^{70}$ -промотором гена *hns*, который амплифицировали с праймерами hns Bgl 263 и hns Xba (Приложение  $\Gamma$ ). Участок гена hns, в котором нет промоторных областей, использовали в качестве отрицательного контроля (с праймерами hns RT и hns PCR).

Для того, чтобы оценить эффективность связывания комплекса цАМФ-CRP с регуляторными последовательностями *yih*-генов мы применяли такой же метод, но с лизатом клеткок с суперпродукцией белка CRP. Благодаря этому нам удалось избежать необходимости добавлять внеклеточный CRP к образцу *in vitro*. Белок CRP в избыточном количестве синтезировался в клетках BL21\*(DE3). Мы

отбирали 10 мл этой культуры, отмывали и ресуспендировали ее в Змл 0.5× транскрипционного буфера (Transcription buffer) с 10 мМ фенилметилсульфонил фторидом (PMSF). Лизат готовили с помощью стандартного метода трех 30секундных повторов обработки культуры ультразвуком. Итоговую концентрацию белка определяли с помощью реактива Bradford (Sigma, США). После оценки приблизительной молярной концентрации CRP в лизате для проведения электрофореза использовались концентрации в соотношениях с ДНК от 1:1 до 8:1.

Для того, чтобы оценивать эффективность образования комплексов при проведении обоих типов анализа, свободные фрагменты ДНК и белки также наносили на отдельные дорожки геля.

После проведения электрофореза гели окрашивали бромистым этидием, который позволял увидеть полоски, содержащие ДНК. Для подтверждения наличия CRP в соответствующих комплексах использовался вестерн-блоттинг. Для этого все дорожки в данном электрофорезе были дублированы: один набор красили бромистым этидием, другой переносили на поливинилиденфторидовые (PVDF) мембраны (Immobilon, Sigma-Aldrich, CША) с использованием системы мини транс-блот (Bio-rad, США). Мембрану затем блокировали с помощью 0,5% обезжиренного молока (Oxoid, США) и инкубировали с антителами к CRP (T14,Cell Signalling,CША) в буфере TBS (20 мМ Tric-HCl, pH 7,4, 150 мМ NaCl) с 0,5% обезжиренном молоком и 0,1% Tween-20 в течение 2 часов при 37 °C. После этого ее отмывали три раза по 10 минут в TBS-T, добавляли вторичные антитела (A3687, антитела к IgG кролика, Sigma, CША) и подвергали инкубации в течение 2 часов при комнатной температуре. Затем мембраны красили стабилизированным субстратом для щелочной фосфатазы (Western-Blue stabilized substrate for alkaline phosphatase, Promega, CША) и проводили сканирование. Для того, чтобы оценить вклад цАМФ в эффективность связывания СRP с ДНК, мы провели такой же эксперимент с очищенным белком CRP, с добавлением 200 мкМ цАМФ к образцам, к гелю и к буферу 1хТВЕ и без него; для предотвращения неспецифического связывания использовался гепарин, который добавляли к образцам в концентрации 20 мкг/мл.

#### 4.2.6. Количественная ПЦР

Для проведения количественной ПЦР использовался амплификатор DT-322 (DNA-Technology, Россия), в качестве флуоресцентного интеркалирующего красителя применялся SYBR Green I (Invitrogen, США). Праймеры, которые использовали для обратной транскрипции (с окончанием "-RT" в названии) и амплификации (с окончанием "-PCR" в названии), указаны в Приложении Г. В отсутствии обратной транскриптазы в отрицательном контроле не наблюдалось продуктов ПЦР. Чтобы избежать влияния изменения роста культуры на транскрипцию генов в целом, в качестве дополнительного контроля также использовался ген *hns* и антисмысловая PHK *ysaA* [113].

Данные, полученные не менее чем от трех образцов в трех повторностях подвергали статистическому анализу с помощью стандартного метода для оценки экспрессии генов ΔΔСt [114]. Планки погрешностей на соответствующих графиках (Рис. 17 и Рис. 18) отражают стандартное отклонение от средних значений.

# 4.3. Результаты и обсуждение

### 4.3.1. Сходство кассет Enterobacteriaceae и Bacilli

Как уже говорилось выше, одна из консервативных длинных комбинаций функций в собранной нами базе данных кассет углеводного метаболизма обнаружилась как у ряда представителей семейства Enterobacteriaceae, так и в

геномах бактерий класса Bacilli. Эта комбинация включала шесть функциональных классов, и у *E. coli* была представлена в составе кассеты *ompL-yihOPQRSTUVW*, кодирующей ферменты сульфогликолиза, а у Bacilli – в составе кассеты *lacGEFDCBAR*, кодирующей ферменты пути катаболизма лактозы (Puc. 15).



Рис. 15. Кассеты бактерий класса Bacilli (а) и семейства Enterobacteriaceae(b). Одинаковые цвета генов указывают на сходство функций кодируемых ими белков. Белым отмечены гены, кодирующие функции, не представленные в другой кассете. Зеленым в кассете Bacilli обведены функции белков, которые могут быть задействованы в катаболизме лактозы.

Среди Enterobacteriaceae аннотированная кассета с таким составом встречалась у большей части штаммов *E. coli*, а также у *Enterobacter cloacae*, *Salmonella enterica*, *Cronobacter turicensis* и *Pantoea anantis*. У Bacilli соответствующая аннотированная кассета встречалась в полном виде у видов *Streptococcus* (*S. gallolyticus*, *S. suis*, *S. pyogenes*, *S. agalactiae*, *S. uberis*, *S. equi*, *S. mutans* и *S. sanguinis*) и видов *Staphylococcus* (*S. aureus*, *S. epidermidis*, *S. haemolyticus* и *S. lugdunensis*).

Гены, принадлежащие к одним и тем же функциональным классам, обладали, соответственно, общими функциональными характеристиками (см. Главу 3). Согласно номенклатуре ферментов Enzyme Nomenclature, кодируемые ими белки представляли собой гликозидазу (3.2.1), дегидрогеназу (ЕС 4.1.2), киназу (ЕС 2.7.1) и изомеразу (2.3.1). Пятым и шестым пересечением кассет были гены,

кодирующие транспортер и транскрипционный фактор. Гены, кодирующие ферменты из класса дегидрогеназ (альдолазы), принадлежали, кроме того, к одному и тому же кластеру СОG (СОG3684).

В кассете Enterobacteriaceae в катаболизме лактозы (см. Рис. 3) могли участвовать белки, кодируемые генами *yihO*, *yihP* (транспортеры), *yihQ* (гидролаза), *yihS* (изомераза), *yihT* (альдолаза), *yihV* (киназа) и *yihW* (транскрипционный фактор). Эти функции присутствуют в обоих кассетах. Кроме того, в катаболизме лактозы потенциально мог участвовать ген *yihV* (эпимераза), поскольку эпимераза присутствует в пути катаболизма галактозы Лелуара [115],взаимодействуя с молекулой галактозы после реакции изначального гидролиза лактозы (превращая β-D-галактозу в α-D-галактозу).

Нашей задачей было проверить экспериментально, участвует ли кассета *E. coli* в катаболизме лактозы. Подтвержденных данных о позициях сайтов инициации транскрипции (промоторов) для генов *yih*-кассеты на момент начала работы не было, поэтому первым шагом стало картирование этих сайтов.

## 4.3.2. Промоторные области yih-кассеты Escherichia coli

Анализ межгенных участков с помощью методов филогенетического футпринта и алгоритма для поиска промоторных последовательностей PlatProm позволил нам предсказать потенциальные промоторные участки для генов *E. coli*, кодирующих альдолазу (*yihT*), киназу (*yihV*), изомеразу (*yihS*) и альфа-гликозидазу (*yihQ*). Чтобы получить полную картину транскрипционных особенностей данного геномного локуса, мы также включили в эту часть исследования гены *yihU* и *yihR*, кодирующие редуктазу и эпимеразу, соответственно (Рис. 16, а).



Рис. 16. Картирование промоторов в *yih*-кассете *Escherichia coli*. (а) Схема расположения генов в кассете с отмеченными промоторами, предсказанными *in silico*. Горизонтальными стрелками отмечены позиции генов. Столбиками отмечены точки начала транскрипции, предсказанные с помощью алгоритма PlatProm на обеих нитях ДНК, а соответствующие скоры PlatProm указаны на оси Y. Скор промотора yihTP1 отмечен красным. По оси абсцисс указана позиция относительно аннотированного старт-кодона гена *yihV*. Зеленые вертикальные стрелки указывают на 5'-концы PHK, выявленные с помощью специфического 5'-концевого PHK-секвенирования. (b) Результаты электрофореза с задержкой в геле с  $\sigma^{70}$ -PHK полимеразой указывает на наличие единичных промоторов в межгенных участках yihV/W и yihS/R и двух промоторов в участке yihU/V. Молярное соотношение PHK-полимеразы и ДНК-фрагментов указано над дорожками. Все образцы были подвергнуты электрофорезу на одном и том же геле. Положительным контролем служил известный  $\sigma^{70}$ -зависимый промотор гена *hns*. Соседний участок его внутригенной области, не имеющий промоторов, использовался как отрицательный контроль. (с) Реакция удлинения праймера выявила точку начала транскрипции для гена *yihW* и несколько точек начала транскрипции для генов *yihU*, *yihT* и *yihV*. Некоторые из них активировались при росте культуры на лактозе: (1) рост на лактозе, (2) рост на глицерине. Образцы с *yihU* и *yihT* были подвергнуты электрофорезу на одном геле, образцы с *yihV* и *yihW* на другом.

Предсказания, полученные таким образом, мы сравнили с точками начала транскрипции, полученными с помощью метода специфического 5'-концевого РНК-секвенирования [116]. Полученные потенциальные точки начала транскрипции были подтверждены с помощью реакции удлинения праймера (Рис. 16, с). Метод задержки в геле показал наличие промоторов, способных успешно с связываться с  $\sigma^{70}$ -РНК-полимеразой, в межгенных участках *yihU/V*, *yihV/W* и *yihS/ R*. В межгенном участке *yihU/V*, более того, практически с одинаковой эффективностью произошло формирование двух комплексов, что указывает на наличие по крайней мере двух одинаково сильных промоторов между этими генами. Специфичность связывания межгенных участков с полимеразой была помощью положительного контроля, в было подтверждена С котором продемонстрировано эффективное связывание полимеразы с известным  $\sigma^{70}$ зависимым промотором гена hns, и отрицательного контроля, который показал отсутствие образования комплексов в соседнем участке этого же гена, на котором не имелось  $\sigma^{70}$ -зависимых промоторов.

Чтобы выяснить, насколько работа соответствующих промоторов зависит от присутствия лактозы в среде, мы провели реакцию удлиннения праймера с РНК, выделенной из клеток, которые росли в течение 6 часов на средах M9 + 10% LB в присутствии 0,2% лактозы, глюкозы или глицерина как единственного источника углерода.

Обратная транскрипция с праймером yihU\_RT выявила наличие нескольких продуктов (отмечены черными стрелками на Рис. 16, с), соответствующих точкам начала транскрипции в позициях –15 (скор PlatProm составил 6.83), –25 (5.04), –35 (3.52), –62/–63 (8.75), –82/–92 (крупный кластер со скорами 8.75–13.61) относительно аннотированного старт-кодона ATG. Они были обозначены как

уіhUP1-уіhUP5. Наличие транскрипции РНК с промоторов уіhUP1, уіhUP2, уіhUP4 и уіhUP5 также было подтверждено с праймером уіhU/уіhV\_F (см. Приложение Г) и с помощью методики 5'-концевого специфического РНК-секвенирования (зеленые стрелки на Рис 14, а). Стоит отметить, однако, что транскрипционная активность ни одного из этих промоторов не изменялась при добавлении разных источников углерода, что, по-видимому, означает, что *yihU* (кодирующий редуктазу) не участвует в катаболизме лактозы. Это соответствовало нашим представлениям о потенциальном лактозном пути, закодированном в данной кассете, поскольку редуктазы в нем не имеется (см Рис. 3).

Для гена *yihV* (киназы) мы также картировали несколько стартов транскрипции, основной из которых располагался в позиции –25/–27 относительно аннотированного старт-кодона ATG (крупный кластер предсказанных промоторов с максимальным скором 11.35, в позиции 4071737 в геноме кишечной палочки U00096.2). Нам удалось показать, что этот промотор активировался во время роста культуры бактерий на лактозе (Рис. 16, с).

Для гена *yihT* мы выявили три возможных точки начала транскрипции (оранжевые стрелки на Рис. 16, а). Две из них, соответствующие промоторам расположенные +35/+45vihTP2 vihTP3. И В позиции относительно предполагаемого старт-кодона ATG, обладали относительно низкими скорами, 3.67–4.33, что объясняло их низкую транскрипционную активность. Во время роста на лактозе, однако, их активность полностью исчезала (дорожка 1 на Фиг.), в то же время активировался другой промотор (yihTP1), соответствующая точка начала транскрипции которого была расположена в позиции +93/+94 относительно старт-кодона (дорожка 4 на Рис. 16, с). Этот промотор был предсказан с помощью унифицированного алгоритма PlatPromU, a PlatProm, не что позволяет предположить его связывание с альтернативными сигма-факторами, что, однако,

трудно проверить путем непосредственного эксперимента из-за близкого расположения промоторов. Присутствие транскрипционного переключателя в данном участке также подтверждается наличием в нем мотива GCGC между точкой начала транскрипции и –10 элементом промотора yihTP1. Известно, что такой мотив может быть связан с переключением транскрипционной активности у бактерий при голодании [47,48,105].

Все картированные промоторы для гена *yihT* располагались в пределах ORF (открытой рамки считывания), что указывает либо на неправильную аннотацию точки старта трансляции белка (мы выявили по крайней мере четыре потенциальных альтернативных старт-кодона, расположенных в позиции +51, +78, +84 и +87 относительно аннотированного), либо на их регуляторную роль в транскрипции данного гена [117].

Для гена *yihW* мы картировали один промотор, он располагался в позиции –27/–28 относительно аннотированного старт-кодона АТG (Рис. 16, а).

# 4.3.3. Экспрессия генов во время роста культуры на разных источниках углерода

Чтобы детально выяснить, как наличие лактозы в среде меняет характер экспрессии генов *yih*-кассеты, мы провели сравнительный анализ уровней соответствующих мРНК при росте культуры на разных источниках углерода. Клетки росли в тех же условиях, которые мы ранее использовали для сравнительного анализа в эксперименте с Primer Extension, то есть на глюкозе, лактозе и глицерине. Кроме того, мы проанализировали экспрессию *yih*-генов при росте на галактозе, возможном промежуточном соединении пути катаболизма лактозы. В данном случае среда с глюкозой представляла собой стандартную

углеводную среду, а среда с глицерином служила контрольной средой без углеводов (соответственно, представляя собой бедный источник углерода).



Рис. 17. Уровни мРНК сравнивали с помощью метода количественной ПЦР с детекцией в реальном времени (qRT-PCR). Условия роста культур указаны снизу – глюкоза, глицерин, галактоза и лактоза. В качестве контроля использовали мРНК гена *hns* и аРНК гена *ysaA*, их уровень экспрессии не менялся. Уровень экспрессии генов при росте на глюкозе взят за единицу. Стандартное отклонение было посчитано с помощью трех биологических и трех технических повторов.

Результаты количественного ПЦР-анализа с детекцией в реальном времени (qRT-PCR) для культур, росших в течение 6 часов в разных условиях, представлены на Рис. 17. Выяснилось, что гены, кодирующие киназу (yihV), альдолазу (yihT) и изомеразу (yihS), активировались при росте культуры на лактозе и галактозе, причем на лактозе эта активация была наиболее существенно выражена. Экспрессия гена yihW, кодирующего фактор транскрипции, напротив,

на лактозе была подавлена почти вдвое, что может указывать на его роль в данной временной точке в качестве penpeccopa *yih*-генов и/или собственного гена. Экспрессия гена *yihU*, кодирующего редуктазу, не зависела от источника углерода, что еще раз подтверждает отсутствие роли этого гена в потенциальном пути катаболизма лактоза. Это, как уже говорилось выше, соответствует изначальному предположению о составляющих ферментах данного пути.

Экспрессия генов yihR и yihQ, кодирующих эпимеразу и гликозидазу, не зависела (в случае yihR) и практически не зависела (в случае yihQ) от источника углерода в среде. Это соответствовало нашему предположению об их независимой экспрессии и позволяло предположить, что эти гены, по-видимому, не участвуют в катаболизме лактозы.

Стоит отметить, что многие представители семейства Enterobacteriaceae, включая штаммы видов *Escherichia albertii* и *Citrobacter koseri*, обладают ортологами генов *yihSTUVW*, в то время как остальная часть *yih*-кассеты, в том числе гены *yihR* и *yihQ*, отсутствует. Это подтверждает наше предположение о том, что разные части исходной десятигенной кассеты функционируют по-разному и могут участвовать в разных метаболических путях независимо друг от друга.

# 4.3.4. Роль транскрипционных факторов сАМР-СRР и YihW в регуляции транскрипции *yih*-кассеты

Снижение уровня мРНК гена *yihW* в присутствии лактозы позволило нам предсказать участие транскрипционного фактора YihW в регуляции генов *yih*кассеты в качестве локального регулятора. Мы предположили, что YihW может работать в паре с глобальным регулятором углеводного метаболизма, сAMP-CRP. Для того, чтобы проверить это предположение, мы провели поиск потенциальных сайтов связывания CRP в области картированных промоторов и выяснили, являются ли соответствующие промоторы CRP-зависимыми.

Потенциальные сайты связывания СRP были обнаружены в межгенных участках yihT/U, yihU/V и yihV/W. Метод филогенетического футпринтинга, в ходе которого мы выравнивали последовательности этих участков у разных представителей семейства Enterobacteriaceae, показал достаточно высокую их консервативность. Так, в межгенном участке yihV/W в позиции –41.5 относительно начала промотора yihW имеется высококонсервативный мотив, расположение которого типично для CRP-зависимых промоторов II класса (Рис. 18, d)

Нам удалось подтвердить высокую эффективность связывания CRP с указанными участками экспериментальным путем с помощью метода задержки в геле (Рис. 18, b). Для этого вначале мы провели эксперимент с клеточным лизатом, содержащим суперпродуцированный CRP (уровень экспрессии CRP показан на Рис. 18, а). Присутствие CRP в комплексах с соответствующими межгенными было подтверждено с ПОМОЩЬЮ вестерн-блоттинга. участками Сильное специфическое связывание CRP с участками yihV/U и yihV/W было также подтверждено в отдельном эксперимента с использованием очищенного белка (см. Методы). Взаимодействие с обоими участками увеличивалось на ~30% в присутствии цАМФ (Рис. 18, с).



Рис. 18. (а) Уровень сАМР-СRР, синтезированного в клетках из pET\_CRP после индукции IPTG. (b) сАМР-СRР взаимодействует с межгенными участками *yihU/T, yihV/W* и *yihV/U*; наиболее эффективное связывание показано для участка *yihV/W*. Молярное соотношение белка и ДНК указано над дорожками. Контрольная дорожка для участка *yihV/W* находится на отдельном геле вместе с дорожкой с соотношением белка и ДНК 1:1 (для данного варианта существенного уровня связывания показано не было). (c) Связывание очищенного CRP с исследуемыми участками в присутствии и в отсутствии сАМР (отмечено как -сАМР в верхнем ряду и +сАМР в нижнем ряду). Соотношение белка и ДНК, а также наличие гепарина в образце указано над дорожками. (d) Множественное выравнивание межгенных областей ортологов yihV/W для нескольких представителей бактерий Enterobacteriaceae, которое показало высокую консервативность картированного промотора гена *yihW* (extended -10, отмечен синим) и потенциального сайта связывания CRP (CRP site, отмечен красным). Предполагаемый старт-кодон ATG отмечен зеленым.

Мы предположили, что фактор CRP работает как глобальный регулятор для всех интересующих нас *yih*-генов, а фактор YihW — как локальный. Для того, чтобы проверить это предположение, мы исследовали уровень роста клеток K-12 MG1655 с выключенными генами *yihW* и *crp* на лактозе и глюкозе.



Рис. 19. Влияние выключения генов *yihW* и *crp* на рост клеточной культуры в присутствии 0,2% глюкозы или лактозы в течение 11 часов. Линией с квадратами представлен рост исходной культуры, с треугольниками – мутанта по *yihW*, прерывистой линией – мутанта по *crp*. Каждая кривая построена исходя из средних значений трех независимых измерений оптической плотности.

На среде с глюкозой клетки дикого типа и мутанты по *yihW* ( $\Delta$  *yihW*) росли с одинаковой скоростью, в то время как скорость роста мутантов по *crp* ( $\Delta$ *crp*) была снижена, что объясняется ключевой ролью данного транскрипционного фактора в общей регуляции сахарного метаболизма кишечной палочки. На лактозе клетки дикого типа росли медленнее, чем на глюкозе, а рост  $\Delta$ *yihW* оказался, напротив,

значительно быстрее (Рис. 19). При этом роста *Дсгр* на лактозе после поглощения базовых питательных веществ среды LB практически не наблюдалось. Эти наблюдения указывали на то, что YihW, по-видимому, действительно участвует в регуляции лактозного метаболизма, причем его роль может быть противоположна роли CRP. Следующий этап работы состоял в детальном исследовании роли данных белков в транскрипции *yih*-генов.

Предположение о том, что YihW, действительно, регулирует работу генов *yih*кассеты, было подтверждено с помощью количественного ПЦР-анализа с детекцией в реальном времени (Puc. 20). Для этого мы использовали штамм *E. coli* M182 с выключенным лактозным опероном (*lac*-опероном) [108]. Его клетки не могли катаболизировать лактозу с помощью своего стандартного, хорошо известного пути. Всего работа проводилась с тремя типами культур M182 – диким типом (wt), мутантом по *yihW* и мутантом по *crp* [106]. Культуры росли на так называемой "минимальной среде" – с уменьшенной вдвое концентрацией LB (5%), чтобы можно было наиболее отчетливо наблюдать эффекты, вызванные сменой основного источника углерода.

Выяснилось, что экспрессия гена yihT как на глюкозе, так и на лактозе контролируется фактором YihW, который выполняет роль углевод-зависимого двойного переключателя (Рис. 20, а). Во время роста на глюкозе экспрессия гена yihT подавляется фактором CRP. Экспрессия самого yihW активируется с помощью CRP на лактозе и подавляется на глюкозе (Рис. 20, b). Наконец, оба фактора YihW и CRP работают как репрессоры транскрипции гена yihV (Рис. 20, а).



Рис. 20. Влияние делеции генов *yihW* и *crp* на уровень мРНК в генах *yih*-кассеты (a,b) и рост клеток на глюкозе и лактозе (c). Условия роста культур указаны снизу справа. Уровни мРНК указаны относительно уровня в родительском штамме при росте культуры на глюкозе. В качестве контроля использовались мРНК *hns* и aPHK *ysaA*, их уровни не менялись. Стандартные отклонения вычисляли на основе трех биологических и трех технических повторов. Кривая роста (c) построена на основании трех независимых измерений. Квадратами обозначен родительский штамм, треугольниками – мутант по гену *yihW*. Прерывистыми линиями обозначен мутант по *crp*.

## 4.3.5. Общая схема работы yih-кассеты Escherichia coli

На основании сходства основных функций белков, закодированных в *yih*-кассете генов семейства Enterobacteriaceae и в кассете класса Bacilli, участвующей в лактозном катаболизме, мы предположили, что *yih*-кассета может также

участвовать в утилизации этого сахара. Чтобы подтвердить эту гипотезу, мы провели детальное исследование экспрессии генов данной кассеты в разных условиях роста культуры.

Если брать за основу путь катаболизма лактозы у Bacilli (Рис. 3), то после первичной реакции гидролиза производные лактозы должны последовательно взаимодействовать с киназой, альдолазой и изомеразой, которые в данном случае представлены ферментами YihV, YihT и YihS, соответственно (Рис. 3). Первичная реакция гидролиза, возможно, происходит с участием  $\beta$ -галактозидазы из *lac*оперона, однако даже штаммы с выключенным *lac*-опероном могли расти на средах с лактозой или галактозой (кроме штамма  $\Delta crp$ ), что указывает на существование альтернативных способов расщепления этого дисахарида, пока неизвестных (Рис. 19).

С помощью метода количественного ПЦР-анализа с детекцией в реальном времени мы выяснили, что экспрессия всех трех этих генов активируется как на лактозе, так и на галактозе, возможном промежуточном соединении пути катаболизма лактозы. Ген *yihW*, кодирующий потенциальный транскрипционный фактор семейства DeoR, активировался во время фазы экспоненциального роста культуры на лактозе, но был репрессирован после поглощения культурой основной части субстрата и выхода роста на плато.

Выраженный рост культур с выключенным *lac*-опероном в отсутствии YihW на лактозе, и, в еще большей степени, на галактозе, представляет отдельный интерес. Эти наблюдения поддерживают гипотезу о том, что фактор YihW и остальные гены *yih*-кассеты играют существенную роль в процессе роста кишечной палочки на лактозе в отсутствии *lac*-оперона, участвуя в катаболизме этого дисахарида и заменяя, таким образом, обычные функции *lac*-оперона.

Влияние на транскрипцию кассет генов локальных регуляторов, таких, как YihW, обычно либо дополняет, либо противопоставлено действию глобальных регуляторов, в зависимости от условий среды. В данном случае мы предположили и подтвердили с помощью экспериментальных методов, что глобальным регулятором для *yih*-кассеты служит фактор сAMP-CRP. Активация гена *yihW* во время экспоненциального роста культуры на среде с лактозой является CRPзависимой. В отсутствии лактозы в среде CRP подавлял экспрессию гена *yihW*.

Работа YihW необходима для сбалансированной регуляции гена yihT, кодирующего альдолазу — этот фактор отвечает за активацию экспрессии yihT в присутствии лактозы и за ее подавление в отсутствии лактозы. По-видимому, то же касается и гена yihS, кодирующего изомеразу, поскольку профиль его транскрипции практически идентичен yihT. В случае, когда ген yihW выключен, экспрессия yihT полностью перестает зависеть от источника углерода (Рис. 17). СRP в этом случае играет роль репрессора, работа которого не зависит от типа углеводов в среде, по-видимому, за счет образования слабой связи с промоторными участками без образования комплекса с цАМФ.

Отдельно стоит отметить, что белок YihT, предсказанной функцией которого является 6-дезокси-6-сульфофруктозо-1-фосфат альдолаза, является гомологом тагатозо-1,6-дифосфат альдолазы LacD (оба соответствующих гена принадлежат к кластеру ортологических групп генов COG3684). Ген, кодирующий тагатозо-1,6-дифосфат альдолазу, встречается как у многих видов *Salmonella* и *Shigella*, так и в ряде штаммов кишечных палочек, например, у *Escherichia coli* APEC O1 и O157:H7.

Мы использовали инструмент NSimScan (см. Главу 2), для того, чтобы оценить меру сходства между этими генами в разных геномах семейства Enterobacteriaceae, и выяснили, что сходство их последовательностей, как правило, превышает 80%,

причем большинство замен встречается в третьей позиции кодонов, т.е. не влияет на закодированные в них аминокислоты. При этом состав соседних генов различается у разных видов и штаммов семейства Enterobacteriaceae, однако в большинстве случаев поблизости от них располагается ген, гомологичный гену транскрипционного фактора YihW, расположенный к *lacD/yihT* дивергентным образом (так же, как в *yih*-кассете *E. coli*).

Экспрессия гена *yihV* также была активирована во время роста культуры на лактозе и подавлена во время роста на глюкозе. Регуляция обоих этих процессов также осуществлялась с помощью YihW и CRP (Рис. 21).



Рис. 21. Регуляция генов *yih*-кассеты при росте культуры на лактозе (сверху) и глюкозе (снизу), осуществляемая факторами транскрипции CRP и YihW. Зелеными стрелками отмечена активация транскрипции, красными линиями – подавление транскрипции. Прерывистыми линиями отмечены процессы, где происходит лишь умеренное подавление, которое, возможно, осуществляется не напрямую, а через дополнительные транскрипционные факторы.

В целом, YihW, по-видимому, играет в *yih*-кассете роль двойного переключателя, активируя некоторые ее гены (*yihT*, *yihS*) во время фазы экспоненциального роста культуры на лактозе, и репрессируя некоторые ее гены (*yihT*, *yihS*, *yihV*) во время

роста на глюкозе (Рис. 21). При этом, как уже говорилось выше, при полном выключении гена *yihW* культура на лактозе растет быстрее по сравнению с контролем; тем самым, механизм действия данного транскрипционного фактора оказался сложным и подлежит дальнейшему анализу. Фактор CRP при росте на лактозе активирует транскрипцию гена *yihW*, то есть выполняет роль, комплементарную YihW, а при росте на глюкозе репрессирует его транскрипцию. При выключении гена *crp* культура на лактозе растет гораздо медленнее по сравнению с контролем, что, вероятно, также связано с другими функциями этого глобального регулятора.

## 4.3.6. Заключение

С тех пор, как Жакоб и Моно показали схему работы лактозного оперона кишечной палочки в 1961 году, никаких альтернативных способов утилизации лактозы для *Escherichia coli* описано не было. В ходе данной работы мы сумели показать, что кассета генов этой бактерии, для которой ранее было известно только участие в деградации серосодержащих соединений глюкозы, также связана с катаболизмом лактозы. Таким образом мы можем говорить о наличии у кишечной палочки альтернативного пути утилизации лактозы, включающего в себя все этапы после первичного гидролиза.

Описанный случай является примером успешного предсказания функций генов на основе их ко-локализационных особенностей. Мы подтвердили, что консервативность комбинаций функциональных классов генов может служить поводом для предсказания функций соответствующих генов.

В исследовании *yih*-кассеты *Escherichia coli* мы, по-видимому, столкнулись с генами, кодирующими мультифункциональные ферменты. Выбранный нами

способ предсказания функций на основании сравнения кассет может позволять выявлять не только неизвестные, но и альтернативные известным функции генов.

Механизм регуляции транскрипции генов *yih*-кассеты оказался достаточно сложным и зависимым от условий среды. Пользуясь тонко налаженной системой регуляции транскрипции, бактерия, по всей видимости, может использовать один и тот же набор белков для разных задач. Эта работа поднимает ряд вопросов по поводу биохимических характеристик соответствующих ферментов, в частности, о механизмах их специфичности, взаимодействии с лактозой и серосодержащими молекулами, а также о регуляции экспрессии их генов во время роста на серосодержащих субстратах.

## Выводы

1. Разработан инструмент для поиска нуклеотидных последовательностей удаленного сходства NSimScan; по совокупности таких параметров как чувствительность, точность и скорость он превосходит все стандартные инструменты в своей области. Наилучшим образом он подходит для поиска последовательностей, различающихся на 60-90%.

2. Описана сеть эволюционных связей 148 тысяч генов углеводного метаболизма 665 видов бактерий, выраженная в форме их ко-локализационных тенденций. 53% таких генов оказались ко-локализованы, остальные располагаются на бактериальных геномах по отдельности.

3. Склонность к ко-локализации, т.е. к формированию кассет различается у разных генов; ключевыми ее факторами являются функциональные и структурные характеристики гена и филогенетические свойства бактерии. Склонность к формированию кассет у разных функциональных классов составляет от 23 до 93%; у разных кластеров ортологических групп генов – 0 до 100%, у разных бактериальных классов – от 40 до 76%.

4. Среди 19 исследуемых функциональных классов 45 пар формируют консервативные и, по всей видимости, эволюционно значимые колокализационные связи. Количество таких связей для каждого класса сильно варьирует, что подчеркивает существенное различие в предпочтениях к геномному окружению у генов разных функций. Гены 11 функциональных классов демонстрируют выраженное предпочтение к внутриклассовой ко-локализации, причем большинство таких случаев, по-видимому, не является результатом событий локальных дупликаций.

5. Анализ консервативных сочетаний внутри кассет генов позволяет успешно предсказывать их функции. С его помощью предложено и экспериментально подтверждено участие *yih*-кассеты *Escherichia coli* в катаболизме лактозы; описан, таким образом, новый путь утилизации лактозы у кишечной палочки и предсказаны мультифункциональные характеристики соответствующих белков. В переключении механизмов экспрессии генов этой кассеты при росте бактерий в разных условиях среды участвуют локальный регулятор YihW и глобальный регулятор CRP.

# Список литературы

- 1. Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform // Bioinformatics. 2009. Vol. 25, № 14. P. 1754–1760.
- Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2 // Nature Methods. 2012.
   Vol. 9, № 4. P. 357–359.
- 3. The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes // Nature. 2012. Vol. 491, № 7422. P. 56–65.
- 4. Pumpernik D., Oblak B., Borstnik B. Replication slippage versus point mutation rates in short tandem repeats of the human genome // Mol. Genet. Genomics. 2008. Vol. 279, № 1. P. 53–61.
- 5. Simpson J.T., Durbin R. Efficient construction of an assembly string graph using the FM-index // Bioinformatics. 2010. Vol. 26, № 12. P. i367–i373.
- 6. Ning Z., Cox A.J., Mullikin J.C. SSAHA: a fast search method for large DNA databases // Genome Res. 2001. Vol. 11, № 10. P. 1725–1729.
- 7. Kent W.J. BLAT--the BLAST-like alignment tool // Genome Res. 2002. Vol. 12, № 4. P. 656–664.
- Camacho C. et al. BLAST+: architecture and applications // BMC Bioinformatics. 2009. Vol. 10. P. 421.
- Pearson W.R. Flexible sequence similarity searching with the FASTA3 program package // Methods Mol. Biol. 2000. Vol. 132. P. 185–219.
- Morgulis A. et al. Database indexing for production MegaBLAST searches // Bioinformatics.
   2008. Vol. 24, № 16. P. 1757–1764.
- Edgar R.C. Search and clustering orders of magnitude faster than BLAST // Bioinformatics.
   2010. Vol. 26, № 19. P. 2460–2461.
- Smith T.F., Waterman M.S. Identification of common molecular subsequences // J. Mol. Biol.
   1981. Vol. 147, № 1. P. 195–197.
- 13. Giegerich R., Meyer C., Steffen P. A discipline of dynamic programming over sequence data // Science of Computer Programming. 2004. Vol. 51, № 3. P. 215–263.
- Pearson W.R., Lipman D.J. Improved tools for biological sequence comparison // Proc. Natl. Acad. Sci. U.S.A. 1988. Vol. 85, № 8. P. 2444–2448.

- Gumbel E.J. Les valeurs extrêmes des distributions statistiques // Annales de l'Institut Henri Poincaré. 1935. Vol. 5, № 2. P. 115–158.
- 16. Randle-Boggis R.J. et al. Evaluating techniques for metagenome annotation using simulated sequence data // FEMS Microbiol. Ecol. 2016. Vol. 92, № 7.
- Pearson W.R. Comparison of methods for searching protein sequence databases // Protein Sci.
  1995. Vol. 4, № 6. P. 1145–1160.
- 18. Campbell N. et al. Biology. 8th ed. 2008. P. 118.
- Kanehisa M., Goto S. KEGG: kyoto encyclopedia of genes and genomes // Nucleic Acids Res.
   2000. Vol. 28, № 1. P. 27–30.
- 20. Caspi R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases // Nucleic Acids Res. 2016. Vol. 44, № D1. P. D471-480.
- 21. Keseler I.M. et al. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12 // Nucleic Acids Res. 2017. Vol. 45, № D1. P. D543–D550.
- 22. Kenyon J.J., Hall R.M. Variation in the complex carbohydrate biosynthesis loci of Acinetobacter baumannii genomes // PLoS ONE. 2013. Vol. 8, № 4. P. e62160.
- 23. Grondin J.M. et al. Polysaccharide Utilization Loci: Fueling Microbial Communities // J. Bacteriol. 2017. Vol. 199, № 15.
- Voet D., Voet J., Pratt C. Fundamentals of Biochemistry: Life at the Molecular Level. 4th ed. John Wiley & Sons.
- 25. Ogata H. et al. A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters // Nucleic Acids Res. 2000. Vol. 28, № 20. P. 4021–4028.
- 26. Rodionov D.A. Comparative genomic reconstruction of transcriptional regulatory networks in bacteria // Chem. Rev. 2007. Vol. 107, № 8. P. 3467–3497.
- Overbeek R. et al. The use of gene clusters to infer functional coupling // Proc. Natl. Acad. Sci. U.S.A. 1999. Vol. 96, № 6. P. 2896–2901.
- 28. Lodish H. et al. Molecular Cell Biology. 6th ed. W. H. Freeman, 2007.
- 29. Dandekar T. et al. Conservation of gene order: a fingerprint of proteins that physically interact // Trends Biochem. Sci. 1998. Vol. 23, № 9. P. 324–328.
- 30. Glazko G.V., Mushegian A.R. Detection of evolutionarily stable fragments of cellular pathways by hierarchical clustering of phyletic patterns // Genome Biol. 2004. Vol. 5, № 5. P. R32.

- 31. von Mering C. et al. Genome evolution reveals biochemical networks and functional modules //
   Proc. Natl. Acad. Sci. U.S.A. 2003. Vol. 100, № 26. P. 15428–15433.
- 32. Spirin V. et al. A metabolic network in the evolutionary context: multiscale structure and modularity // Proc. Natl. Acad. Sci. U.S.A. 2006. Vol. 103, № 23. P. 8774–8779.
- 33. Snel B., Huynen M.A. Quantifying modularity in the evolution of biomolecular systems // Genome Res. 2004. Vol. 14, № 3. P. 391–397.
- 34. Lawrence J. Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes // Curr. Opin. Genet. Dev. 1999. Vol. 9, № 6. P. 642–648.
- 35. Lawrence J.G., Roth J.R. Selfish operons: horizontal transfer may drive the evolution of gene clusters // Genetics. 1996. Vol. 143, № 4. P. 1843–1860.
- 36. Pellegrini M. et al. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles // Proc. Natl. Acad. Sci. U.S.A. 1999. Vol. 96, № 8. P. 4285–4288.
- 37. Li H., Pellegrini M., Eisenberg D. Detection of parallel functional modules by comparative analysis of genome sequences // Nat. Biotechnol. 2005. Vol. 23, № 2. P. 253–260.
- 38. Chen L., Vitkup D. Predicting genes for orphan metabolic activities using phylogenetic profiles // Genome Biol. 2006. Vol. 7, № 2. P. R17.
- 39. Daugherty M. et al. Archaeal shikimate kinase, a new member of the GHMP-kinase family // J.
   Bacteriol. 2001. Vol. 183, № 1. P. 292–300.
- 40. Mavromatis K. et al. Gene context analysis in the Integrated Microbial Genomes (IMG) data management system // PLoS ONE. 2009. Vol. 4, № 11. P. e7979.
- 41. Tatusov R.L. et al. The COG database: a tool for genome-scale analysis of protein functions and evolution // Nucleic Acids Res. 2000. Vol. 28, № 1. P. 33–36.
- 42. Galperin M.Y. et al. Expanded microbial genome coverage and improved protein family annotation in the COG database // Nucleic Acids Res. 2015. Vol. 43, № Database issue. P. D261-269.
- 43. Hartl D., Jones E.W. Genetics. 6th ed. Jones and Bartlett, 2005.
- 44. Dehal P.S. et al. MicrobesOnline: an integrated portal for comparative and functional genomics // Nucleic Acids Res. 2010. Vol. 38, № Database issue. P. D396-400.
- 45. Gama-Castro S. et al. RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond // Nucleic Acids Res. 2016. Vol. 44, № D1. P. D133-143.
- 46. Chen I.-M.A. et al. IMG/M: integrated genome and metagenome comparative data analysis system // Nucleic Acids Res. 2017. Vol. 45, № D1. P. D507–D516.
- 47. Stülke J., Hillen W. Coupling physiology and gene regulation in bacteria: the phosphotransferase sugar uptake system delivers the signals // Naturwissenschaften. 1998. Vol. 85, № 12. P. 583–592.
- 48. Titgemeyer F., Hillen W. Global control of sugar metabolism: a gram-positive solution // Antonie Van Leeuwenhoek. 2002. Vol. 82, № 1–4. P. 59–71.
- Peng X. et al. A multifunctional thermophilic glycoside hydrolase from Caldicellulosiruptor owensensis with potential applications in production of biofuels and biochemicals // Biotechnol Biofuels. 2016. Vol. 9. P. 98.
- MacDonald L.C., Berger B.W. Insight into the role of substrate-binding residues in conferring substrate specificity for the multifunctional polysaccharide lyase Smlt1473 // J. Biol. Chem. 2014.
   Vol. 289, № 26. P. 18022–18032.
- Rodionova I.A. et al. Diversity and versatility of the Thermotoga maritima sugar kinome // J. Bacteriol. 2012. Vol. 194, № 20. P. 5552–5563.
- 52. Carvalho S.M. et al. CcpA ensures optimal metabolic fitness of Streptococcus pneumoniae //
   PLoS ONE. 2011. Vol. 6, № 10. P. e26707.
- 53. Lulko A.T. et al. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes // J. Mol. Microbiol. Biotechnol. 2007. Vol. 12, № 1–2. P. 82–95.
- 54. Chang D.-E. et al. Carbon nutrition of Escherichia coli in the mouse intestine // Proc. Natl. Acad. Sci. U.S.A. 2004. Vol. 101, № 19. P. 7427–7432.
- 55. Görke B., Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients // Nat. Rev. Microbiol. 2008. Vol. 6, № 8. P. 613–624.
- 56. Mironov A.A. et al. Computer analysis of transcription regulatory patterns in completely sequenced bacterial genomes // Nucleic Acids Res. 1999. Vol. 27, № 14. P. 2981–2989.
- 57. Aidelberg G. et al. Hierarchy of non-glucose sugars in Escherichia coli // BMC Syst Biol. 2014.Vol. 8. P. 133.
- 58. Bren A. et al. Glucose becomes one of the worst carbon sources for E.coli on poor nitrogen sources due to suboptimal levels of cAMP // Sci Rep. 2016. Vol. 6. P. 24834.
- Kolb A. et al. Transcriptional regulation by cAMP and its receptor protein // Annu. Rev. Biochem. 1993. Vol. 62. P. 749–795.

- 60. Zheng D. et al. Identification of the CRP regulon using in vitro and in vivo transcriptional profiling // Nucleic Acids Res. 2004. Vol. 32, № 19. P. 5874–5893.
- 61. Lee D.J., Busby S.J.W. Repression by cyclic AMP receptor protein at a distance // MBio. 2012.Vol. 3, № 5. P. e00289-00212.
- 62. Nakano M. et al. Involvement of cAMP-CRP in transcription activation and repression of the pck gene encoding PEP carboxykinase, the key enzyme of gluconeogenesis // FEMS Microbiol. Lett. 2014. Vol. 355, № 2. P. 93–99.
- 63. Busby S., Ebright R.H. Transcription activation by catabolite activator protein (CAP) // J. Mol. Biol. 1999. Vol. 293, № 2. P. 199–213.
- 64. Khoroshkin M.S. et al. Transcriptional Regulation of Carbohydrate Utilization Pathways in the Bifidobacterium Genus // Front Microbiol. 2016. Vol. 7. P. 120.
- Kaplan S. et al. Diverse two-dimensional input functions control bacterial sugar genes // Mol.
   Cell. 2008. Vol. 29, № 6. P. 786–792.
- General Genera
- 67. Wang X.-G., Olsen L.R., Roderick S.L. Structure of the lac Operon Galactoside Acetyltransferase // Structure. 2002. Vol. 10, № 4. P. 581–588.
- 68. Huber R.E., Hurlburt K.L. Escherichia coli growth on lactose requires cycling of betagalactosidase products into the medium // Can. J. Microbiol. 1984. Vol. 30, № 3. P. 411–415.
- 69. Huber R.E., Lytton J., Fung E.B. Efflux of beta-galactosidase products from Escherichia coli // J. Bacteriol. 1980. Vol. 141, № 2. P. 528–533.
- 70. Hengstenberg W., Penberthy W.K., Morse M.L. Purification of the staphylococcal 6-phosphobeta-D-- galactosidase // Eur. J. Biochem. 1970. Vol. 14, № 1. P. 27–32.
- 71. Hengstenberg W., Egan J.B., Morse M.L. Carbohydrate transport in Staphylococcus aureus. V. The accumulation of phosphorylated carbohydrate derivatives, and evidence for a new enzyme-splitting lactose phosphate // Proc. Natl. Acad. Sci. U.S.A. 1967. Vol. 58, № 1. P. 274–279.
- Bissett D.L., Wenger W.C., Anderson R.L. Lactose and D-galactose metabolism in Staphylococcus aureus. II. Isomerization of D-galactose 6-phosphate to D-tagatose 6-phosphate by a specific D-galactose-6-phosphate isomerase // J. Biol. Chem. 1980. Vol. 255, № 18. P. 8740–8744.

- 73. Bissett D.L., Anderson R.L. Lactose and D-galactose metabolism in Staphylococcus aureus. III.
   Purification and properties of D-tagatose-6-phosphate kinase // J. Biol. Chem. 1980. Vol. 255, № 18.
   P. 8745–8749.
- 74. Bissett D.L., Anderson R.L. Lactose and D-galactose metabolism in Staphylococcus aureus. IV. Isolation and properties of a class I D-ketohexose-1,6-diphosphate aldolase that catalyzes the cleavage of D-tagatose 1,6-diphosphate // J. Biol. Chem. 1980. Vol. 255, № 18. P. 8750–8755.
- 75. Denger K. et al. Sulphoglycolysis in Escherichia coli K-12 closes a gap in the biogeochemical sulphur cycle // Nature. 2014. Vol. 507, № 7490. P. 114–117.
- 76. Kaznadzey A. et al. PSimScan: algorithm and utility for fast protein similarity search // PLoS ONE. 2013. Vol. 8, № 3. P. e58505.
- 77. Korobeinikova A.V., Garber M.B., Gongadze G.M. Ribosomal proteins: Structure, function, and evolution // Biochemistry Moscow. 2012. Vol. 77, № 6. P. 562–574.
- 78. Quast C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools // Nucleic Acids Res. 2013. Vol. 41, № Database issue. P. D590-596.
- 79. Wheeler D.L. et al. Database resources of the National Center for Biotechnology Information // Nucleic Acids Res. 2008. Vol. 36, № Database issue. P. D13-21.
- 80. Varghese N.J. et al. Microbial species delineation using whole genome sequences // Nucleic Acids Res. 2015. Vol. 43, № 14. P. 6761–6771.
- Chen I.-M.A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes // Nucleic Acids Res. 2019. Vol. 47, № D1. P. D666–D677.
- 82. Benson D.A. et al. GenBank // Nucleic Acids Res. 2013. Vol. 41, № Database issue. P. D36-42.
- 83. Bairoch A. The ENZYME database in 2000 // Nucleic Acids Res. 2000. Vol. 28, № 1. P. 304–305.
- 84. Marchler-Bauer A. et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures // Nucleic Acids Res. 2017. Vol. 45, № D1. P. D200–D203.
- 85. Marcotte C.J.V., Marcotte E.M. Predicting functional linkages from gene fusions with confidence // Appl. Bioinformatics. 2002. Vol. 1, № 2. P. 93–100.
- 86. Pertea M. et al. OperonDB: a comprehensive database of predicted operons in microbial genomes // Nucleic Acids Res. 2009. Vol. 37, № Database issue. P. D479–D482.

- 87. Westfall P., Young S. Resampling-based multiple testing : examples and methods for p-value adjustment. SERBIULA (sistema Librum 2.0), 2019.
- Ding C., He X. K-means Clustering via Principal Component Analysis // Proceedings of the Twenty-first International Conference on Machine Learning. New York, NY, USA: ACM, 2004. P. 29–.
- 89. Eisen M.B. et al. Cluster analysis and display of genome-wide expression patterns // Proc. Natl. Acad. Sci. U.S.A. 1998. Vol. 95, № 25. P. 14863–14868.
- 90. Pál C., Hurst L.D. Evidence against the selfish operon theory // Trends Genet. 2004. Vol. 20, №
  6. P. 232–234.
- 91. Davidson A.L. et al. Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems // Microbiol Mol Biol Rev. 2008. Vol. 72, № 2. P. 317–364.
- 92. Kotrba P., Inui M., Yukawa H. Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism // Journal of Bioscience and Bioengineering. 2001. Vol. 92, № 6. P. 502–517.
- 93. Peekhaus N., Conway T. What's for dinner?: Entner-Doudoroff metabolism in Escherichia coli // J. Bacteriol. 1998. Vol. 180, № 14. P. 3495–3502.
- 94. Bloxham D.P. et al. A model study of the fructose diphosphatase-phosphofructokinase substrate cycle // Biochem. J. 1973. Vol. 134, № 2. P. 581–586.
- 95. Eisenstein A.B. Current concepts of gluconeogenesis // Am. J. Clin. Nutr. 1967. Vol. 20, № 3. P. 282–289.
- 96. Senoura T. et al. New microbial mannan catabolic pathway that involves a novel mannosylglucose phosphorylase // Biochem. Biophys. Res. Commun. 2011. Vol. 408, № 4. P. 701– 706.
- 97. Maier E., Kurz G. D-Galactose dehydrogenase from Pseudomonas fluorescens // Meth. Enzymol. 1982. Vol. 89 Pt D. P. 176–181.
- 98. Wong T.Y., Yao X.T. The DeLey-Doudoroff Pathway of Galactose Metabolism in Azotobacter vinelandii // Appl. Environ. Microbiol. 1994. Vol. 60, № 6. P. 2065–2068.
- 99. Ermolaeva M.D., White O., Salzberg S.L. Prediction of operons in microbial genomes // Nucleic Acids Res. 2001. Vol. 29, № 5. P. 1216–1221.
- 100. Kabisch A. et al. Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes "Gramella forsetii" KT0803 // ISME J. 2014. Vol. 8, № 7. P. 1492–1502.

- 101. Lamothe G.T. et al. Genetic and biochemical characterization of exopolysaccharide biosynthesis by Lactobacillus delbrueckii subsp. bulgaricus // Arch. Microbiol. 2002. Vol. 178, № 3. P. 218–228.
- 102. Reams A.B., Roth J.R. Mechanisms of Gene Duplication and Amplification // Cold Spring Harb Perspect Biol. 2015. Vol. 7, № 2.
- 103. Kondrashov F.A. et al. Selection in the evolution of gene duplications // Genome Biol. 2002.Vol. 3, № 2. P. RESEARCH0008.
- 104. Makarova K.S. et al. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell // Nucleic Acids Res. 2005. Vol. 33, № 14. P. 4626–4638.
- 105. Voigt B. et al. The glucose and nitrogen starvation response of Bacillus licheniformis // Proteomics. 2007. Vol. 7, № 3. P. 413–423.
- 106. Datsenko K.A., Wanner B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products // Proc. Natl. Acad. Sci. U.S.A. 2000. Vol. 97, № 12. P. 6640–6645.
- 107. Studier F.W. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system // J. Mol. Biol. 1991. Vol. 219, № 1. P. 37–44.
- 108. Casadaban M.J., Cohen S.N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli // J. Mol. Biol. 1980. Vol. 138, № 2. P. 179–207.
- 109. Notredame C., Higgins D.G., Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment // J. Mol. Biol. 2000. Vol. 302, № 1. P. 205–217.
- Shavkunov K.S. et al. Gains and unexpected lessons from genome-scale promoter mapping // Nucleic Acids Res. 2009. Vol. 37, № 15. P. 4919–4931.
- 111. Münch R. et al. Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes // Bioinformatics. 2005. Vol. 21, № 22. P. 4187–4189.
- 112. Ozoline O.N., Fujita N., Ishihama A. Mode of DNA-protein interaction between the C-terminal domain of Escherichia coli RNA polymerase alpha subunit and T7D promoter UP element // Nucleic Acids Res. 2001. Vol. 29, № 24. P. 4909–4919.
- 113. Purtov Y.A. et al. Promoter islands as a platform for interaction with nucleoid proteins and transcription factors // J. Bioinform. Comput. Biol. 2014. Vol. 12, № 02. P. 1441006.
- 114. Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative *C*<sup>T</sup> method // Nature Protocols. 2008. Vol. 3, № 6. P. 1101–1108.

- 115. Frey P.A. The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose // FASEB J. 1996. Vol. 10, № 4. P. 461–470.
- 116. Dornenburg J.E. et al. Widespread antisense transcription in Escherichia coli // MBio. 2010.Vol. 1, № 1.
- 117. Wade J.T., Grainger D.C. Pervasive transcription: illuminating the dark matter of bacterial transcriptomes // Nat. Rev. Microbiol. 2014. Vol. 12, № 9. P. 647–653.

# Приложения

# Приложение А

#### Список исследуемых геномов

| Вид и штамм бактерии                                                                    | Класс           |
|-----------------------------------------------------------------------------------------|-----------------|
| Acaryochloris marina MBIC11017                                                          | Cyanobacteria   |
| Acetohalobium arabaticum DSM 5501                                                       | Firmicutes      |
| Acholeplasma laidlawii PG-8A                                                            | Tenericutes     |
| Achromobacter xylosoxidans A8                                                           | Proteobacteria  |
| Acidaminococcus fermentans DSM 20731                                                    | Firmicutes      |
| Acidimicrobium ferrooxidans DSM 10331                                                   | Actinobacteria  |
| Acidithiobacillus caldus SM-1                                                           | Proteobacteria  |
| Acidithiobacillus ferrooxidans ATCC 23270                                               | Proteobacteria  |
| Acidobacterium capsulatum ATCC 51196                                                    | Acidobacteria   |
| Acidothermus cellulolyticus 11B                                                         | Actinobacteria  |
| Acidovorax avenae subsp avenae ATCC 19860                                               | Proteobacteria  |
| Acidovorax citrulli AAC00-1                                                             | Proteobacteria  |
| Acidovorax ebreus TPSY                                                                  | Proteobacteria  |
| Acinetobacter oleivorans DR1                                                            | Proteobacteria  |
| Acinetobacter sp ADP1                                                                   | Proteobacteria  |
| Actinobacillus pleuropneumoniae serovar 3 str JL03                                      | Proteobacteria  |
| Actinobacillus succinogenes 130Z                                                        | Proteobacteria  |
| Actinoplanes missouriensis 431                                                          | Actinobacteria  |
| Actinosynnema mirum DSM 43827                                                           | Actinobacteria  |
| Aerococcus urinae ACS-120-V-Col10a                                                      | Firmicutes      |
| Aeromonas hydrophila subsp hydrophila ATCC 7966                                         | Proteobacteria  |
| Aeromonas veronii B565                                                                  | Proteobacteria  |
| Aggregatibacter aphrophilus NJ8700                                                      | Proteobacteria  |
| Agrobacterium radiobacter K84                                                           | Proteobacteria  |
| Agrobacterium sp H13-3                                                                  | Proteobacteria  |
| Agrobacterium tumefaciens str C58                                                       | Proteobacteria  |
| Agrobacterium vitis S4                                                                  | Proteobacteria  |
| Akkermansia muciniphila ATCC BAA-835                                                    | Verrucomicrobia |
| Alcanivorax borkumensis SK2                                                             | Proteobacteria  |
| Alicyclobacillus acidocaldarius subsp acidocaldarius DSM 446 NC_0132051<br>GI:258510020 | Firmicutes      |
| Alkalilimnicola ehrlichii MLHE-1                                                        | Proteobacteria  |
| Alkaliphilus metalliredigens QYMF                                                       | Firmicutes      |
| Alkaliphilus oremlandii OhILAs                                                          | Firmicutes      |
| Allochromatium vinosum DSM 180                                                          | Proteobacteria  |
| Aminobacterium colombiense DSM 12261                                                    | Synergistetes   |
| Ammonifex degensii KC4                                                                  | Firmicutes      |

| Вид и штамм бактерии                                     | Класс          |
|----------------------------------------------------------|----------------|
| Anaerolinea thermophila UNI-1                            | Chloroflexi    |
| Anaeromyxobacter dehalogenans 2CP-1                      | Proteobacteria |
| Anaeromyxobacter sp Fw109-5                              | Proteobacteria |
| Anaplasma centrale str Israel                            | Proteobacteria |
| Anaplasma marginale str Florida                          | Proteobacteria |
| Anoxybacillus flavithermus WK1                           | Firmicutes     |
| Aquifex aeolicus VF5                                     | Aquificae      |
| Arcanobacterium haemolyticum DSM 20595                   | Actinobacteria |
| Arcobacter nitrofigilis DSM 7299                         | Proteobacteria |
| Aromatoleum aromaticum EbN1                              | Proteobacteria |
| Arthrobacter aurescens TC1                               | Actinobacteria |
| Aster yellows witches'-broom phytoplasma AYWB            | Tenericutes    |
| Asticcacaulis excentricus CB 48                          | Proteobacteria |
| Atopobium parvulum DSM 20469                             | Actinobacteria |
| Azoarcus sp BH72                                         | Proteobacteria |
| Azorhizobium caulinodans ORS 571                         | Proteobacteria |
| Azospirillum sp B510                                     | Proteobacteria |
| Bacillus amyloliquefaciens DSM 7                         | Firmicutes     |
| Bacillus atrophaeus 1942                                 | Firmicutes     |
| Bacillus cellulosilyticus DSM 2522                       | Firmicutes     |
| Bacillus cereus 03BB102                                  | Firmicutes     |
| Bacillus clausii KSM-K16                                 | Firmicutes     |
| Bacillus coagulans 2-6                                   | Firmicutes     |
| Bacillus halodurans C-125                                | Firmicutes     |
| Bacillus megaterium DSM 319                              | Firmicutes     |
| Bacillus pseudofirmus OF4                                | Firmicutes     |
| Bacillus pumilus SAFR-032                                | Firmicutes     |
| Bacillus selenitireducens MLS10                          | Firmicutes     |
| Bacillus subtilis subsp subtilis str 168                 | Firmicutes     |
| Bacillus thuringiensis str Al Hakam                      | Firmicutes     |
| Bacteroides helcogenes P 36-108                          | Bacteroidetes  |
| Bacteroides salanitronis DSM 18170                       | Bacteroidetes  |
| Bacteroides thetaiotaomicron VPI-5482                    | Bacteroidetes  |
| Bacteroides vulgatus ATCC 8482                           | Bacteroidetes  |
| Bartonella bacilliformis KC583                           | Proteobacteria |
| Bartonella clarridgeiae 73                               | Proteobacteria |
| Bartonella grahamii as4aup                               | Proteobacteria |
| Bartonella henselae str Houston-1                        | Proteobacteria |
| Baumannia cicadellinicola str Hc (Homalodisca coagulata) | Proteobacteria |
| Bdellovibrio bacteriovorus HD100                         | Proteobacteria |
| Beutenbergia cavernae DSM 12333                          | Actinobacteria |
| Bifidobacterium adolescentis ATCC 15703                  | Actinobacteria |
| Bifidobacterium dentium Bd1                              | Actinobacteria |
| Bifidobacterium longum subsp longum BBMN68               | Actinobacteria |
| Blastococcus saxobsidens DD2                             | Actinobacteria |
| Bordetella avium 197N                                    | Proteobacteria |

| Вид и штамм бактерии                                      | Класс          |
|-----------------------------------------------------------|----------------|
| Bordetella parapertussis 12822                            | Proteobacteria |
| Bordetella petrii DSM 12804                               | Proteobacteria |
| Borrelia hermsii DAH                                      | Spirochaetes   |
| Borrelia recurrentis A1                                   | Spirochaetes   |
| Borrelia turicatae 91E135                                 | Spirochaetes   |
| Brachybacterium faecium DSM 4810                          | Actinobacteria |
| Brachyspira hyodysenteriae WA1                            | Spirochaetes   |
| Brachyspira murdochii DSM 12563                           | Spirochaetes   |
| Brachyspira pilosicoli 95/1000                            | Spirochaetes   |
| Bradyrhizobium japonicum USDA 110                         | Proteobacteria |
| Bradyrhizobium sp BTAi1                                   | Proteobacteria |
| Brevibacillus brevis NBRC 100599                          | Firmicutes     |
| Brevundimonas subvibrioides ATCC 15264                    | Proteobacteria |
| Brucella canis ATCC 23365                                 | Proteobacteria |
| Brucella melitensis ATCC 23457                            | Proteobacteria |
| Brucella microti CCM 4915                                 | Proteobacteria |
| Brucella ovis ATCC 25840                                  | Proteobacteria |
| Brucella pinnipedialis B2/94                              | Proteobacteria |
| Buchnera aphidicola str 5A (Acyrthosiphon pisum)          | Proteobacteria |
| Burkholderia cenocepacia AU 1054                          | Proteobacteria |
| Burkholderia gladioli BSR3                                | Proteobacteria |
| Burkholderia glumae BGR1                                  | Proteobacteria |
| Burkholderia mallei ATCC 23344                            | Proteobacteria |
| Burkholderia phymatum STM815                              | Proteobacteria |
| Burkholderia phytofirmans PsJN                            | Proteobacteria |
| Burkholderia rhizoxinica HKI 454                          | Proteobacteria |
| Burkholderia sp CCGE1001                                  | Proteobacteria |
| Burkholderia thailandensis E264                           | Proteobacteria |
| Burkholderia xenovorans LB400                             | Proteobacteria |
| Butyrivibrio proteoclasticus B316                         | Firmicutes     |
| Caldicellulosiruptor bescii DSM 6725                      | Firmicutes     |
| Caldicellulosiruptor hydrothermalis 108                   | Firmicutes     |
| Caldicellulosiruptor kronotskyensis 2002                  | Firmicutes     |
| Caldicellulosiruptor obsidiansis OB47                     | Firmicutes     |
| Caldicellulosiruptor owensensis OL                        | Firmicutes     |
| Caldicellulosiruptor saccharolyticus DSM 8903             | Firmicutes     |
| Campylobacter curvus 52592                                | Proteobacteria |
| Campylobacter fetus subsp fetus 82-40                     | Proteobacteria |
| Campylobacter jejuni subsp jejuni 81116                   | Proteobacteria |
| Campylobacter lari RM2100                                 | Proteobacteria |
| Candidatus Amoebophilus asiaticus 5a2                     | Bacteroidetes  |
| Candidatus Desulforudis audaxviator MP104C                | Firmicutes     |
| Candidatus Hamiltonella defensa 5AT (Acyrthosiphon pisum) | Proteobacteria |
| Candidatus Koribacter versatilis Ellin345                 | Acidobacteria  |
| Candidatus Nitrospira defluvii                            | Nitrospirae    |
| Candidatus Pelagibacter sp IMCC9063                       | Proteobacteria |

| Вид и штамм бактерии                                       | Класс          |
|------------------------------------------------------------|----------------|
| Candidatus Phytoplasma australiense                        | Tenericutes    |
| Candidatus Protochlamydia amoebophila UWE25                | Chlamydiae     |
| Candidatus Puniceispirillum marinum IMCC1322               | Proteobacteria |
| Candidatus Ruthia magnifica str Cm (Calyptogena magnifica) | Proteobacteria |
| Candidatus Solibacter usitatus Ellin6076                   | Acidobacteria  |
| Candidatus Sulcia muelleri CARI                            | Bacteroidetes  |
| Candidatus Vesicomyosocius okutanii HA                     | Proteobacteria |
| Capnocytophaga canimorsus Cc5                              | Bacteroidetes  |
| Capnocytophaga ochracea DSM 7271                           | Bacteroidetes  |
| Carboxydothermus hydrogenoformans Z-2901                   | Firmicutes     |
| Carnobacterium sp 17-4                                     | Firmicutes     |
| Catenulispora acidiphila DSM 44928                         | Actinobacteria |
| Caulobacter crescentus CB15                                | Proteobacteria |
| Caulobacter segnis ATCC 21756                              | Proteobacteria |
| Caulobacter sp K31                                         | Proteobacteria |
| Cellulomonas flavigena DSM 20109                           | Actinobacteria |
| Cellulophaga algicola DSM 14237                            | Bacteroidetes  |
| Cellulophaga lytica DSM 7489                               | Bacteroidetes  |
| Cellvibrio japonicus Ueda107                               | Proteobacteria |
| Chitinophaga pinensis DSM 2588                             | Bacteroidetes  |
| Chlamydia trachomatis 434/Bu                               | Chlamydiae     |
| Chlamydophila abortus S26/3                                | Chlamydiae     |
| Chlamydophila caviae GPIC                                  | Chlamydiae     |
| Chlamydophila felis Fe/C-56                                | Chlamydiae     |
| Chlamydophila pneumoniae AR39                              | Chlamydiae     |
| Chlorobaculum parvum NCIB 8327                             | Chlorobi       |
| Chlorobium chlorochromatii CaD3                            | Chlorobi       |
| Chlorobium limicola DSM 245                                | Chlorobi       |
| Chlorobium luteolum DSM 273                                | Chlorobi       |
| Chlorobium phaeobacteroides BS1                            | Chlorobi       |
| Chlorobium phaeovibrioides DSM 265                         | Chlorobi       |
| Chlorobium tepidum TLS                                     | Chlorobi       |
| Chloroflexus aggregans DSM 9485                            | Chloroflexi    |
| Chloroflexus aurantiacus J-10-fl                           | Chloroflexi    |
| Chloroflexus sp Y-400-fl                                   | Chloroflexi    |
| Chloroherpeton thalassium ATCC 35110                       | Chlorobi       |
| Chromobacterium violaceum ATCC 12472                       | Proteobacteria |
| Chromohalobacter salexigens DSM 3043                       | Proteobacteria |
| Citrobacter koseri ATCC BAA-895                            | Proteobacteria |
| Citrobacter rodentium ICC168                               | Proteobacteria |
| Clostridiales genomosp BVAB3 str UPII9-5                   | Firmicutes     |
| Clostridium acetobutylicum ATCC 824                        | Firmicutes     |
| Clostridium beijerinckii NCIMB 8052                        | Firmicutes     |
| Clostridium botulinum A2 str Kyoto                         | Firmicutes     |
| Clostridium cellulolyticum H10                             | Firmicutes     |
| Clostridium cellulovorans 743B                             | Firmicutes     |

| Вид и штамм бактерии                         | Класс               |
|----------------------------------------------|---------------------|
| Clostridium lentocellum DSM 5427             | Firmicutes          |
| Clostridium ljungdahlii DSM 13528            | Firmicutes          |
| Clostridium novyi NT                         | Firmicutes          |
| Clostridium phytofermentans ISDg             | Firmicutes          |
| Clostridium saccharolyticum WM1              | Firmicutes          |
| Clostridium sticklandii DSM 519              | Firmicutes          |
| Clostridium tetani E88                       | Firmicutes          |
| Clostridium thermocellum ATCC 27405          | Firmicutes          |
| Collimonas fungivorans Ter331                | Proteobacteria      |
| Colwellia psychrerythraea 34H                | Proteobacteria      |
| Conexibacter woesei DSM 14684                | Actinobacteria      |
| Coprothermobacter proteolyticus DSM 5265     | Firmicutes          |
| Coraliomargarita akajimensis DSM 45221       | Verrucomicrobia     |
| Corynebacterium kroppenstedtii DSM 44385     | Actinobacteria      |
| Corynebacterium resistens DSM 45100          | Actinobacteria      |
| Corynebacterium urealyticum DSM 7109         | Actinobacteria      |
| Coxiella burnetii CbuG_Q212                  | Proteobacteria      |
| Croceibacter atlanticus HTCC2559             | Bacteroidetes       |
| Cronobacter sakazakii ATCC BAA-894           | Proteobacteria      |
| Cronobacter turicensis z3032                 | Proteobacteria      |
| Cryptobacterium curtum DSM 15641             | Actinobacteria      |
| Cupriavidus necator N-1                      | Proteobacteria      |
| Cupriavidus taiwanensis LMG 19424            | Proteobacteria      |
| Cyanobacterium UCYN-A                        | Cyanobacteria       |
| Cytophaga hutchinsonii ATCC 33406            | Bacteroidetes       |
| Dechloromonas aromatica RCB                  | Proteobacteria      |
| Deferribacter desulfuricans SSM1             | Deferribacteres     |
| Dehalococcoides sp BAV1                      | Chloroflexi         |
| Dehalogenimonas lykanthroporepellens BL-DC-9 | Chloroflexi         |
| Deinococcus deserti VCD115                   | Deinococcus-Thermus |
| Deinococcus geothermalis DSM 11300           | Deinococcus-Thermus |
| Deinococcus maricopensis DSM 21211           | Deinococcus-Thermus |
| Deinococcus proteolyticus MRP                | Deinococcus-Thermus |
| Deinococcus radiodurans R1                   | Deinococcus-Thermus |
| Delftia acidovorans SPH-1                    | Proteobacteria      |
| Delftia sp Cs1-4                             | Proteobacteria      |
| Denitrovibrio acetiphilus DSM 12809          | Deferribacteres     |
| Desulfarculus baarsii DSM 2075               | Proteobacteria      |
| Desulfatibacillum alkenivorans AK-01         | Proteobacteria      |
| Desulfitobacterium hafniense DCB-2           | Firmicutes          |
| Desulfobacterium autotrophicum HRM2          | Proteobacteria      |
| Desulfobulbus propionicus DSM 2032           | Proteobacteria      |
| Desulfococcus oleovorans Hxd3                | Proteobacteria      |
| Desulfohalobium retbaense DSM 5692           | Proteobacteria      |
| Desulfomicrobium baculatum DSM 4028          | Proteobacteria      |
|                                              |                     |

| Вид и штамм бактерии                                                                      | Класс          |
|-------------------------------------------------------------------------------------------|----------------|
| Desulfotomaculum acetoxidans DSM 771                                                      | Firmicutes     |
| Desulfotomaculum reducens MI-1                                                            | Firmicutes     |
| Desulfotomaculum ruminis DSM 2154                                                         | Firmicutes     |
| Desulfovibrio aespoeensis Aspo-2                                                          | Proteobacteria |
| Desulfovibrio alaskensis G20                                                              | Proteobacteria |
| Desulfovibrio desulfuricans subsp desulfuricans str ATCC 27774 NC_0118831<br>GI:220903286 | Proteobacteria |
| Desulfovibrio salexigens DSM 2638                                                         | Proteobacteria |
| Desulfovibrio vulgaris str 'Miyazaki F'                                                   | Proteobacteria |
| Desulfurispirillum indicum S5                                                             | Chrysiogenetes |
| Desulfurivibrio alkaliphilus AHT2                                                         | Proteobacteria |
| Desulfurobacterium thermolithotrophum DSM 11699                                           | Aquificae      |
| Dichelobacter nodosus VCS1703A                                                            | Proteobacteria |
| Dickeya dadantii 3937                                                                     | Proteobacteria |
| Dickeya zeae Ech1591                                                                      | Proteobacteria |
| Dictyoglomus thermophilum H-6-12                                                          | Dictyoglomi    |
| Dictyoglomus turgidum DSM 6724                                                            | Dictyoglomi    |
| Dinoroseobacter shibae DFL 12                                                             | Proteobacteria |
| Dyadobacter fermentans DSM 18053                                                          | Bacteroidetes  |
| Edwardsiella ictaluri 93-146                                                              | Proteobacteria |
| Edwardsiella tarda EIB202                                                                 | Proteobacteria |
| Eggerthella lenta DSM 2243                                                                | Actinobacteria |
| Eggerthella sp YY7918                                                                     | Actinobacteria |
| Ehrlichia canis str Jake                                                                  | Proteobacteria |
| Ehrlichia chaffeensis str Arkansas                                                        | Proteobacteria |
| Ehrlichia ruminantium str Gardel                                                          | Proteobacteria |
| Elusimicrobium minutum Pei191                                                             | Elusimicrobia  |
| Enterobacter cloacae SCF1                                                                 | Proteobacteria |
| Enterobacter sp 638                                                                       | Proteobacteria |
| Erwinia amylovora ATCC 49946                                                              | Proteobacteria |
| Erysipelothrix rhusiopathiae str Fujisawa                                                 | Firmicutes     |
| Erythrobacter litoralis HTCC2594                                                          | Proteobacteria |
| Escherichia coli str K-12 substr MG1655                                                   | Proteobacteria |
| Escherichia fergusonii ATCC 35469                                                         | Proteobacteria |
| Ethanoligenens harbinense YUAN-3                                                          | Firmicutes     |
| Eubacterium eligens ATCC 27750                                                            | Firmicutes     |
| Eubacterium limosum KIST612                                                               | Firmicutes     |
| Eubacterium rectale ATCC 33656                                                            | Firmicutes     |
| Exiguobacterium sp AT1b                                                                   | Firmicutes     |
| Ferrimonas balearica DSM 9799                                                             | Proteobacteria |
| Fervidobacterium nodosum Rt17-B1                                                          | Thermotogae    |
| Flavobacteriaceae bacterium 3519-10                                                       | Bacteroidetes  |
| Flavobacterium johnsoniae UW101                                                           | Bacteroidetes  |
| Flavobacterium psychrophilum JIP02/86                                                     | Bacteroidetes  |
| Francisella novicida U112                                                                 | Proteobacteria |
| Francisella sp TX077308                                                                   | Proteobacteria |
| Frankia alni ACN14a                                                                       | Actinobacteria |

| Вид и штамм бактерии                     | Класс            |
|------------------------------------------|------------------|
| Frankia sp CcI3                          | Actinobacteria   |
| Frankia symbiont of Datisca glomerata    | Actinobacteria   |
| Gallibacterium anatis UMN179             | Proteobacteria   |
| Gallionella capsiferriformans ES-2       | Proteobacteria   |
| Gamma proteobacterium HdN1               | Proteobacteria   |
| Gardnerella vaginalis 409-05             | Actinobacteria   |
| Gemmatimonas aurantiaca T-27             | Gemmatimonadetes |
| Geobacillus sp C56-T3                    | Firmicutes       |
| Geobacillus thermodenitrificans NG80-2   | Firmicutes       |
| Geobacillus thermoglucosidasius C56-YS93 | Firmicutes       |
| Geobacter bemidjiensis Bem               | Proteobacteria   |
| Geobacter lovleyi SZ                     | Proteobacteria   |
| Geobacter sp FRC-32                      | Proteobacteria   |
| Geobacter sp M18                         | Proteobacteria   |
| Geobacter uraniireducens Rf4             | Proteobacteria   |
| Geodermatophilus obscurus DSM 43160      | Actinobacteria   |
| Glaciecola nitratireducens FR1064        | Proteobacteria   |
| Glaciecola sp 4H-3-7+YE-5                | Proteobacteria   |
| Gloeobacter violaceus PCC 7421           | Cyanobacteria    |
| Gluconacetobacter diazotrophicus PAI 5   | Proteobacteria   |
| Gordonia bronchialis DSM 43247           | Actinobacteria   |
| Gramella forsetii KT0803                 | Bacteroidetes    |
| Granulibacter bethesdensis CGDNIH1       | Proteobacteria   |
| Granulicella tundricola                  | Acidobacteria    |
| Haemophilus ducreyi 35000HP              | Proteobacteria   |
| Haemophilus parasuis SH0165              | Proteobacteria   |
| Hahella chejuensis KCTC 2396             | Proteobacteria   |
| Halanaerobium hydrogeniformans           | Firmicutes       |
| Haliangium ochraceum DSM 14365           | Proteobacteria   |
| Halobacillus halophilus DSM 2266         | Firmicutes       |
| Halomonas elongata DSM 2581              | Proteobacteria   |
| Halorhodospira halophila SL1             | Proteobacteria   |
| Halothermothrix orenii H 168             | Firmicutes       |
| Halothiobacillus neapolitanus c2         | Proteobacteria   |
| Helicobacter acinonychis str Sheeba      | Proteobacteria   |
| Helicobacter felis ATCC 49179            | Proteobacteria   |
| Helicobacter hepaticus ATCC 51449        | Proteobacteria   |
| Helicobacter mustelae 12198              | Proteobacteria   |
| Heliobacterium modesticaldum Ice1        | Firmicutes       |
| Herbaspirillum seropedicae SmR1          | Proteobacteria   |
| Herminiimonas arsenicoxydans             | Proteobacteria   |
| Herpetosiphon aurantiacus DSM 785        | Chloroflexi      |
| Hirschia baltica ATCC 49814              | Proteobacteria   |
| Hyphomicrobium sp MC1                    | Proteobacteria   |
| Hyphomonas neptunium ATCC 15444          | Proteobacteria   |
| Ignavibacterium album JCM 16511          | Ignavibacteria   |

| Вид и штамм бактерии                                                                    | Класс               |
|-----------------------------------------------------------------------------------------|---------------------|
| llyobacter polytropus DSM 2926                                                          | Fusobacteria        |
| Intrasporangium calvum DSM 43043                                                        | Actinobacteria      |
| Jannaschia sp CCS1                                                                      | Proteobacteria      |
| Janthinobacterium sp Marseille                                                          | Proteobacteria      |
| Jonesia denitrificans DSM 20603                                                         | Actinobacteria      |
| Kangiella koreensis DSM 16069                                                           | Proteobacteria      |
| Kitasatospora setae KM-6054                                                             | Actinobacteria      |
| Klebsiella variicola At-22                                                              | Proteobacteria      |
| Kocuria rhizophila DC2201                                                               | Actinobacteria      |
| Kosmotoga olearia TBF 1951                                                              | Thermotogae         |
| Kribbella flavida DSM 17836                                                             | Actinobacteria      |
| Krokinobacter sp 4H-3-7-5                                                               | Bacteroidetes       |
| Kyrpidia tusciae DSM 2912                                                               | Firmicutes          |
| Kytococcus sedentarius DSM 20547                                                        | Actinobacteria      |
| Lacinutrix sp 5H-3-7-4                                                                  | Bacteroidetes       |
| Lactobacillus brevis ATCC 367                                                           | Firmicutes          |
| Lactobacillus casei ATCC 334                                                            | Firmicutes          |
| Lactobacillus crispatus ST1                                                             | Firmicutes          |
| Lactobacillus gasseri ATCC 33323                                                        | Firmicutes          |
| Lactobacillus reuteri DSM 20016                                                         | Firmicutes          |
| Lactobacillus sakei subsp sakei 23K                                                     | Firmicutes          |
| Laribacter hongkongensis HLHK9                                                          | Proteobacteria      |
| Leadbetterella byssophila DSM 17132                                                     | Bacteroidetes       |
| Legionella longbeachae NSW150                                                           | Proteobacteria      |
| Legionella pneumophila 2300/99 Alcoy                                                    | Proteobacteria      |
| Leifsonia xyli subsp xyli str CTCB07                                                    | Actinobacteria      |
| Leptospira biflexa serovar Patoc strain 'Patoc 1 (Ames)'                                | Spirochaetes        |
| Leptospira borgpetersenii serovar Hardjo-bovis JB197                                    | Spirochaetes        |
| Leptospira interrogans serovar Copenhageni str Fiocruz L1-130 NC_0058231<br>GI:45655914 | Spirochaetes        |
| Leptothrix cholodnii SP-6                                                               | Proteobacteria      |
| Leptotrichia buccalis C-1013-b                                                          | Fusobacteria        |
| Leuconostoc citreum KM20                                                                | Firmicutes          |
| Leuconostoc gasicomitatum LMG 18811                                                     | Firmicutes          |
| Leuconostoc sp C2                                                                       | Firmicutes          |
| Listeria innocua Clip11262                                                              | Firmicutes          |
| Listeria seeligeri serovar 1/2b str SLCC3954                                            | Firmicutes          |
| Listeria welshimeri serovar 6b str SLCC5334                                             | Firmicutes          |
| Magnetococcus marinus MC-1                                                              | Proteobacteria      |
| Magnetospirillum magneticum AMB-1                                                       | Proteobacteria      |
| Mannheimia succiniciproducens MBEL55E                                                   | Proteobacteria      |
| Maribacter sp HTCC2170                                                                  | Bacteroidetes       |
| Maricaulis maris MCS10                                                                  | Proteobacteria      |
| Marinomonas sp MWYL1                                                                    | Proteobacteria      |
| Meiothermus silvanus DSM 9946                                                           | Deinococcus-Thermus |
| Melissococcus plutonius ATCC 35311                                                      | Firmicutes          |
| Mesoplasma florum L1                                                                    | Tenericutes         |

| Вид и штамм бактерии                              | Класс           |
|---------------------------------------------------|-----------------|
| Mesorhizobium ciceri biovar biserrulae WSM1271    | Proteobacteria  |
| Mesorhizobium loti MAFF303099                     | Proteobacteria  |
| Methylacidiphilum infernorum V4                   | Verrucomicrobia |
| Methylibium petroleiphilum PM1                    | Proteobacteria  |
| Methylobacillus flagellatus KT                    | Proteobacteria  |
| Methylobacterium chloromethanicum CM4             | Proteobacteria  |
| Methylobacterium nodulans ORS 2060                | Proteobacteria  |
| Methylocella silvestris BL2                       | Proteobacteria  |
| Methylococcus capsulatus str Bath                 | Proteobacteria  |
| Methylotenera mobilis JLW8                        | Proteobacteria  |
| Methylotenera versatilis 301                      | Proteobacteria  |
| Methylovorus glucosetrophus SIP3-4                | Proteobacteria  |
| Methylovorus sp MP688                             | Proteobacteria  |
| Micavibrio aeruginosavorus ARL-13                 | Proteobacteria  |
| Microbacterium testaceum StLB037                  | Actinobacteria  |
| Micrococcus luteus NCTC 2665                      | Actinobacteria  |
| Microcystis aeruginosa NIES-843                   | Cyanobacteria   |
| Microlunatus phosphovorus NM-1                    | Actinobacteria  |
| Micromonospora aurantiaca ATCC 27029              | Actinobacteria  |
| Micromonospora sp L5                              | Actinobacteria  |
| Mobiluncus curtisii ATCC 43063                    | Actinobacteria  |
| Moorella thermoacetica ATCC 39073                 | Firmicutes      |
| Moraxella catarrhalis RH4                         | Proteobacteria  |
| Mycobacterium africanum GM041182                  | Actinobacteria  |
| Mycobacterium avium 104                           | Actinobacteria  |
| Mycobacterium bovis AF2122/97                     | Actinobacteria  |
| Mycobacterium canettii CIPT 140010059             | Actinobacteria  |
| Mycobacterium gilvum PYR-GCK                      | Actinobacteria  |
| Mycobacterium leprae Br4923                       | Actinobacteria  |
| Mycobacterium sp JDM601                           | Actinobacteria  |
| Mycobacterium vanbaalenii PYR-1                   | Actinobacteria  |
| Mycoplasma agalactiae PG2                         | Tenericutes     |
| Mycoplasma arthritidis 158L3-1                    | Tenericutes     |
| Mycoplasma capricolum subsp capricolum ATCC 27343 | Tenericutes     |
| Mycoplasma conjunctivae HRC/581                   | Tenericutes     |
| Mycoplasma crocodyli MP145                        | Tenericutes     |
| Mycoplasma fermentans JER                         | Tenericutes     |
| Mycoplasma genitalium G37                         | Tenericutes     |
| Mycoplasma hominis ATCC 23114                     | Tenericutes     |
| Mycoplasma mobile 163K                            | Tenericutes     |
| Mycoplasma penetrans HF-2                         | Tenericutes     |
| Mycoplasma pulmonis UAB CTIP                      | Tenericutes     |
| Mycoplasma synoviae 53                            | Tenericutes     |
| Myxococcus fulvus HW-1                            | Proteobacteria  |
| Myxococcus xanthus DK 1622                        | Proteobacteria  |
| Nakamurella multipartita DSM 44233                | Actinobacteria  |
| -                                                 |                 |

| Вид и штамм бактерии                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Класс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nautilia profundicola AmH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Neisseria gonorrhoeae FA 1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Neisseria lactamica 020-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Neisseria meningitidis 053442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Neorickettsia risticii str Illinois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Neorickettsia sennetsu str Miyayama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nitratifractor salsuginis DSM 16511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nitratiruptor sp SB155-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nitrobacter hamburgensis X14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nitrobacter winogradskyi Nb-255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nitrosococcus watsonii C-113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nitrosomonas europaea ATCC 19718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nitrosospira multiformis ATCC 25196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nocardia farcinica IFM 10152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Actinobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nocardioides sp JS614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Actinobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nocardiopsis dassonvillei subsp dassonvillei DSM 43111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Actinobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 'Nostoc azollae' 0708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cyanobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Nostoc punctiforme PCC 73102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cyanobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Novosphingobium aromaticivorans DSM 12444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Novosphingobium sp PP1Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Oceanimonas sp GK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Oceanobacillus iheyensis HTE831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ochrobactrum anthropi ATCC 49188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Odoribacter splanchnicus DSM 20712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bacteroidetes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Odoribacter splanchnicus DSM 20712<br>Oenococcus oeni PSU-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bacteroidetes<br>Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Odoribacter splanchnicus DSM 20712       Oenococcus oeni PSU-1       Olsenella uli DSM 7084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bacteroidetes<br>Firmicutes<br>Actinobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Odoribacter splanchnicus DSM 20712       Oenococcus oeni PSU-1       Olsenella uli DSM 7084       Onion yellows phytoplasma OY-M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bacteroidetes<br>Firmicutes<br>Actinobacteria<br>Tenericutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Odoribacter splanchnicus DSM 20712       Oenococcus oeni PSU-1       Olsenella uli DSM 7084       Onion yellows phytoplasma OY-M       Opitutus terrae PB90-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bacteroidetes<br>Firmicutes<br>Actinobacteria<br>Tenericutes<br>Verrucomicrobia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Odoribacter splanchnicus DSM 20712       Oenococcus oeni PSU-1       Olsenella uli DSM 7084       Onion yellows phytoplasma OY-M       Opitutus terrae PB90-1       Orientia tsutsugamushi str Boryong                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bacteroidetes<br>Firmicutes<br>Actinobacteria<br>Tenericutes<br>Verrucomicrobia<br>Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Odoribacter splanchnicus DSM 20712         Oenococcus oeni PSU-1         Olsenella uli DSM 7084         Onion yellows phytoplasma OY-M         Opitutus terrae PB90-1         Orientia tsutsugamushi str Boryong         Paenibacillus mucilaginosus 3016                                                                                                                                                                                                                                                                                                                                                                                                                         | Bacteroidetes<br>Firmicutes<br>Actinobacteria<br>Tenericutes<br>Verrucomicrobia<br>Proteobacteria<br>Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Odoribacter splanchnicus DSM 20712         Oenococcus oeni PSU-1         Olsenella uli DSM 7084         Onion yellows phytoplasma OY-M         Opitutus terrae PB90-1         Orientia tsutsugamushi str Boryong         Paenibacillus mucilaginosus 3016         Paenibacillus polymyxa E681                                                                                                                                                                                                                                                                                                                                                                                     | Bacteroidetes<br>Firmicutes<br>Actinobacteria<br>Tenericutes<br>Verrucomicrobia<br>Proteobacteria<br>Firmicutes<br>Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Odoribacter splanchnicus DSM 20712         Oenococcus oeni PSU-1         Olsenella uli DSM 7084         Onion yellows phytoplasma OY-M         Opitutus terrae PB90-1         Orientia tsutsugamushi str Boryong         Paenibacillus mucilaginosus 3016         Paenibacillus polymyxa E681         Paenibacillus sp JDR-2                                                                                                                                                                                                                                                                                                                                                      | Bacteroidetes         Firmicutes         Actinobacteria         Tenericutes         Verrucomicrobia         Proteobacteria         Firmicutes         Firmicutes         Firmicutes         Firmicutes         Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Odoribacter splanchnicus DSM 20712         Oenococcus oeni PSU-1         Olsenella uli DSM 7084         Onion yellows phytoplasma OY-M         Opitutus terrae PB90-1         Orientia tsutsugamushi str Boryong         Paenibacillus mucilaginosus 3016         Paenibacillus sp JDR-2         Paludibacter propionicigenes WB4                                                                                                                                                                                                                                                                                                                                                 | Bacteroidetes         Firmicutes         Actinobacteria         Tenericutes         Verrucomicrobia         Proteobacteria         Firmicutes         Firmicutes         Birmicutes         Birmicutes         Bacteroidetes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Odoribacter splanchnicus DSM 20712         Oenococcus oeni PSU-1         Olsenella uli DSM 7084         Onion yellows phytoplasma OY-M         Opitutus terrae PB90-1         Orientia tsutsugamushi str Boryong         Paenibacillus mucilaginosus 3016         Paenibacillus polymyxa E681         Paenibacillus sp JDR-2         Paludibacter propionicigenes WB4         Pantoea sp At-9b                                                                                                                                                                                                                                                                                    | Bacteroidetes         Firmicutes         Actinobacteria         Tenericutes         Verrucomicrobia         Proteobacteria         Firmicutes         Firmicutes         Firmicutes         Proteobacteria         Proteobacteria         Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Odoribacter splanchnicus DSM 20712         Oenococcus oeni PSU-1         Olsenella uli DSM 7084         Onion yellows phytoplasma OY-M         Opitutus terrae PB90-1         Orientia tsutsugamushi str Boryong         Paenibacillus mucilaginosus 3016         Paenibacillus polymyxa E681         Paenibacillus sp JDR-2         Paludibacter propionicigenes WB4         Pantoea sp At-9b         Pantoea vagans C9-1                                                                                                                                                                                                                                                        | Bacteroidetes         Firmicutes         Actinobacteria         Tenericutes         Verrucomicrobia         Proteobacteria         Firmicutes         Firmicutes         Bacteroidetes         Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Odoribacter splanchnicus DSM 20712         Oenococcus oeni PSU-1         Olsenella uli DSM 7084         Onion yellows phytoplasma OY-M         Opitutus terrae PB90-1         Orientia tsutsugamushi str Boryong         Paenibacillus mucilaginosus 3016         Paenibacillus sp JDR-2         Paludibacter propionicigenes WB4         Pantoea sp At-9b         Pantoea vagans C9-1         Parabacteroides distasonis ATCC 8503                                                                                                                                                                                                                                               | Bacteroidetes         Firmicutes         Actinobacteria         Tenericutes         Verrucomicrobia         Proteobacteria         Firmicutes         Firmicutes         Proteobacteria         Proteobacteria         Bacteroidetes         Proteobacteria         Bacteroidetes         Bacteroidetes         Bacteroidetes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Odoribacter splanchnicus DSM 20712         Oenococcus oeni PSU-1         Olsenella uli DSM 7084         Onion yellows phytoplasma OY-M         Opitutus terrae PB90-1         Orientia tsutsugamushi str Boryong         Paenibacillus mucilaginosus 3016         Paenibacillus polymyxa E681         Paenibacillus sp JDR-2         Paludibacter propionicigenes WB4         Pantoea sp At-9b         Parabacteroides distasonis ATCC 8503         Parachlamydia acanthamoebae UV-7                                                                                                                                                                                              | Bacteroidetes         Firmicutes         Actinobacteria         Tenericutes         Verrucomicrobia         Proteobacteria         Firmicutes         Firmicutes         Firmicutes         Proteobacteria         Bacteroidetes         Proteobacteria         Bacteroidetes         Chlamydiae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Odoribacter splanchnicus DSM 20712         Oenococcus oeni PSU-1         Olsenella uli DSM 7084         Onion yellows phytoplasma OY-M         Opitutus terrae PB90-1         Orientia tsutsugamushi str Boryong         Paenibacillus mucilaginosus 3016         Paenibacillus polymyxa E681         Paenibacillus sp JDR-2         Paludibacter propionicigenes WB4         Pantoea sp At-9b         Parabacteroides distasonis ATCC 8503         Parachlamydia acanthamoebae UV-7         Paracoccus denitrificans PD1222                                                                                                                                                      | Bacteroidetes         Firmicutes         Actinobacteria         Tenericutes         Verrucomicrobia         Proteobacteria         Firmicutes         Firmicutes         Proteobacteria         Bacteroidetes         Proteobacteria         Bacteroidetes         Chlamydiae         Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Odoribacter splanchnicus DSM 20712         Oenococcus oeni PSU-1         Olsenella uli DSM 7084         Onion yellows phytoplasma OY-M         Opitutus terrae PB90-1         Orientia tsutsugamushi str Boryong         Paenibacillus mucilaginosus 3016         Paenibacillus polymyxa E681         Paenibacillus sp JDR-2         Paludibacter propionicigenes WB4         Pantoea sp At-9b         Parabacteroides distasonis ATCC 8503         Parachlamydia acanthamoebae UV-7         Paracoccus denitrificans PD1222         Parvibaculum lavamentivorans DS-1                                                                                                            | Bacteroidetes         Firmicutes         Actinobacteria         Tenericutes         Verrucomicrobia         Proteobacteria         Firmicutes         Firmicutes         Bacteroidetes         Proteobacteria         Bacteroidetes         Chlamydiae         Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Odoribacter splanchnicus DSM 20712         Oenococcus oeni PSU-1         Olsenella uli DSM 7084         Onion yellows phytoplasma OY-M         Opitutus terrae PB90-1         Orientia tsutsugamushi str Boryong         Paenibacillus mucilaginosus 3016         Paenibacillus polymyxa E681         Paenibacillus sp JDR-2         Paludibacter propionicigenes WB4         Pantoea sp At-9b         Parabacteroides distasonis ATCC 8503         Paracoccus denitrificans PD1222         Parvibaculum lavamentivorans DS-1         Parvularcula bermudensis HTCC2503                                                                                                           | Bacteroidetes         Firmicutes         Actinobacteria         Tenericutes         Verrucomicrobia         Proteobacteria         Firmicutes         Firmicutes         Firmicutes         Proteobacteria         Bacteroidetes         Proteobacteria         Bacteroidetes         Proteobacteria                                                                                                                                                                                                                                                                                                                                                                 |
| Odoribacter splanchnicus DSM 20712         Oenococcus oeni PSU-1         Olsenella uli DSM 7084         Onion yellows phytoplasma OY-M         Opitutus terrae PB90-1         Orientia tsutsugamushi str Boryong         Paenibacillus mucilaginosus 3016         Paenibacillus polymyxa E681         Paenibacillus sp JDR-2         Paludibacter propionicigenes WB4         Pantoea sp At-9b         Parabacteroides distasonis ATCC 8503         Paracoccus denitrificans PD1222         Parvibaculum lavamentivorans DS-1         Parvularcula bermudensis HTCC2503         Pectobacterium atrosepticum SCRI1043                                                              | Bacteroidetes         Firmicutes         Actinobacteria         Tenericutes         Verrucomicrobia         Proteobacteria         Firmicutes         Firmicutes         Firmicutes         Bacteroidetes         Proteobacteria         Bacteroidetes         Chlamydiae         Proteobacteria                                                                                                                                                                                                                                                                                                                       |
| Odoribacter splanchnicus DSM 20712         Oenococcus oeni PSU-1         Olsenella uli DSM 7084         Onion yellows phytoplasma OY-M         Opitutus terrae PB90-1         Orientia tsutsugamushi str Boryong         Paenibacillus mucilaginosus 3016         Paenibacillus polymyxa E681         Paenibacillus sp JDR-2         Paludibacter propionicigenes WB4         Pantoea vagans C9-1         Parabacteroides distasonis ATCC 8503         Parachlamydia acanthamoebae UV-7         Parvibaculum lavamentivorans DS-1         Parvularcula bermudensis HTCC2503         Pectobacterium atrosepticum SCR11043         Pectobacterium carotovorum subsp carotovorum PC1 | Bacteroidetes         Firmicutes         Actinobacteria         Tenericutes         Verrucomicrobia         Proteobacteria         Firmicutes         Firmicutes         Bacteroidetes         Proteobacteria                                                                                                                                                                                                                                                                |
| Odoribacter splanchnicus DSM 20712         Oenococcus oeni PSU-1         Olsenella uli DSM 7084         Onion yellows phytoplasma OY-M         Opitutus terrae PB90-1         Orientia tsutsugamushi str Boryong         Paenibacillus mucilaginosus 3016         Paenibacillus polymyxa E681         Paenibacillus sp JDR-2         Paludibacter propionicigenes WB4         Pantoea sp At-9b         Parabacteroides distasonis ATCC 8503         Paracoccus denitrificans PD1222         Parvibaculum lavamentivorans DS-1         Parvularcula bermudensis HTCC2503         Pectobacterium atrosepticum SCRI1043         Pectobacterium wasabiae WPP163                       | Bacteroidetes         Firmicutes         Actinobacteria         Tenericutes         Verrucomicrobia         Proteobacteria         Firmicutes         Firmicutes         Firmicutes         Proteobacteria         Proteobacteria         Bacteroidetes         Proteobacteria         Bacteroidetes         Proteobacteria                                                                                                                                                                                                                                              |
| Odoribacter splanchnicus DSM 20712Oenococcus oeni PSU-1Olsenella uli DSM 7084Onion yellows phytoplasma OY-MOpitutus terrae PB90-1Orientia tsutsugamushi str BoryongPaenibacillus mucilaginosus 3016Paenibacillus polymyxa E681Paenibacillus polymyxa E681Paenibacillus pJDR-2Paludibacter propionicigenes WB4Pantoea sp At-9bParachamydia acanthamoebae UV-7Paracoccus denitrificans PD1222Parvibaculum lavamentivorans DS-1Parvularcula bermudensis HTCC2503Pectobacterium atrosepticum SCR11043Pectobacterium carotovorum subsp carotovorum PC1Pediococcus pentosaceus ATCC 25745                                                                                               | Bacteroidetes         Firmicutes         Actinobacteria         Tenericutes         Verrucomicrobia         Proteobacteria         Firmicutes         Firmicutes         Firmicutes         Proteobacteria         Bacteroidetes         Proteobacteria         Bacteroidetes         Proteobacteria         Bacteroidetes         Chlamydiae         Proteobacteria         Proteobacteria <tr td="">         Proteobact</tr> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Odoribacter splanchnicus DSM 20712Oenococcus oeni PSU-1Olsenella uli DSM 7084Onion yellows phytoplasma OY-MOpitutus terrae PB90-1Orientia tsutsugamushi str BoryongPaenibacillus mucilaginosus 3016Paenibacillus polymyxa E681Paenibacillus sp JDR-2Paludibacter propionicigenes WB4Pantoea sp At-9bParachlamydia acanthamoebae UV-7Paracoccus denitrificans PD1222Parvibaculum lavamentivorans DS-1Parvularcula bermudensis HTCC2503Pectobacterium atrosepticum SCRI1043Pectobacterium carotovorum subsp carotovorum PC1Pectobacterium wasabiae WPP163Pediococcus pentosaceus ATCC 25745Pedobacter heparinus DSM 2366                                                            | Bacteroidetes         Firmicutes         Actinobacteria         Tenericutes         Verrucomicrobia         Proteobacteria         Firmicutes         Firmicutes         Firmicutes         Bacteroidetes         Proteobacteria         Bacteroidetes         Proteobacteria         Bacteroidetes         Chlamydiae         Proteobacteria         Bacteroidetes         Bacteroidetes                                                                                                                                                         |

| Вид и штамм бактерии                                                                    | Класс          |
|-----------------------------------------------------------------------------------------|----------------|
| Pelagibacterium halotolerans B2                                                         | Proteobacteria |
| Pelobacter carbinolicus DSM 2380                                                        | Proteobacteria |
| Pelodictyon phaeoclathratiforme BU-1                                                    | Chlorobi       |
| Pelotomaculum thermopropionicum SI                                                      | Firmicutes     |
| Petrotoga mobilis SJ95                                                                  | Thermotogae    |
| Phenylobacterium zucineum HLK1                                                          | Proteobacteria |
| Photorhabdus luminescens subsp laumondii TTO1                                           | Proteobacteria |
| Pirellula staleyi DSM 6068                                                              | Planctomycetes |
| Planctomyces brasiliensis DSM 5305                                                      | Planctomycetes |
| Planctomyces limnophilus DSM 3776                                                       | Planctomycetes |
| Polaromonas sp JS666                                                                    | Proteobacteria |
| Polynucleobacter necessarius subsp asymbioticus QLW-P1DMWA-1<br>NC_0093791 GI:145588189 | Proteobacteria |
| Porphyromonas gingivalis ATCC 33277                                                     | Bacteroidetes  |
| Prevotella denticola F0289                                                              | Bacteroidetes  |
| Prevotella melaninogenica ATCC 25845                                                    | Bacteroidetes  |
| Prevotella ruminicola 23                                                                | Bacteroidetes  |
| Prochlorococcus marinus str AS9601                                                      | Cyanobacteria  |
| Propionibacterium freudenreichii subsp shermanii CIRM-BIA1 NC_0142151<br>GI:297625198   | Actinobacteria |
| Prosthecochloris aestuarii DSM 271                                                      | Chlorobi       |
| Pseudoalteromonas atlantica T6c                                                         | Proteobacteria |
| Pseudoalteromonas haloplanktis TAC125                                                   | Proteobacteria |
| Pseudoalteromonas sp SM9913                                                             | Proteobacteria |
| Pseudogulbenkiania sp NH8B                                                              | Proteobacteria |
| Pseudomonas brassicacearum subsp brassicacearum NFM421                                  | Proteobacteria |
| Pseudomonas entomophila L48                                                             | Proteobacteria |
| Pseudomonas mendocina NK-01                                                             | Proteobacteria |
| Pseudomonas stutzeri A1501                                                              | Proteobacteria |
| Pseudomonas syringae pv syringae B728a                                                  | Proteobacteria |
| Pseudovibrio sp FO-BEG1                                                                 | Proteobacteria |
| Pseudoxanthomonas spadix BD-a59                                                         | Proteobacteria |
| Pseudoxanthomonas suwonensis 11-1                                                       | Proteobacteria |
| Psychrobacter arcticus 273-4                                                            | Proteobacteria |
| Psychromonas ingrahamii 37                                                              | Proteobacteria |
| Pusillimonas sp T7-7                                                                    | Proteobacteria |
| Rahnella sp Y9602                                                                       | Proteobacteria |
| Ralstonia eutropha H16 mega                                                             | Proteobacteria |
| Ramlibacter tataouinensis TTB310                                                        | Proteobacteria |
| Renibacterium salmoninarum ATCC 33209                                                   | Actinobacteria |
| Rhizobium leguminosarum bv trifolii WSM1325                                             | Proteobacteria |
| Rhodobacter capsulatus SB 1003                                                          | Proteobacteria |
| Rhodobacter sphaeroides 241                                                             | Proteobacteria |
| Rhodococcus equi 103S                                                                   | Actinobacteria |
| Rhodococcus jostii RHA1                                                                 | Actinobacteria |
| Rhodomicrobium vannielii ATCC 17100                                                     | Proteobacteria |
| Rhodopirellula baltica SH 1                                                             | Planctomycetes |

| Вид и штамм бактерии                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Класс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rhodopseudomonas palustris BisA53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rhodospirillum centenum SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rhodospirillum photometricum DSM 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rhodospirillum rubrum ATCC 11170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rhodothermus marinus DSM 4252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bacteroidetes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rickettsia africae ESF-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rickettsia akari str Hartford                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rickettsia bellii OSU 85-389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rickettsia conorii str Malish 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rickettsia felis URRWXCal2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rickettsia japonica YH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rickettsia peacockii str Rustic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rickettsia rickettsii str 'Sheila Smith'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Robiginitalea biformata HTCC2501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bacteroidetes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Roseburia hominis A2-183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Roseiflexus castenholzii DSM 13941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chloroflexi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Roseiflexus sp RS-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chloroflexi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Roseobacter denitrificans OCh 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rothia dentocariosa ATCC 17931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Actinobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rothia mucilaginosa DY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Actinobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rubrivivax gelatinosus IL144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rubrobacter xylanophilus DSM 9941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Actinobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ruegeria pomerovi DSS-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ruegeria sp TM1040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ruegeria sp TM1040       Ruminococcus albus 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Proteobacteria<br>Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ruegeria sp TM1040       Ruminococcus albus 7       Saccharomonospora viridis DSM 43017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Proteobacteria<br>Firmicutes<br>Actinobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ruegeria sp TM1040         Ruminococcus albus 7         Saccharomonospora viridis DSM 43017         Saccharophagus degradans 2-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Proteobacteria<br>Firmicutes<br>Actinobacteria<br>Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ruegeria sp TM1040         Ruminococcus albus 7         Saccharomonospora viridis DSM 43017         Saccharophagus degradans 2-40         Saccharopolyspora erythraea NRRL 2338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Proteobacteria<br>Firmicutes<br>Actinobacteria<br>Proteobacteria<br>Actinobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ruegeria sp TM1040         Ruminococcus albus 7         Saccharomonospora viridis DSM 43017         Saccharophagus degradans 2-40         Saccharopolyspora erythraea NRRL 2338         Salinibacter ruber DSM 13855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Proteobacteria<br>Firmicutes<br>Actinobacteria<br>Proteobacteria<br>Actinobacteria<br>Bacteroidetes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ruegeria sp TM1040         Ruminococcus albus 7         Saccharomonospora viridis DSM 43017         Saccharophagus degradans 2-40         Saccharopolyspora erythraea NRRL 2338         Salinibacter ruber DSM 13855         Salinispora arenicola CNS-205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Proteobacteria<br>Firmicutes<br>Actinobacteria<br>Proteobacteria<br>Actinobacteria<br>Bacteroidetes<br>Actinobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ruegeria sp TM1040         Ruminococcus albus 7         Saccharomonospora viridis DSM 43017         Saccharophagus degradans 2-40         Saccharopolyspora erythraea NRRL 2338         Salinibacter ruber DSM 13855         Salinispora arenicola CNS-205         Salinispora tropica CNB-440                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Proteobacteria         Firmicutes         Actinobacteria         Proteobacteria         Bacteroidetes         Actinobacteria         Actinobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ruegeria sp TM1040         Ruminococcus albus 7         Saccharomonospora viridis DSM 43017         Saccharophagus degradans 2-40         Saccharopolyspora erythraea NRRL 2338         Salinibacter ruber DSM 13855         Salinispora arenicola CNS-205         Salinispora tropica CNB-440         Salmonella bongori NCTC 12419                                                                                                                                                                                                                                                                                                                                                                                                                     | Proteobacteria         Firmicutes         Actinobacteria         Proteobacteria         Bacteroidetes         Actinobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ruegeria sp TM1040         Ruminococcus albus 7         Saccharomonospora viridis DSM 43017         Saccharophagus degradans 2-40         Saccharopolyspora erythraea NRRL 2338         Salinibacter ruber DSM 13855         Salinispora arenicola CNS-205         Salinispora tropica CNB-440         Salmonella bongori NCTC 12419         Salmonella enterica subsp arizonae serovar 62:z4                                                                                                                                                                                                                                                                                                                                                            | Proteobacteria         Firmicutes         Actinobacteria         Proteobacteria         Bacteroidetes         Actinobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ruegeria sp TM1040         Ruminococcus albus 7         Saccharomonospora viridis DSM 43017         Saccharophagus degradans 2-40         Saccharopolyspora erythraea NRRL 2338         Salinibacter ruber DSM 13855         Salinispora arenicola CNS-205         Salinispora tropica CNB-440         Salmonella bongori NCTC 12419         Salmonella enterica subsp arizonae serovar 62:z4         Sanguibacter keddieii DSM 10542                                                                                                                                                                                                                                                                                                                    | Proteobacteria         Firmicutes         Actinobacteria         Proteobacteria         Bacteroidetes         Actinobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Actinobacteria         Actinobacteria         Actinobacteria         Actinobacteria         Actinobacteria         Proteobacteria         Actinobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ruegeria sp TM1040         Ruminococcus albus 7         Saccharomonospora viridis DSM 43017         Saccharophagus degradans 2-40         Saccharopolyspora erythraea NRRL 2338         Salinibacter ruber DSM 13855         Salinispora arenicola CNS-205         Salinispora tropica CNB-440         Salmonella bongori NCTC 12419         Salmonella enterica subsp arizonae serovar 62:z4         Sanguibacter keddieii DSM 10542         Sebaldella termitidis ATCC 33386                                                                                                                                                                                                                                                                           | Proteobacteria         Firmicutes         Actinobacteria         Proteobacteria         Bacteroidetes         Actinobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Actinobacteria         Fusobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Fusobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ruegeria sp TM1040         Ruminococcus albus 7         Saccharomonospora viridis DSM 43017         Saccharophagus degradans 2-40         Saccharopolyspora erythraea NRRL 2338         Salinibacter ruber DSM 13855         Salinispora arenicola CNS-205         Salinispora tropica CNB-440         Salmonella bongori NCTC 12419         Salmonella enterica subsp arizonae serovar 62:z4         Sanguibacter keddieii DSM 10542         Sebaldella termitidis ATCC 33386         Segniliparus rotundus DSM 44985                                                                                                                                                                                                                                   | Proteobacteria         Firmicutes         Actinobacteria         Proteobacteria         Bacteroidetes         Actinobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Functional         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Actinobacteria         Actinobacteria         Actinobacteria         Actinobacteria         Actinobacteria         Actinobacteria         Actinobacteria         Fusobacteria         Actinobacteria                                                                                                                                                                                                                                                                                                                                                                |
| Ruegeria sp TM1040         Ruminococcus albus 7         Saccharomonospora viridis DSM 43017         Saccharophagus degradans 2-40         Saccharopolyspora erythraea NRRL 2338         Salinibacter ruber DSM 13855         Salinispora arenicola CNS-205         Salinispora tropica CNB-440         Salmonella bongori NCTC 12419         Salmonella enterica subsp arizonae serovar 62:z4         Sanguibacter keddieii DSM 10542         Sebaldella termitidis ATCC 33386         Segniliparus rotundus DSM 44985         Shewanella amazonensis SB2B                                                                                                                                                                                               | Proteobacteria         Firmicutes         Actinobacteria         Proteobacteria         Bacteroidetes         Actinobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Actinobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ruegeria sp TM1040         Ruminococcus albus 7         Saccharomonospora viridis DSM 43017         Saccharophagus degradans 2-40         Saccharopolyspora erythraea NRRL 2338         Salinibacter ruber DSM 13855         Salinispora arenicola CNS-205         Salinispora tropica CNB-440         Salmonella bongori NCTC 12419         Salmonella enterica subsp arizonae serovar 62:z4         Sanguibacter keddieii DSM 10542         Sebaldella termitidis ATCC 33386         Segniliparus rotundus DSM 44985         Shewanella amazonensis SB2B         Shewanella denitrificans OS217                                                                                                                                                        | Proteobacteria         Firmicutes         Actinobacteria         Proteobacteria         Bacteroidetes         Actinobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Actinobacteria         Proteobacteria                                                                                                                                                                                                                                                                                                            |
| Ruegeria sp TM1040         Ruminococcus albus 7         Saccharomonospora viridis DSM 43017         Saccharophagus degradans 2-40         Saccharopolyspora erythraea NRRL 2338         Salinibacter ruber DSM 13855         Salinispora arenicola CNS-205         Salinispora tropica CNB-440         Salmonella bongori NCTC 12419         Salmonella enterica subsp arizonae serovar 62:z4         Sanguibacter keddieii DSM 10542         Sebaldella termitidis ATCC 33386         Segniliparus rotundus DSM 44985         Shewanella denitrificans OS217         Shewanella frigidimarina NCIMB 400                                                                                                                                                 | Proteobacteria         Firmicutes         Actinobacteria         Proteobacteria         Bacteroidetes         Actinobacteria         Proteobacteria                                                                                                                                                                                                                                                                                                            |
| Ruegeria sp TM1040         Ruminococcus albus 7         Saccharomonospora viridis DSM 43017         Saccharophagus degradans 2-40         Saccharopolyspora erythraea NRRL 2338         Salinibacter ruber DSM 13855         Salinispora arenicola CNS-205         Salinispora tropica CNB-440         Salmonella bongori NCTC 12419         Salmonella enterica subsp arizonae serovar 62:z4         Sanguibacter keddieii DSM 10542         Sebaldella termitidis ATCC 33386         Segniliparus rotundus DSM 44985         Shewanella denitrificans OS217         Shewanella halifaxensis HAW-EB4                                                                                                                                                    | Proteobacteria         Firmicutes         Actinobacteria         Proteobacteria         Bacteroidetes         Actinobacteria         Proteobacteria                                                                                                                                                                                                                                                              |
| Ruegeria sp TM1040         Ruminococcus albus 7         Saccharomonospora viridis DSM 43017         Saccharophagus degradans 2-40         Saccharopolyspora erythraea NRRL 2338         Salinibacter ruber DSM 13855         Salinispora arenicola CNS-205         Salinispora tropica CNB-440         Salmonella bongori NCTC 12419         Salmonella enterica subsp arizonae serovar 62:z4         Sanguibacter keddieii DSM 10542         Sebaldella termitidis ATCC 33386         Segniliparus rotundus DSM 44985         Shewanella denitrificans OS217         Shewanella halifaxensis HAW-EB4         Shewanella loihica PV-4                                                                                                                    | Proteobacteria         Firmicutes         Actinobacteria         Proteobacteria         Bacteroidetes         Actinobacteria         Proteobacteria                                                                                                                                                                                                                |
| Ruegeria sp TM1040         Ruminococcus albus 7         Saccharomonospora viridis DSM 43017         Saccharophagus degradans 2-40         Saccharopolyspora erythraea NRRL 2338         Salinibacter ruber DSM 13855         Salinibacter ruber DSM 13855         Salinispora arenicola CNS-205         Salinispora tropica CNB-440         Salmonella bongori NCTC 12419         Salmonella enterica subsp arizonae serovar 62:z4         Sanguibacter keddieii DSM 10542         Sebaldella termitidis ATCC 33386         Segniliparus rotundus DSM 44985         Shewanella denitrificans OS217         Shewanella halifaxensis HAW-EB4         Shewanella loihica PV-4         Shewanella oneidensis MR-1                                            | Proteobacteria         Firmicutes         Actinobacteria         Proteobacteria         Bacteroidetes         Actinobacteria         Proteobacteria                                                                                                                                                                  |
| Ruegeria sp TM1040         Ruminococcus albus 7         Saccharomonospora viridis DSM 43017         Saccharophagus degradans 2-40         Saccharopolyspora erythraea NRRL 2338         Salinibacter ruber DSM 13855         Salinispora arenicola CNS-205         Salinispora tropica CNB-440         Salmonella bongori NCTC 12419         Salmonella enterica subsp arizonae serovar 62:z4         Sanguibacter keddieii DSM 10542         Sebaldella termitidis ATCC 33386         Segniliparus rotundus DSM 44985         Shewanella denitrificans OS217         Shewanella frigidimarina NCIMB 400         Shewanella loihica PV-4         Shewanella oneidensis MR-1         Shewanella pealeana ATCC 700345                                      | Proteobacteria         Firmicutes         Actinobacteria         Proteobacteria         Bacteroidetes         Actinobacteria         Proteobacteria         Actinobacteria         Proteobacteria         Proteobacteria         Actinobacteria         Proteobacteria                                                                                                                    |
| Ruegeria sp TM1040         Ruminococcus albus 7         Saccharomonospora viridis DSM 43017         Saccharophagus degradans 2-40         Saccharopolyspora erythraea NRRL 2338         Salinibacter ruber DSM 13855         Salinispora arenicola CNS-205         Salinispora tropica CNB-440         Salmonella bongori NCTC 12419         Salmonella enterica subsp arizonae serovar 62:z4         Sanguibacter keddieii DSM 10542         Sebaldella termitidis ATCC 33386         Segniliparus rotundus DSM 44985         Shewanella denitrificans OS217         Shewanella frigidimarina NCIMB 400         Shewanella loihica PV-4         Shewanella oneidensis MR-1         Shewanella pealeana ATCC 700345         Shewanella piezotolerans WP3 | Proteobacteria         Firmicutes         Actinobacteria         Proteobacteria         Bacteroidetes         Actinobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Proteobacteria         Actinobacteria         Proteobacteria                        |
| Ruegeria sp TM1040Ruminococcus albus 7Saccharomonospora viridis DSM 43017Saccharophagus degradans 2-40Saccharopolyspora erythraea NRRL 2338Salinibacter ruber DSM 13855Salinispora arenicola CNS-205Salinispora tropica CNB-440Salmonella bongori NCTC 12419Salmonella enterica subsp arizonae serovar 62:z4Sanguibacter keddieii DSM 10542Sebaldella termitidis ATCC 33386Segniliparus rotundus DSM 44985Shewanella denitrificans OS217Shewanella frigidimarina NCIMB 400Shewanella halifaxensis HAW-EB4Shewanella oneidensis MR-1Shewanella piezotolerans WP3Shewanella gediminis HAW-EB3                                                                                                                                                              | Proteobacteria         Firmicutes         Actinobacteria         Proteobacteria         Bacteroidetes         Actinobacteria         Proteobacteria         Proteobacteria |

| Вид и штамм бактерии                                        | Класс          |
|-------------------------------------------------------------|----------------|
| Shewanella woodyi ATCC 51908                                | Proteobacteria |
| Sideroxydans lithotrophicus ES-1                            | Proteobacteria |
| Sinorhizobium fredii NGR234                                 | Proteobacteria |
| Sinorhizobium medicae WSM419                                | Proteobacteria |
| Sinorhizobium meliloti 1021                                 | Proteobacteria |
| Slackia heliotrinireducens DSM 20476                        | Actinobacteria |
| Sodalis glossinidius str 'morsitans'                        | Proteobacteria |
| Sorangium cellulosum 'So ce 56'                             | Proteobacteria |
| Sphaerobacter thermophilus DSM 20745                        | Chloroflexi    |
| Sphingobium sp SYK-6                                        | Proteobacteria |
| Spirochaeta smaragdinae DSM 11293                           | Spirochaetes   |
| Spirochaeta thermophila DSM 6192                            | Spirochaetes   |
| Spirosoma linguale DSM 74                                   | Bacteroidetes  |
| Stackebrandtia nassauensis DSM 44728                        | Actinobacteria |
| Staphylococcus carnosus subsp carnosus TM300                | Firmicutes     |
| Staphylococcus epidermidis ATCC 12228                       | Firmicutes     |
| Staphylococcus haemolyticus JCSC1435                        | Firmicutes     |
| Staphylococcus lugdunensis HKU09-01                         | Firmicutes     |
| Staphylococcus saprophyticus subsp saprophyticus ATCC 15305 | Firmicutes     |
| Starkeya novella DSM 506                                    | Proteobacteria |
| Stenotrophomonas maltophilia D457                           | Proteobacteria |
| Stigmatella aurantiaca DW4/3-1                              | Proteobacteria |
| Streptobacillus moniliformis DSM 12112                      | Fusobacteria   |
| Streptococcus equi subsp equi 4047                          | Firmicutes     |
| Streptococcus gordonii str Challis substr CH1               | Firmicutes     |
| Streptococcus mitis B6                                      | Firmicutes     |
| Streptococcus oralis Uo5                                    | Firmicutes     |
| Streptococcus parasanguinis ATCC 15912                      | Firmicutes     |
| Streptococcus parauberis KCTC 11537                         | Firmicutes     |
| Streptococcus pasteurianus ATCC 43144                       | Firmicutes     |
| Streptococcus pneumoniae 670-6B                             | Firmicutes     |
| Streptococcus sanguinis SK36                                | Firmicutes     |
| Streptococcus suis 05ZYH33                                  | Firmicutes     |
| Streptococcus thermophilus CNRZ1066                         | Firmicutes     |
| Streptococcus uberis 0140J                                  | Firmicutes     |
| Streptomyces avermitilis MA-4680                            | Actinobacteria |
| Streptomyces coelicolor A3(2)                               | Actinobacteria |
| Streptomyces griseus subsp griseus NBRC 13350               | Actinobacteria |
| Streptomyces scabiei 8722                                   | Actinobacteria |
| Streptosporangium roseum DSM 43021                          | Actinobacteria |
| Sulfurihydrogenibium azorense Az-Fu1                        | Aquificae      |
| Sulfurihydrogenibium sp YO3AOP1                             | Aquificae      |
| Sulfurimonas autotrophica DSM 16294                         | Proteobacteria |
| Sulfurimonas denitrificans DSM 1251                         | Proteobacteria |
| Sulfurospirillum deleyianum DSM 6946                        | Proteobacteria |
| Sulfurovum sp NBC37-1                                       | Proteobacteria |

| Вид и штамм бактерии                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Класс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbiobacterium thermophilum IAM 14863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Synechococcus elongatus PCC 6301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cyanobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Synechococcus sp CC9311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cyanobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Syntrophobacter fumaroxidans MPOB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Syntrophobotulus glycolicus DSM 8271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Syntrophomonas wolfei subsp wolfei str Goettingen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Syntrophothermus lipocalidus DSM 12680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Syntrophus aciditrophicus SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Teredinibacter turnerae T7901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Terriglobus saanensis SP1PR4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Acidobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Thauera sp MZ1T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Thermaerobacter marianensis DSM 12885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thermanaerovibrio acidaminovorans DSM 6589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Synergistetes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Thermincola potens JR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thermoanaerobacter brockii subsp finnii Ako-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thermoanaerobacter italicus Ab9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thermoanaerobacterium thermosaccharolyticum DSM 571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thermoanaerobacterium xylanolyticum LX-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thermoanaerobacter mathranii subsp mathranii str A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thermoanaerobacter pseudethanolicus ATCC 33223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thermoanaerobacter sp X513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thermoanaerobacter tengcongensis MB4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Thormobaculum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Thermobaculum terrenum ATCC BAA-798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | memobaculum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Thermobaculum terrenum AICC BAA-798 Thermobifida fusca YX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Actinobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Thermobiculum terrenum AICC BAA-798 Thermobifida fusca YX Thermobispora bispora DSM 43833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Actinobacteria<br>Actinobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Thermobaculum terrenum AICC BAA-798 Thermobifida fusca YX Thermobispora bispora DSM 43833 Thermocrinis albus DSM 14484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Actinobacteria<br>Actinobacteria<br>Aquificae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Thermobaculum terrenum AICC BAA-798 Thermobifida fusca YX Thermobispora bispora DSM 43833 Thermocrinis albus DSM 14484 Thermodesulfatator indicus DSM 15286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Actinobacteria         Actinobacteria         Aquificae         Thermodesulfobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Thermobaculum terrenum AICC BAA-798         Thermobifida fusca YX         Thermobispora bispora DSM 43833         Thermocrinis albus DSM 14484         Thermodesulfatator indicus DSM 15286         Thermodesulfovibrio yellowstonii DSM 11347                                                                                                                                                                                                                                                                                                                                                                                                                           | Actinobacteria       Actinobacteria       Aquificae       Thermodesulfobacteria       Nitrospirae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Thermobaculum terrenum AICC BAA-798 Thermobifida fusca YX Thermobispora bispora DSM 43833 Thermocrinis albus DSM 14484 Thermodesulfatator indicus DSM 15286 Thermodesulfovibrio yellowstonii DSM 11347 Thermomicrobium roseum DSM 5159                                                                                                                                                                                                                                                                                                                                                                                                                                   | Actinobacteria         Actinobacteria         Aquificae         Thermodesulfobacteria         Nitrospirae         Chloroflexi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Thermobaculum terrenum AICC BAA-798 Thermobifida fusca YX Thermobispora bispora DSM 43833 Thermocrinis albus DSM 14484 Thermodesulfatator indicus DSM 15286 Thermodesulfovibrio yellowstonii DSM 11347 Thermomicrobium roseum DSM 5159 Thermomonospora curvata DSM 43183                                                                                                                                                                                                                                                                                                                                                                                                 | Actinobacteria         Actinobacteria         Aquificae         Thermodesulfobacteria         Nitrospirae         Chloroflexi         Actinobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Thermobaculum terrenum AICC BAA-798 Thermobifida fusca YX Thermobispora bispora DSM 43833 Thermocrinis albus DSM 14484 Thermodesulfatator indicus DSM 15286 Thermodesulforibrio yellowstonii DSM 11347 Thermomicrobium roseum DSM 5159 Thermomonospora curvata DSM 43183 Thermosediminibacter oceani DSM 16646                                                                                                                                                                                                                                                                                                                                                           | Actinobacteria         Actinobacteria         Aquificae         Thermodesulfobacteria         Nitrospirae         Chloroflexi         Actinobacteria         Firmicutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Thermobaculum terrenum AICC BAA-798 Thermobifida fusca YX Thermobispora bispora DSM 43833 Thermocrinis albus DSM 14484 Thermodesulfatator indicus DSM 15286 Thermodesulfovibrio yellowstonii DSM 11347 Thermomicrobium roseum DSM 5159 Thermomonospora curvata DSM 43183 Thermosediminibacter oceani DSM 16646 Thermosipho africanus TCF52B                                                                                                                                                                                                                                                                                                                              | Actinobacteria         Actinobacteria         Aquificae         Thermodesulfobacteria         Nitrospirae         Chloroflexi         Actinobacteria         Firmicutes         Thermotogae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Thermobaculum terrenum AICC BAA-798         Thermobifida fusca YX         Thermobispora bispora DSM 43833         Thermocrinis albus DSM 14484         Thermodesulfatator indicus DSM 15286         Thermodesulfovibrio yellowstonii DSM 11347         Thermomicrobium roseum DSM 5159         Thermomosopora curvata DSM 16646         Thermosipho africanus TCF52B         Thermosipho melanesiensis BI429                                                                                                                                                                                                                                                             | Actinobacteria         Actinobacteria         Aquificae         Thermodesulfobacteria         Nitrospirae         Chloroflexi         Actinobacteria         Firmicutes         Thermotogae         Thermotogae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Thermobaculum terrenum AICC BAA-798 Thermobifida fusca YX Thermobispora bispora DSM 43833 Thermocrinis albus DSM 14484 Thermodesulfatator indicus DSM 15286 Thermodesulfovibrio yellowstonii DSM 11347 Thermomicrobium roseum DSM 5159 Thermomonospora curvata DSM 43183 Thermosediminibacter oceani DSM 16646 Thermosipho africanus TCF52B Thermosipho melanesiensis BI429 Thermosynechococcus elongatus BP-1                                                                                                                                                                                                                                                           | Actinobacteria         Actinobacteria         Aquificae         Thermodesulfobacteria         Nitrospirae         Chloroflexi         Actinobacteria         Firmicutes         Thermotogae         Cyanobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Thermobaculum terrenum AICC BAA-798         Thermobifida fusca YX         Thermobispora bispora DSM 43833         Thermocrinis albus DSM 14484         Thermodesulfatator indicus DSM 15286         Thermodesulfovibrio yellowstonii DSM 11347         Thermomicrobium roseum DSM 5159         Thermosediminibacter oceani DSM 16646         Thermosipho africanus TCF52B         Thermosipho melanesiensis BI429         Thermosoga lettingae TMO                                                                                                                                                                                                                       | Actinobacteria         Actinobacteria         Aquificae         Thermodesulfobacteria         Nitrospirae         Chloroflexi         Actinobacteria         Firmicutes         Thermotogae         Cyanobacteria         Thermotogae         Thermotogae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Thermobaculum terrenum AICC BAA-798         Thermobifida fusca YX         Thermobispora bispora DSM 43833         Thermocrinis albus DSM 14484         Thermodesulfatator indicus DSM 15286         Thermodesulfovibrio yellowstonii DSM 11347         Thermomicrobium roseum DSM 5159         Thermosediminibacter oceani DSM 16646         Thermosipho africanus TCF52B         Thermosynechococcus elongatus BP-1         Thermotoga naphthophila RKU-10                                                                                                                                                                                                              | Actinobacteria         Actinobacteria         Aquificae         Thermodesulfobacteria         Nitrospirae         Chloroflexi         Actinobacteria         Firmicutes         Thermotogae         Cyanobacteria         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Thermobaculum terrenum AICC BAA-798         Thermobifida fusca YX         Thermobispora bispora DSM 43833         Thermocrinis albus DSM 14484         Thermodesulfatator indicus DSM 15286         Thermodesulfovibrio yellowstonii DSM 11347         Thermomicrobium roseum DSM 5159         Thermomonospora curvata DSM 43183         Thermosediminibacter oceani DSM 16646         Thermosipho africanus TCF52B         Thermosynechococcus elongatus BP-1         Thermotoga lettingae TMO         Thermotoga naphthophila RKU-10         Thermotoga napolitana DSM 4359                                                                                            | Actinobacteria         Actinobacteria         Aquificae         Thermodesulfobacteria         Nitrospirae         Chloroflexi         Actinobacteria         Firmicutes         Thermotogae         Cyanobacteria         Thermotogae         Thermotogae |
| Thermobaculum terrenum AICC BAA-798         Thermobifida fusca YX         Thermobispora bispora DSM 43833         Thermocrinis albus DSM 14484         Thermodesulfatator indicus DSM 15286         Thermodesulfovibrio yellowstonii DSM 11347         Thermomicrobium roseum DSM 5159         Thermosediminibacter oceani DSM 16646         Thermosipho africanus TCF52B         Thermosynechococcus elongatus BP-1         Thermotoga neapolitana DSM 4359         Thermotoga petrophila RKU-1                                                                                                                                                                         | Actinobacteria         Actinobacteria         Aquificae         Thermodesulfobacteria         Nitrospirae         Chloroflexi         Actinobacteria         Firmicutes         Thermotogae         Cyanobacteria         Thermotogae                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Thermobaculum terrenum AICC BAA-798         Thermobifida fusca YX         Thermobispora bispora DSM 43833         Thermocrinis albus DSM 14484         Thermodesulfatator indicus DSM 15286         Thermodesulfovibrio yellowstonii DSM 11347         Thermomicrobium roseum DSM 5159         Thermosediminibacter oceani DSM 16646         Thermosipho africanus TCF52B         Thermosynechococcus elongatus BP-1         Thermotoga naphthophila RKU-10         Thermotoga petrophila RKU-1         Thermotoga sp RQ2                                                                                                                                                | Actinobacteria         Actinobacteria         Aquificae         Thermodesulfobacteria         Nitrospirae         Chloroflexi         Actinobacteria         Firmicutes         Thermotogae         Cyanobacteria         Thermotogae         Thermotogae |
| Thermobaculum terrenum AICC BAA-798 Thermobifida fusca YX Thermobispora bispora DSM 43833 Thermocrinis albus DSM 14484 Thermodesulfatator indicus DSM 15286 Thermodesulfovibrio yellowstonii DSM 11347 Thermomicrobium roseum DSM 5159 Thermomonospora curvata DSM 43183 Thermosediminibacter oceani DSM 16646 Thermosipho africanus TCF52B Thermosipho melanesiensis BI429 Thermosynechococcus elongatus BP-1 Thermotoga lettingae TMO Thermotoga neapolitana DSM 4359 Thermotoga petrophila RKU-10 Thermotoga sp RQ2 Thermotoga sp RQ2 Thermotoga SA-01                                                                                                                | Actinobacteria         Actinobacteria         Aquificae         Thermodesulfobacteria         Nitrospirae         Chloroflexi         Actinobacteria         Firmicutes         Thermotogae         Cyanobacteria         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Deinococcus-Thermus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Thermobaculum terrenum AICC BAA-798         Thermobifida fusca YX         Thermobispora bispora DSM 43833         Thermocrinis albus DSM 14484         Thermodesulfatator indicus DSM 15286         Thermodesulfovibrio yellowstonii DSM 11347         Thermomicrobium roseum DSM 5159         Thermosediminibacter oceani DSM 16646         Thermosipho africanus TCF52B         Thermosipho melanesiensis BI429         Thermotoga lettingae TMO         Thermotoga neapolitana DSM 4359         Thermotoga sp RQ2         Thermotoga Htmus KHE27                                                                                                                      | Actinobacteria         Actinobacteria         Aquificae         Thermodesulfobacteria         Nitrospirae         Chloroflexi         Actinobacteria         Firmicutes         Thermotogae         Cyanobacteria         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Deinococcus-Thermus         Deinococcus-Thermus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Thermobaculum terrenum AICC BAA-798 Thermobifida fusca YX Thermobispora bispora DSM 43833 Thermocrinis albus DSM 14484 Thermodesulfatator indicus DSM 15286 Thermodesulfovibrio yellowstonii DSM 11347 Thermomicrobium roseum DSM 5159 Thermomonospora curvata DSM 43183 Thermosediminibacter oceani DSM 16646 Thermosipho africanus TCF52B Thermosipho melanesiensis BI429 Thermosynechococcus elongatus BP-1 Thermotoga lettingae TMO Thermotoga neapolitana DSM 4359 Thermotoga petrophila RKU-10 Thermotoga sp RQ2 Thermosynechococcus SA-01 Thermus thermophilus HB27 Thioalkalivibrio sp K90mix                                                                    | Actinobacteria         Actinobacteria         Aquificae         Thermodesulfobacteria         Nitrospirae         Chloroflexi         Actinobacteria         Firmicutes         Thermotogae         Cyanobacteria         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Deinococcus-Thermus         Deinococcus-Thermus         Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Thermobaculum terrenum AICC BAA-798 Thermobifida fusca YX Thermobispora bispora DSM 43833 Thermocrinis albus DSM 14484 Thermodesulfatator indicus DSM 15286 Thermodesulfovibrio yellowstonii DSM 11347 Thermomicrobium roseum DSM 5159 Thermomonospora curvata DSM 43183 Thermosediminibacter oceani DSM 16646 Thermosipho africanus TCF52B Thermosipho melanesiensis BI429 Thermosynechococcus elongatus BP-1 Thermotoga lettingae TMO Thermotoga naphthophila RKU-10 Thermotoga petrophila RKU-1 Thermotoga sp RQ2 Thermos scotoductus SA-01 Thermos yelfophilus HB27 Thioalkalivibrio sy K90mix Thioalkalivibrio sulfidophilus HL-EbGr7                               | Actinobacteria         Actinobacteria         Aquificae         Thermodesulfobacteria         Nitrospirae         Chloroflexi         Actinobacteria         Firmicutes         Thermotogae         Cyanobacteria         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Deinococcus-Thermus         Deinococcus-Thermus         Proteobacteria         Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Thermobaculum terrenum AICC BAA-798Thermobifida fusca YXThermobispora bispora DSM 43833Thermocrinis albus DSM 14484Thermodesulfatator indicus DSM 15286Thermodesulfovibrio yellowstonii DSM 11347Thermodesulfovibrio yellowstonii DSM 11347Thermomicrobium roseum DSM 5159Thermomonospora curvata DSM 43183Thermosediminibacter oceani DSM 16646Thermosipho africanus TCF52BThermosynechococcus elongatus BP-1Thermotoga lettingae TMOThermotoga naphthophila RKU-10Thermotoga petrophila RKU-1Thermotoga sp RQ2Thermotoga sp RQ2Thioalkalivibrio sp K90mixThioalkalivibrio sulfidophilus HL-EbGr7Thioalkalivibrio sulfidophilus ATCC 25259                              | Actinobacteria         Actinobacteria         Aquificae         Thermodesulfobacteria         Nitrospirae         Chloroflexi         Actinobacteria         Firmicutes         Thermotogae         Cyanobacteria         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Deinococcus-Thermus         Deinococcus-Thermus         Proteobacteria         Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Thermobaculum terrenum AICC BAA-798Thermobifida fusca YXThermobispora bispora DSM 43833Thermocrinis albus DSM 14484Thermodesulfatator indicus DSM 15286Thermodesulfatator indicus DSM 15286Thermodesulfovibrio yellowstonii DSM 11347Thermomicrobium roseum DSM 5159Thermomicrobium roseum DSM 5159Thermosediminibacter oceani DSM 16646Thermosipho africanus TCF52BThermosipho melanesiensis BI429Thermotoga neapolitana DSM 4359Thermotoga naphthophila RKU-10Thermotoga petrophila RKU-1Thermotoga sp RQ2Thermos spotoductus SA-01Thermus thermophilus HB27Thioalkalivibrio sulfidophilus HL-EbGr7Thiobacillus denitrificans ATCC 25259Thiomicrospira crunogena XCL-2 | Actinobacteria         Actinobacteria         Aquificae         Thermodesulfobacteria         Nitrospirae         Chloroflexi         Actinobacteria         Firmicutes         Thermotogae         Cyanobacteria         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Thermotogae         Deinococcus-Thermus         Deinococcus-Thermus         Proteobacteria         Proteobacteria         Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                            |

| Вид и штамм бактерии                                 | Класс               |
|------------------------------------------------------|---------------------|
| Tolumonas auensis DSM 9187                           | Proteobacteria      |
| Treponema azotonutricium ZAS-9                       | Spirochaetes        |
| Treponema brennaborense DSM 12168                    | Spirochaetes        |
| Treponema denticola ATCC 35405                       | Spirochaetes        |
| Treponema primitia ZAS-2                             | Spirochaetes        |
| Trichodesmium erythraeum IMS101                      | Cyanobacteria       |
| Tropheryma whipplei TW08/27                          | Actinobacteria      |
| Truepera radiovictrix DSM 17093                      | Deinococcus-Thermus |
| Tsukamurella paurometabola DSM 20162                 | Actinobacteria      |
| Ureaplasma parvum serovar 3 str ATCC 27815           | Tenericutes         |
| Ureaplasma urealyticum serovar 10 str ATCC 33699     | Tenericutes         |
| Veillonella parvula DSM 2008                         | Firmicutes          |
| Vibrio anguillarum 775                               | Proteobacteria      |
| Vibrio cholerae IEC224                               | Proteobacteria      |
| Vibrio fischeri ES114                                | Proteobacteria      |
| Vibrio sp EJY3                                       | Proteobacteria      |
| Vibrio splendidus LGP32                              | Proteobacteria      |
| Vibrio vulnificus CMCP6                              | Proteobacteria      |
| Waddlia chondrophila WSU 86-1044                     | Chlamydiae          |
| Wolbachia endosymbiont of Culex quinquefasciatus Pel | Proteobacteria      |
| Wolbachia sp wRi                                     | Proteobacteria      |
| Wolinella succinogenes DSM 1740                      | Proteobacteria      |
| Xanthobacter autotrophicus Py2                       | Proteobacteria      |
| Xanthomonas albilineans GPE PC73                     | Proteobacteria      |
| Xanthomonas axonopodis pv citri str 306              | Proteobacteria      |
| Xanthomonas campestris pv campestris str 8004        | Proteobacteria      |
| Xanthomonas oryzae pv oryzae KACC 10331              | Proteobacteria      |
| Xenorhabdus bovienii SS-2004                         | Proteobacteria      |
| Xenorhabdus nematophila ATCC 19061                   | Proteobacteria      |
| Xylanimonas cellulosilytica DSM 15894                | Actinobacteria      |
| Xylella fastidiosa 9a5c                              | Proteobacteria      |
| Zunongwangia profunda SM-A87                         | Bacteroidetes       |

# Приложение Б

#### Исследованные кластеры СОС

| Функциональный<br>класс | COG     | Кол-во генов | Склонность к<br>формированию<br>кассет | Процентиль | Аннотация COG (NCBI)                                                                                                                  |
|-------------------------|---------|--------------|----------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------|
| carboxylic-esterase     | COG0363 | 479          | 80,00%                                 | 28,41%     | 6-phosphogluconolactonase/Glucosamine-6-<br>phosphate isomerase/deaminase                                                             |
| carboxylic-esterase     | COG4677 | 88           | 59,10%                                 | 54,55%     | Pectin methylesterase and related acyl-CoA thioesterases                                                                              |
| carboxylic-esterase     | COG3386 | 407          | 49,90%                                 | 67,42%     | Sugar lactone lactonase YvrE                                                                                                          |
| carboxylic-esterase     | COG2706 | 179          | 45,80%                                 | 72,35%     | 6-phosphogluconolactonase, cycloisomerase 2 family                                                                                    |
| deacetylase             | COG1820 | 296          | 77,40%                                 | 31,82%     | N-acetylglucosamine-6-phosphate deacetylase                                                                                           |
| deacetylase             | COG0726 | 1229         | 43,80%                                 | 75,38%     | Peptidoglycan/xylan/chitin deacetylase,<br>PgdA/CDA1 family                                                                           |
| decarboxylase           | COG0800 | 364          | 89,30%                                 | 16,29%     | 2-keto-3-deoxy-6-phosphogluconate aldolase                                                                                            |
| decarboxylase           | COG0269 | 81           | 84,00%                                 | 22,35%     | 3-keto-L-gulonate-6-phosphate decarboxylase                                                                                           |
| decarboxylase           | COG3684 | 55           | 83,60%                                 | 22,73%     | Tagatose-1,6-bisphosphate aldolase                                                                                                    |
| decarboxylase           | COG0191 | 563          | 69,10%                                 | 40,53%     | Fructose/tagatose bisphosphate aldolase                                                                                               |
| decarboxylase           | COG0235 | 649          | 55,90%                                 | 59,47%     | Ribulose-5-phosphate 4-epimerase/Fuculose-1-<br>phosphate aldolase                                                                    |
| decarboxylase           | COG1850 | 120          | 54,20%                                 | 61,74%     | Ribulose 1,5-bisphosphate carboxylase, large subunit, or a RuBisCO-like protein                                                       |
| decarboxylase           | COG1830 | 159          | 52,20%                                 | 64,39%     | Fructose-bisphosphate aldolase class Ia, DhnA family                                                                                  |
| decarboxylase           | COG3836 | 174          | 48,90%                                 | 68,18%     | 2-keto-3-deoxy-L-rhamnonate aldolase RhmA                                                                                             |
| decarboxylase           | COG3957 | 136          | 36,80%                                 | 79,55%     | Phosphoketolase                                                                                                                       |
| decarboxylase           | COG2140 | 68           | 32,40%                                 | 85,98%     | Oxalate decarboxylase/archaeal phosphoglucose isomerase, cupin superfamily                                                            |
| decarboxylase           | COG3961 | 65           | 32,30%                                 | 86,36%     | TPP-dependent 2-oxoacid decarboxylase,<br>includes indolepyruvate decarboxylase                                                       |
| decarboxylase           | COG2301 | 354          | 30,50%                                 | 87,12%     | Citrate lyase beta subunit                                                                                                            |
| dehydratase             | COG2721 | 194          | 87,10%                                 | 19,70%     | Altronate dehydratase                                                                                                                 |
| dehydratase             | COG1312 | 133          | 80,50%                                 | 27,65%     | D-mannonate dehydratase                                                                                                               |
| dehydratase             | COG1086 | 423          | 58,90%                                 | 54,92%     | NDP-sugar epimerase, includes UDP-GlcNAc-<br>inverting 4,6-dehydratase FlaA1 and capsular<br>polysaccharide biosynthesis protein EpsC |
| dehydratase             | COG3866 | 137          | 55,50%                                 | 60,23%     | Pectate lyase                                                                                                                         |
| dehydratase             | COG0129 | 688          | 43,50%                                 | 75,76%     | Dihydroxyacid dehydratase/phosphogluconate dehydratase                                                                                |
| dehydratase             | COG0148 | 516          | 36,40%                                 | 80,68%     | Enolase                                                                                                                               |
| dehydrogenase-O         | COG0057 | 781          | 69,30%                                 | 40,15%     | Glyceraldehyde-3-phosphate                                                                                                            |

| Функциональный<br>класс | COG     | Кол-во генов | Склонность к<br>формированию<br>кассет | Процентиль | Аннотация COG (NCBI)                                                                                   |
|-------------------------|---------|--------------|----------------------------------------|------------|--------------------------------------------------------------------------------------------------------|
|                         |         |              |                                        |            | dehydrogenase/erythrose-4-phosphate<br>dehydrogenase                                                   |
| dehydrogenase-OH        | COG3429 | 81           | 97,50%                                 | 6,44%      | Glucose-6-phosphate dehydrogenase assembly<br>protein OpcA, contains a peptidoglycan-binding<br>domain |
| dehydrogenase-OH        | COG0246 | 296          | 89,90%                                 | 15,53%     | Mannitol-1-phosphate/altronate dehydrogenases                                                          |
| dehydrogenase-OH        | COG0364 | 399          | 88,00%                                 | 18,56%     | Glucose-6-phosphate 1-dehydrogenase                                                                    |
| dehydrogenase-OH        | COG1091 | 531          | 76,30%                                 | 32,58%     | dTDP-4-dehydrorhamnose reductase                                                                       |
| dehydrogenase-OH        | COG1023 | 155          | 67,70%                                 | 41,29%     | 6-phosphogluconate dehydrogenase<br>(decarboxylating)                                                  |
| dehydrogenase-OH        | COG0362 | 226          | 53,50%                                 | 62,50%     | 6-phosphogluconate dehydrogenase                                                                       |
| dehydrogenase-OH        | COG0451 | 2954         | 50,80%                                 | 66,29%     | Nucleoside-diphosphate-sugar epimerase or dehydrogenase                                                |
| dehydrogenase-OH        | COG2379 | 128          | 43,00%                                 | 76,14%     | Glycerate-2-kinase                                                                                     |
| dehydrogenase-OH        | COG2133 | 554          | 32,30%                                 | 86,74%     | Glucose/arabinose dehydrogenase, beta-propeller fold                                                   |
| dehydrogenase-OH        | COG4993 | 194          | 29,90%                                 | 88,64%     | Glucose dehydrogenase                                                                                  |
| epimerase               | COG3623 | 42           | 100,00%                                | 1,14%      | L-ribulose-5-phosphate 3-epimerase UlaE                                                                |
| epimerase               | COG1898 | 506          | 89,30%                                 | 16,67%     | dTDP-4-dehydrorhamnose 3,5-epimerase or related enzyme                                                 |
| epimerase               | COG3010 | 87           | 86,20%                                 | 20,45%     | Putative N-acetylmannosamine-6-phosphate epimerase                                                     |
| epimerase               | COG4154 | 54           | 81,50%                                 | 26,14%     | L-fucose mutarotase/ribose pyranase,<br>RbsD/FucU family                                               |
| epimerase               | COG2017 | 419          | 60,60%                                 | 51,89%     | Galactose mutarotase or related enzyme                                                                 |
| epimerase               | COG0676 | 101          | 51,50%                                 | 65,15%     | D-hexose-6-phosphate mutarotase                                                                        |
| epimerase               | COG0036 | 544          | 28,30%                                 | 90,53%     | Pentose-5-phosphate-3-epimerase                                                                        |
| glycosidase             | COG4724 | 17           | 94,10%                                 | 9,47%      | Endo-beta-N-acetylglucosaminidase D                                                                    |
| glycosidase             | COG3661 | 59           | 89,80%                                 | 15,91%     | Alpha-glucuronidase                                                                                    |
| glycosidase             | COG1486 | 256          | 88,70%                                 | 17,80%     | Alpha-galactosidase/6-phospho-beta-<br>glucosidase, family 4 of glycosyl hydrolase                     |
| glycosidase             | COG1621 | 202          | 85,60%                                 | 21,59%     | Sucrose-6-phosphate hydrolase SacC, GH32 family                                                        |
| glycosidase             | COG1874 | 252          | 82,90%                                 | 23,48%     | Beta-galactosidase GanA                                                                                |
| glycosidase             | COG0383 | 139          | 79,90%                                 | 28,79%     | Alpha-mannosidase                                                                                      |
| glycosidase             | COG2723 | 548          | 79,00%                                 | 29,17%     | Beta-glucosidase/6-phospho-beta-glucosidase/<br>beta-galactosidase                                     |
| glycosidase             | COG3867 | 76           | 78,90%                                 | 29,55%     | Arabinogalactan endo-1,4-beta-galactosidase                                                            |
| glycosidase             | COG3664 | 65           | 78,50%                                 | 29,92%     | Beta-xylosidase                                                                                        |
| glycosidase             | COG0296 | 449          | 78,00%                                 | 31,06%     | 1,4-alpha-glucan branching enzyme                                                                      |
| glycosidase             | COG2152 | 176          | 76,10%                                 | 32,95%     | Predicted glycosyl hydrolase, GH43/DUF377 family                                                       |
| glycosidase             | COG1501 | 282          | 75,50%                                 | 34,09%     | Alpha-glucosidase, glycosyl hydrolase family                                                           |

| Функциональный<br>класс | COG     | Кол-во генов | Склонность к<br>формированию<br>кассет | Процентиль | Аннотация COG (NCBI)                                        |
|-------------------------|---------|--------------|----------------------------------------|------------|-------------------------------------------------------------|
|                         |         |              |                                        |            | GH31                                                        |
| glycosidase             | COG4945 | 12           | 75,00%                                 | 34,47%     | Carbohydrate-binding DOMON domain                           |
| glycosidase             | COG3669 | 176          | 73,90%                                 | 35,98%     | Alpha-L-fucosidase                                          |
| glycosidase             | COG3934 | 57           | 73,70%                                 | 36,74%     | Endo-1,4-beta-mannosidase                                   |
| glycosidase             | COG3534 | 191          | 72,80%                                 | 37,50%     | Alpha-L-arabinofuranosidase                                 |
| glycosidase             | COG3345 | 226          | 72,10%                                 | 38,26%     | Alpha-galactosidase                                         |
| glycosidase             | COG1449 | 133          | 70,70%                                 | 39,02%     | Alpha-amylase/alpha-mannosidase, GH57 family                |
| glycosidase             | COG3537 | 183          | 69,40%                                 | 39,77%     | Putative alpha-1,2-mannosidase                              |
| glycosidase             | COG3250 | 569          | 68,20%                                 | 40,91%     | Beta-galactosidase/beta-glucuronidase                       |
| glycosidase             | COG3507 | 419          | 66,80%                                 | 42,80%     | Beta-xylosidase                                             |
| glycosidase             | COG3693 | 243          | 66,70%                                 | 43,18%     | Endo-1,4-beta-xylanase, GH35 family                         |
| glycosidase             | COG1640 | 272          | 66,50%                                 | 43,94%     | 4-alpha-glucanotransferase                                  |
| glycosidase             | COG0366 | 1298         | 65,90%                                 | 44,70%     | Glycosidase                                                 |
| glycosidase             | COG1554 | 183          | 65,00%                                 | 46,59%     | Trehalose and maltose hydrolase (possible phosphorylase)    |
| glycosidase             | COG1523 | 383          | 62,90%                                 | 48,48%     | Pullulanase/glycogen debranching enzyme                     |
| glycosidase             | COG3408 | 251          | 62,20%                                 | 49,24%     | Glycogen debranching enzyme (alpha-1,6-<br>glucosidase)     |
| glycosidase             | COG5309 | 45           | 62,20%                                 | 49,62%     | Exo-beta-1,3-glucanase, GH17 family                         |
| glycosidase             | COG3459 | 142          | 62,00%                                 | 50,38%     | Cellobiose phosphorylase                                    |
| glycosidase             | COG2730 | 231          | 59,70%                                 | 54,17%     | Aryl-phospho-beta-D-glucosidase BglC, GH1 family            |
| glycosidase             | COG0058 | 412          | 58,70%                                 | 55,30%     | Glucan phosphorylase                                        |
| glycosidase             | COG3405 | 87           | 58,60%                                 | 55,68%     | Endo-1,4-beta-D-glucanase Y                                 |
| glycosidase             | COG2273 | 238          | 58,40%                                 | 56,06%     | Beta-glucanase, GH16 family                                 |
| glycosidase             | COG3525 | 254          | 57,90%                                 | 57,20%     | N-acetyl-beta-hexosaminidase                                |
| glycosidase             | COG5297 | 175          | 56,00%                                 | 59,09%     | Cellulase/cellobiase CelA1                                  |
| glycosidase             | COG3387 | 296          | 55,40%                                 | 60,98%     | Glucoamylase (glucan-1,4-alpha-glucosidase),<br>GH15 family |
| glycosidase             | COG1472 | 954          | 53,00%                                 | 63,26%     | Periplasmic beta-glucosidase and related glycosidases       |
| glycosidase             | COG4833 | 53           | 52,80%                                 | 64,02%     | Predicted alpha-1,6-mannanase, GH76 family                  |
| glycosidase             | COG2731 | 119          | 52,10%                                 | 64,77%     | Beta-galactosidase, beta subunit                            |
| glycosidase             | COG4124 | 110          | 50,00%                                 | 66,67%     | Beta-mannanase                                              |
| glycosidase             | COG4692 | 52           | 50,00%                                 | 67,05%     | Predicted neuraminidase (sialidase)                         |
| glycosidase             | COG4409 | 45           | 48,90%                                 | 68,56%     | Neuraminidase (sialidase)                                   |
| glycosidase             | COG1363 | 346          | 48,60%                                 | 69,70%     | Putative aminopeptidase FrvX                                |
| glycosidase             | COG4193 | 42           | 47,60%                                 | 70,83%     | Beta- N-acetylglucosaminidase                               |
| glycosidase             | COG4678 | 19           | 47,40%                                 | 71,21%     | Muramidase (phage lambda lysozyme)                          |
| glycosidase             | COG3325 | 158          | 46,80%                                 | 71,59%     | Chitinase, GH18 family                                      |

| Функциональный<br>класс | COG     | Кол-во генов | Склонность к<br>формированию<br>кассет | Процентиль | Аннотация COG (NCBI)                                                                                               |
|-------------------------|---------|--------------|----------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------|
| glycosidase             | COG1626 | 64           | 39,10%                                 | 78,41%     | Neutral trehalase                                                                                                  |
| glycosidase             | COG3469 | 63           | 34,90%                                 | 82,95%     | Chitinase                                                                                                          |
| glycosidase             | COG4305 | 29           | 34,50%                                 | 83,71%     | Peptidoglycan-binding domain, expansin                                                                             |
| glycosidase             | COG2951 | 424          | 26,40%                                 | 91,67%     | Membrane-bound lytic murein transglycosylase<br>B                                                                  |
| glycosyltransferase     | COG3754 | 86           | 87,20%                                 | 19,32%     | Lipopolysaccharide biosynthesis protein                                                                            |
| glycosyltransferase     | COG0380 | 183          | 76,00%                                 | 33,71%     | Trehalose-6-phosphate synthase                                                                                     |
| glycosyltransferase     | COG1216 | 1472         | 73,20%                                 | 37,12%     | Glycosyltransferase, GT2 family                                                                                    |
| glycosyltransferase     | COG0438 | 6587         | 66,60%                                 | 43,56%     | Glycosyltransferase involved in cell wall bisynthesis                                                              |
| glycosyltransferase     | COG0297 | 316          | 66,10%                                 | 44,32%     | Glycogen synthase                                                                                                  |
| glycosyltransferase     | COG1442 | 157          | 65,60%                                 | 45,08%     | Lipopolysaccharide biosynthesis protein,<br>LPS:glycosyltransferase                                                |
| glycosyltransferase     | COG0463 | 3748         | 54,20%                                 | 62,12%     | Glycosyltransferase involved in cell wall bisynthesis                                                              |
| glycosyltransferase     | COG1215 | 1502         | 48,90%                                 | 68,94%     | Glycosyltransferase, catalytic subunit of<br>cellulose synthase and poly-beta-1,6-N-<br>acetylglucosamine synthase |
| glycosyltransferase     | COG1819 | 384          | 40,40%                                 | 77,27%     | UDP:flavonoid glycosyltransferase YjiC, YdhE family                                                                |
| glycosyltransferase     | COG2236 | 144          | 22,20%                                 | 95,08%     | Hypoxanthine phosphoribosyltransferase                                                                             |
| isomerase               | COG4806 | 43           | 97,70%                                 | 6,06%      | L-rhamnose isomerase                                                                                               |
| isomerase               | COG2160 | 97           | 94,80%                                 | 8,33%      | L-arabinose isomerase                                                                                              |
| isomerase               | COG1904 | 138          | 94,20%                                 | 9,09%      | Glucuronate isomerase                                                                                              |
| isomerase               | COG3718 | 96           | 92,70%                                 | 12,12%     | 5-deoxy-D-glucuronate isomerase                                                                                    |
| isomerase               | COG2407 | 83           | 91,60%                                 | 13,64%     | L-fucose isomerase or related protein                                                                              |
| isomerase               | COG2115 | 146          | 91,10%                                 | 14,77%     | Xylose isomerase                                                                                                   |
| isomerase               | COG3717 | 82           | 87,80%                                 | 18,94%     | 5-keto 4-deoxyuronate isomerase                                                                                    |
| isomerase               | COG4130 | 14           | 85,70%                                 | 21,21%     | Predicted sugar epimerase, xylose isomerase-like family                                                            |
| isomerase               | COG2942 | 139          | 78,40%                                 | 30,30%     | Mannose or cellobiose epimerase, N-acyl-D-glucosamine 2-epimerase family                                           |
| isomerase               | COG0149 | 528          | 64,60%                                 | 46,97%     | Triosephosphate isomerase                                                                                          |
| isomerase               | COG1082 | 1103         | 63,60%                                 | 48,11%     | Sugar phosphate isomerase/epimerase                                                                                |
| isomerase               | COG1482 | 264          | 61,40%                                 | 50,76%     | Mannose-6-phosphate isomerase, class I                                                                             |
| isomerase               | COG0836 | 472          | 56,10%                                 | 58,33%     | Mannose-1-phosphate guanylyltransferase                                                                            |
| isomerase               | COG3622 | 157          | 56,10%                                 | 58,71%     | Hydroxypyruvate isomerase                                                                                          |
| isomerase               | COG0166 | 505          | 48,90%                                 | 69,32%     | Glucose-6-phosphate isomerase                                                                                      |
| isomerase               | COG0033 | 169          | 45,00%                                 | 73,11%     | Phosphoglucomutase                                                                                                 |
| isomerase               | COG0698 | 454          | 44,30%                                 | 73,86%     | Ribose 5-phosphate isomerase RpiB                                                                                  |
| isomerase               | COG0588 | 261          | 44,10%                                 | 74,24%     | Phosphoglycerate mutase (BPG-dependent)                                                                            |

| Функциональный<br>класс                  | COG     | Кол-во генов | Склонность к<br>формированию<br>кассет | Процентиль | Аннотация COG (NCBI)                                                       |
|------------------------------------------|---------|--------------|----------------------------------------|------------|----------------------------------------------------------------------------|
| isomerase                                | COG0279 | 327          | 40,40%                                 | 77,65%     | Phosphoheptose isomerase                                                   |
| isomerase                                | COG0696 | 295          | 40,00%                                 | 78,03%     | Phosphoglycerate mutase (BPG-independent,<br>AlkP superfamily)             |
| isomerase                                | COG0120 | 245          | 30,20%                                 | 87,50%     | Ribose 5-phosphate isomerase                                               |
| isomerase                                | COG0662 | 575          | 30,10%                                 | 88,26%     | Mannose-6-phosphate isomerase, cupin superfamily                           |
| isomerase                                | COG3635 | 74           | 29,70%                                 | 89,02%     | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase, archeal type  |
| isomerase                                | COG1015 | 191          | 25,10%                                 | 92,80%     | Phosphopentomutase                                                         |
| kinase                                   | COG4809 | 3            | 100,00%                                | 1,14%      | Archaeal ADP-dependent<br>phosphofructokinase/glucokinase                  |
| kinase                                   | COG3734 | 51           | 98,00%                                 | 4,92%      | 2-keto-3-deoxy-galactonokinase                                             |
| kinase                                   | COG4573 | 36           | 94,40%                                 | 8,71%      | Tagatose-1,6-bisphosphate aldolase non-catalytic subunit AgaZ/GatZ         |
| kinase                                   | COG2376 | 344          | 92,70%                                 | 12,12%     | Dihydroxyacetone kinase                                                    |
| kinase                                   | COG3265 | 141          | 82,30%                                 | 24,62%     | Gluconate kinase                                                           |
| kinase                                   | COG0126 | 498          | 81,50%                                 | 26,14%     | 3-phosphoglycerate kinase                                                  |
| kinase                                   | COG1105 | 318          | 81,10%                                 | 27,27%     | Fructose-1-phosphate kinase or kinase (PfkB)                               |
| kinase                                   | COG1070 | 659          | 78,10%                                 | 30,68%     | Sugar (pentulose or hexulose) kinase                                       |
| kinase                                   | COG0153 | 229          | 74,20%                                 | 34,85%     | Galactokinase                                                              |
| kinase                                   | COG2971 | 187          | 73,80%                                 | 36,36%     | BadF-type ATPase, related to human N-<br>acetylglucosamine kinase          |
| kinase                                   | COG0837 | 161          | 67,10%                                 | 42,05%     | Glucokinase                                                                |
| kinase                                   | COG1940 | 1438         | 65,10%                                 | 46,21%     | Sugar kinase of the NBD/HSP70 family, may contain an N-terminal HTH domain |
| kinase                                   | COG0524 | 1515         | 61,40%                                 | 51,14%     | Sugar or nucleoside kinase, ribokinase family                              |
| kinase                                   | COG5026 | 10           | 60,00%                                 | 53,03%     | Hexokinase                                                                 |
| kinase                                   | COG3892 | 48           | 58,30%                                 | 56,44%     | Myo-inositol catabolism protein IolC                                       |
| kinase                                   | COG1929 | 249          | 55,40%                                 | 60,98%     | Glycerate kinase                                                           |
| kinase                                   | COG0469 | 544          | 51,10%                                 | 65,53%     | Pyruvate kinase                                                            |
| kinase                                   | COG0205 | 563          | 49,20%                                 | 67,80%     | 6-phosphofructokinase                                                      |
| kinase                                   | COG2074 | 9            | 33,30%                                 | 84,09%     | 2-phosphoglycerate kinase                                                  |
| kinase                                   | COG3001 | 136          | 33,10%                                 | 84,85%     | Fructosamine-3-kinase                                                      |
| kinase                                   | COG0574 | 643          | 29,70%                                 | 89,39%     | Phosphoenolpyruvate synthase/pyruvate phosphate dikinase                   |
| kinase                                   | COG0406 | 1154         | 26,60%                                 | 90,91%     | Broad specificity phosphatase PhoE                                         |
| kinase                                   | COG0061 | 523          | 26,00%                                 | 92,05%     | NAD kinase                                                                 |
| kinase                                   | COG0063 | 434          | 22,60%                                 | 94,32%     | NAD(P)H-hydrate repair enzyme Nnr,<br>NAD(P)H-hydrate dehydratase domain   |
| malto-<br>oligosyltrehalose-<br>synthase | COG3280 | 100          | 92,00%                                 | 13,26%     | Maltooligosyltrehalose synthase                                            |

| Функциональный<br>класс         | COG     | Кол-во генов | Склонность к<br>формированию<br>кассет | Процентиль | Аннотация COG (NCBI)                                                                                     |
|---------------------------------|---------|--------------|----------------------------------------|------------|----------------------------------------------------------------------------------------------------------|
| mutase                          | COG3281 | 95           | 93,70%                                 | 10,23%     | Predicted trehalose synthase                                                                             |
| mutase                          | COG1109 | 1134         | 36,70%                                 | 80,68%     | Phosphomannomutase                                                                                       |
| mutase                          | COG2513 | 273          | 29,30%                                 | 89,77%     | 2-Methylisocitrate lyase and related enzymes,<br>PEP mutase family                                       |
| nucleosidase                    | COG0775 | 597          | 22,30%                                 | 94,70%     | Nucleoside phosphorylase                                                                                 |
| nucleosidase                    | COG1957 | 1            | 0,00%                                  | 99,24%     | Inosine-uridine nucleoside N-ribohydrolase                                                               |
| nucleotidyltransferas<br>e      | COG4468 | 52           | 90,40%                                 | 15,15%     | Galactose-1-phosphate uridylyltransferase                                                                |
| nucleotidyltransferas<br>e      | COG0448 | 348          | 82,80%                                 | 23,86%     | ADP-glucose pyrophosphorylase                                                                            |
| nucleotidyltransferas<br>e      | COG1080 | 415          | 74,20%                                 | 35,23%     | Phosphoenolpyruvate-protein kinase (PTS system EI component in bacteria)                                 |
| nucleotidyltransferas<br>e      | COG1209 | 570          | 74,00%                                 | 35,61%     | dTDP-glucose pyrophosphorylase                                                                           |
| nucleotidyltransferas<br>e      | COG2148 | 960          | 65,60%                                 | 45,45%     | Sugar transferase involved in LPS biosynthesis (colanic, teichoic acid)                                  |
| nucleotidyltransferas<br>e      | COG1213 | 104          | 60,60%                                 | 52,27%     | Choline kinase                                                                                           |
| nucleotidyltransferas<br>e      | COG1208 | 478          | 52,90%                                 | 63,64%     | NDP-sugar pyrophosphorylase, includes eIF-<br>2Bgamma, eIF-2Bepsilon, and LPS biosynthesis<br>proteins   |
| nucleotidyltransferas<br>e      | COG1210 | 523          | 48,00%                                 | 70,45%     | UTP-glucose-1-phosphate uridylyltransferase                                                              |
| nucleotidyltransferas<br>e      | COG4284 | 50           | 44,00%                                 | 75,00%     | UDP-N-acetylglucosamine pyrophosphorylase                                                                |
| phosphotase                     | COG1877 | 150          | 82,00%                                 | 25,00%     | Trehalose-6-phosphatase                                                                                  |
| phosphotase                     | COG1494 | 222          | 44,10%                                 | 74,62%     | Fructose-1,6-bisphosphatase/sedoheptulose 1,7-<br>bisphosphatase or related protein                      |
| phosphotase                     | COG0647 | 343          | 42,30%                                 | 76,89%     | Ribonucleotide monophosphatase NagD, HAD superfamily                                                     |
| phosphotase                     | COG3855 | 47           | 38,30%                                 | 78,79%     | Spore germination protein YaaH                                                                           |
| phosphotase                     | COG0158 | 214          | 36,40%                                 | 80,68%     | Fructose-1,6-bisphosphatase                                                                              |
| phosphotase                     | COG1980 | 23           | 34,80%                                 | 83,33%     | Archaeal fructose 1,6-bisphosphatase                                                                     |
| phosphotase                     | COG0483 | 737          | 28,90%                                 | 90,15%     | Archaeal fructose-1,6-bisphosphatase or related enzyme of inositol monophosphatase family                |
| phosphotase                     | COG1778 | 300          | 16,30%                                 | 96,97%     | 3-deoxy-D-manno-octulosonate 8-phosphate<br>phosphatase KdsC and related HAD superfamily<br>phosphatases |
| transaldolase-<br>transketolase | COG3959 | 206          | 91,30%                                 | 14,02%     | Transketolase, N-terminal subunit                                                                        |
| transaldolase-<br>transketolase | COG3958 | 237          | 84,00%                                 | 22,35%     | Transketolase, C-terminal subunit                                                                        |
| transaldolase-<br>transketolase | COG0021 | 504          | 67,50%                                 | 41,67%     | Transketolase                                                                                            |
| transaldolase-                  | COG0176 | 567          | 58,00%                                 | 56,82%     | Transaldolase                                                                                            |

| Функциональный<br>класс | COG     | Кол-во генов | Склонность к<br>формированию<br>кассет | Процентиль | Аннотация COG (NCBI)                                                                                                      |
|-------------------------|---------|--------------|----------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------|
| transketolase           |         |              |                                        |            |                                                                                                                           |
| transcriptional         | COG3933 | 71           | 77,50%                                 | 31,44%     | Transcriptional regulatory protein LevR, contains PRD, AAA+ and EIIA domains                                              |
| transcriptional         | COG3711 | 458          | 71,60%                                 | 38,64%     | Transcriptional antiterminator                                                                                            |
| transcriptional         | COG1349 | 841          | 65,30%                                 | 45,83%     | DNA-binding transcriptional regulator of sugar metabolism, DeoR/GlpR family                                               |
| transcriptional         | COG1609 | 3473         | 64,00%                                 | 47,35%     | DNA-binding transcriptional regulator,<br>LacI/PurR family                                                                |
| transcriptional         | COG2390 | 301          | 62,10%                                 | 50,00%     | DNA-binding transcriptional regulator LsrR,<br>DeoR family                                                                |
| transcriptional         | COG1737 | 783          | 56,60%                                 | 57,95%     | DNA-binding transcriptional regulator,<br>MurR/RpiR family, contains HTH and SIS<br>domains                               |
| transcriptional         | COG3449 | 122          | 53,30%                                 | 62,88%     | DNA gyrase inhibitor GyrI                                                                                                 |
| transcriptional         | COG2188 | 1279         | 48,10%                                 | 70,08%     | DNA-binding transcriptional regulator, GntR family                                                                        |
| transcriptional         | COG4977 | 1355         | 42,40%                                 | 76,52%     | Transcriptional regulator GlxA family, contains<br>an amidase domain and an AraC-type DNA-<br>binding HTH domain          |
| transcriptional         | COG2207 | 4349         | 36,30%                                 | 81,82%     | AraC-type DNA-binding domain and AraC-<br>containing proteins                                                             |
| transcriptional         | COG1414 | 1475         | 33,00%                                 | 85,23%     | DNA-binding transcriptional regulator, IclR family                                                                        |
| transcriptional         | COG1221 | 77           | 32,50%                                 | 85,61%     | Transcriptional regulators containing an AAA-<br>type ATPase domain and a DNA-binding domain                              |
| transcriptional         | COG1476 | 863          | 26,40%                                 | 91,67%     | DNA-binding transcriptional regulator, XRE-<br>family HTH domain                                                          |
| transcriptional         | COG1396 | 1300         | 25,70%                                 | 92,42%     | Transcriptional regulator, contains XRE-family<br>HTH domain                                                              |
| transcriptional         | COG3708 | 221          | 24,00%                                 | 93,56%     | Predicted transcriptional regulator YdeE, contains AraC-type DNA-binding domain                                           |
| transcriptional         | COG3829 | 894          | 23,70%                                 | 93,94%     | Transcriptional regulator containing PAS, AAA-<br>type ATPase, and DNA-binding Fis domains                                |
| transcriptional         | COG0745 | 7649         | 22,00%                                 | 95,45%     | DNA-binding response regulator, OmpR family, contains REC and winged-helix (wHTH) domain                                  |
| transcriptional         | COG1555 | 519          | 20,00%                                 | 95,45%     | DNA uptake protein ComE and related DNA-<br>binding proteins                                                              |
| transcriptional         | COG1974 | 710          | 19,40%                                 | 96,21%     | SOS-response transcriptional repressor LexA (RecA-mediated autopeptidase)                                                 |
| transcriptional         | COG2771 | 254          | 8,30%                                  | 97,35%     | DNA-binding transcriptional regulator, CsgD family                                                                        |
| transcriptional         | COG3706 | 1986         | 8,20%                                  | 97,73%     | Two-component response regulator, PleD family,<br>consists of two REC domains and a diguanylate<br>cyclase (GGDEF) domain |
| transcriptional         | COG2524 | 204          | 6,90%                                  | 98,11%     | Predicted transcriptional regulator, contains C-terminal CBS domains                                                      |

| Функциональный<br>класс | COG     | Кол-во генов | Склонность к<br>формированию<br>кассет | Процентиль | Аннотация COG (NCBI)                                                                                                                 |
|-------------------------|---------|--------------|----------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------|
| transcriptional         | COG2197 | 4929         | 6,50%                                  | 98,48%     | DNA-binding response regulator, NarL/FixJ family, contains REC and HTH domains                                                       |
| transcriptional         | COG2204 | 5023         | 5,40%                                  | 98,86%     | DNA-binding transcriptional response regulator,<br>NtrC family, contains REC, AAA-type ATPase,<br>and a Fis-type DNA-binding domains |
| transport               | COG3730 | 27           | 100,00%                                | 1,14%      | Phosphotransferase system sorbitol-specific component IIC                                                                            |
| transport               | COG3732 | 28           | 100,00%                                | 1,14%      | Phosphotransferase system sorbitol-specific component IIBC                                                                           |
| transport               | COG3833 | 175          | 100,00%                                | 1,14%      | ABC-type maltose transport system, permease component                                                                                |
| transport               | COG4214 | 154          | 100,00%                                | 1,14%      | ABC-type xylose transport system, permease component                                                                                 |
| transport               | COG3444 | 184          | 99,50%                                 | 2,27%      | Phosphotransferase system, mannose/fructose/N-acetylgalactosamine-specific component IIB                                             |
| transport               | COG3716 | 185          | 99,50%                                 | 2,27%      | Phosphotransferase system, mannose/fructose/N-acetylgalactosamine-specific component IID                                             |
| transport               | COG1869 | 104          | 99,00%                                 | 3,03%      | D-ribose pyranose/furanose isomerase RbsD                                                                                            |
| transport               | COG1175 | 2004         | 98,90%                                 | 3,41%      | ABC-type sugar transport system, permease component                                                                                  |
| transport               | COG0395 | 2077         | 98,80%                                 | 3,79%      | ABC-type glycerol-3-phosphate transport system, permease component                                                                   |
| transport               | COG4209 | 243          | 98,80%                                 | 3,79%      | ABC-type polysaccharide transport system, permease component                                                                         |
| transport               | COG3775 | 62           | 98,40%                                 | 4,55%      | Phosphotransferase system, galactitol-specific<br>IIC component                                                                      |
| transport               | COG1172 | 859          | 97,90%                                 | 5,30%      | Ribose/xylose/arabinose/galactoside ABC-type<br>transport system, permease component                                                 |
| transport               | COG3715 | 174          | 97,70%                                 | 6,06%      | Phosphotransferase system, mannose/fructose/N-acetylgalactosamine-specific component IIC                                             |
| transport               | COG4211 | 40           | 97,50%                                 | 6,82%      | ABC-type glucose/galactose transport system, permease component                                                                      |
| transport               | COG1129 | 950          | 97,30%                                 | 7,20%      | ABC-type sugar transport system, ATPase component                                                                                    |
| transport               | COG3731 | 35           | 97,10%                                 | 7,58%      | Phosphotransferase system sorbitol-specific component IIA                                                                            |
| transport               | COG1447 | 180          | 96,10%                                 | 7,95%      | Phosphotransferase system cellobiose-specific component IIA                                                                          |
| transport               | COG2182 | 224          | 93,80%                                 | 9,85%      | Maltose-binding periplasmic protein MalE                                                                                             |
| transport               | COG1653 | 2280         | 93,20%                                 | 10,61%     | ABC-type glycerol-3-phosphate transport system, periplasmic component                                                                |
| transport               | COG4580 | 87           | 93,10%                                 | 10,98%     | Maltoporin (phage lambda and maltose receptor)                                                                                       |
| transport               | COG4213 | 187          | 93,00%                                 | 11,36%     | ABC-type xylose transport system, periplasmic component                                                                              |
| transport               | COG4668 | 115          | 93,00%                                 | 11,74%     | Mannitol/fructose-specific phosphotransferase<br>system, IIA domain                                                                  |

| Функциональный<br>класс | COG     | Кол-во генов | Склонность к<br>формированию<br>кассет | Процентиль | Аннотация COG (NCBI)                                                                              |
|-------------------------|---------|--------------|----------------------------------------|------------|---------------------------------------------------------------------------------------------------|
| transport               | COG1134 | 329          | 92,70%                                 | 12,12%     | ABC-type polysaccharide/polyol phosphate transport system, ATPase component                       |
| transport               | COG3414 | 172          | 91,30%                                 | 14,02%     | Phosphotransferase system, galactitol-specific<br>IIB component                                   |
| transport               | COG1440 | 187          | 88,80%                                 | 17,05%     | Phosphotransferase system cellobiose-specific component IIB                                       |
| transport               | COG1455 | 256          | 88,70%                                 | 17,80%     | Phosphotransferase system cellobiose-specific component IIC                                       |
| transport               | COG4158 | 26           | 88,50%                                 | 18,18%     | Predicted ABC-type sugar transport system, permease component                                     |
| transport               | COG2893 | 263          | 86,70%                                 | 20,08%     | Phosphotransferase system, mannose/fructose-<br>specific component IIA                            |
| transport               | COG1879 | 1039         | 86,00%                                 | 20,83%     | ABC-type sugar transport system, periplasmic component, contains N-terminal xre family HTH domain |
| transport               | COG3839 | 834          | 82,60%                                 | 24,24%     | ABC-type sugar transport system, ATPase component                                                 |
| transport               | COG2213 | 91           | 81,30%                                 | 26,89%     | Phosphotransferase system, mannitol-specific IIBC component                                       |
| transport               | COG2190 | 269          | 80,30%                                 | 28,03%     | Phosphotransferase system IIA component                                                           |
| transport               | COG1593 | 535          | 77,20%                                 | 32,20%     | TRAP-type C4-dicarboxylate transport system, large permease component                             |
| transport               | COG1925 | 528          | 76,10%                                 | 33,33%     | Phosphotransferase system, HPr and related phosphotransfer proteins                               |
| transport               | COG2610 | 369          | 72,60%                                 | 37,88%     | H+/gluconate symporter or related permease                                                        |
| transport               | COG1638 | 629          | 70,60%                                 | 39,39%     | TRAP-type C4-dicarboxylate transport system, periplasmic component                                |
| transport               | COG1762 | 615          | 67,00%                                 | 42,42%     | Phosphotransferase system mannitol/fructose-<br>specific IIA domain (Ntr-type)                    |
| transport               | COG1264 | 175          | 64,00%                                 | 47,73%     | Phosphotransferase system IIB components                                                          |
| transport               | COG1445 | 153          | 62,70%                                 | 48,86%     | Phosphotransferase system fructose-specific component IIB                                         |
| transport               | COG0738 | 471          | 61,10%                                 | 51,52%     | Fucose permease                                                                                   |
| transport               | COG1263 | 600          | 60,20%                                 | 52,65%     | Phosphotransferase system IIC components, glucose/maltose/N-acetylglucosamine-specific            |
| transport               | COG1682 | 628          | 60,00%                                 | 53,41%     | ABC-type polysaccharide/polyol phosphate export permease                                          |
| transport               | COG4975 | 45           | 60,00%                                 | 53,79%     | Glucose uptake protein GlcU                                                                       |
| transport               | COG2211 | 682          | 56,70%                                 | 57,58%     | Na+/melibiose symporter or related transporter                                                    |
| transport               | COG1299 | 257          | 55,60%                                 | 59,85%     | Phosphotransferase system, fructose-specific IIC component                                        |
| transport               | COG3090 | 603          | 50,90%                                 | 65,91%     | TRAP-type C4-dicarboxylate transport system, small permease component                             |
| transport               | COG2271 | 1386         | 44,40%                                 | 73,48%     | Sugar phosphate permease                                                                          |
| transport               | COG0697 | 660          | 35,80%                                 | 82,20%     | Permease of the drug/metabolite transporter                                                       |

| Функциональный<br>класс | COG     | Кол-во генов | Склонность к<br>формированию<br>кассет | Процентиль | Аннотация COG (NCBI)                                                                                           |
|-------------------------|---------|--------------|----------------------------------------|------------|----------------------------------------------------------------------------------------------------------------|
|                         |         |              |                                        |            | (DMT) superfamily                                                                                              |
| transport               | COG2814 | 6827         | 35,60%                                 | 82,58%     | Predicted arabinose efflux permease, MFS family                                                                |
| transport               | COG0477 | 3            | 33,30%                                 | 84,47%     | MFS family permease                                                                                            |
| transport               | COG4608 | 680          | 18,70%                                 | 96,59%     | ABC-type oligopeptide transport system, ATPase component                                                       |
| transport               | COG1548 | 15           | 0,00%                                  | 99,24%     | Uncharacterized protein,<br>hydantoinase/oxoprolinase family                                                   |
| uncertain-class         | COG3936 | 12           | 83,30%                                 | 23,11%     | Membrane-bound acyltransferase YfiQ, involved in biofilm formation                                             |
| uncertain-class         | COG4813 | 38           | 81,60%                                 | 25,38%     | Trehalose utilization protein                                                                                  |
| uncertain-class         | COG5039 | 27           | 81,50%                                 | 26,14%     | Exopolysaccharide biosynthesis protein EpsI, predicted pyruvyl transferase                                     |
| uncertain-class         | COG4354 | 20           | 55,00%                                 | 61,36%     | Uncharacterized protein, contains GBA2_N and DUF608 domains                                                    |
| uncertain-class         | COG4421 | 47           | 46,80%                                 | 71,97%     | Capsular polysaccharide biosynthesis protein                                                                   |
| uncertain-class         | COG3594 | 99           | 45,50%                                 | 72,73%     | Fucose 4-O-acetylase or related acetyltransferase                                                              |
| uncertain-class         | COG0702 | 900          | 37,60%                                 | 79,17%     | Uncharacterized conserved protein YbjT,<br>contains NAD(P)-binding and DUF2867<br>domains                      |
| uncertain-class         | COG4282 | 19           | 36,80%                                 | 79,92%     | Cell wall assembly regulator SMI1                                                                              |
| uncertain-class         | COG4632 | 140          | 36,40%                                 | 81,44%     | Exopolysaccharide biosynthesis protein related<br>to N-acetylglucosamine-1-phosphodiester alpha-<br>N-acety,,, |
| uncertain-class         | COG3858 | 242          | 30,20%                                 | 87,88%     | Spore germination protein YaaH                                                                                 |
| uncertain-class         | COG4101 | 37           | 24,30%                                 | 93,18%     | Uncharacterized protein, RmlC-like cupin<br>domain                                                             |

#### Приложение В

Кластеры СОG разных функциональных классов, наиболее часто встречающиеся друг с другом. Жирным отмечены пары, преодолевшие порог статистической значимости (см. Методы Главы 3)

| Функциональный класс | carboxylic esterase | deacetylase     | decarboxylase   | dehydratase     | dehydrogenase-O | dehydrogenase-OH |
|----------------------|---------------------|-----------------|-----------------|-----------------|-----------------|------------------|
|                      |                     |                 |                 |                 |                 |                  |
| carboxylic esterase  | COG0363-COG0363     |                 | COG0363-COG0800 | COG0363-COG0129 |                 | COG0363-COG0364  |
|                      | COG2706-COG2706     |                 | COG3386-COG0800 | COG3386-COG0129 |                 | COG0363-COG3429  |
|                      | COG4677-COG4677     |                 |                 |                 |                 |                  |
|                      | COG3386-COG3386     |                 |                 |                 |                 |                  |
|                      | COG2706-COG4677     |                 |                 |                 |                 |                  |
|                      |                     |                 |                 |                 |                 |                  |
| deacetylase          |                     | COG0726-COG0726 | COG0363-COG0800 | COG0363-COG0129 |                 | COG0363-COG0364  |
|                      |                     |                 | COG1820-COG0191 | COG1820-COG2721 |                 | COG0726-COG0451  |
|                      |                     |                 |                 |                 |                 |                  |
|                      |                     |                 |                 |                 |                 |                  |
|                      |                     |                 |                 |                 |                 |                  |
|                      |                     |                 |                 |                 |                 |                  |
|                      |                     |                 |                 |                 |                 |                  |
| decarboxylase        |                     |                 | COG0235-COG1850 | COG0800-COG0129 | COG0191-COG0057 | COG0800-COG0364  |
|                      |                     |                 | COG0269-COG0235 | COG0800-COG1312 | COG3957-COG0057 | COG0235-COG0451  |
|                      |                     |                 |                 |                 | COG1850-COG0057 |                  |
|                      |                     |                 |                 |                 | COG0800-COG0057 |                  |
|                      |                     |                 |                 |                 |                 |                  |
|                      |                     |                 |                 |                 |                 |                  |
|                      |                     |                 |                 |                 |                 |                  |
|                      |                     |                 |                 |                 |                 |                  |
|                      |                     |                 |                 |                 |                 |                  |
| dehydratase          |                     |                 |                 | COG2721-COG2721 | COG0148-COG0057 | COG1086-COG0451  |
|                      |                     |                 |                 | COG3866-COG3866 | COG0129-COG0057 | COG0129-COG0364  |
|                      |                     |                 |                 | COG1086-COG1086 |                 | COG1312-COG0246  |
|                      |                     |                 |                 |                 |                 | COG2721-COG0246  |
|                      |                     |                 |                 |                 |                 |                  |
|                      |                     |                 |                 |                 |                 |                  |
| dehvdrogenase-O      |                     |                 |                 |                 |                 | COG0057-COG0364  |
|                      |                     |                 |                 |                 |                 | COG0057-COG3429  |
|                      |                     |                 |                 |                 |                 | COG0057-COG0451  |
|                      |                     |                 |                 |                 |                 |                  |
|                      |                     |                 |                 |                 |                 |                  |
| dehydrogenase-OH     |                     |                 |                 |                 |                 | COG0451-COG0451  |

| Функциональный класс             | glycosidase     | glycosyltransferase | isomerase       | kinase          | Malto-oligosyltrehalose synthase |
|----------------------------------|-----------------|---------------------|-----------------|-----------------|----------------------------------|
| glycosidase                      | COG0296-COG1523 | COG0296-COG0297     | COG2723-COG0698 | COG1621-COG0524 | COG0296-COG3280                  |
|                                  | COG0366-COG0366 | COG0058-COG0297     | COG1501-COG2942 | COG2723-COG1940 | COG1523-COG3280                  |
|                                  | COG0366-COG0296 |                     |                 | COG2731-COG1940 |                                  |
|                                  | COG0296-COG0058 |                     |                 | COG0383-COG1940 |                                  |
|                                  | COG1640-COG0058 |                     |                 |                 |                                  |
|                                  | COG0296-COG1640 |                     |                 |                 |                                  |
|                                  | COG1523-COG0058 |                     |                 |                 |                                  |
|                                  |                 |                     |                 |                 |                                  |
| glycosyltransferase              |                 | COG0438-COG0438     | COG0438-COG0836 | COG0438-COG0524 | COG0297-COG3280                  |
|                                  |                 | COG0463-COG0438     | COG1216-COG0836 | COG0438-COG1940 | COG0438-COG3280                  |
|                                  |                 | COG0438-COG0463     |                 | COG0438-COG0406 |                                  |
|                                  |                 | COG1216-COG0438     |                 | COG0297-COG3265 |                                  |
|                                  |                 | COG0438-COG1216     |                 | COG0463-COG1940 |                                  |
|                                  |                 |                     |                 |                 |                                  |
|                                  |                 |                     |                 |                 |                                  |
|                                  |                 |                     |                 |                 |                                  |
|                                  |                 |                     |                 |                 |                                  |
| isomerase                        |                 |                     | COG0149-COG0696 | COG0149-COG0126 |                                  |
|                                  |                 |                     | COG1082-COG3718 | COG2115-COG1070 |                                  |
|                                  |                 |                     | COG0662-COG0836 |                 |                                  |
|                                  |                 |                     | COG0149-COG0698 |                 |                                  |
|                                  |                 |                     | COG1082-COG1082 |                 |                                  |
|                                  |                 |                     | COG0698-COG0698 |                 |                                  |
|                                  |                 |                     | COG1082-COG0698 |                 |                                  |
|                                  |                 |                     |                 |                 |                                  |
|                                  |                 |                     |                 |                 |                                  |
| kinase                           |                 |                     |                 | COG2376-COG2376 |                                  |
|                                  |                 |                     |                 | COG0469-COG0205 |                                  |
|                                  |                 |                     |                 |                 |                                  |
|                                  |                 |                     |                 |                 |                                  |
|                                  |                 |                     |                 |                 |                                  |
|                                  |                 |                     |                 |                 |                                  |
|                                  |                 |                     |                 |                 |                                  |
|                                  |                 |                     |                 |                 |                                  |
| malto-oligosyltrehalose synthase |                 |                     |                 |                 | COG3280-COG3280                  |

| Функциональный класс | epimerase       | glycosidase     | glycosyltransferase | isomerase       | kinase          |
|----------------------|-----------------|-----------------|---------------------|-----------------|-----------------|
| carboxylic esterase  | COC3396 COC0451 | COC2706 COC2297 | COC0262 COC0429     | COC0363 COC0176 | COC0363 COC1040 |
|                      | COC3386-COC3017 |                 | COC0262 COC1442     | COG0303-COG0170 | COG0303-COG1940 |
|                      | COC0363 COC3010 |                 | COG0505-COG1442     | COC0363 COC0140 | COG0303-COG063/ |
|                      | COC0363-COC0036 | COG0303-COG2723 |                     | 000000-0000149  |                 |
|                      |                 |                 |                     |                 |                 |
|                      |                 |                 |                     |                 |                 |
| deacetylase          | COG0726-COG0451 | COG0363-COG2723 | COG0726-COG0438     | COG0363-COG0176 | COG1820-COG1940 |
|                      | COG1820-COG3010 | COG0363-COG3387 | COG0726-COG0463     | COG0363-COG0166 | COG0363-COG1940 |
|                      |                 | COG1820-COG3525 | COG0726-COG1215     | COG0363-COG0149 | COG0363-COG0837 |
|                      |                 | COG0726-COG3693 |                     |                 |                 |
|                      |                 | COG0726-COG0366 |                     |                 |                 |
|                      |                 |                 |                     |                 |                 |
| J J J                |                 | COC3(04 COC3733 | 6060360 6060430     | 6060101 6060136 | COC0335 COC1070 |
| uecarboxylase        |                 | COG3084-COG2723 | COG0209-COG0438     | COG0191-COG0126 | COG0235-COG1070 |
|                      | COG0235-COG4154 | COG3084-COG1501 | COG0191-COG0438     | COG3084-COG0098 | COG0191-COG0126 |
|                      |                 | COG0269-COG2731 | COG0191-COG0403     |                 | COG0800-COG0524 |
|                      | COG0269-COG0235 | COG0235-COG2731 | COG0800-COG1442     |                 | CUG0800-CUG3/34 |
|                      |                 | COG0235-COG3534 |                     |                 |                 |
|                      |                 | COG0235-COG1303 |                     |                 |                 |
|                      |                 | COG0191-COG4633 |                     |                 |                 |
|                      |                 |                 |                     |                 |                 |
| dehydratase          | COG1086-COG0451 | COG0148-COG2951 | COG1086-COG0438     | COG0148-COG0149 | COG0148-COG0126 |
|                      | COG1086-COG1898 | COG1312-COG1472 | COG1086-COG0463     | COG0148-COG0126 | COG0129-COG0837 |
|                      |                 |                 |                     | COG0148-COG0696 | COG0129-COG3265 |
|                      |                 |                 |                     | COG2721-COG1904 |                 |
|                      |                 |                 |                     |                 |                 |
|                      |                 |                 |                     |                 |                 |
| dehydrogenase-O      | COG0057-COG0676 |                 |                     | COG0057-COG0126 | COG0057-COG0126 |
|                      | COG0057-COG2017 |                 |                     | COG0057-COG0149 | COG0057-COG0469 |
|                      |                 |                 |                     |                 |                 |
|                      |                 |                 |                     |                 |                 |
| dehvdrogenase-OH     | COG1091-COG1898 | COG0364-COG3387 | COG0451-COG0438     | COG0451-COG0836 | COG0246-COG0524 |
|                      |                 | COG0364-COG0366 | COG0451-COG0463     | COG0451-COG0279 | COG0246-COG1070 |
|                      |                 | COG0364-COG1640 |                     | COG0364-COG0176 | COG0364-COG0837 |
|                      |                 | COG0451-COG2951 |                     | COG0246-COG1904 | COG0364-COG0469 |
|                      |                 | COG0451-COG0296 |                     |                 | COG1023-COG1070 |
|                      |                 | COG1023-COG3387 |                     |                 | COG2379-COG0469 |
|                      |                 | COG0246-COG3250 |                     |                 | COG0362-COG1070 |
|                      |                 |                 |                     |                 |                 |
| epimerase            | COG1898-COG1898 | COG3010-COG2731 | COG0451-COG0438     | COG0451-COG0836 | COG0235-COG1070 |
|                      | COG0036-COG0036 | COG2942-COG1501 | COG0451-COG0463     | COG0451-COG0279 | COG2017-COG0153 |
|                      | COG1898-COG0676 | COG2017-COG1501 |                     | COG0235-COG3622 |                 |
|                      | COG2017-COG2017 | COG3623-COG2731 |                     | COG0235-COG2160 |                 |
|                      |                 |                 |                     | COG0235-COG2407 |                 |

| Функциональный класс | mutase          | e nucleotydiltransferase phosphatase Transaldola |                 | Transaldolase/transke | nsaldolase/transketo transcriptional |                 |
|----------------------|-----------------|--------------------------------------------------|-----------------|-----------------------|--------------------------------------|-----------------|
|                      |                 |                                                  |                 |                       |                                      |                 |
| carboxylic esterase  |                 |                                                  | COG0363-COG0647 | COG0363-COG0176       | COG0363-COG1737                      | COG0363-COG2190 |
|                      |                 |                                                  | COG0363-COG1494 | COG0363-COG0021       | COG0363-COG2188                      | COG3386-COG1172 |
|                      |                 |                                                  |                 | COG0363-COG0166       | COG3386-COG1414                      | COG3386-COG1879 |
|                      |                 |                                                  |                 | COG2706-COG0176       |                                      | COG3386-COG1129 |
|                      |                 |                                                  |                 |                       |                                      | COG3386-COG2271 |
|                      |                 |                                                  |                 |                       |                                      |                 |
| deacetylase          |                 |                                                  | COG1820-COG0647 | COG0363-COG0176       | COG1820-COG2188                      | COG1820-COG2190 |
|                      |                 |                                                  | COG0363-COG0647 | COG0363-COG0021       | COG0363-COG1737                      | COG1820-COG3444 |
|                      |                 |                                                  | COG0726-COG1494 | COG0363-COG0166       |                                      | COG1820-COG3716 |
|                      |                 |                                                  |                 | COG4193-COG0176       |                                      | COG1820-COG3715 |
|                      |                 |                                                  |                 |                       |                                      | COG0363-COG2190 |
|                      |                 |                                                  |                 |                       |                                      | COG0726-COG1682 |
|                      |                 |                                                  |                 |                       |                                      |                 |
| decarboxylase        |                 |                                                  | COG0191-COG1494 | COG0191-COG0021       | COG0235-COG1349                      | COG0235-COG1762 |
|                      |                 |                                                  | COG0191-COG0158 | COG0191-COG0176       | COG0235-COG2207                      | COG0235-COG3414 |
|                      |                 |                                                  | COG0191-COG0647 |                       | COG0235-COG1609                      | COG0191-COG1762 |
|                      |                 |                                                  | COG1850-COG0158 |                       | COG0191-COG1349                      | COG0191-COG3414 |
|                      |                 |                                                  | COG0235-COG0647 |                       | COG0800-COG1414                      | COG1830-COG1172 |
|                      |                 |                                                  |                 |                       | COG3684-COG1349                      | COG0269-COG1762 |
|                      |                 |                                                  |                 |                       |                                      | COG0269-COG3414 |
|                      |                 |                                                  |                 |                       |                                      | COG3836-COG2271 |
|                      |                 |                                                  |                 | 0000100 0000050       | 6000110 0000000                      |                 |
| denydratase          |                 | COG1086-COG1210                                  |                 | COG0129-COG3959       | COG0148-COG2390                      | COG2/21-COG22/1 |
|                      |                 | COG0129-COG0448                                  |                 | COG0129-COG0166       | COG0129-COG1/3/                      | COG0129-COG2814 |
|                      |                 |                                                  |                 | COG0129-COG3958       |                                      |                 |
|                      |                 |                                                  |                 | COG0148-COG0166       |                                      |                 |
|                      |                 |                                                  |                 | COG2721-COG0176       |                                      |                 |
| debudrogenace O      |                 |                                                  |                 | COC0057 COC0021       | COC0057 COC2200                      | COC0057 COC2914 |
| uenyur ogenase-O     |                 |                                                  |                 | COC0057-COG0021       | COC0057-COG2390                      | COC0057-COC2814 |
|                      |                 |                                                  |                 | 000037-0000170        | 000037-0000743                       | 00003/-00022/1  |
|                      |                 |                                                  |                 |                       |                                      |                 |
|                      |                 |                                                  |                 |                       |                                      |                 |
| dehydrogenase-OH     | COG0451-COG1109 | COG1091-COG1209                                  | COG0364-COG0158 | COG0364-COG0176       | COG0364-COG1737                      | COG0246-COG4668 |
|                      | COG0362-COG1109 | COG0451-COG1208                                  | COG0362-COG1494 | COG0364-COG0021       | COG0451-COG2207                      | COG0246-COG2213 |
|                      |                 |                                                  | COG3429-COG0158 | COG3429-COG0176       | COG0451-COG0745                      | COG0246-COG2271 |
|                      |                 |                                                  | COG0451-COG1494 |                       | COG0451-COG1555                      | COG0451-COG2814 |
|                      |                 |                                                  | COG0451-COG0483 |                       | COG0246-COG3711                      | COG0451-COG2271 |
|                      |                 |                                                  | COG4993-COG1877 |                       | COG0246-COG2390                      |                 |
|                      |                 |                                                  |                 |                       | COG0246-COG1609                      |                 |
|                      |                 |                                                  |                 |                       |                                      |                 |
| epimerase            | COG0451-COG1109 | COG1898-COG1209                                  | COG0036-COG1494 | COG0036-COG0021       | COG0235-COG1349                      | COG0235-COG1762 |
|                      | COG1898-COG1109 | COG0451-COG1208                                  | COG0036-COG0158 | COG0036-COG0176       | COG0235-COG2207                      | COG0235-COG3414 |
|                      |                 |                                                  | COG0451-COG1494 | COG0451-COG3959       | COG0235-COG1609                      | COG0451-COG2814 |
|                      |                 |                                                  | COG0451-COG0483 | COG0451-COG3958       | COG0235-COG3711                      | COG3623-COG3414 |
|                      |                 |                                                  |                 | COG0235-COG0021       | COG0451-COG2207                      |                 |
|                      |                 |                                                  |                 | COG0235-COG0176       | COG0451-COG0745                      |                 |
|                      |                 |                                                  |                 | COG3623-COG0021       | COG3010-COG1737                      |                 |
|                      |                 |                                                  |                 |                       | COG2017-COG1609                      |                 |
|                      |                 |                                                  |                 |                       | COG4154-COG1349                      |                 |

| Функциональный класс        | mutase          | nucleotydiltransferase | nhosnhatase     | Transaldolase/transketolase | transcriptional  | transport       |
|-----------------------------|-----------------|------------------------|-----------------|-----------------------------|------------------|-----------------|
| alucacidaca                 | COC0266 COC2201 |                        | COC2207 COC1077 |                             |                  |                 |
| grycosiuase                 | COG0300-COG3281 | COG0290-COG0448        | COG3387-COG1877 | COG0290-COG0100             | COG0300-COG1009  | COG0300-COG11/5 |
|                             | COG0296-COG3281 | COG0058-COG0448        | COG0058-COG0158 | COG0058-COG0166             | COG1621-COG1609  | COG2723-COG1455 |
|                             | COG1523-COG3281 | COG1523-COG0448        |                 | COG3387-COG0176             | COG2723-COG1609  | COG2723-COG1447 |
|                             |                 |                        |                 | COG3387-COG0021             | COG2723-COG3711  |                 |
|                             |                 |                        |                 | COG1449-COG0166             | COG3250-COG1609  |                 |
|                             |                 |                        |                 | COG1640-COG0166             | COG1486-COG2207  |                 |
|                             |                 |                        |                 | COG1640-COG0176             |                  |                 |
|                             |                 |                        |                 | COG0366-COG0166             |                  |                 |
| glycosyltransferase         | COG0438-COG1109 | COG0297-COG0448        | COG0380-COG1877 | COG0438-COG0166             | COG0438-COG0745  | COG0438-COG1134 |
| <u>a</u> ,                  | COG0463-COG1109 | COG0438-COG0836        | COG0438-COG0483 | COG0297-COG0166             | COG0463-COG0745  | COG0438-COG1682 |
|                             | course course   |                        |                 | COC0463-COC3958             | COG1215-COG0745  | COG0438-COG2814 |
|                             |                 |                        |                 | COC0463-COC3050             | 0001213-0000/43  | COC1216 COC1124 |
|                             |                 |                        |                 | COG0403-COG03535            |                  | COG1210-COG1134 |
|                             |                 |                        |                 | CUG0463-CUG0021             |                  | COG1216-COG1682 |
|                             |                 |                        |                 |                             |                  | COG0463-COG1134 |
|                             |                 |                        |                 |                             |                  | COG0463-COG1682 |
|                             |                 |                        |                 |                             |                  | COG0463-COG2814 |
|                             |                 |                        |                 |                             |                  |                 |
| isomerase                   | COG0836-COG1109 | COG0836-COG1209        | COG0149-COG1494 | COG0176-COG0021             | COG1082-COG1609  | COG1082-COG1879 |
|                             | COG0149-COG1109 | COG0279-COG1208        | COG0176-COG1494 | COG0176-COG0166             | COG0149-COG2390  | COG1082-COG1172 |
|                             |                 | COC0166-COC1210        | COG1082-COG0483 | COG0126-COG0021             |                  | COG1082-COG1129 |
|                             |                 | COC0166 COC0448        | 0001002 0000400 | COC0166 COC0176             |                  | COC1082 COC0395 |
|                             |                 | COC0022 COC0448        |                 | 000100-000170               |                  | COG1002-COG0333 |
|                             |                 | COG0055-COG0448        |                 |                             |                  | COG1082-COG1175 |
|                             |                 | COG1482-COG0836        |                 |                             |                  | COG1082-COG1653 |
|                             |                 |                        |                 |                             |                  | COG1082-COG2814 |
|                             |                 |                        |                 |                             |                  | COG0698-COG1447 |
|                             |                 |                        |                 |                             |                  |                 |
| kinase                      | COG2971-COG1109 | COG0153-COG4468        | COG1940-COG0647 | COG0126-COG0021             | COG0524-COG1609  | COG0524-COG1879 |
|                             | COG0063-COG1109 | COG3265-COG0448        | COG1940-COG0483 | COG0469-COG0021             | COG1105-COG1349  | COG0524-COG1129 |
|                             | COG0524-COG1109 |                        | COG0061-COG0647 |                             |                  | COG0524-COG1172 |
|                             | COC1940-COC1109 |                        | COG1070-COG0647 |                             |                  | COC1070-COC1172 |
|                             | COC0152 COC1100 |                        | COG10/0-COG004/ |                             |                  | 0001070-0001172 |
|                             | COG0155-COG1109 | 6061100 6060836        |                 | COC1100 COC0166             | COC2512 COC2020  | 6063513 6063814 |
| mutase                      | COGII09-COGII09 | COG1109-COG0836        |                 | COG1109-COG0166             | COG2513-COG3829  | 002515-002814   |
|                             | COG2513-COG2513 | COG1109-COG1210        |                 | COG1109-COG3958             | COG1109-COG0745  | COG1109-COG2814 |
|                             |                 |                        |                 |                             |                  | COG1109-COG1762 |
|                             |                 |                        |                 |                             |                  |                 |
|                             |                 |                        |                 |                             |                  |                 |
|                             |                 |                        |                 |                             |                  |                 |
|                             |                 |                        |                 |                             |                  |                 |
| nucleosidase                |                 |                        |                 |                             | COG0775-COG0745  | COG0775-COG2814 |
|                             |                 |                        |                 |                             | COG0775-COG1609  | COG0775-COG2271 |
|                             |                 |                        |                 |                             |                  |                 |
| nucleotydiltransferase      |                 | COG0448-COG0448        |                 | COG1210-COG0166             | COG4468-COG1609  | COG1209-COG1134 |
|                             |                 |                        |                 | COG0448-COG0166             | COG0662-COG2207  | COG1209-COG1682 |
|                             |                 |                        |                 | COG0836-COG0176             | COG0448-COG1609  | COG0836-COG1682 |
|                             |                 |                        |                 |                             |                  |                 |
|                             |                 |                        |                 |                             |                  |                 |
|                             |                 |                        |                 |                             |                  |                 |
|                             |                 |                        |                 |                             |                  |                 |
| phosphatase                 |                 |                        |                 | COG1494-COG0176             | COG0483-COG3711  | COG0158-COG1172 |
|                             |                 |                        |                 | COG0158-COG0176             | COG0483-COG1609  | COG0483-COG2814 |
|                             |                 |                        |                 | COG0158-COG0021             | COG0483-COG0745  | COG0647-COG2190 |
|                             |                 |                        |                 |                             | COG0483-COG1396  |                 |
|                             |                 |                        |                 |                             | COG1877-COG1609  |                 |
|                             |                 |                        |                 |                             |                  |                 |
| transaldolase/transketolase |                 | 1                      |                 | COG3959-COG3958             | COG0176-COG3711  | COG0176-COG1762 |
|                             |                 |                        |                 |                             | COG0176-COC1609  | COG0176-COC2814 |
|                             |                 |                        |                 | -                           | COC0176 COC2200  | COC0176 COC1445 |
|                             |                 |                        |                 |                             | COC00170-COG2390 | COC0176 COC1200 |
|                             |                 |                        |                 |                             |                  | CUGU1/6-CUG1299 |
|                             |                 |                        |                 |                             | COG0021-COG1974  | COG0021-COG1762 |
| transcriptional             |                 |                        |                 |                             | COG0745-COG0745  | COG1609-COG1175 |
|                             |                 |                        |                 |                             | COG2197-COG2197  | COG1609-COG1653 |
|                             |                 |                        |                 |                             | COG2204-COG0745  | COG1609-COG0395 |
|                             |                 |                        |                 |                             | COG2204-COG2204  | COG1609-COG1129 |
|                             |                 |                        |                 |                             |                  |                 |
| transport                   |                 | 1                      |                 |                             |                  | COG1653 COG0395 |
|                             |                 |                        |                 |                             |                  | COG0395_COG3839 |
|                             |                 |                        |                 | +                           |                  | COC1652 COC1175 |
|                             |                 |                        |                 |                             |                  |                 |
|                             |                 |                        |                 |                             |                  | COG1593_COG1638 |
|                             |                 |                        |                 |                             |                  | COG0395_COG1175 |
|                             |                 |                        |                 |                             |                  | COG1172_COG1879 |
|                             |                 |                        |                 |                             |                  | COG1638_COG3090 |
|                             |                 |                        |                 |                             |                  | COG1593 COG3090 |
|                             |                 |                        |                 |                             |                  | COG1879 COG1129 |
|                             |                 |                        |                 |                             |                  | COG1175_COG3839 |
|                             |                 |                        |                 | -                           |                  |                 |
|                             |                 |                        |                 |                             |                  | COG1172 COG1053 |
|                             |                 | 1                      |                 |                             |                  | COG1172_COG1129 |
## Приложение Г

Использованные в работе праймеры

| Праймер     | Последовательность            |
|-------------|-------------------------------|
| yihU/V_F    | CGTTCACATCAAAGACGCGA          |
| yihU/V_R    | GTCGGTAACCCTTCCACGTA          |
| yihV/W_F    | TCAACCGGCCTTCAAAGTTG          |
| yihV/W_R    | GCGATCAGCATGAGGAGTTG          |
| yihS/R_F    | AGCTGGATGCGGACAATAAG          |
| yihS/R_R    | GGCATCTCTTCGGGTTTGTG          |
| yihW_RT     | CCGTATTAACGACGCTGGAA          |
| yihW_PCR    | GCCGAGCGTGGGTATATGAA          |
| yihV_RT     | TCATCACCTACGCGACCAAT          |
| yihV_PCR    | TTCGTGTTGCTTGTGTAGGT          |
| yihU_RT     | GGAGTCGCACCTTTGTCTAC          |
| yihU_PCR    | CGCGTTTATCGGTTTAGGAC          |
| yihT_RT     | ATTGTTGATCTACCAGAATCG         |
| yihT_PCR    | CGAAGCCATGCGCATGATGT          |
| yihS_RT     | CCGTGATCAACCAACGAGTA          |
| yihS_PCR    | GGTTTTGGCTGGTTAGGCAA          |
| hns_RT      | ATTTAACGGCAGCAAGGCTATT        |
| hns_PCR     | GAAGTTGAAGAGCGCACTCG          |
| hns_Bgl_263 | AGGGAGATCTCGTAAACACAACTA      |
| hns_Xba     | GTTGTCTAGAATTTTAAGTGCTTCG     |
| CRP_Ndel    | ACCGCATATGGTGCTTGGCAAACCGCAA  |
| CRP Bpu1102 | CCACGCTGAGCGGATTAACGAGTGCCGTA |