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In the 87th volume of this journal, Mr. Helmholtz presents a series of partially new and 

ingenious observations from which he draws the conclusion that the theory of color 

mixing generally accepted since Newton was erroneous in its most essential points, and 

that there are only two prismatic colors, namely yellow and indigo, which yield white 

when mixed. Therefore it may not be superfluous to show how up to a certain point—

namely the proposition that every color has its complementary color, which when mixed 

with it yields white—Newton’s theory of color mixing arises from undeniable facts with 

mathematical evidence, so that this proposition must be regarded as one of the most 

well-founded in physics. I will then show how the positive observations made by 

Helmholtz, instead of testifying against this theory, can rather serve partly to confirm it 

and partly to supplement it. 

Here it will be necessary to break down the color perception of which the eye is 

capable into its factors. First, the eye differentiates between colorless and colored light. 

For colorless light (white, gray), it only distinguishes greater or lesser intensity, and this 

can be specified mathematically. Likewise, for a homogeneous color, we only 

distinguish its greater or lesser intensity. But also for the difference of the individual 

homogeneous colors, we have a mathematically ascertainable measurement, which is 

provided to us most perfectly in the period of oscillation corresponding to each color; 

even popular language has designated this difference in a very fitting way with the 

expression color tone [hereafter translated as hue]. Thus we will be able to distinguish 

two things about a homogeneous color: its hue and its intensity. If you mix a 

homogeneous color with colorless light, the color perception is weakened by this 

admixture. Popular language is rich in terms that are meant to indicate this difference; 

the modifiers: saturated, deep, faint, pale, dull, whitish, which one adds to the color 

names, are meant to represent this relationship. The scientific designation that must be 

substituted for this popular nomenclature arises by itself from the considerations above 

in that every color perception of the type mentioned breaks down into three 

mathematically ascertainable factors: the hue, the color intensity, and the intensity of 

the admixed white. The different hues form a continuous series in such a way that if one 

progresses continuously beginning with one color in this series, the original color is 

finally repeated. In this regard, however, one circumstance should not be left 
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unmentioned, namely the difficulty of obtaining homogeneous red light, which mediates 

the transition between the violet and the red of the ordinary solar spectrum, and which 

can only be produced through a prism under particularly favorable circumstances 

(around noon on sunny summer days; see Poggendorff’s Annals [Annalen der Physik], 

vol. 13, p. 441). This extreme color of the spectrum, which can be understood as 

extreme red or as extreme violet, I will call purple. If we now finally consider an 

arbitrarily composed light, the eye can likewise only distinguish the three factors 

previously mentioned. That is, every perception of light can be imitated by mixing a 

homogeneous color of a certain intensity with colorless light of a certain intensity. 

According to this we have to distinguish three things for each perception of light: the 

intensity of the color, the hue, the intensity of the admixed colorless light. An apparatus 

could easily be constructed by means of which one would be able to specify each color 

according to these three factors. To give an idea of this, think of two white panels of the 

same type, mobile around a hinge, so that the white side of the panels is on the outside 

of the angle formed by the panels, and at the same time there is a divided circle to 

measure this angle. Now let the colored light to be tested fall on one of these panels in 

a plane perpendicular to the axis of rotation; white light falls on the other panel in an 

arbitrary direction of that plane and homogeneous light falls on it in a direction 

perpendicular to the same plane, and the latter is chosen so that it has the same hue as 

the light to be tested. By turning this latter panel around the hinge, one will be able to 

give any desired intensity level to the colorless and the homogeneous light, which is 

scattered by this panel in all directions. By then turning the first panel also, one will be 

able to give the light it scatters any degree of intensity that is less than the intensity of 

light that falls perpendicularly. In this way, if one has only made the comparison lights 

falling on the second panel weak enough, one will necessarily find a position of the 

panels such that both induce the same light perception in an eye that sees them 

simultaneously. Such an apparatus would therefore be sufficient to mathematically 

ascertain all relevant factors. Now of course, the above proposition that the eye can 

directly distinguish only these three factors could be called into question. And it is true 

that direct proof would be difficult to provide, since there is still the possibility that one 

eye, due to its particular organization, might be able to detect differences that another 

eye cannot. For our purposes, however, the fact is entirely sufficient that no observer 

has yet been able to indicate another factor that would determine the perception of 

color, and the language for describing color perceptions only knows these three factors, 

so that we can claim with certainty that only these three factors of color perception have 

been observed until now; and it is only to this assertion that we will return in the proof to 

be mentioned below. 

The second thing we assume is: “If one continuously changes one of the two lights 

to be mixed (while the other remains unchanged), the perception of the mixture also 

changes continuously.” 
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Specifically, we say that light perception changes continuously when the two 

intensities (the intensity of color and that of the admixed colorless light) change 

continuously, and the hue also changes continuously, provided that the intensity of the 

color is not zero. For if the intensity of the color is zero, the light is colorless; and 

therefore one hue can continuously transition into any other hue that is completely 

separate from it as the intensity of the color decreases steadily to zero, namely when 

the intensity of the other hue in turn increases steadily from zero. It hardly needs to be 

mentioned that the case where one or more of the factors determining perception 

remain the same must be included under the concept of continuity, as is customary 

everywhere. As far as the continuous change in hue is concerned, it is generally 

represented by the continuous change in the period of oscillation that determines this 

hue, but with the difference that the color perception of extreme violet in turn 

continuously connects with that of extreme red. In fact, the transition from violet through 

purple to red is just as continuous for the eye as between any two other colors, although 

observations have by no means established the limit at which the same color perception 

recurs with different periods of oscillation. I will designate the transition from red to 

orange, yellow, green, blue, violet, purple back to red as the positive transition, and the 

reverse as the negative. According to this, any colored light A can pass continuously 

into a differently colored light B in three different ways, namely either in such a way that 

the light’s hue gradually assumes all the hues that appear on the positive transition from 

A to B, or all those lying along the negative transition, or finally, by the light becoming 

colorless once or several times during the transition. The principle of continuous 

transition that we have just developed must be regarded as one that is fully justified by 

experience, since an abrupt jump in the phenomena would have to make itself visible 

even to the crudest observations, and no one has observed such a jump until now. 

From these assumptions, the following proposition can be derived with mathematical 

obviousness: 

“For each color, there is another homogeneous color that, mixed with the original 

color, produces colorless light.” 

Proof. Let a be the hue of the given color. Assuming now that there is no 

homogeneous color that produces colorless light when mixed with the first color, then let 

an arbitrary homogeneous color be assumed whose hue is x and whose intensity is y. If 

one first lets y steadily increase from zero until the intensity of the color a disappears 

against it, while x remains constant, the mixture will change continuously, and since it 

should never give colorless light according to the assumption, its hue will also change 

continuously, that is, since the mixture initially has the hue a and finally has the hue x, it 

will continuously transition from a to x. This transition can be positive or negative. 

Whether the one or the other is the case will depend on the hue x. If one assumes the 

hue x differs infinitesimally little from a, but towards the positive transition side, that 

transition will also be positive. Because if it were negative, then with the increase in 
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intensity y, all hues except those of a would have to emerge differing infinitesimally little, 

that is, hues that are quite different from a; let y be such an intensity at which a hue very 

different from a would emerge. Now it is clear that the color whose hue is a and whose 

intensity is y, when mixed with a, produces the hue a, while the color whose hue is x 

and whose intensity is y yields a completely different hue; but when the intensity y is the 

same, these two colors mixed with a have two infinitesimally closely bordering hues, 

that is, those two colors mixed with a transition continuously into each other, therefore 

(according to the second proposition) the mixture must also change continuously, 

including its hue; this was meant to be entirely different, however. Therefore the 

assumption that the transition from a to x should be negative leads to contradictions, 

that is, it is necessarily positive. For the same reason, if x, starting with a, is distant to 

an infinitesimally small degree on the negative side, a negative transition from a to x will 

occur. If one lets the hue x, beginning with a, continuously change toward the positive 

side so that it traverses the whole range of colors until it returns to a, then the 

associated transition of the mixture that is caused each time by the increase of y 

necessarily changes its sign somewhere, since it is initially positive and finally negative. 

Let a’ be a hue at which this change occurs so that the transition before x reaches this 

hue is positive, and as soon as it has surpassed it is negative. Now if the hue x goes 

through this hue a’ continuously, then at each value of the intensity y, the hue of the 

mixture must change continuously, and thus all the hues that arise by increasing the 

intensity y in both cases (if x lies infinitesimally close to a’ to the right, or to the left) are 

infinitesimally close to each other. But this is impossible because the ones are on the 

positive transition, the others on the negative transition from a to a’. Thus the 

assumption that there is no homogeneous color for a that when mixed with it yields 

white leads to a contradiction. That means that for every color there is a homogeneous 

color that when mixed with it yields white. Which was to be shown. 

I have chosen the indirect form of proof because it is the easiest way to achieve the 

greatest possible rigor without digressions. Incidentally, it is clear that this indirect form 

of proof also includes the direct assertion that the color a’, where the type of transition 

changes, is the one that when mixed with a at some level of intensity yields colorless 

light. 

If we now examine Helmholtz’s experiments, what emerges from them, at least 

approximately, is the color that is (along with some given color) capable of producing 

colorless light. For yellow, according to Helmholtz, this is indigo. This result is by no 

means as different from Newton’s theory of color mixing as it seems at first glance. 

Helmholtz more precisely specified the two colors that, according to him, yield white: the 

yellow lies between the Fraunhofer lines D and E, and to be precise, about three times 

as far from E as from D. The indigo, however, lies toward G as measured from the 

midpoint between the lines F and G, so that any indigo that lies between the specified 

limits along with any yellow that is in the vicinity of the indicated point yields white. The 
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comparison with Newton’s rule of color mixing is made more difficult by the fact that the 

color names do not have the same meaning among different observers, as one can 

easily see by comparing the descriptions of the colors that are said to lie between the 

various Fraunhofer lines in different textbooks and treatises. Newton describes the 

position of the boundaries between any two of his colors exactly as they were shown in 

the spectrum of his prism; he also specifies the mean index of refraction and the 

dispersion ratio of this prism, so that all elements are present to determine the position 

of the Newtonian color boundaries between the Fraunhofer lines as precisely as the 

Newtonian specifications themselves are sufficient. According to this principle, by 

comparing the Fraunhofer and Newtonian measurements, and assuming that Newton’s 

initial red and his final violet coincide with the Fraunhofer lines B and H, I found that 

Newton’s initial orange (that is, the border between red and orange) lies between the 

lines C and D, distant from C and D in the ratio of 7:6; his initial yellow is located at D 

(distant from D in the direction of E by 1/11 of the interval DE); his initial green is located 

at E (distant from E by 1/11 ED in the direction of D); his initial blue is located at F 

(distant from F by 1/14 FG in the direction of G); his initial indigo lies between F and G, 

distant from F and G in the ratio of 5:3; his initial violet is in G.  

 
Figure 16 Plate 1.  

(Figure 2 in Macadam, D. L. (1970). Sources of Color Science: Selected and Ed. by 

David L. Macadam. MIT Press. P. 58.) 

 

To be sure, there is something arbitrary about the assumption that the boundaries of 

the Newtonian spectrum coincide with the lines B and H; but one also arrives at the 

same result if one assumes that the colors with the mean refractivity coincide for 

Fraunhofer and Newton. If one now constructs Newton’s color wheel according to the 

rule given in his Opticks (Lib. I. pars II, prop. VI), and if one takes into it the positions of 

the Fraunhofer lines as they are indicated above (see Figure 16 Plate I in original 

source), the result is that according to the Newtonian rule, the yellow specified by 
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Helmholtz yields white with an indigo that lies between the Fraunhofer lines F and G 

and that is distant from F and G by the ratio of 15:2. In the figure, these colors are 

indicated by the dotted line connecting them. Thus this indigo still falls within the color 

boundaries between which the complementary colors of yellow lie, according to 

Helmholtz. One sees therefore that the above observation by Helmholtz essentially 

agrees with the result of Newton’s experiments. For the other colors, however, Mr. 

Helmholtz denies the possibility of obtaining white from them through the mixture of two 

colors. But if we examine any of his series of experiments, for example the one about 

the mixing of red with the other colors, it easily yields the complementary color each 

time. According to him, red along with orange, yellow, and green provide the middle 

hues, which in this sequence, that is, beginning with red, are on the positive side 

according to our designation. So for example, according to him, red mixed with green 

produces a pale yellow, which transitions into red when red is predominant via orange, 

while when green is predominant it transitions via yellow-green into green. Likewise, red 

along with violet, indigo blue, and sky blue provide the intermediary hues in this series, 

which, beginning with red, are on the negative side according to our designation. In 

particular, according to him, red mixed with sky blue yields a whitish violet, which 

transitions into rose-red and carmine red when red is predominant. Therefore, according 

to the proposition demonstrated above, the complementary color of red must lie 

between green and sky blue, that is, it must be a shade of blue-green. Now it is true that 

Helmholtz says that when red is mixed with green-blue hues, a flesh-colored mixture is 

produced; but how this flesh color transitions into this when blue-green is predominant, 

as clearly must be the case, is not said. So a gap remains here. Moreover, flesh color is 

nothing but a red mixed with much white, and no other transition from this to blue-green 

is conceivable other than the one where the red weakens more and more until it 

disappears under the admixed white, and then the blue-green gradually emerges from 

this white (or gray); in short, the normal transition via colorless light is taking place here. 

The same is true of the other series of experiments. The table of complementary colors 

derived from them would be as follows: 

 

Yellow,  yellow-green,  green,  green-blue,  sky blue,  indigo, 

Indigo,  violet,    purple,  red,   orange,  yellow,  

 

where the complementary colors that belong together are located below each other. 

So far I have tried to make do with as few premises as possible. In order to derive 

the fundamental theorem of color mixing, I will now add a third premise to the previous 

two, namely: 

“that two colors, each of which has an unvarying hue, unvarying color intensity and 

unvarying intensity of admixed white, also yield an unvarying color mixture, regardless 

of which homogeneous colors they are composed of.” 
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This premise also seems to be sufficiently justified by the observations made so far. For 

the fact that the mixture of colored powders yields different results than when, instead of 

mixing the powders themselves, one mixes the light emanating from them, cannot 

provide any grounds for objection, especially since Helmholtz discovered the reason for 

this deviation. 

Now let a be a homogeneous color, and let a’ be the homogeneous color that yields 

white when mixed with a. For the sake of clarity, one may imagine a and a’ represented 

by two equally long but oppositely directed line segments (Figure 17, Plate I) that 

originate from one point. Furthermore, let b be a color that, when mixed with a, yields as 

much white as when mixed with a’; and in order to express this equal relationship of b to 

a and to a’, let b be represented by a line segment perpendicular to a and a’. 

Furthermore, let the intensity of the color b be chosen so that if b’ is the color that yields 

white along with b, the intensity of the light produced by this mixture is equal to the 

intensity of the light produced by the mixture of a and a’. Let this be represented 

graphically by making the line segment that expresses the color b the same length as a 

and a’, while the complementary color of b is represented by the line segment b’ with 

the same length as b but of opposite direction. Let us assume that of the two colors b 

and b’, the color b is the one that, beginning from a, lies on the positive transition side. It 

is evident that if the color a is given, then a’, b, b’ can be found by observation. If, for 

example, a is yellow, then a’ is indigo; the various shades of green and blue lie on the 

positive transition from a to a’; mixed with yellow (a), green-yellow yields a very small 

admixture of white, while mixed with indigo (a’), it yields a very significant admixture of 

white. Beginning from green-yellow, if one proceeds on the positive side, the admixture 

of white will gradually increase when mixed with yellow, and decrease when mixed with 

indigo. So a hue will lie along the transition that, when mixed with the yellow, yields as 

much white as when mixed with indigo. If for example this is green, then b will be green 

and b’ will be purple. It is now evident that by mixing two of these four colors at a time, 

one must obtain all the hues. For all intensity levels of the homogeneous colors to be 

mixed a and b, b and a’, a’ and b’, b’ and a, these hues are to be found by observation. 

We assume that the intensities of the two colors to be mixed are represented by the 

lengths of the associated line segments so that if one color has the hue a, for example, 

and its intensity has the same ratio to that of a as the ratio of m to 1, then let that color 

be represented by a line segment that has the same direction as a but has m times the 

length. After the two colors to be mixed have been geometrically represented in this 

way, let the geometric sum be constructed from these line segments – that is, the 

diagonal of the parallelogram that has these two line segments as sides1 – and let it be 

stipulated that this sum or diagonal is meant to represent the color of the mixture, 

 
1 The concept of this geometric sum was first developed by me in my Ausdehnungslehre [extension 
theory] (Leipzig 1844) and by Möbius in his Mechanik des Himmels [mechanics of the heavens] (Leipzig 
1843). 
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namely its direction represents the hue and its length represents the intensity of the 

color. 

 
Figure 17 Plate 1. 

Once this has been done, the hue and intensity of any mixture of colors can be found 

from now on through simple construction. To be precise, one only needs to specify the 

line segments that represent the hue and the color intensity of the colors to be mixed, 

and then add them geometrically, that is, combine them like forces, and then the 

geometric sum (the resultant of those forces) represents the hue and the color intensity 

of the mixture. It follows directly from this that the order in which one adds geometrically 

(combines the forces) is unimportant to the result. In fact, let the colors represented by 

the line segments a, b, a’, b’ be taken as a basis according to the above specification, 

and let αa be understood (when α is positive) as a color that has the hue a and whose 

color intensity has the ratio to that of a like α has to 1, or (when α is negative) let αa be 

understood as a color that has the hue of the complementary color a’ and whose color 

intensity in turn has the ratio to that of a’ like α has to 1. Let the same be true of the 

second color taken as a basis b and its complementary color b’. Of the two colors e and 

e1 whose color when mixed one is seeking, if the one can be represented by the mixture 

of colors αa and βb and the other by the mixture of the colors α1a and ßb1, then (always 

irrespective of the admixed white) the mixture of c and c1 can be represented as the 

mixture of the four colors αa, βb, α1a, β1b. But αa mixed with α1a yields (α + α1)a and βb 

mixed with β1b yields (β + β1)b. Thus the mixture of c and c1 can also be represented by 

the mixture of the two colors (α + α1)a and (β + β1)b. Since these latter ones, however, 

have the hues taken as a basis a, b or a’, b’, their mixture is represented by the 

geometric sum of the line segments, that is, by the line segment (α + α1)a + (β + β1)b, 

that is, by (αa + βb) + (α1a + β1b), that is, by the geometric sum of two line segments 

that, taken individually, represent the colors to be mixed. 

We can express this law, which necessarily follows from the three basis 
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assumptions, and which only requires a simple but complete series of observations to 

determine the color series, in another way. Specifically, if one draws a circle around the 

origin point of the line segments with radius a, and instead of each line segment draws 

the point at which it meets the circumference, provided with a weight that is proportional 

to the length of the line segment, then given two colors, their color mixture can be found 

in the following way: One represents each of the colors to be mixed by this type of 

weighted point on the circumference, specifically so that the associated radius indicates 

the hue, and the associated weight expresses the color intensity, and then one 

determines the center of gravity. Then the line segment drawn from the midpoint to this 

center of gravity indicates the hue and, after it is multiplied by the sum of the weights, 

the color intensity as well. The identity of this determination with the earlier one can 

easily be seen from the following construction of the center of gravity, which has been 

proven in my extension theory: One finds the center of gravity of the points A, B, C..., 

which are respectively provided with the weights α, β, γ..., by drawing from an arbitrary 

point O the line segments OA, OB, OC..., multiplying them by α, β, γ,... (that is, 

changing their length in the ratio of 1: α, 1: β, 1 : γ... without changing their direction) 

and forming the geometric sum from the line segments thus obtained, and then dividing 

this by α + β + γ +..., and then the end point of the line segment thus obtained is the 

center of gravity that is sought. 

Finally, as far as the admixture of colorless light is concerned, an additional premise 

is necessary. It is simplest to assume: 

“that the total light intensity of the mixture is the sum of the intensities of the mixed 

lights.” 

In this regard, by the total light intensity, I mean the sum 

of the intensity of the color (as I have specified it above) 

and the intensity of the admixed white. In doing so, I do 

not set the intensity of the white or of each individual 

color proportional to the square of the oscillation 

intensity, but to the oscillation intensity itself, so that 

when two white lights or lights of the same color are 

mixed, the intensity of the mixture is the sum of the 

intensities of the mixed lights. This fourth premise is not 

to be regarded as so well-founded as the earlier ones, 

although it certainly emerges as the most probable due 

to theoretical considerations. To draw inferences from 

this hypothesis, we will set the intensity of the color represented by the line segment a 

equal to 1 and assume that the various homogeneous colors whose intensity is 1 are 

represented by points on the circumference so that the weight of these points, in 

accordance with the above, must also be set equal to 1. Now let (Figure 18 Plate 1) A 

and B be two points on the circumference that thus represent homogeneous colors of 

 

Figure 18 Plate 1 
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intensity 1. Now if the colors αA and βB are mixed, that is, two homogeneous colors 

whose intensities are α and β and whose hues are A and B, then the sum of the 

intensities is α + β. In order to determine the color of the mixture, in accordance with the 

above, we must seek the center of gravity of the points A and B provided with the 

weights α and β. If the center of gravity is C and the center of the circle is O, then if the 

radius of the circle is set to 1, in accordance with the above, the color intensity is equal 

to (α + β)OC. Let the point where OC extended meets the circumference be D, and then 

the total intensity is α + β, or,  

since the radius is set to 1, (α + β)OD. According to the stipulated premise, this total 

intensity should be equal to the intensity of the color plus the intensity of the admixed 

white, thus the latter is equal to (α + β)OD - (α + β)OC, that is, = (α + β)CD. Thus the 

intensity of the admixed white is equal to the distance of the center of gravity from the 

circumference multiplied by the sum of the weights. From this it then further follows that 

if one constantly thinks of the entire mass as united in the center of gravity (in which 

case one calls the center of gravity thus provided with such a weight the geometric sum 

of the individual points with their weights2), then every perception of light is precisely 

represented according to its three factors by a point with a certain weight. The direction 

in which this point lies from the center, or also the point at which this direction meets the 

circumference, represents the hue, while the weight of the point represents the total 

light intensity; the distance from the center multiplied by this weight represents the 

intensity of the color, and the distance from the circumference multiplied by the weight 

represents the intensity of the admixed white. If by the color saturation of a light we 

understand the intensity of its color divided by the total light intensity, then the color  

saturation is represented by the simple distance of the point from the center. If one has 

represented two or more colors to be mixed in this way, then the mixture is completely 

represented by the geometric sum of the weighted points representing the individual 

colors. It can be seen that this law, derived here in a purely mathematical way from four 

sufficiently well-founded premises, agrees in its essential features with Newton’s 

empirical rule as he presents it at the place indicated. But the way in which Newton 

distributes the homogeneous colors around the circumference of his circle requires a 

thorough revision, for which the experiments of Mr. Helmholtz have made only the first 

beginning. Only when there is sufficient light on this can one venture to answer the 

interesting question concerning the law by which the vibrations of the ether belonging to 

the various colors combine in the nerves or in the sensory apparatus to form simple 

color perceptions, a question on whose answer the idea of different colors and colorless 

light substantially depends. 

 

Stettin, 19 February 1853. 

Translation by Dr. Jonathan Green, University of North Dakota. 

 
2 See my Ausdehnungslehre [extension theory] and Möbius’ Barycentric Calculus. 


