ОТЗЫВ

Официального оппонента на диссертационную работу Иголкиной Анны Андреевны «Реконструкция эволюционной истории нута с применением моделирования сложных событий смешений и композиционного анализа данных» представленную на соискание ученой степени кандидата биологических наук по специальности 1.5.8 «Математическая биология, биоинформатика»

Актуальность темы.

На современном этапе исследований оценка биологического разнообразия изучаемых объектов является исключительно важным элементом анализа, поскольку позволяет получить наиболее полное представление о предмете исследования. Эти данные позволяют оценивать экологическую пластичность видов, проводить филогенетические и филогеографические исследования, вскрывать потенциал коллекций генетических ресурсов для решения прикладных задач. На фоне бурного развития методов молекулярной биологии и генетики и накопления больших массивов фактического материала постоянно имеется потребность совершенствования методов анализа этих данных, чему и посвящена представленная работа.

В качестве объекта исследования выбрана одна из древнейших зернобобовых культур - нут. Считается, что доместикация нута произошла более семи тысяч лет назад. Его активно возделывают в странах Западной и Средней Азии, Северной Африки, Северной Америки. На территории России нут может произрастать в южных регионах.

Семена нута содержат около 20—30 % белка, 50—60 % углеводов, до 7 % жиров, служат источником цинка, фолиевой кислоты, то есть являются ценным продуктом для пищевой промышленности.

Длительная история возделывания нута в различных странах привела к наличию в них разнообразных аборигенных сортов, которые являются ценным материалом для генетических исследований.

Помимо этого нут является диплоидным самоопыляющимся растением, а значит удобен для разработки новых методик оценки генетического разнообразия популяций.

Все сказанное выше свидетельствует о том, что работа Иголкиной А.А. является крайне актуальной.

Структура и содержание диссертации.

Диссертационная работа изложена на 143 страницах, содержит 4 таблицы, иллюстрирована 32 рисунками и состоит из введения, обзора литературы, трех глав, описывающих экспериментальную работу, заключения, списка использованной литературы, включающего 97 источников, в том числе 97 ссылок на английском языке, списка рисунков и таблиц

Название работы в целом соответствует ее содержанию. Во введении обосновывается актуальность темы исследования, его научная новизна, практическая значимость, формулируются цели и задачи работы, положения, выносимые на защиту.

В обзоре литературы автор дает общее представление о понятиях "генетическая структура" и "географическая организация популяций", методах реконструкции эволюционной истории популяций, моделях генетического дрейфа, особенностях анализа композиционных данных. Обзор завершается обобщением информации методах оценки структуры популяций в пространстве и времени и существующих пробелах в методологии ее анализа.

Три последующие главы направлены на решение проблем, очерченных в заключительной части обзора. В Главе 2 представлено описание двух новых разработанных автором моделей - popdisp и migadmi, программно реализованных и размещенных на платформе Github.

Глава 3 начинается с биологического описания нута и его популяционных исследований, завершается представлением первичных данных для анализа.

В Главе 4 представлены результаты анализа эволюционной истории нута с использованием двух разработанных моделей — popdisp и migadmi.

Выводы, представленные в разделе Заключение, соответствуют полученным результатам.

Новизна полученных результатов и выводов.

В представленной работе впервые разработаны модели – popdisp – для оценки частот аллелей, позволяющая учитывать ковариационную связь образцов в популяции, и migadmi – для реконструкции эволюционной истории популяций,

Идентифицированы новые генетико-географические популяции нута: Ливанская, западно-Среднеазиатская, а также две отдельные Средиземноморские популяции, определено происхождение двух смешанных популяций нута типа дези (Эфиопской и западно-Среднеазиатской), а также на основе математического моделирования высказана идея о турецком происхождение нута типа кабули.

Практическая и теоретическая значимость.

Теоретическая значимость диссертации связана с разработкой методологии для анализа биоразнообразия и структур популяций различных видов живых организмов.

Практическая значимость работы заключается в создании программных продуктов, которые доступны для использования широкого круга исследователей, а также в получении новых данных о биоразнообразии и филогеографии нута.

Обоснованность научных положений и выводов, сформулированных в диссертации.

Научные положения диссертации и представленные в работе выводы являются обоснованными и достоверными. Выводы согласуются с результатами исследования, которые в свою очередь получены в ходе разработки и применения новых методов биоинформатического анализа. Достоверность результатов подтверждается публикациями по теме диссертации в ведущих научных изданиях.

Замечания и комментарии.

1. Поскольку работа выполнена на стыке двух дисциплин – биологии и математики, следовало бы более внимательно относиться к понятийному аппарату обеих наук, чтобы избежать искажения смысла всей работы. Самый главный вопрос, который так и остался для меня не до конца ясным, что понимает автор под термином «аллель». С одной стороны, в представленных методах анализа популяций технически возможно использовать на входе самые разные данные — от

морфологических до молекулярных. С другой стороны, от адекватного выбора первичных данных будет сильно зависеть результат. Из текста складывается впечатление, что анализировали не аллели, а отдельные SNP. Поскольку определения понятия аллели в диссертации не приводится, по этому вопросу необходимы пояснения. Аллель - это более протяженная структура, чем 1 нуклеотид и отбор идет в отношении целых аллелей. При этом схожие функционально аллели могут различаться наличием и количеством SNP в них, что бывает полезно при описании популяционной структуры.

- 2. В описании материала следовало бы четко указать плоидность исследуемого объекта, а также биологию его размножения. Нут самоопылитель, соответственно эта особенность будет влиять на структуру его популяций. Данная работа была посвящена исследованию биоразнообразия в пределах диплоидного самоопыляемого вида. В связи с этим обстоятельством возникает вопрос. Какие трудности могли бы возникнуть при анализе перекрестно опыляемых полиплоидных видов. Какие могут быть пути их решения.
- 3. К сожалению, в тексте работы многократно встречаются неудачные выражения, такие как «мононуклеотидные полиморфизмы» (в русскоязычной литературе слово «полиморфизм» употребляется в единственном числе, правильнее было бы написать однонуклеотидные различия), «результаты программы» (корректнее результаты работы программы).

Замечания и вопросы носят дискуссионный характер и не влияют на высокую оценку работы.

Заключение. Диссертационная работа А. А. Иголкиной «Реконструкция эволюционной истории нута с применением моделирования сложных событий смешений и композиционного анализа данных» выполнена на высоком научном и методическом уровне и соответствует требованиям по актуальности, степени обоснованности научных положений и выводов, их достоверности, практической значимости и новизне, установленным пунктами 9-14 "Положения о присуждении ученых степеней" (утверждено Постановлением Правительства РФ от 24.09.2013 г. № 842 с изменениями Постановлений Правительства РФ от: 21.04.2016 г. № 335; 02.08.2016 г. № 748; от 29.05.2017 г. № 650;

20.03.2021 г. № 426; 11.09.2021 № 1539; 26.09.2022 г. № 1690), предъявляемым к диссертациям на соискание ученой степени кандидата наук. Учитывая наличие достаточного числа публикаций в рецензируемых научных изданиях первого квартиля и научную значимость полученных результатов, автор диссертационной работы заслуживает присуждения степени кандидата биологических наук по специальности 1.5.8 — "Математическая биология, биоинформатика".

Официальный оппонент:

Профессор кафедры генетики и биотехнологии Федерального государственного бюджетного образовательного учреждения высшего образования «Санкт-Петербургский государственный университет», доктор биологических наук по специальности 03.02.07 - генетика

Матвеева Татьяна Валерьевна

Контактные данные:

199034, Санкт-Петербург, Университетская наб., 7/9, Федеральное государственное бюджетное Образовательное учреждение высшего образования «Санкт-Петербургский государственный университет»,

In francy

тел. + 7 (812) 36 36 105 e-mail: t.v.matveeva@spbu.ru

https://pureportal.spbu.ru/ru/persons/--(1a732895-31bc-46c1-81d9-f6652a9dbab5).html

личную додпись Mas beeban T. В заверя ю

ЗАМЕСТИТЕЛЬ НАЧАЛЬНИКА ПРАВНЕНИЯ КАДРОВ СПБГУ Н. К. КОРЕЛЬСКАЯ