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SUMMARY


The method of investigating dichromatic vision by the use of all the three colour co-ordinates is described. Emphasis is placed on the essential advantages of this method in comparison with the use of only two colour locus co-ordinates in the chromaticity diagram. "Deficient" colours of protanopes and deuteranopes are determined and the simple procedure of direct experimental test of the correctness of these determinations is explained. Spectral receptor sensitivity curves are calculated both for the case of the correctness of the "fall-out" hypothesis for all the three types of dichromasy, and for the case when the "fusion" hypothesis for deuteranopia is adopted. It is pointed out that there are no reasons for the adoption of the latter hypothesis.





GENERAL


DICHROMATIC vision complies with the following:


Any match made by a normal trichromat is also acceptable to a dichromat;


Grassman's additivity law holds true for dichromats; it reads: "If any two radiations �EMBED Equation.3���and �EMBED Equation.3��� are visually indiscriminable, the radiations �EMBED Equation.3���and �EMBED Equation.3��� will also be visually indiscriminable, whatever the nature of the radiation �EMBED Equation.3��� added to the two radiations�.


It is therefore possible to maintain, that if �EMBED Equation.3��� and �EMBED Equation.3��� are some two colours different to a trichromat, but indiscriminable by a dichromat, then a dichromat will always accept the following colour equalities:


                                                   d


�EMBED Equation.3���                                            (1)


where B is an arbitrary colour, and k is an arbitrary number.


Here and later we regard colours as vector quantities of three dimensions and designate them by bold type, as used for vectors in mathematics. Scalar quantities are printed in ordinary type. Colour equations should always be understood to be ordinary vectorial equalities, but by no means to be "unit equations" as introduced by some authors in colorimetry. The letter “d” above the sign of equality indicates that the corresponding equality refers only to a dichromat.


The vectorial equality (1), in which Β and k are variable parameters, is the well-known vectorial equation of a beam of parallel lines in space. Therefore it can be stated, that colours which are located in colour space on parallel lines of a certain direction are indiscriminable by a dichromat. All the other colours are discriminable by him, otherwise he would not be a dichromat, but a monochromat. The direction of the above-mentioned lines is determined by the direction of the vector D, which is the vector-difference of any two colours indiscriminable by the given dichromat.


In a central projection of the colour space on a plane, i. e. in a colour triangle (chromaticity diagram), the lines parallel in space will form, generally speaking, a beam of straight lines intersecting at one point (a perspective view), namely, at that point where the extension of the vector D intersects the plane of projection. If, by chance, the plane of projection is parallel to the vector D, the point of intersection may be at infinity. In this particular case the lines parallel to the vector D in space will be parallel also in the projection plane.


The question as to whether the lines in the colour triangle intersect at one or another finite or infinitely distant point (parallel lines) is, in fact, of no physiological significance and depends entirely on the method of projection of the colour space onto the plane. In a central projection the points at infinity in the plane of projection do not differ in the least from the finite points. The parallelism of the lines has nothing to do with the colours which are assumed to be "the primary physiological colours", as the orientation of the plane of projection has no relation to the physiological interpretation of experimental data.


Some authors (refs. 1, 2), referring to Helmholtz (ref. 3), attach a physiological significance to the parallelism of lines in the colour triangle, which is a sheer misunderstanding, for in the corresponding place (ref. 3 VII pp. l23-125) there is nothing but a mathematical demonstration absolutely similar to our deduction of the formula (1).


For brevity we shall further call the lines in colour space, or in the colour triangle, on which lie the colours indiscriminable to a certain dichromat – "the lines of this dichromat". Vector D, corresponding to the direction of these lines in space, will be called "the deficient" colour of the dichromat.


As shown, all the differences between normal and dichromatic colour equations are detemined entirely by the direction of vector D in colour space, which is given in the equality:


kD = �EMBED Equation.3���					(2)


where A1 and A2 are two colour vectors, corresponding to any two colours, indiscriminated to the given dichromat.


This formula (2) directly indicates the simplest method of dichromatic vision research. It is the same method by which Maxwell determined the deficient colour of one protanope (ref. 4). The same method has also been adopted as the basis of the present experimental investigation.





2. EXPERIMENTAL METHOD


A colour sample (coloured glass) was mounted in a trichromatic colorimeter� in the visual field of the test subject. A normal trichromat matched the sample colour F to a mixture of the three primary colours of the instrument Ar, Ag, Ab: 


F= fr Ar + fg,Ag + fb Ab                                                            (3)


where fr, fg, fb are the readings of the three scales of the instrument.


This equality was acceptable to a dichromat.


Having recorded the readings we sharply changed one of them (the red –fr – in a protanope test, or the green – fg — for a deuteranope). This resulted in a definite match breakdown for the normal trichromat. It was a breakdown also for the dichromat, as the primary colours of the instrument cannot coincide with the deficient colours of dichromats. Therefore the dichromat was asked to re-establish the match, without altering the reading previously changed by the experimenter. The dichromat was always able to do this only by changing the other two mixed primary colours. The match obtained by the dichromat will never be a match to the normal observer. Designating the new readings as �EMBED Equation.3���, �EMBED Equation.3���, �EMBED Equation.3���, the differences dr = fr – �EMBED Equation.3���, dg = fg – �EMBED Equation.3��� and db = fb – �EMBED Equation.3��� will obviously be the components of the difference vector of the two colours indiscriminable to the dichromat, i. e. the components of the deficient colour D, in the primary colour system of the instrument. If the colorimeter is calibrated, it is easy to compute the co-ordinates of the colour D in any other system, for instance, the XYZ system. Then the location of the point D in the colour triangle may be found.


Since it is possible in the experiment to change the corresponding reading arbitrarily, the numbers dr, dg and db can always be obtained sufficiently large, so that the direction of vector D is determined with a fair degree of accuracy. Furthermore, if without changing the initial test field colour F, a dichromat (a deuteranope, for instance) is asked to establish a field match for several different values �EMBED Equation.3���, �EMBED Equation.3���, �EMBED Equation.3��� etc., a number of points of the same straight line in the colour space will be obtained, and by employing the least square method, the direction of the line and consequently that of the deficient colour vector, will be determined with greater precision.


A number of independent determinations of the vector D directions was made for each dichromat, taking for F different colours, i. e. in the colour space a whole range of parallel lines was found. Each line was usually drawn through several points (from 5 to 12 points). Tests were conducted on 10 protanopes and 12 deuteranopes.


Figs. 1 and 2 illustrate the data for one protanope and one deuteranope. These figures represent, instead of a central projection of the colour space (colour triangle), the parallel projections on the plane (Ar, Ag) of the primary colours of the instrument. Such projections are quite common in descriptive geometry and mechanical drawing for representation of spatial objects. A complete picture of spatial correlations is provided by two projections of this kind, of which we made use when the case required.


In parallel projection of space upon a plane, the parallelism is preserved so that it is easy to judge the degree of possible error in determining the direction of the deficient colour vector, by the presented charts. The drawing of such projections is exceedingly simple, as it only requires the plotting on the axes of co-ordinates of the instrument scale readings obtained in the experiment.


This method of determining the deficient colours of dichromats which we used following Maxwell, presents great advantages in comparison with the method of determining the intersection point of the dichromatic lines in the colour triangle employed by Pitt (ref. 1). In our experiments, for one independent colour trial only one dichromat match is required, that is, half the number required to determine the intersection point even of only two lines. Besides that, the precision of our determinations is much greater, especially in tests with deuteranopes, for a small discrepancy in determining the direction of two lines may be a source of considerable error in determining the point of their intersection. We attribute these advantages to the fact that the problem is regarded as a spatial one, and all the three colour co-ordinates are made use of, instead of two, as is the case when solving the problem on a plane.


�








According to our data the deficient colours, R for protanopes and G for deuteranopes, have in the colour space the following component characteristics in the XYZ system:


�EMBED Equation.3��� = 0.75,	�EMBED Equation.3��� = 0.25,	�EMBED Equation.3��� = 0.0;


�EMBED Equation.3��� = – 1.70,	�EMBED Equation.3��� = 0.70,	�EMBED Equation.3��� = 0.0;


The loci of the corresponding points in the colour triangle will be


xr = – 0.75,       yr = 0.25;       qr = + 1.0;


xg =   1.70,      yg = – 0.70,       qg = – 1.0,


where q = �EMBED Equation.3��� is the third co-ordinate of the baricentric system, which, unfortunately, is usually neglected by modern authors.


The signs of the spatial and planar co-ordinates for G are inverse, because the positive direction of vector G does not intersect the plane of the triangle XYZ, and the point G in the triangle XYZ is the trace from the intersection of its plane by the extension of vector G made in the inverse (negative) direction. This is indicated by the sign of the third baricentric co-ordinate


(qg = – 1.0 < 0).


The use of all the three co-ordinates also has the advantage that it facilitates a very simple test of the correctness of the dichromatic deficient colour determination, and of the similarity of this colour for all the dichromats of a given type.


For this purpose, it is most convenient to use the components dr, dg, db of the supposed deficient colour D in the primary colour system of the instrument. Having invited the dichromat observer to establish a colour match acceptable to him, some quantities proportional to dr, dg, db should be added to the readings set by the dichromat on the instrument scales (the "addition" here is algebraic as one, and often, two of the components dr, dg, db d are negative). If the deficient colour is determined correctly, then such alteration of the instrument scale readings should never cause a breakdown of the dichromat's colour-match.


As the values of R and G cited above were obtained by averaging the data of different observers, we tested each of them. The results were positive. In the same way we examined Judd's assumption (ref. 5), according to which:


�EMBED Equation.3��� = 0.0,	�EMBED Equation.3��� = 1.0,	�EMBED Equation.3��� = 0.0.


All deuteranopes tested, without exception, definitely rejected the equalities which they should have accepted if Judd's assumption had been correct. Hence it follows, in particular, that the visibility curve for all the deuteranopes available to us differs essentially from the standard visibility curve for normal trichromats.


The checking procedure cited is exceedingly simple and can be performed in any laboratory equipped with a calibrated trichromatic colorimeter. It is greatly desired that verifications of our data, as well as of other experimental data, should be carried out by different experimenters.





DETERMINATION OF SPECTRAL SENSITIVITY OF RECEPTORS


OF NORMAL TRICHROMATS


As has long ago been pointed out by Helmholtz, it inevitably follows from the theses 1. (a) and (b) that the spectral sensitivity curves for the receptors of dichromats in the most general case can only be linear combinations of spectral sensitivity curves for receptors of normal trichromats:


sd(λ) = a1st1(λ) + ΰ2st2(λ) + ΰ3st3(λ)                                          (4)�


where sd(λ) is the spectral sensitivity curve for any one of the dichromat's receptors, st1(λ), st2(λ), st3(λ) are the three curves for a trichromat, and a1, a2, a3 are numerical factors. The simplest particular case of formula (4) occurs when both receptors of a dichromat just coincide with two of the trichromat's receptors, while the third normal receptor of the dichromat for some reason is not functioning ("falls out"). This kind of dichromatism can evidently be of only three types, and, in fact, there are only three types of dlchromat.


If it is assumed that the "falling out" of a receptor is the cause of dichromatism of all the three types, then the knowledge of the deficient colours for all the three types of dichromatism R, G, Β will suffice to determine the spectral sensitivity of the receptors, which in this case are the same in dichromats and in trichromats. For this purpose three deficient colours R, G, Β should be taken in terms of which the equal-energy spectrum





TABLE  I





λ�
�EMBED Equation.3����
�EMBED Equation.3����
�EMBED Equation.3����
λ�
�EMBED Equation.3����
�EMBED Equation.3����
�EMBED Equation.3����
�
380�
0.0000�
0.0000�
0.0053�
570�
0.9540�
0.9462�
0.002I�
�
390�
0.0001�
0.0001�
0.0201�
580�
0.9394�
0.7672�
0.0017�
�
400�
0.0004�
0.0003�
0,0679�
590�
0.8984�
0.5641�
0.0011�
�
410�
0.0011�
0.0012�
0.2074�
600�
0.8056�
0.3761�
0.0008�
�
420�
0.0034�
0.0044�
0.6456�
610�
0.6893�
0.2280�
0.0003�
�
430�
0,0071�
0.0156�
1.3856�
620�
0.5515�
0.1300ή�
0,0002�
�
440�
0.0136�
0.0358�
1.7471�
630�
0.3990�
0.0697�
0.0000�
�
450�
0.0191�
0.0639�
1.7721�
640�
0.2710�
0.0345�
0.0000�
�
460�
0.0255�
0.1046�
1.6692�
650�
0.1685�
0.0171�
0.0000�
�
470�
0.0469�
0.1548�
1.2876�
060�
0.0971�
0.0080�
0.0000�
�
480�
0.0824�
0.2212�
0.8130�
670�
0.0512�
0.0038�
0,0000�
�
490�
0.1369�
0.3116�
0.4652�
680�
0.0273�
0.0019�
0.0000�
�
500�
0,2271�
0.4621�
0.2720 �
690�
0,0132�
0.0009�
0.0000�
�
510�
0,3717�
0.6945�
0.1582 !�
700�
0.0066�
0,0001�
0.0000�
�
520�
0.5196�
0.9436�
0.0782�
710�
0.0034�
0.0003�
0.0000�
�
530�
0.6986�
1.1010�
0.0422 �
720�
0,0017�
0.0001�
0.0000�
�
540�
0.8089�
1.1651�
0.0203


I�
730�
0.0008�
0.0001�
0.0000�
�
550�
0.8837�
1.1568�
0.0087�
740�
0.0004�
0.0001�
0.0000�
�
560�
0.9310�
1.0836�
0.0039�
750�
0.000l�
0.0000�
0.0000�
�
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Flg. 3. Spectral sensitivity curves for normal trichromat's receptors.


—ξ—ξ—   �EMBED Equation.3��� – in case of correctness of the"fall-out" hypothesis.


—ξ—ξ—   �EMBED Equation.3��� – spectral sensitivity of the "red" receptor in case of assuming the "fusion" hypothesis for explaining deuteranopia.





colours for different values of  λ  should be expressed. In vector form we have:


S = �EMBED Equation.3���,                                                 (5)


�EMBED Equation.3��� are coefficients of the vectorial colour equatlon (5), which when regarded as functions of wavelength will be the desired spectral sensitivity curves for the receptors.


As we had no tritanopes at our disposal, we have determined only R and G. As far as Β is concerned, we made use of the data of other investigators, and some general considerations forming a consistent whole. Thus we have assumed:


�EMBED Equation.3��� = 0.17,	�EMBED Equation.3��� = 0.0,	�EMBED Equation.3��� = 0.83.


The calculated spectral receptor sensitivity curves are seen in Table l and in fig. 3. If the assumed vector B components proved to be incorrect, we would have to add to or subtract from the functions �EMBED Equation.3��� or �EMBED Equation.3��� the function �EMBED Equation.3��� multiplied by a certain coefficient. But in this case curves would be obtained either with two maxima, or with negative ordinate values for some wavelengths. Therefore it is most likely that the vector Β components adopted here are close to the truth.


The calculation of spectral receptor sensitivity curves is also possible if it is assumed that these curves for the dichromat's receptors are combinations of normal curves. It is merely necessary to know the corresponding coefficients of formula (4).


Some authors (refs. 1, 2), adopting the "fall-out" hypothesis for the explanation of protanopia and tritanopia, hold that in deuteranopes one of the receptors is a fusion of the normal "red" and "green" ones. Though these authors do not indicate clearly enough the coefficients of the formula (4), these can be calculated from the components of the "white" radiation, which is of great importance for this hypothesis. But it is necessary to indicate exactly which radiation is considered as "white" ("equally-stimulating" all the three normal receptors).


The authors mentioned computed the spectral sensitivity curves, taking different radiations as the "white" one. In all cases the adoption of the "fusion" hypothesis leads to the red receptor having negative ordinates. Fig. 3 shows such curves adopting as "white" the source Ρ (giving the least negative values). To eliminate negative ordinates it would be necessary to take as "white" a radiation much more "greenish" than the source C.


Even apart from these calculations the above mentioned version of the "fusion" hypothesis seems to have little validity. It does not explain the existence of only three types of dichromatism and presumes for one of the three types, which from a general standpoint are quite analogous to each other, an absolutely different physiological cause than for the other two, though there is no necessity for it.


The arguments for advancing this hypothesis seem from our point of view to be certainly erroneous. The "parallelism" of the lines of dichromats, as has been seen, cannot fundamentally be related to the physiological causes of dichromatism, and in Helmholtz's work, to which reference is usually made, there is no proof of the reverse.


The coincidence of the deuteranopic "visibility curve" with the normal one, suggested by Judd, is refuted by experiment, as we have already mentioned; but even if such coincidence had taken place (if point G should lie on the alychne) it would mean that the "primary green" has zero brightness and its "falling out" is not contrary to the invariability of the visibility curve for deuteranopes. Though at the present time, after the recognition of the non-additivity of heterochromatlc brightness, the question of the linear connection of the visibility curve with spectral receptor sensitivities no longer arises.


In addition we should like to refer to the following experiment which was carried out for testing the "fusion" hypothesis. If the "green" receptor does not "fall out", but is only "fused" with the "red" one, then adaptation to a green or red stimulus, suppressing either one or the other of the fused receptors, should alter their resultant spectral sensitivity curve. In particular, adaptation to green light should convert a deuteranope into a protanope or bring him closer to the latter.


In any case deuteranopic matches unacceptable to the trichromat after green or red stimuli adaptation should also be unacceptable to the deuteranope. Experiment shows that this is not the case. Deuteranope colour matches are not altered by adaptation.


We think there is no sufficient reason to consider the physiological cause of deuteranopia essentially differing from that of the other two types of dichromasy. Experimental data contradict, rather than confirm, such a hypothesis.


For a more detailed account of our experimental data see ref. 7.
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� This is just the most strict formulation of this law, and the verification of its correctness should indispensably precede the introduction of any system of numerical colour characteristics. There is no evidence of deviation from this law, as it is here formulated, which indicates that all numerical deviations from the rule of additivity represent nothing but experimental error.


� Most of the tests have been performed on a Donaldson colorimeter.


� In this respect see also ref. 6
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