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On exponential mixing rate for degenerate 2D diffusion

N. Abourashchi,* A. Yu. Veretennikov'
June 10, 2009

Abstract

A new existence of weak solution of a degenerate stochastic differential equation is established. A
new method for a verification of a ”local mixing condition” is proposed. An extension of Girsanov—
Benes’ result on a martingale property of stochastic exponential is established. As an application,
an exponential uniform beta—mixing rate is shown for a degenerate two— dimensional diffusion of
Langevin type studied earlier by Campillo et al.

1 Introduction

In a series of papers by F. Campillo et al. [2], [3], [4] the following system of SDEs in R? has been
investigated for recurrence, invariant measure, approximation, etc.,

iX, = Yidt, Xo=u (1)
dY:f = b(Xtax/t’) dt+th7 YO =Y,

where W is a standard Wiener process, and drift b is a Borel measurable function satisfying a linear
growth condition and has a special form,

b(x,y) = —u(z,y)y — fx — v sign(y), (2)

where  and ~ are some positive constants, and u satisfies Assumption (A2)below. The system describes
a mechanical “semi—active” suspension device in a vehicle under external stochastic perturbations treated
as a white noise. The term with v corresponds to friction, (8 is a spring coefficient, uY corresponds to
damping (control related to the velocity of the device), and the function u here stands for tuning of this
damping control. Under appropriate assumptions, existence of a (unique) invariant measure has been
proved [2]; however, the question of convergence remained open. In this paper we show exponential
bound on rate of convergence toward the stationary measure in the distance of total variation for the
system (1)—(2) and a bit more general, and a similar exponential bound of beta-mixing, under suitable
assumptions on the coefficients. The method of establishing local mixing proposed below is applicable to
the equation (1), and should be suitable for a wider class of processes, in particular, not necessarily 2D.
Remind the definition of beta-mixing coefficient,

B = sup Bry sup (Poy(Xews, Yirs) € B) = Poy(Xews, Yirs) € B F), (3)
52 €

where (z,y) is the initial condition for the equation. The coefficient 8;"Y dominates the (non-stationary)
alpha-mizing coefficient introduced (in the stationary form) by Rosenblatt, and the latter is widely used
for establishing all kinds of limit theorems. Hence, naturally, 3,7 is also suitable for this goal. The
stationary version of the coefficient 3; is widely known as Kolmogorov’s coefficient, although for the
first time it appeared in the joint work by his students Volkonskii and Rosanov. In his lectures in
1970s, Kolmogorov posed general problems of studying mixing coefficients for general processes. The
non-stationary version of beta-coefficient for Markov processes (3) was investigated, in particular, in a
series of papers by the second author. Apart from interest for engineers, there are some mathematical
issues that make this system special. In terms of recurrence properties, we apply Lyapunov’s approach,
using the same Lyapunov function as in [2], based on simple quadratic forms. Apparently, the use of
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such simple functions is limited to a relatively narrow class of processes. However, for the equation (1-2)
they are quite sufficient, and possibly could serve certain even wider classes of diffusions. Nevertheless,
for more general systems (1) possibly some other Lyapunov functions could be useful. In terms of local
mixing properties, a real obstacle is a genuine high degeneracy of the SDE system. It is comparatively
not very difficult to verify a local version of the so called general Doeblin—-Doob condition (see [5]),
however, this kind of condition even in its global form provides only a rather reduced result about mixing
(formally, about convergence in total variation) just for one particular Markov process, not for a class
of processes. Clearly, for the system (1) there is no global Doeblin—Doob condition available, and the
question how to work with its local version is yet open. There is one more, most standard tool frequently
used in similar situations, which does provide bounds uniform on some class of processes, “pétite set”
condition. However, it apparently fails here completely in an even more severe fashion in compare to a
non-degenerate diffusion, where it is not of any real help either. We tackle this problem by establishing
some appropriate local version of Dobrushin’s ergodicity condition, see (16) below. Notice that this kind of
condition is also rather useful in the non-degenerated case, where it is provided by Harnack’s inequalities,
see [15], [14]. After having a good Lyapunov function and verifying a local Dobrushin condition, the
remaining part of the proof is based on the method of estimating the upper bounds for mixing rate from
[14]. To work with the system (1), we need, at least, weak uniqueness. The latter may be established
by using Girsanov’s transformation with the help of a method similar to [1]. Under (2) this approach
was suggested in [2] with a reference to [1]. Nevertheless, we should notice that apparently the direct
reference does not work, neither applied to (1), nor under the restriction (2), since the paper [1] does not
consider degenerate SDEs, nor does the presentation of its results in [9]. The extension of this result to
our degenerate case being done in the Section 3, the authors realised that the same Lyapunov function
method as for the system (1)—(2) may also work for slightly more general systems of SDEs, which satisfy
(1) & (??). The verification of a local Dobrushin type condition below is also based on Girsanov’s
transformation, although it is not a direct corollary from the section about weak solutions.

In the Section 2 we formulate our main results along with the assumptions. An extension of the
approach from [1] is provided in the Section 3. In particular, in that Section we briefly discuss weak
existence of solution of our system (1) with a strong Markov property. The calculus which we suggest, of
course, resembles the one in [1], — and even more the one in [9], — and may be considered as a complement
to the latter. It also simultaneously provides Novikov’s condition (see [13], [12]) for this particular case,
although this observation does not lead to any further simplification, being just another view on the
problem. In the Section 4 a Lyapunov function is presented for this system, together with some hitting
times inequalities. In the Section 5 a “local Dobrushin’s condition” is established. To the best of the
authors’ knowledge, this is the most general local condition which guarantees “computable” mixing and
convergence in total variation bounds, with practically the best constants. Whether this condition could
be further relaxed, is an open question.

The proof of convergence and mixing rate is given in the last Section 6.

2 Main results
Assumptions for (1) & (2)
(A1) The function b in (1) is Borel measurable, and there exists C' such that |b(z,y)| < C(1 + |z| + |y]).

(A2) The function w in (2) is Borel measurable, and there exist constants 0 < u; < ug < oo such that
w1 < u < ug; (B and +y are strictly positive constants.

In the sequel, p;’Y denotes the marginal distribution of (X, Y;), the couple with the initial state (z,y),
and poo stands for its (unique) invariant distribution if the latter exists.

Theorem 1 Let the system (1) satisfy (A1). Then the following holds true.
1. The equation (1) has a (weak) solution unique in distribution, which is a strong Markov process.

2. If additionally the drift satisfies (2) as well as (A2), then there exists a unique probability distribution
oo and there exist C,c > 0 such that

e = pocllryv < Cexp(—ct)(1+ 2% +y%), (4)

and also
BV < Cexp(—ct)(1+ z? + o). (5)



Now as we accomplished the results from [2] et al. by rate of convergence, let us describe what more general
SDE systems could be tackled in a similar way. Consider the class of drifts f satisfying the following
conditions. Firstly, we require (A1), which turns out to be sufficient both for the local Dobrushin’s
condition and weak existence and uniqueness. To tackle recurrence, we require the following.
Assumptions for (1) without (2)

(A3) The function b in (1) satisfies b(z,y) = bo(x,y) — u(x, y)y — v(x,y)x. where the term by is a Borel
bounded function, u satisfies the inequalities from (A2) with some 0 < u; < uy < oo, and the
function v is bounded and satisfies lim(, ). v(z,y) = 3 > 0.

As we shall see below, the latter condition can be relaxed so as to allow for some G > 0 a “small enough”
limit limsup, ). [v(7,y) — B << 1. For the precise formulation as to in which sense the left hand side
is << 1 see the calculus in the Lemma 4 and remark 3 below. Now we have a version of Theorem 1 as
follows.

Theorem 2 Let the system (1) satisfy (A1) and (A3). Then again there exists a unique invariant
probability distribution pie and constants C,c > 0 such that (4) and (5) hold true.

3 Weak solution & Girsanov’s transformation

First of all let us show that there exists a weak solution of the system (1), and that it possesses a
weak uniqueness property. Emphasize that neither (2) nor (A3) is assumed in this section. Basically,
there are two methods available: one based on approximations; and another based on Girsanov’s trans-
formations. In the general case, if we want to use approximations and weak convergence, then we
do have a good a priori bound, — e.g., for the second moment, — but the function u may be dis-
continuous, in particular, in variable z, while the component X has no diffusion term at all. This
is an obstacle while using approximations and passing to a limiting measure. So, we will work with
Grisanov’s transformations. We start with a couple (X, W) on some probability space (9, F, P), where
W is a Wiener process, and X; = x + fot W, ds. In the other words, the process (X, W) solves the
system (1) in the trivial case b = 0. We will use Girsanov’s exponential to solve a general case.

T T
. - 1 L2
Let pr := exp (/ (b(Xt,y+Wt) dW, 75/ ’b(Xt,erWt)‘ ) dt. We ought to show that this is
0 0

a probability density, i.e., that Epr = 1.
Lemma 1 Under the assumption (A1), there exists T > 0 small enough, such that for every R > 0,

sup B, ,p% < 0o. (6)
(z,y)EBR

Moreover, for every (z,y) € Br and every T > 0 (not only small),

Eyypr =1. (7)
Emphasize that the value of the left hand side in (6), of course, may depend on R, however, the value T
may be chosen unique for all R > 0.
Proof. Notice that the assertion (6) guarantees uniform integrability of pr with respect to the measure
P, for every (x,y) € Br, which implies (7) for small values of T. However, the latter equality is extended
on any T by simple induction based on Markov property (remind that small T in (6) does not depend
on initial data), see [1] or [9, Corollary 3.5.14]. Hence, it suffices to prove only (6). We estimate, using
Cauchy—Bouniakovsky—Schwarz’ inequality (known widely as Cauchy—Schwarz’ or Cauchy’s),

- 2 - ~
(Ew yﬁ?p) < C(T,R,z,y) Eexp | C(T* +T*) sup |[Wi* ).
" 0<t<1

it is, indeed, easy to see that with any constant (3, the latter expectation is finite if 7" > 0 is chosen
small enough. The Lemma 1 is proved.

Theorem 3 Under the assumption (A1), there exists a weak solution of the system (1) on [0,00) which
is unique in distribution. Any solution (X,Y) on any probability space with a Wiener process W is a
strong Markov process. Also, for any T > 0,

T T
1
Epp =1, where  pp := exp (-/ (b(Xy,Y:) dW, —5/ (X, V)| dt).
0 0



Lemma 2 Under the assumption (A1), there exists T > 0 small enough, such that for every R > 0,

sup Ep pr < oo. (8)
(z,y)€EBR ’

Proof. Notice that since Ef o1 = Ep2., the assertion (8) guarantees uniform integrability of pr with
respect to the measure P, for every (x,y) € Br, which, by the way, again implies theorem 3, at least, for
T > 0 small enough. The inequality (8) can be rewritten as

sup Ef pr= sup Eyy(pr)~ " < oo
(z,y)€BR (z,y)€BR

In this form, it follows from the calculus quite similar to that in the proof of the Lemma 1. The Lemma
2 is proved.

Remark . The result from [1] about Girsanov’s transformation relates to the following SDE in R¢
with a d-dimensional Wiener process (we use another notation Z; for the process, to distinguish it from
the setting (1)),

dZt = b(t, Zt) dt + th, ZQ = Z. (9)
In this Remark, drift b is a d-dimensional Borel measurable vector—function, and it satisfies a linear
growth condition with some constant L > 0,

lb(t,2)] < L(1+]z2]), Vze&R™% (10)

The following Theorem is a reformulation of some combination of Lemma 0 and Theorem 1 and a
discussion around them from [1], and the Lemma 7 from [7]. However, it is easier for us to cite a later
presentation from [9, Corollary 3.5.16 & Proposition 5.3.6]. As usual (e.g., as above in the Lemma 1), to
solve (9), we consider a probability space (Q,F, P) with a (another) Wiener process W5, t > 0.

Theorem 4 [Benes 1971] Under (10), for any T,

- T - - 1 T -
ECT = 13 CT = exp(f/ b(S, Ws) dWs - 5/ |b(57 W9)|2 d$)7
0 0

the process Wy = W, — fg b(s,Ws) ds, 0 <t < T, is d-dimensional Wiener under the new measure
dP = dP¢ = (r d]5, and, hence, the equation (9) has a weak solution unique in the sense of distribution.

4 Lyapunov functions and hitting time bounds
Lemma 3 Let (A1)-(A2) be satisfied. Then for the system (1-2) there exists a constant C such that

sup E(IX >+ V5 < C(1 + 22 + 7). (11)
t>

Of course, the constant C' depends on the initial data (z,y). Proof follows from [2], with the Lyapunov
function suggested there, f(x,y) = 822 + exy + y?, with € > 0 small enough.

Lemma 4 Let (A1) and (A3) be satisfied. Then for the system (1-(A3)) there exists a constant C such
that(11)holds.

Proof. We will use the same Lyapunov function as in (11), (with just a notation 8 changed to f3p), where
€ is to be chosen. The calculus is similar to the one in the previous Lemma. We apply Itd’s formula to

f(Xt7 }/t)

df (X1, Y:) = 26X, dX,; +2Y; dY; + (dY;)* 4 €X, dY; + €Y; dX;

<2Yi dW, 4+ 2(Y: 4+ eXy)bo(Xe, Ye) dt — ((ur — G)Ytz + (X, Yt)eth + (20( X, Y:) — 20+ eu( Xy, Y:)) X Yy) dt.
Here the inequality sign, of course, relates to the dt terms, while the term dW; remains the same. Clearly,
to establish the Lyapunov condition, the terms of the first order are not important if |( Xy, Y:z)| > R and

if R is chosen large enough. Next, since the difference 2v(Xy,Y;) — 28 is small enough by modulus for
|(X+,Y:)| > R due to (7), clearly we can choose € > 0 small enough, so that the expression

b= ((ur — Y2 +0(Xy, Yo)eX? 4+ (20(Xy, Vi) — 26 + eu(Xy, 1)) X, Y7) (12)



u
is no less than some positive definite quadratic form, say,?lYt2 +ceX? (¢ > 0), if |(X¢,Y:)| > R.

Also, of course, %Yf +ceX? > C (X, V) (C >0).

On the other hand, if |(X;, Y;)| < R, then the whole expression in (12) is bounded. Hence, with the same
notation g(t) := Ef(X:,Y:) as above, — and with a notice that sup ., Ff(Xs,Y;) < oo for any ¢t > 0, —
taking expectations, we get, -

g'(t) < —CT E6A(|(X4, Yy)| > R) — B4 1(|(X, Ya)| < R) < =Bl — 2 EL1(|(X,, Ys)| < R) < —C7Hg(s) ds + 2C,
with Co = sup(, ) <r [0(z,y)|, and £(z,y) = ((u1 — €)y* + v(z,y)ex® + (2v(x,y) — 26 + eu(z, y))zy).
This shows that

%g(t) < -Cy(t)+C, and hence, (0<) g(t) < C(1+exp(—Ct)). (13)
The Lemma 4 is proved.

Lemma 5 Let (A1)-(A2) be satisfied, and R be large enough. Then for the system (1-2) there exist
C,a > 0 such that
Eqyexp(ar) < C(L+ f(z,y)), (14)

Lemma 6 Let (A1) and (A3) be satisfied, and R be large enough. Then for the system (1) & (A3) there
exist Cya > 0 such that,(14)holds.

The proofs of both Lemmas 5 and 6 follow easily from the standing inequality above (13), similarly to
the calculus in [15] or [14].

We will need a similar technical inequality for a process in a double-dimension state space. Namely, we
consider another independent copy (X;,Y;, t > 0) of the process (X;,Y;, t > 0), possibly with another
initial condition. Let Z; = (X, Y;), Z; = (X7,Y;).

Lemma 7 Let (A1)-(A2) be satisfied, and R be large enough. Then for the system (1-2) there exist
C,a >0 and v, defined as , v:=inf(¢ > 0: |Z| V |Z¢| < R), such that

E..exp(ay) <C(1+ f(2)+ f(2)), (15)

Lemma 8 Let (A1) and (A3) be satisfied, and R be large enough. Then for the system (1) & (A83) there
exist C, o0 > 0 such that (15)hold.

The proofs of the Lemmas 7 and 8 follow similarly from the Lyapunov inequality above(13) or cf. [15] or
[14].
5 Dobrushin’s local mixing condition

The next result is the second part of the method used in this paper and our main contribution to the
technique of verification of mixing rate here. We consider any solution to the equation (1), without
restrictions (2).

Lemma 9 Let (A1) be satisfied. Then for any R > 0 there exists ¢ > 0 such that

. Hao,yo (d:L' dy) )
inf — A1 L (dxdy) > c> 0. 16
(z0,40),(w1,y1)EBR LR <Mm1,y1 (dw dy) Hevy ( y) ( )
: : Hao,yo (d{E dy) : 3 ’ 3
Proof. First of all, notice thatW > 0, a.s. Indeed, by virtue of Girsanov’s transformation
€z ay

(cf., e.g., Theorem 3 above), under the measure P? we have a representation,

T t 5 N 1 T
pT = exp */ b(’£0+/ W ds,y + Wy) dW; **/
0 0 2 /o

Denote yif,  (dvdy) = Ef  1(X7 € dz,Yr € dy). We have,

Z0,Yo

t
b(xo +/ W ds,yo + Wy)
0

2
dt> |

oo (dzdy) 1, . (dz dy) -
- (yi(‘]f dy == ;(;L‘dy Eﬂcmyo(p ! ‘ Xr = 1‘7YT = y)7




15 o (d dy)
dx dy
one). For the second term this is because 0 < p~! < oo a.s. For the first one there is an explicit

representation of this density, see (17) below. So, (16) can be rewritten equivalently as

: Hao,y0 (d.l? dy) Haxq,y1 (dx dy) >
inf A dxdy > c>0.
(%0,%0),(%1,y1)EBR / ( dx dy dx dy y=

Br

where both multiples and Ey, 40 (p7" | Xr = 2, Yy = y) are positive (a.s. for the second

Let L > 0 and consider the densities,

oy (dxdy) — Egy 0 1(Xp € dz, Yr € dy) /‘a%o,yo (dz dy) _ Eu 4 1(Xp €dz, Y € dy)1(pr > L)

dz dy ' dx dy ’ dx dy ' dx dy

Clearly, the measure ug’y(dm dy) is absolutely continuous with respect to the Lebesgue measure dzdy,
similarly to p, ,(dxdy). Moreover, pr is a probability density (see the Proposition 3). So, we can use
the following representations,

Pao o (drdy) _ BLy o p” 1(Xr € da, Yr € dy)  pig, , (dody)  ER , p~ ' W(Xp € do, Y7 € dy) 1(pr > L)

_ Z0,Yo

dx dy dx dy ’ dx dy dx dy

We estimate,

Haoo (AT dy) o Ef (X1 €dw, Yr €dy) -1 Ef (X7 €dx, Yr € dy) 1(pr > L)
dx dy - dzx dy dx dy

Since here p is a probability density on 2, the first term up to the multiple L~ is a positive Gaussian
density on R? under the probability measure P?. In the other words,

Ego,yo]'(XT S d.’E, Yr € dy) p ($ T) oV 12
dx dy = Paogo\ Y ) = 5

exp (= (e =y =)o~y =9)") . (07

In particular, the density pf. is uniformly bounded by the value V/3/T?. Next, with any L, the second
term is also a (sub-probability) density, pﬁg’yo (z,y;T), which is dominated by p. Let us choose the
constant L so large that

L~ supph < 1.

Then, the lower bound for our density does not exceed one, so that the operation “minimum with one”
disappears under the integral, and we may estimate,

1 Hzo,y0 (dl‘ dy) >
nf =SS AL gy, (dad
(z0,90),(x1,y1)EBR /BR (:u'ﬂh,yl (dxdy) K 1,y1< y)

> L1 ( inf Doy (@' y;T)|Brl —2 sup Py (pr > L)) )

(z,y),(=",y")€EBR (z,y)EBR
Here, clearly, inf (2, Yy T)|Br| = 7 R? inf (@, y;T) > 0. and this value
V@) ehyreBn’ (@95 T) Bl (o). (a)eBRT v(@ 95 T)

does not depend on L. The second term admits the following bound due to Bienaimé—Chebyshev,

sup  Pf . (pr(z,y) > L)< L™" sup EL . pr(z,y).
(0,90)€EBR (z0,y))€BR

Hence, in order to complete the proof of the Lemma, it suffices to show that

Epr=1, & sup  EY , pr < oo, (18)
(z0,y0)€EBR '

at least, for 7' > 0 small enough. Both inequalities in (18) have been established in the Lemma 2 above.
The Lemma 9 is proved.

6 Proof of Theorems 1 and 2

Proof. The plan for the proof is to use the Lemmas 7 and 9 and the calculus from [14], with a natural
replacement of polynomial inequalities by exponentjal ones. Both Theorems require the same calculus.
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A Multidimensional Comparison Theorem for
Solutions of the Skorokhod Problem in a Wedge
with Applications to Control of a Group of Identical
Particles

Svetlana ANULOVA (Institute for Control Science Moscow Russia)

Pathwise comparison theorems for solutions of SDE remain a fresh sub-
ject, see [1], where 1-dimensional reflected processes are studied. We consider
comparison with respect to a partial ordering of the Euclidean space.

Let K (resp. C) be a convex cone of full dimension in R? with the vertex in 0
and a finite number of faces. Denote 7 : R — K the orthogonal projection on
K and ® the Skorokhod operator for K (normal reflection on the boundary).
Define an order <: for 2!, 22 € R? 2! < 22 if 22 — 2! € C, and for y',y? :
[0,00) — R? ! < 42 means: y'(0) < »?(0) and y? — y' has a locally bounded
variation such that

d(y’ —y')
dvar(y® — y')

(t) € C a.e. for t € [0,00).

Theorem 1. If 7 is monotonic, then ® is monotonic (both with respect to <).

Example 1. For d = 1 and K = C = [0,00) we have for any y!,y? with
y? —y' > 0 and nondecreasing: ®(y?) > ®(y).

As corollary we obtain the solution to the following control problem (cf.
2]). Tkeda and Watanabe were the first to use comparison theorems in control
theory, see §2 ch.VI [3].

Let (Q, F, F,P) be a standard stochastic basis, W : [0, 00) — R? a contin-
uous gaussian F-martingale with independent identically distributed coordi-
nates, u = {u(t) € [0,1]%, S%u;(t) <1, t € [0,00)} a control policy (cf. [3]),
U = {u}. Define u* : R — R

. 1, if{=min{argmin{z;,j =1,...,d}};
(z) = .
0  otherwise.

Theorem 2. For anyy € R? and u € U there exists an extension of the origi-
nal stochastic basis (0, F ,F' | P") and a continuous gaussian (F')-martingale

/ /

W, (W) = (W) on it such that for
yi(t) =y + /t u(s)ds + W(t), t € [0,00),
0

and
Y1) =y + /O u*(y*(s))ds + W (1), t € [0,00),

holds min; y}(t) > min; yi(t) provided y" ezists.
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The objects we have introduced describe a group of independent identical
particles W;,7 = 1,...,d, with controlled drifts. The theorem produces the
optimal policy to hold the group as high as possible.

Proof of Theorem 1. Approximate ® with its discretization in time with step
0 ®s. It is monotonic and

lim q)(; = o.
6—0

Proof of Theorem 2 for d = 2. The two coordinates of the controlled process
are identic, thus we reduce the problem to the control of the pair

y"(t) = (min{yi'(¢), y2 (1)}, max{yi(t),y2(t)}, t = 0).

The Ito formule shows, that this process is ®(y*) for K = {x € R? : 21 < x5}
and

y(t) =y + /Otﬂ(s)ds + W(t), t €10,00),

where W (resp. ) is a new F-martingale (resp. drift) obtained from W (resp.
u). Obviously, w € M, where M is a cone,
M = {A1(=1,0)" + X2(=1,1)7, A1, A2 > 0}

Unfortunately, ® is not monotonic with respect to the partial order generated
by M:

X+ cone M

cone K |

2 A

X2 axis
>

FIGURE 1. m(z+ M) € n(z) + M
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But if we take another cone
C={M(=1,-D" +x(=1,1)", A1, X2 > 0},
the assumptions of Theorem 1 are satisfied. Thus
(y*) = 2(y"),
in particular, ®(g*); > ®(y"“)1, what means the assertion of the theorem for

the process in K. In order to return in the plane we have to extend (2, F, F, P)

and construct a new martingale W' by randomizing W .
Proof of Theorem 1 for d > 2. Define a mapping f : R¢ — R%:

{fi(x),i=1,...,d} ={x;,i=1,...,d}
and f1(z) < fo(z) < ... fi(z). Then define a new F-martingale W:

aw () = 2L yaw o

and solve the equation for f(y*) with W. It will be an equation in
K:{LEERd:ml < x9,... < x4}

for a martingale with drift and normal reflection on the boundary. Now apply
Theorem 1 with a cone C, which is a rotated orthant. The first edge of this
orthant is (—1,1,0,...,0)7, the d—this (—1,...,—1)T. At this stage we have,
roughly speaking, a process f(y*). In order to "extract” y* we have to extend
(Q, F,F,P) and construct a new martingale W by randomizing W. That
is, we take a product of the original stochastic basis and a canonical space of
d—dimensional continuous functions and endow it with conditional probability
equal to the distribution of y* given f(y*) and independent from all the rest.

Remark 1. The theorem implies: for 7" € [0,00) and real functions Gi,G>
monotonic in the second argument with respect to <

/T G1(t, WH(t))dt + Go(T, W*(T))
0

is maximal for the policy u* in probability.
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Landau-Zener phenomenon

in 2D lattices
via Dirichlet-to-Neumann
map

N. Bagraev !, G. Martin?, B. Pavlov?3

L A.F. Ioffe Physico-Technical Institute, St.
Petersburg, Russia.

2 New Zealand Institute of Advanced Study,
Massey University, New Zealand.
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Transport properties of periodic lattices are
defined by the structure of the corresponding
Bloch eigenfunctions. In the 1d case the Bloch
eigenfunctions are found based on the trans-
fer matrix constructed of the solutions of the
relevant Cauchy problem. This approach fails
in 2d, and, generally in the multi-dimensional
case, because the Cauchy problem for the multi-
dimensional Schrédinger equation is ill-posed.
The approach based on “tight binding” ideas
(Liner Combination of Atomic Orbitals - LCAO
, see [8]) gives a reasonably good qualitative co-
incidence with experiment, but stays on a shaky
mathematical basement. We develop an alterna-
tive approach to study of transport properties of
quantum periodic lattices, based on Dirichlet-
to-Neumann map, and suggest, on the base of
corresponding 2d Landau-Zener effect, an inter-
pretation of high-mobility of the charge carriers
in bi-layer 2d periodic structures.

) AP

Figure 1: One dimensional Landau-Zener effect.

Landau-Zener effect is the transformation of
the intersection of terms Ai(p), A2(p), see Fig.
(1) into quasi-intersection. It was observed first,
see [1], in one-dimensional lattices, with use of
the transfer-matrix as a main spectral tool for
study of corresponding space or time- periodic
structures, see [2]. It was noticed that the in-
teraction of terms A (p) in solid-state quantum
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problems implies pseudo-relativistic properties
of the corresponding particles / quasi-particles.
Fresh interest for quasi-relativism in solid state
physics arose in connection with discovery of
high mobility of charge carriers in graphen, see
for instance [3]. Recent discovery of quasi-
relativistic behavior of terms in man-made bi-
layer periodic quasi-2d lattices, see [4], allows to
conjecture that the weak interaction of 2d peri-
odic lattices may be used as a source of various
artificial structures with useful transport prop-
erties. Study of the Landau-Zener transforma-
tion of 2d terms requires an adequate analytic
machinery. In [12] the Dirichlet-to-Neumann
map was selected as an appropriate tool to sub-
stitute the transfer-matrix in analysis of per-
turbations of the two-dimensional terms. The
standard DN-map is a linear transformation of

, ' C 09 into the
r

the boundary “potential”

“boundary current” g—lﬁ of the solution yof the

r
homogeneous Schrédinger equation on the do-

main (2, with scaled spectral variable A = 2212E .
o
—AYp+Vip =X, p DN(N) : 9 —
r on |

It our talk we consider a modified version of DN-
map, restricted by an orthogonal projection Py
onto a contact subspace E of Lo(I'). We ignore
the spin of electron and initially assume that
the one-electron wave functions on the neighbor-
ing romboidal periods, see Fig. 2, communicate
with each other via relatively narrow connecting
channels, which filter the evanescent waves off,
see an extended analysis of the filtering in [5].
We simplify the spectral problem via replace-

Figure 2: A detail of a square lattice with rom-
boidal periods. The connecting leads are not
shown.

ment of the matching condition on I' in closed
channels by the partial zero boundary condition



on the slots T

4 (Yo — Vo] =0,
Iy
b | g B
Py [ o=+ 871’} . =0, (1)
P_ip| =0, with P_= > ™) (™ (2)
r m>1,T,

We consider the Schrédinger operator —A x
+V(x)x =: L on the periodic 2d lattice with
periods connected by the open channels only,
with normals n’ = —n. The Schrodinger op-
erator with above boundary conditions is self-
adjoint and can be analyzed based on quasi-
periodic problem on a period, with the partial
matching boundary condition substituted by the
quasi-periodicity on the pairs of opposite slots
I' = {z* = £1} of the period Q:

Py g }Zemsaﬂ Yo }a

Is Fi
5¢Q _ —2ipsa %
anS]—e Pelon | @

where the differentiation is done with respect to
the outward normals on the boundary of the rel-
evant periods, see Fig. (1). Hereafter we assume
that the width 2a = 2 of the period is equal
to 2, 0/2 << 1, and the entrance subspace Ef
of the open channel attached to each slot T'%
is one-dimensional and spanned by 2 ssin % =

, P{ = e°) (e’ on each slot. The electrons
with the boundary data on I'* = 9Q N oY
from E° belong to both periods and form a
covalent bond between the blocks €, Q, see
[13]. We use the relative intermediate DN-map
DNt associated with spectral/boundary prob-
lems with nonzero data on the slots. Assum-
ing that the neighboring periods are connected
by the leads of certain width ¢, denote by Ef
the entrance subspaces of cross-section eigen-
functions of the open and closed channels re-
spectively, and by P3 the corresponding projec-
tions. Correspondingly the role of the conduc-
tivity band is played by the first spectral band
in the leads Ay = [72 072,472 62|, with Fermi-
level sitting on it: A € A;. We consider the
intermediate boundary problem with the partial
boundary data and introduce the corresponding
DN-map, see [10],by formal setting the exponen-
tial in the closed channels as K_ = oo and cor-
respondingly choosing the zero boundary condi-
tions on the bottom sections of closed channels.

Then the corresponding partial DN-map DN
is defined as a restriction of the standard DN-
map onto the slots I' with subsequent framing

by the projections onto EL =", sgn=t B3
DN? = P,DNP, = > P,
s,t=1,2, sgn,sgn’==+ Fign

The corresponding intermediate DN-map DN A
is defined by the matrix elements of the standard
DN-map of the period in the decomposition of
the cross-section space £ = F, + E_ into an
orthogonal sum of the entrance subspaces of the
open and closed channels. We characterize the
period  on given spectral interval Ay by the
rational expression

DNA(N) = AQTA +P.KP,, \ € Ar,
r=1 r
(4)

Qr  _
where e v

S el

s,sgn;t,sgn’

<s 81/}7‘><87/J7‘ t >

Csgn> Bn on ’esgn’ < t

’
)\ /\r sgn'’

Z ezgn>< sgnKesgn/> < sgn/ = P+KP+
s,t,sgn,sgn’
(5)

Here A, are the eigenvalues of the Schrédinger
operator on the essential spectral interval Ar
and PK P - the restriction of the regular part of
the DN-map onto the open channels of the leads.
The term Py K P, contains the contribution to
the DN - map from the complementary spectral
subspace.

The spectral structure of the Schrédinger op-
erator on the 2d periodic lattice is established
based on study of the quasi-periodic spectral
problem on the period €2, which is represented
via comparison of the projections of the bound-
ary values and the boundary currents of the so-
lutions of the Schrodinger equation Ly = Ay on
the opposite slots:

o e~
Pl Y L =p | L el

w_ e_ 2p2¢+ + +

(e Ui

,(/Jli_ _6_2iilw/}|—

Y’ Y’ 11 2 2
P“r ,(/]/3_» ) = P“r 76727;;;21//3_ = w/+ H +¢/+ Ky

' v

(6)
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where

—2ipy 0
1 0
Vl - 61 0 ) VQ = 62 —2ip2 ) Ml
0 1
and
s s s 8¢ s
¢+:<¢ 7€>7w,+:<8 ,6>.
re T lps
+ +

Then the quasi-periodicity condition implies the
equation:

(7)

Notice that

DNML vt +9d v = o' wt + o,

with scalar coefficients 17, 9’ i

(v*, uty = 0, which implies
W'DNVY YL + W DNVA Y2 =0,

W*DNVYYL + (W*DNVAY2E =0 (8)

The condition of existence of the non-trivial
Bloch function is represented in the determinant

form:
et )=
9)

where (1%, DN gvt) =

" oy, (5,
2. 2

A=A
r=1 sgn,sgn’ "

<I/1, DN11V1>
<l/2, DN21V1>

<V1,DN12V2>
<I/2,DN221/2>

S 3%
V on

Vt>1"f

sgn’/

(10)
We aim on the spectral analysis of a double pe-
riodic 2-d lattice with romboidal periods Q*, Q¢
playing the roles of basements of the upper and
the lower cones of the two-storey joint period,
see Fig.(2). Assume that first and the second
storeys are connected by the link constructed in
a form of a double cone with the slot I'g divid-
ing the upper and lower cones and a tunneling
boundary condition on it defined by a real anti-

symmetric matrix B : Polw“ =0, Polwd
To o
P2 Poyp*
I ( 0 —-p ) ry
d 0
P9 & Pyyp?
rd rd

0 0

(11)
with the outward normals n* —nand an
orthogonal 1d projection Py = ¢€°) (e onto
the open channels of the link. This tunneling
boundary condition, with large 3, emulates the

+(v, K.

=
+ 1V

o 1

Figure 3: Detail of the double square lattice
with romboidal periods

potential barrier for the charge carriers, because
implies % ~ 0 ~ ¢¢. If the slots of the upper
and lower periods are equipped with the match-
ing boundary conditions on the contact with the
neighboring periods, then the Schrédinger oper-
ator on the whole lattice, with a real, bounded
and piecewise continuous periodic potential is
selfadjoint, and the corresponding dispersion
equation can be derived from the Bloch condi-
tion on a single period, Via comparison of the

wO’ %, szjda wd>a

of the wave-functions on the slots 'S, T'g, I'Y; of
the upper and lower periods and the balance
of the corresponding boundary currents ¢/ =
-1 -2 -2 -1
(W '8 05 s ¥74) with the tunnel-
ing boundary condition. Indeed, the interme-
diate DN-map is obtained via framing of the
standard DN-map by projections PS,PJ? onto
the open channels of the slots I'; ; and ones of

boundary values 117 = ( s

the link I'°. Imposing the quasi—periodic bound-
ary conditions on the slots I'j ,, (u), s, (d) and
the tunneling boundary conditions on T'Y, I'd,
we obtain the linear system for the variables
Uy = (Viu, 3,0y, o, Y2d, ld), similar to
(9). Existence of a non-trivial solution of this
linear system is guaranteed by an appropriate
determinant condition. Denote

sgn

)

DN .=
< u dDNnVu d> { th dDquQde d> <V17 D, qibéd>
(V2 N12L1dV11L @ (V2 Nud 2 Q) <1/2,D./\/§L()d
<DN01 ’ u> <DN02 ’ u d> DNgéd

17

)



d .
DAL =

,d ,d
<Vi,dDN¥ldVi,d> <V11;,dDN?2dV5,d>
u7 u7
<V12L,dDN21 Vl,d> <V5,dDN22 Vﬁ,d>

< )

In particular, if 3 — oo, the linear system
for 1,1 derived as (9) splits into a pair of
independent blocks, corresponding to the up-
per and lower period, with the dispersion equa-
tions det DN}, 0 and det DN 0 sim-
ilar to ones we obtained in previous section.
If B is large, then the intersection of terms
det DA% det DN = 0 is transformed into a
quasi-intersection. The transport properties for

Figure 4: Two-dimensional Landau-Zener effect.

large 0 are defined by the second derivatives of
A with respect to the component p,, of the quasi-
momentum p, orthogonal to the intersection [ of
the tangent planes of the dispersion surfaces of
the upper and lower layers of the double lattice.
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Random Trees and SPDE Approximation

Yuri Bakhtin
Georgia Institite of Technology, Atlanta, GA, USA
e-mail: bakhtin@math.gatech.edu

In this talk I consider Boltzmann—Gibbs distributions on rooted plane
trees with bounded braching.

The first result, see [1], is a Large Deviation Principle for the branching
type of the tree. Its immediate consequence is a Law of Large Numbers
that states that as the size of the tree grows, the branching frequences
converge in probability to an explicitly computed limiting branching type,
and the deviation rate is exponential. This result is interesting and has some
implications for the RNA secondary structure analysis, see [2]|, but it does
not take into account the geometry of the tree.

The next result, see [3], addresses this issue, although the limiting pro-
cedure is different. We show that as the order of the tree grows to infinity,
these trees obey a certain “thermodynamic” limit theorem: for each natural
n the distributions of the root’s neighbourhood of depth n in the random
tree converge to a limiting distribution. These distributions are, of course,
consistent with each other for different values of n which allows to con-
sider the limiting infinite tree and restate the theorem in terms of the weak
convergence to this infinite random tree.

The limiting infinite tree possesses several curious properties. Although
it is not a classical branching process, it is a Markov process on “genera-
tions”. This allows to study scaling limits, and we show that the Markov
random tree obeys a functional limit theorem: appropriately rescaled sizes
of generations in the limiting tree admit an approximation by a diffusion
process with explicitly computed characteristics.

That result does not take into account the way the generations are con-
nected to each other. However, one can study finer structure of the random
tree by partitioning some generation into a finite number of subsets and
observing the progeny of each of them. This also leads to a functional limit
theorem under the same scaling.

One can also wonder if there is a limiting object on one probability space
that serves all possible partitions at once. The possibility of this was con-
jectured in [3]. It turns out that the answer is “yes”, and one can introduce
a Stochastic PDE w.r.t. a Brownian sheet such that the solution to this
SPDE serves as a scaling limit for the fine structure of the random trees.
The solution defines stochastic dynamics on monotone maps, and the most
interesting and unexpected property of these maps is that they have jumps
that one has to take into account when studying the scaling limits.

In the last part of the talk, I will define a new type of continuum random
trees as the solutions of the aforementioned SPDE, state the scaling limit
theorem for the random trees, and discuss the approriate topology in which
the weak convergence holds.
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Exclusion type processes in continuum

Michael Blank*f

Abstract

We introduce and study a new class of exclusion type discrete time particle processes in continuum.
Ergodic averages of particle velocities are obtained and their connections to other statistical quantities,
in particular to the particle density (the so called Fundamental Diagram) is analyzed rigorously.
The main technical tool is a “dynamical” coupling construction applied in a nonstandard fashion:
instead of proving the existence of the successful coupling (which even might not hold) we use its
presence/absence as an important diagnostic tool. Despite that this approach cannot be applied to
lattice systems directly, it allows to obtain new results for the lattice systems embedding them to the
systems in continuum.

1 Introduction

In 1970 Frank Spitzer introduced the (now classical) simple exclusion process as a Markov chain that
describes nearest-neighbor random walks of a collection of particles on the one-dimensional infinite!
integer lattice. Particles interact through the hard core exclusion rule, which means that at most one
particle is allowed at each site. This seemingly very particular process appears naturally in a very broad
list of scientific fields starting from various models of traffic flows [12, 9, 7, 2, 3], molecular motors and
protein synthesis in biology, surface growth or percolation processes in physics (see [13, 5] for a review),
and up to the analysis of Young diagrams in Representation Theory [6].

From the point of view of the order of particle interactions there are two principally different types
of exclusion processes: with synchronous and asynchronous updating rules. In the latter case at each
moment of time a.s. at most one particle may move and hence only a single interaction may take place.
This is the main model considered in the mathematical literature (see e.g. [11] for a general account and
[1, 8] for recent results), and indeed, the assumption about the asynchronous updating is quite natural
in the continuous time setting. The synchronous updating means that all particles are trying to move
simultaneously and hence an arbitrary large (and even infinite) number of interactions may occur at the
same time. This makes the analysis of the synchronous updating case much more difficult, but this is
what happens in the discrete time case.? This case is much less studied, but still there are a few results
describing ergodic properties of such processes [2, 3, 4, 7, 9, 12].

Our aim is to introduce and study the synchronous updating version of the exclusion process in
continuum. Note that recently some other interacting particle processes were generalized from lattice to
continuum case (see e.g. [13]).

A configuration x := {z;};cz is a bi-infinite sequence of real numbers z; € R interpreted as centers of
particles represented by balls of radius r > 0 (see Fig. 1) and ordered with respect to their positions (i.e.
o<z <z9<z1 <...). To emphasize the dependence on the radius r > 0 we shall use the notation
z(r) and drop it only if r = 0, i.e. £ = 2(0). We say that a configuration z(r) is admissible if

zi(r)+r <zip(r)—r Yi€eZ

(the corresponding balls may only touch each other) and denote by X the space of admissible configura-
tions.

For a finite subset of integers I and a collection C := {C;};cs of open intervals the subset C; ¢ =
{reX: xz; €C; Viel}is called a finite cylinder.> We endow the space of admissible configurations
X by the o-algebra B generated by the finite cylinders defining a topology in this space.

*Russian Academy of Sci., Inst. for Information Transm. Problems, e-mail: blank@iitp.ru

TThis research has been partially supported by Russian Foundation for Fundamental Research, and program ONIT.
Lor finite with periodic boundary conditions

2if one do not consider some “artificial” updating rules like a sequential or random updating.

3In general the cylinder Cr,c might be empty for nonempty sets I, C.
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Figure 1: TASEP in continuum.

The dynamics will be defined as follows. For a trivial configuration consisting of a single particle
located at time t > 0 at zf, € R (i.e. ' = {x}}) the dynamics is defined as

x6+1 = x’é + vé,
and thus vf is considered as a local velocity at time ¢, i.e this is simply a random walk on R. To
generalize this trivial setting for an infinite configuration z(r) € X we again interpret a (be-infinite on
i € Z) sequence {v!}; as local velocities for particles in z*(r) performing random walks conditioned to
the order preservation and the hard core exclusion rule.

To simplify presentation we restrict ourselves here to the case of nonnegative local velocities. The
point is that the formulations in the general case are becoming much more involved, but the results and
arguments work with only very slight changes.

Since only nonnegative local velocities are considered the hard core exclusion rule means that the
admissibility condition breaks down for the i-th particle at time ¢ € Z if and only if the inequality

zh(r)+ol +r <zl (r)—r

does not hold. If this happens we say that there is a conflict between the particles 7 and i + 1, and to
resolve it one applies a normalizing construction

vi = N(vj,2'(r)).
After the normalization the positions of particles are calculated according to the rule
() = al(r) + N(vf, 2 (r)) Vi.

The normalization may be done in a number of ways and we restrict ourselves the weak normalization
under which the conflicting velocity is modified to allow the particle to move as far as possible. In terms
of gaps

Az = Al i=al , —al —2r

between particles in the configuration z! the normalization can written as follows:

K3
Al otherwise

Eoif ol <AL
N(’Uf,(]}'t) — {'U if UV = A’L

Observe that any two particle configurations z(r), #(#) having the same sequence of gaps A := {A;}
may be transformed to each other by a one-to-one map

T (F) = oz (r)) = zi(r) — 2i(r — 7) Vi € Z.

Since the normalization procedures that we consider depend only on the gaps between particles it is enough
to study the case r = 0. On the other hand, if r = 1/2 and 29(r) € Z Vi € Z and v! € Z Vi € Z,t > 0 then
xl(r) € Z Vi € Z,t > 0 and hence we get a lattice particle system. Thus our results lead to a completely
new approach to the analysis of lattice systems as well. Note however that in the case r = 0 an arbitrary
number of particles may share the same spatial position which is prohibited in the lattice case.

Of course, without some specific assumptions on the structure of local velocities {vf}; ; no interesting
results are possible. We assume that v! € [0,0] Vi € Z, t € Z> := Z; U {0} and one of the following
seemingly opposite assumptions holds:

t—1

(a) vi=v) Vi€Z, t€Zs and I9(y) := lim } 20 min(v§,y) ¥y >0 (as.);

' t—oo

(b) {v{} are i.i.d. (both in i and ¢) random variables.
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Note that the intersection between the sets of local velocities satisfying the assumptions (a) and (b)
contains an important case of pure deterministic velocities: v! = v Vi € Z, t € Z>. As we shall
show properties of systems with local velocities satisfying to the assumption (a) are close to the pure
deterministic setting. Therefore we refer to the setting (a) as deterministic* and to the setting (b) as
random.

It is of interest that in the seemingly simplest deterministic setting v! = v Vi € Z, t € Z> the behavior
of the corresponding deterministic dynamical system describing the dynamics of particle configurations is
far from being trivial. We prove (Theorem 3) that this system is chaotic in the sense that its topological
entropy is positive (and even infinite).

To emphasize that under dynamics no creation or annihilation of particles may take place this sort of
systems is called diffusive driven systems (DDS) instead of a more general object — interacting particle
systems (IPS).

The main technical tool in our analysis is a (somewhat unusual) “dynamical” coupling construction.
Despite that various couplings are widely used in the analysis of IPS, applications of our approach is
very different from usual. In particular, we do not prove the existence of the so called successful coupling
(which even might not hold) but instead use its presence/absence as an important diagnostic tool. Remark
also that typically one uses the coupling argument to prove the uniqueness of the invariant measure and
to derive later other results from this fact. In our case there might be a very large number of ergodic
invariant measures or no invariant measures at all (recall the trivial example of a single particle performing
a skewed random walk). This indicates that there is another important statistical quantity — average
particles velocity that can be computed at least in this example. The dynamical coupling will be used
directly to find connections between the average particle velocities and other statistical features of the
systems under consideration, in particular with the corresponding particle densities.

It is worth note that all approaches used to study lattice versions of DDS are heavily based on the
combinatorial structure of particle configurations. This structure has no counterparts in the continuum
setting under consideration. In particular the particle — vacancy symmetry is no longer applicable in
our case. This explains the need to develop a fundamentally new techniques for the analysis of DDS in
continuum. This techniques cannot be applied directly in the lattice case. Nevertheless, the embedding
of lattice systems to the continuum setting allows to obtain (indirectly) new results for the lattice systems
as well.

2 Basic properties of DDS

Here we shall study questions related to densities and velocities of DDS.
By the density p(xz,I) of a configuration z € X in a bounded segment I = [a,b] € R we mean the

number of particles from = whose centers x; belong to I divided by the Lebesgue measure |I| > 0 of the
segment I. If for any sequence of nested bounded segments {I,,} with |I,,| "=> oo the limit

plw) i= lim p(x, 1)

n—00

is well defined we call it the density of the configuration x € X. Otherwise one considers upper and lower
(with respect to all possible collections of nested intervals I,,) particle densities p4(x).

Lemma 1 The upper/lower densities p4(x') are preserved by dynamics, i.e. p+(zt) = py(ztt1) V.

By the (average) velocity of the i-th particle in the configuration z € X at time ¢ > 0 we mean

V(x,i,t) ZN = (af — 29)/t.

If the limit
V(z,i) = tlim V(z,i,t)

is well defined we call it the (average) velocity of the i-th particle. Otherwise one considers upper and
lower particle velocities Vi (x,3).

4In this case v§ might be a trajectory of a deterministic chaotic map f : [0,1] — [0,1], e.g. v8+1 = vft(v§/v), as well
as a realization of a true random Markov chain.
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Lemma 2 Let z € X then |V (x,j,t) — V(z,i, t)] =3 0 a.s. Vi,j € Z.
Corollary 3 The upper and lower particle velocities Vi (x,4) do not depend on i (but might be random).

The proof of this result shows that in the deterministic setting the gaps between particles cannot
become much larger than their initial values. The following result demonstrates that under some mild
additional assumptions (which definitely hold for high particle densities) large gaps will disappear with
time.

Lemma 4 Let z € X and we consider only the pure deterministic setting (i.e. v}
Vit 35 >t Aj(z') <v. Then Vi 3t; < oo: Ay(zt) <20Vt > t,.

= v). Assume that

3 Ergodic properties

Lemma 5 The supremum of |W}| = xf — &% taken over all mutually paired particles in the coupled
(see Section 4) process (x*,%") is uniformly bounded by v for any t € Z>.

Under our assumptions the (standard) successful coupling® needs not hold (e.g. in the deterministic
setting when two equally distributed initial configurations are shifted against each other). Therefore one
cannot apply directly Lemma 5 to compare particle velocities. Nevertheless we show that the absence of
coupling is not a serious obstacle and it can be used as a diagnostic tool.

Theorem 1 Let the density p(x) of a configuration x € X be well defined. Then the set of limit points
as t — oo of the sequence {V(z,t)}tez. depends only on p(z).

Theorem 2 (Fundamental Diagram) In the deterministic setting

1= v if plz) < 1/v
Vi(z) = tlggo 7 Zmin(l/p, vy) = {l/p(ac) otherpwise_ if o) =wv.
s=0

Remark 6 This result looks very similar to the one known for the deterministic version of the lattice
TASEP (see [12, 2]), however the latter case is characterized by the following feature: if the density is
large enough particles inevitably form dense clusters without vacancies inside (static traffic jams). The
proof of the above result actually shows that the “typical” behavior of high density configurations in
continuum is different: they do form particle clusters, but these clusters are not staying at rest but are
moving at a constant velocity as an “echelon”. It is of interest that in order to imitate such behavior a
number of complicated lattice models were developed.

Remark 7 The construction used in the proof is especially striking in that the same family of uniformly
spatially distributed configurations allows to study the limit dynamics in the deterministic setting for
all configurations having densities. Note that this argument cannot be applied directly in the lattice
version of DDS. Nevertheless since the “lattice configurations” are included in DDS under consideration
the result holds as well, which implies completely new results for a lattice TASEP with long jumps.

In the deterministic setting (i.e. v! = v Vi, t) the DDS is defined by a deterministic map T}, : X — X
from the set of admissible configurations into itself. Our aim is to show that this map is chaotic in the
sense that its topological entropy is infinite.®

We refer the reader to [10] for detailed definitions of the topological and metric entropies for deter-
ministic dynamical systems and their properties that we use here. To avoid difficulties related to the
noncompactness of the phase space we define the topological entropy of a map T, (notation hiop(T5)) as
the supremum of metric entropies of this map taken over all probabilistic invariant measures.

Theorem 3 The topological entropy of the pure deterministic exclusion process in continuum is infinite.

Swhen a.a. particles are eventually becoming paired.
SNormally one says that a map is chaotic if its topological entropy is positive, so infinite value of the entropy indicates
a very high level of chaoticity.
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The proof of this result is based on a similar result for the action of a shift-map in continuum
oy : X — X defined as
(opx)ii=z;+v i€Zx€X.

Lemma 8 The topological entropy of the shift-map in continuum o, is infinite.

The idea of the proof is to construct an invariant subset of X on which the map o, is isomorphic
to the full shift-map in the space of sequences with a countable alphabet. The result follows from the
observation that the topological entropy of the full shift-map ¢(™) with the alphabet consisting of n
elements is equal to Inn.

4 Coupling

Technically one of the main ingredients of the above mentioned results is special “dynamical” coupling
construction.

Recall that a coupling of two Markov chains z! and y' acting on the space X is an arrangement of
a pair of processes on a common probability space to facilitate their direct comparison, namely this is a
pairs process (z¢,y") defined on the direct product space X x X satisfying the assumptions

P((z',y") € Ax X)=P(a' € A) and P((z,y") € X x A) = P(y" € A),

i.e. the projections of the pairs process behave as in the individual processes.

Let us discuss the specific coupling between two copies z!, #¢ of Markov chains we consider throughout
the paper. Typically in continuous time interacting particle systems one uses (see e.g. [11]) an equal
coupling (pairing) when particles sharing the same sites in the processes x!,#! are considered to be
paired and all choices of their velocities are assumed to be identical. This sort of coupling works rather
well for continuous time systems when only a single particle may move at a given moment of time. In
the discrete time case the situation is much more complicated since an arbitrary number of particles
may move simultaneously and thus it is possible that the particles of the processes zf, £ pass each other
and never share the same positions. In fact, this difficulty is not really crucial and can be cured under
some simple technical assumptions. A more important obstacle is that if a pair is created and only
one of its members is blocked at time ¢ by an unpaired particle, then due to the simultaneous motion
of the blocking unpaired particle and the non-blocked particle in the pair the following situation may
happen: $° — °, °. Thus the old pair will be destroyed but no new pair will be created under the
equal pairing construction. Here we use a diagrammatic representation for coupled configurations where
paired particles are denoted by black circles and unpaired ones by open circles and use the upper line of
the diagram for the z-particles (i.e. particles from the xz-process) and the lower line for the #-particles.

To deal with this obstacle we introduce a dynamical 7 coupling, a very preliminary version of which
was described in [4] for the lattice case and was inspired by the idea proposed by L. Gray in the case the
simplest discrete time lattice TASEP (unpublished). It is worth mention also the coupling proposed for
the lattice continuous time case by O. Angel (see [1, 8]). Lemma 5 shows an important advantage of the
dynamical coupling with respect to the Angel’s construction: the former guarantees that the distances
between mutually paired particles are uniformly bounded, while in the Angel’s construction the distances
may grow to infinity.

Let us give an informal description of the dynamical coupling of the processes xt,#*. At t = 0 all
particles are assumed to be unpaired and the coupling consists of a gradual pairing of close enough
particles belonging to the opposite processes. Two unpaired particles from different configurations form
a new pair if the segment between them is less or equal to v and it does not contain any other unpaired
particles. Once particles are paired all choices of their velocities in the coupled process are identical. A
member of a pair may be swapped with an unpaired particle from the same process if the latter approaches
another member of the pair closer than it. It is convenient to think about the coupled process as a “gas”
of single (unpaired) particles and “dumbbells” (pairs). A previously paired particle may inherit the role
of the unpaired one from one of its neighbors. Our aim is to get rid of the unpaired particles and in order
to keep track of their positions we shall refer to them as x- and Z-defects depending on the process they
belong.

"The word “dynamical” is meant to emphasize that the mutual arrangement of particles in pairs may change with time
under dynamics in distinction to the conventual equal coupling (where the particles have coinciding positions).
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The formal description of the dynamical coupling can be done in terms of the resolution of z-triples
(& ° or *° ) and minimal pairs of defects ( ,° or ©°, ) in the coupled process as follows:

[ ]
(1) each z-triple is recursively resolved: ,°* — ,*°,
(2) each i-triple is recursively resolved: * o — *, 5 ,
(3) each minimal pair of defects is resolved: > — ,°

During the time when two particles are paired all choices of their velocities in the coupled process are
assumed to be identical. Therefore the particles from the same pair move synchronously until either the
admissibility condition breaks down for only one of the particles (which basically means that its movement
is blocked by another particle) or an unpaired particle comes close enough to one of the members of the
pair. This construction clearly defines a Markovian coupling between two copies of the Markov chain
describing our DDS.

One of the most important properties of the dynamical coupling construction is that once being
created at time ty a pair of particles remains present for any moment of time ¢ > ty, however at different
moments of time the roles of the pair’s members may be played by different particles. Indeed, a pair
breaks down only if one of its members is replaced by an unpaired particle, and hence the pair as a whole
survives.
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TOPNUYECKAZ# TOIIOJIOTM:A

B.M. BYXIITABEP, T.E. ITAHOB

AHHOTAIUSI. B 0630pe u3/1araiorcss METOAbI U OCHOBHBIE PE3YJIbTaThl HOBOM
aKTUBHO Pa3BUBAIOIIEHCS 00JIACTA UCCIEOBAHUN — MOPUUECKOT MONONA0UU.
B stux ucciaenoBanusix akTHBHOE y4acTHE HIPUHUMAIOT COTPYAHUKH, aCIUPaH-
ThI M CTYJIEHTBI Kadeapbl BBICIIIEH TeOMETPUM U Tomojoruu Mexmara MIY.

1. BBEJAEHUE B IPEAMET UCCJIEJOBAHUSI

Teopust feficTBUiT TOpa UMEET JJIUHHYIO UCTOPUIO PA3BUTHS U 00pa3yeT BarXKHYIO
00J1acTh aJIredpandecKoil TOMOJIOIIU. 3a MOoCIeHre 15 JIeT Ha CThIKe SKBUBAPUAHT-
HO#l TOIOJIOTNHU, aJaredpanvdecKoil ¥ CUMILIEKTUIECKON reOMeTPHH, KOMOMHATOPUKU,
KOMMYTATHBHON U TOMOJIOTHYIECKO# aJireOpbl BO3HUKJIA HOBasl 0OJIACTH UCCJIET0BaA~
HUAN — MOopu“eckas monosozus, KoTopas ObICTPO TMPUBJIEKIa BHUMAHUE DOJIBITTOTO
91CsIa WCCJIe0BaTeIell M aKTUBHO PA3BUBACTCS B HACTOSIIEE BPEMSI.

B menTpe BHEMaHUS TOPUYECKON TOMOJJOTHHM HAXOIATCS JEUCTBUS TOPA, MPO-
CTpPaHCTBa OPOUT KOTOPBIX HECYT OOraTyio KOMOMHATOPHYIO CTPYKTYpy. B Heit pe-
MAOTCA 38189 Ha OCHOBE U3YUYEHHS aJaredpanmdeckux, KOMOMHATOPHBIX U TOIO-
JIOTUYIECKUX CBONCTB TaKUX efiCTBUII, €CTECTBEHHO BO3HUKAIOIINX B PA3IUIHBIX
HallpaBJIEHUAX UCCJIeTO0BaHUA. Biraromaps Topudeckoil Tonooruu pyHaMeHTa b
HbIe PE3yJIbTAThI Psijia 00JaCTe MATEMATUKN TIOJYIUIN HOBOE PA3BUTHE W HAIIIN
HEOXKHNJaHHbIE 3aMeYdaTe/IbHbIC ITPUJIOZKEHUA.

IlepBoHAYATBHBI UMITYJIBC 3TOMY PA3BUTHIO MPUJIATA MOPUNECKAS 2€0MEM-
PUA — TEOPUST MOPUMECKUL MH02000pa3uti B aaredOpamvdeckKoil reoMeTpHu. IJTa
TEOpHsI YCTAHABIMBAET B3aUMHO OJHO3HATHOE COOTBETCTBUE MEXKY KOMILIEKCHBI-
MH aaredbpandecKuMu MHOTOOOPa3usiMU C JIEHCTBUEM KOMILIEKCHOTO TOPa, UMEO-
MAM TJIOTHYIO OpOUTY, U KOMOMHATOPHBIMUA OOBEKTAMU, HA3BIBAEMBIMH GEEPAMU.
IIpu momor BeepoB aredpoO-reoMeTPpUIecKre CBOMCTBA TOPUIECKUX MHOT000Opa-
3Uil TOJIHOCTBIO TEPEBOJATCS Ha sA3bIK KoMOmHaTopuku. Topwdeckass reomMeTpust
IPEI0CTaBIIsIeT OOTATHI UCTOYHUK SIBHBIX IMPUMEPOB aJIreOpandecKux MHOT0oOpa-
3Ul U UMeeT SIPKUe TMPUJIOKEHUS B TaKUX 00JIACTSX, KaK TEeOPHUsl 0CODEHHOCTEH U
MareMaTmuaeckas ¢pusmka. [IpocTpancTBO OpOUT 2n-MEPHOTO HEOCOOOTO MPOEKTUB-
HOT'O TOPUIECKOTO MHOT000pa3us 10 JeHCTBUI0 KOMIIAKTHOTO Topa 1™ mpecTaBIis-
eT co0oii BBIILYKJIBII N-MEPHBIA MPOCTON MHOIOIpaHHUK P.

B cumriutekTuveckoit reoMeTpun, MOCse MOsIBJIEHUsT TEOPEMbI BBITTYKJIOCTH ATbr—
Funnémuna—Crepubepra [At82] u dopmyssr dyucrepmaara—Xexkmana [DH82| B Ha-
qaje 1980-x rooB, akTUBHO U3yYaJCh TAMUJIBTOHOBBI JleficTBUs TpyI. B pabore
Henzanra [De88| 6b110 1M0Ka3aHO, YTO B CJlydae JEHCTBHs TOPA PA3MEPHOCTH, DaB-
HOIi IIOJIOBUHE Pa3MEPHOCTH MHOroobpasusi, 00pa3 0TOOparKeHusI MOMEHTOB OIIpe-
JieJisieT MHOTOOOpas3ne ¢ TOYHOCTBIO JI0 SKBUBAPUAHTHOIO CUMILIEKTOMOpdu3Ma. B
CUMILTIEKTUYECKOH TE€OMETPHUU, KaK U B TOPUYECKONU T'E€OMETPHUU, PA3JUIHBIE T'eO-
MeTpUYecKrne KOHCTPYKIIUA UMEIOT KOMOMHATOPHYIO MHTEPIPETAIINI0 B TEePMUHAX
MHOT'OT'PaHHUKOB.
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NmeeTcst TecHast B3aMMOCBA3b MEXKJTY aIredPandecKUMU U CUMILIEKTUIECKUMUI
MHOT'000pa3usiMu ¢ JIeiCTBUEM TOPa: ITPOEKTUBHOE BJIO2KEHIE HEOCODOT0 TOPUIECKO-
0 MHOI'000pa3usl OIpeaessieT CUMILIEKTHIECKYIO (pOpMy M OTOOparkKeHne MOMEH-
ToB. OOpa3oM OTOOpayKeHUsI MOMEHTOB SIBJISIETCsI MHOTOI'DAHHUK, JIBOMCTBEHHBII
K Beepy. Kak B anmrebpamvueckoil, TaK M B CUMILJIEKTUYIECKON cUTyarmn, neficTBue
KOMIIAKTHOTO TOpa JIOKAJIHHO M30MOP(MHO CTaH apTHOMY JeficTBuio Topa 1" Ha
C™ nmokoopaumHATHBIMI BpalieHusMu. PakTopIpocTpaHCTBO MHOT00Opa3usi 10 Ta-
KOMY JIEICTBUIO TOPa IpeJIcTaBiisieT co00il MHOrooOpa3ue ¢ yriiaMu, KOTOpOe HEeCET
KOMOMHATOPHYIO CTPYKTYPY, OTPAXKAIOINIYI0 CTPYKTYPY YACTHIHO YIIOPSI0UEHHO-
0 MHOXKECTBA CTAIMOHAPHBIX MOAIPYII. JTO MO3BOJISIET MTOJTHOCTHIO BOCCTAHOBUTD
MHOroobpasue u jefictBue. 3aMedarebHO, U9TO TaKO# IO/X0J1 paboTraeT u B 00-
PaTHOM HalIpaBJIEHHMH: B TEPMHHaAX TOIIOJIOTHUYICCKHNX NHBaAPHUaHTOB IIPOCTPaHCTBa C
JeficTBUEeM TOpa yJIa€Tcsd WHTEPIPETUPOBATH W JJOKA3bIBATH BECbMa TOHKHE KOM-
OWMHATOpPHBIE PE3yJIbTATHI TomoJIorudecku. OKa3aioch, 9TO JaHHas criennduka aJj-
rebpanvecKnx TOPUYECKUX MHOI00Opa3nii UMeeT YUCTO TOTOJIOTUYECKYIO TTPUPOJLY,
9TO BBI3BAJIO FJIy6OKO€ IIPOHUKHOBEHUE I/I):LGI';I 1 METOJ0B TOpI/I‘{eCKOﬁ " CUMIIJICKTHU-
YeCKOI TeOMEeTPHUHU B ajredpamvdeckyro Tonojoruio ¢ Hadaaa 1990-x ronos.

JanbHeitnne nccyieOBAHUs BBISBUIN PsiJl BayKHBIX KJIACCOB MHOTO0OOpA3Wii ¢
,ILeIU/ICTBI/IeM TOpa, IIPOUCXOKAeHNE KOTOPbIX BOCXO/JIUT K TOPUYIECCKUM MNJIM CUMILJICK-
THYECKUM MHOTOO0OpasusiM. DT OoJiee 00Ire MHOTOOOpa3ust KaK IMPABUIO HE siB-
JISTIOTCS aJIreOpanvIecKUMU WJIM CUMIIJIEKTUIECKUMU, HO B TO K€ BpeMsl 00JIaJatoT
BaXXHEUMIUMHA TOHOJIOTUYECKHIMHI CBOMCTBAMU HX aﬂFe6paI/I‘{eCKI/IX NnJIn CUMIIJICKTHU-
YEeCKUX TPENIECTBEHHNKOB. TakuM 00pa3oM, ObLIa CYIIECTBEHHO PaCITUpeHa 00-
JIACTH TPUJIOYKEHUM METOJIOB TOPUYECKOM TOIOJIOTUN B KOMOMHATOPUKE U KOMMYTa~
TuBHOU asirebpe. OnuUIieM HEKOTOPBIE U3 ITUX KJIACCOB.

Moaxon Tssuca—Auymkuesnda [DJ91| k usydenuto Topuaecknx MHOrOOOpa3mit
TOIOJIOTUIECKUMHU METOJIAMU MTPUBEJT K IMOSBJICHUIO KB8A3UMOPUMECKUL MHO2000pDa-
3utl. DTOT KJIACC MHOIOOODPA3Uil ONPEJIE/IAeTCs JBYMsl YCIOBUSIME: JI€HCTBUE TO-
pa JIOKAJILHO BBITJISJIAT KaK CTAHIaPTHOE TpejicTaBienne 1" B KOMIIJIEKCHOM IIPO-
crparcTtee C", a mpocTpaHCTBO OpPOUT () ABISIETCST KOMOMHATOPHBIM ITPOCTHIM MHO-
rorpanHukoM. O0a yC/IOBUsT BBITIOJIHEHBI JJIsS JIEHCTBUS TOpa Ha HEOCOOOM IIPO-
eKTHBHOM TOPHYECKOM MHOroobpasuu. Paborsr Byxmrabepa-Past [BP9S|, [BRO1|
MIOKA3aJIM, YTO KBAa3UTOPUYECKHE MHOI0OOpa3usl UIPAIOT BayKHYIO POJIb B TEOPUH
KOMIIJIEKCHBIX KOOOD/IM3MOB — KJIACCUYIECKOW 00/IacTH aJredpandecKoil TOT0JIO-
run [St68]. B omsmume or Topmueckux MHOrooOpas3uii, KBA3UTOPUYIECKHE MHOIO-
06pas3nst MOTYT OBITH HE KOMIIJIEKCHBIMU U JTaXKe He TOUYTH KOMILIEKCHBIMU, OTHAKO
OHU BCET/Ia JIOMYCKAIOT CTAOMJILHO KOMILIEKCHYIO CTPYKTYPY, KOTOpas OIpeses-
eTcd B YUCTO KOMOMHATOPHBIX TEPMHHAX — IIPHU MTOMOIIU TaK HA3BIBACMON Xapak-
mepucmu4eckots GyYHKYULU, COTTOCTABIISIIONIEN KaXKI0i TUIIePIrPAHN MHOIOTPAHHUKA
HEKOTOPBII TPUMUATUBHBIN BEKTOP TEJOYUCTIEHHON PEMETKN. XapaKTePUCTUIECKAsT
byHKIUS UrpaeT poJib Beepa, COIOCTaB/ISIEMOr0 TOPUIECKOMY MHOT0O0ODA3HUIO B aJl-
reOpanvIecKoil TeOMEeTPHUN.

KombunaTopHbIit MOAX0/ K M3YYEHUI0 TAMUIBTOHOBBIX JAEHCTBUN TOpa MPUBES
K mousituto ['KM-mnozo06pasud. Cornacuo [GZ99|, koMnakTHOe 2n-MepHOE MHO-
roobpasue M c¢ sddexrusapiM feiicrBueMm Topa TF, k < n, HaseBaerca I'KM-
MHOTOOOpa3ueM, eCjiu MHOYKECTBO HEIOIBUXKHBIX TOUYeK KoHeuHo, M obJiajtaer wH-
BApPUAHTHON IIOYTU KOMILJIEKCHON CTPYKTYPO#, M Beca IIPEJCTaBJICHUIl TOpa TF B
KaCaTeJbHBIX ITPOCTPaHCTBAaX K HEIOABUZKHBIM TOYKaM IIOIIapHO JIMTHENHO He3aBU-
CHUMBI. DTH MHOroobpa3us ObLIN Ha3BaHbI B YecThb [ opecku, Korreuma nu Makdep-
cona, Koropsele Brepsble Besin ux B [GKM98|. Tam ke 6bu10 1m0Ka3aHo, 4ro «1-
OCTOB» TAKOT0 MHOrooOpazust M, T.e. MHOKECTBO TOYEK, UMEIOINX CTAIMOHAPHYIO
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MIO/ITPYIIITY KOPa3MepHOCTH He OoJibie 1, MOXKeT ObITh OIMCAHO IIPU MTOMOIIU I'pa-
da ¢ merkamu (I', ). Dror rpad, HasbBaeMmslii epagom eecos (nmm 'K M-zpagom),
[TO3BOJISIET BBIYUC/ISITh BasKHBIE TOIOJOTHYECKHEe WHBApUAHThl MHOroobpasus M,
TaKne KaK €ro 4YucJjia BGTTI/I M KOJIbIIO 3KBHUBapHUaHTHBIX KOT'OMOJIOT . I/IBy‘{e—
HHEe TaKuxX I'padoB IPHOOPESIO CAMOCTOSTEIbHBII KOMOMHATOPHBIN MHTEpec OJiaro-
napsi paboram ['miémuua—3aper [GZ99] u apyrux. Ormernm, 9TO B TOHNOJOTUH
ujest COmocTaByeHnst rpada ¢ MeTKaMi MHOT0OOPAa3nio ¢ JAeHCTBUEM OKPYKHOCTU
UCIoJIb30Basiach HaunHast ¢ 1970-x 10108, cM., Hanpumep, pabory Mycuna [My80)].

Crenyin OBLT OTHUM W3 HEPBBIX, KTO OCO3HAJ OOJIBINON MOTEHITUA TOPUIECKUAX
JeficTBUM 71T KOMOMHATOPHBIX TTPUIOKEHNH, NCIIOIH30BAB UX JJIs JIOKA3aTEILCTBA
eunomesv, Maxmiosrena o duciax TpaHeil CUMILIANHAAILHBIX MHOTOIDAHHUKOB U
2unomesv, 0 gepruel epanuye NI TpuaHryasannit cdep. Ero pesynbrarsr m MeTo-
JIbI JIETJIM B OCHOBY U3BeCTHOI MoHorpadun [St96] u npegonpenenniu najabHeiinme
IPUJJIOZKEHU A KOMMyTa.TI/IBHOI';I aﬂFe6pr 1 T'OMOJIOTHUYECKNX METOJ0B B KOM6I/IH8.TOp—
HOW reOMeTpUU.

Mmuorwue ujgen CTeHIU HAILIN TOIIOJIOTTYEeCKIe ITPUMEHEHNST; TaK OKa3aJI0Ch, 9TO
Koavuo epanet (wmm xoavyo Cmenau—Pucnepa) Z[K] cuMumimaibHOrO KOMILIEK-
ca K aBjserTcs BasKHOI COCTABJILIONIEN B BHLIYMCIECHUN KOJbIA KOMOMOJIOTHI KBa-
suropudeckoro Maoroobpasus M. B [DJ91| nokazaHo, 4To sxeusapuarmmbie Kko20-
mono2uy, MEOrOOOpasust M u3oMopdHbI KOJbIly Tpaneii Z[p| cuMnmimaibHOro
KoMmILIekca K p, MBONCTBEHHOTO K T'paHUIle TpocToro mMuororpanauka P. Komabio
00braHbIX KOromosoruit H* (M) nonyuaercs w3 Z[Kp| dakropusarueit mo niaeasy,
TOPOK/IEHHOMY HEKOTOPBIMH JIMHEHHBIMU (OpMaMU, B TOYHOCTH KaK M B CJIydae
TOPUIECKUX MHOTOOOpA3Hii.

C mostB/IeHHEM KOJIbIIa, TpaHeil CTajo siCHO, 9TO MHOI'HE TOHKHE KOMOWHATOD-
HblE€ CBOHCTBa KOMILIEKCOB U MOXKHO MHTEPIPETHPOBATH ajredOpamdecku. V3yte-
HUEe KOJIel| TpaHeil IMOJIyYUI0 CaMOCTOATEIbHOE Pa3BUTHE W IPUBEJIO K HOBOMY
Kyaccy xoqaey, Kosna—Maxones, MMEONTUX TEOMETPUYIECKYIO TpUpPoLy. B gacTHOCTH,
BOBHUKJIO HOBOE TOTIOJIOTUYIECKOE MOHSATUE CUMNAULUUAALHOZ20 Komnaekca Koona—
Maxones K, nis koroporo Z[K] sisiercst kosbiiom Kosuna—Makostest. [Toapobroe
U3JIOXKEHUE ITUX TOHTUI MOKHO Haiitu B mMonorpacdun [BHIS8|, rme rakxke mos-
YEPKUBAETCsST BaXKHOCTb MOMOJIOTHYECKOro 1moxoa. Hampumep, B [St96] u [BHIS|
pPacCMaTpPUBAIOTCSA PAa3MEPHOCTH OUTPAyHPOBAHHBIX KOMIIOHEHT BEKTOPHBIX ITPO-
crpancts Tory(y, .. .,.1(K[K], k), HasbiBaemble areebpauveckumu wucram Bemmu
kosbria K[KC], mast moboro moss k. DTn wmcia sBIAOTCS BeCbMa TOHKHMU HHBA-
pUaHTaMU: OHU 3aBUCAT OT KOMOMHATOPUKHU K, & HEe TOJBKO OT TOIOJIOTUU €TI0 pea-
mu3aryn K|, 1 HOJTHOCTBIO OIPEIENSIOT «OObIYHBIE» TOMOJOIMYecKHe Yncya berru
nutst |KC|. Teopema Xoxcrepa [Ho77| Beipazkaer anrebpandeckue ducsia berru gepes
KOTOMOJIOTUU TTOJTHBIX ITOJKOMILIIEKCOB B K.

BoJjtee 1moapobHO O03HAKOMHUTBHCSI C OCHOBHBIME JTAllaMU PA3BUTUST TOPUIECKOIT
Toroiorun MoxkHO 10 MouHorpadun |[BII04] u HemasHemy 00630py ByxmraGepa—
Past [BROS]. Cpesu apyrux pabor MO TOPUYECKOIl TOMOJIOTUE COTPY/HUKOB U ac-
nupaHToB Kadeaps! Bbiciieil reomerpun u Tonosoruu Beiaeanm |Ba03|, [BBII04],

[T001], [EpO8].

2. TOPUYECKUE 1 KBABUTOPUYECKUE MHOI'OOBPA3USI
PaccMoTpuM BBITTYKITBIN N-MEPHBI MHOTOIPDAHHUK C 11 TUTIEPIPAHIME B €BKJIU-

JiIoBoM TipocTpancTBe R™, 3aJIaHHBIN KaK IepecedeHne m MoJIyITPOCTPAHCTB:

(2.1) P:{mGR”:(ai,m)—i—bi}O upu 1 <i < m},
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rme a; € R™ — mexkoropbie BeKTOphI u b; € R. Muororpannmk P Ha3biBaeTcs
NPOCMvIM, €CJIN OIPAHMIUBAIONINE €r0 TUIEPIIOCKOCTH HAXOJIATCs B OOIIEM TIO-
JIOXKEHUU B KaXKJION €ro BepIIuHe; Jajee Mbl OyJIeM pacCMaTPUBATD JIUIIhL ITPOCTHIE
MHOTOTDaHHUKH.

Mmuororpanauk (2.1) MOXKHO 33/1aTh OJTHIUM MATPUYIHBIM HEPABEHCTBOM

Apx +bp >0,
rme Ap — MaTpuia pasMepa m X n co CTPOKaMu a;, a bp — crosben u3 gucen b;;
HEPaBEHCTBO CYNTAETCA MOKOOpAMHATHBIM. Torma addunaoe oTobparkeHune
ip: R" - R™; xw+— Apx +bp

oToxecTBAeT P ¢ mepecevennem noaodcumenvroeo opmanma RY u n-mepnoti
nockoctu ip(R™). Oprant RY apistercs mpocTpaHCTBOM OpPOHT cmandapmiozo
(mokoopauHaTHOrO) JeiicTBust Topa T Ha KomIuiekcHOM npoctpancrse C™; B Ka-

YeCTBe IPOEKINH Ha MPOCTPAHCTBO OPOUT BO3bMEM OTOOParKeHIe
.om m, 2 2
p: C"™ = RY5 (21,00, 2m) = (J21]5 .- [2m]7)-

Terteps ompejiesiiM TPOCTPAHCTBO Zp U3 KOMMYTATUBHOM JTUATPAMMBI

Zp 2, Cm
(2.2) l lu
P — RT.

[To moctpoennto, Zp asasgerca 1"-uHBapraHTHBIM ToAMHOKecTBOM B C™ ¢ mpo-
cTpaHCcTBOM opbutT P, a ity sBasgercs 1" -5KBUBAPUAHTHBIM BJIOYKEHIEM.

Teopema 2.1. IIpocmparncmeo Zp asasemces T -unsapuarmusim 2Aa0KUM GEULE-
cmeennvm (m + n)-meproim nodmuozoobpasuem ¢ C"™ ¢ mpueuasvoHvM HOPMAND-
HHM PACCAOEHUEM.

Bri6pas BemecrBentyto (m — n) X m-marpuity D = (dy;) panra (m — n), Takyo
qro DAp = 0, MOXKHO 3aJ1aTh Zp KaK IIOJHOE [I€PeceYeHre BeIeCTBEHHBIX KBAIPUK
B C™M =~ R2m.

N diiljml? —b) =0, 1<k<m-—n.
i=1

Mpb1 HasbiBaeM Zp MOMEHM-Y204 MHO2000pasuem MHOTOrpaHHUKA P (HasBaHme
CBSI3aHO C T€M, UTO Zp SBJIAETCS IOBEPXHOCTHIO YPOBHSI JIJIsl 0MOOPANACEHUA MOMEH-
MO06 B CUMILJIEKTHYECKON KOHCTPYKIIMU TOpuYeckux MHoroobpasmii [BI104, §9.2]).

HetictBue Topa T Ha Zp He ABJIIETCSI CBOOOJHBIM: BEPINMHBI MHOTOIDAHHIKA
UMEIOT MaKCUMaJIbHbIe (N-MepHBIE) CTAIlMOHAPHBIE TIOAIPYIIbl. Bo MHOIUX cirydasix
yaaéres Haiitu (m — n)-mMepHyto noarpymny B 1™, neficTByonyto Ha Zp CBOOOIHO.
Bazkueiine npuMepbl BOSHUKAIOT, KOTJIa MHOIOIPAHHUK P SIBJISIETCS UeAOYUCAEH-
HOLM, T.€. IMEeT BEpPIIMHBI B TOYKAX IEJOYMCIeHHON pemérku Z" C R™. B stom
ciydae BEKTOpBI @; B (2.1) MOXKHO BBIOpATH IEJIOYUCIEHHBIMA ¥ TPUMUTHBHBIMU;
Torga orobpakenune Ap npoucxomur us smumopdusMa pemérok Z™ — Z", KoTo-
polit 3a1aér snumopdusm Topos T — T". O6o3HaunM ero siyipo depes K (P).

JIemma 2.2. ITycmw 0as kaostcdol eepuiunv, MHozoeparHuka P nabop us n eexmo-
POB Q;, OPMOLOHANOHBIL K 2UNEPZPAHAM, COOEPHCAULUM MY SEPULUHY, 00pasyem
basuc yerowucaennot pewémru. Toeda K(P) asasemes (m — n)-meproim mopom,
deticmsyrowum wa Zp c60600H0.

CoorercrByioriee dakrop-muHoroodbpasue Vp = Zp/K(P) (pasmeproctu 2n)
HA3BIBAETCST  MOPUHECKUM  MH02000pa3UueM, COOTBETCTBYIONAM IEJOUUCTEHHOMY
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MHOTOrpanHuky P. OHO siB/IsleTCsi HEOCOOBIM MTPOEKTUBHBIM aJreO0parmIecKuM MHO-
roobpasuem ¢ zeiicrBuem anrebpamdeckoro Topa (C*)™, mMeromuM MIOTHYIO Op-
oury [Ja78|, [Fu93|. Kommakrasiii Top T™ = T™ /K (P) siBiasieTcss MaKCUMAJIbHOT
KOMITaKTHO# moarpymmoit B (C*)™.

Topuueckue noarpyumbsl B 1™, neiicTByromiue Ha Zp CBOOOIHO, MOXKHO TaKKe
oJIydaTh M3 CJejytoleii boJee obmeil koncrpykuuu. [Iycts A — nenodnciienHas
m X N-MaTPUIA, CTPOKU KOTOPOIi YIOBIETBOPAIOT YCJIOBUIO Ha BEKTOPHI @; U3 JIEM-
Mmbt 2.2. Torma sinpo K (A) coorBercrBytomiero orobpazkenus: Topos 1" — T tak-
x)e JeiicrByer Ha Zp cBo6oaHO. Pakrop-mHOroobpasue M = M(P,A) = Zp/K(A)
HA3BIBAETCS K8A3UMOPUHECKUM MH02000pasuem, 3aiaBaeMbiM darabivu (P, A). To-
puUIecKre MHOrooOpas3ust Oy IaloTCs KaK YacTHBIN caydait mpu A = Ap. JleiictBue
topa T™ = T™/K(A) na M obiagaer nByMsi CBOJiCTBaMuU, KOTOpBIe mpuBean J1s-
Buca u flHyImKeBnYa K MOHITHIO KBA3UTOPUIECKOro MHOroobpasust (cm. Beeenue).
MozkHO JI0Ka3aTh, 9TO JI000e MHOroobpasue ¢ jeiictBueM Topa 1", y1oBIeTBOPS-
IOIUM STUM YCJIOBUSIM, IOJIyIaeTCsl U3 TPEbIIyINeil KOHCTPYKIINA Kak (haKkTop-
[IPOCTPAHCTBO MOMEHT-YI'0JI MHOTOOOpAa3HsI.

Crenyrorasi KOHCTPYKIIUS TTOKA3bIBAET, YTO Ha KAXKJIOM KBa3UTOPUIECKOM MHO-
roo0pas3uu UMEETCs CMAOUNDLHO KOMNAEKCHAA CMPYKMYPA.

IIycts FY,...,F,, — runeprpanu mHororpanauka P u w: M — P — npoexiusi
Ha MPOCTPAHCTBO OPOUT KBA3ZHTOPHYECKOro MHoroobpasus. Torma M; = 7~ (Fy)
SIBJISIETCS. OPUEHTUPYEMBIM TIOJMHOTO0Opas3ueM B M KOpPa3MEepHOCTH JBa, HA3BIBA-
e€MBbIM ZaPAKMEPUCTNUYECKUM N0OMH02000pa3uem. TeM caMbIM OIpeIeSIeHO Belle-
CTBEHHOE 2-MepHOe OPHEHTHPYEMOe paccjioeHne p; Haji M, orpaHuyeHne KOTOPOro
Ha M; coBmajiaeT ¢ HOPMAJIBHBIM paccyioerneM Bioxkenust M; C M.

Teopema 2.3 (|DJ91, BRO1]|). HAmeem mecmo usomoppusm sewecmeennvix 2m-
MEPHBIT PACCA0EHUT

TM RN ™™ > & @ ppm,

20e TM — xacamenvnoe paccaoenue, a R2™=") — mpusuanvroe 2(m — n)-meproe
paccaoerue nad M.

Tax kak BbIOOpP OPUEHTAIINN B BEIIIECTBEHHOM 2-MEPHOM PaCCJIOCHUN SKBUBAJICH-
TEeH 38 IAHUI0 HA HEM KOMILJIEKCHOW CTPYKTYPBI, CTAOUILHOE KAacaTeIbHOE PaCCIoe-
Hre K M j1omycKaeT KOMILIEKCHYIO CTPYKTYPY. BBIOOP 9TOi CTPYKTYPBHI CTAHOBUTCSI
OJTHO3HAYHBIM, €CJIU 3aPUKCHPOBATH OpUEHTAINIO camMoro M u Bcex XapaKTepHUCTH-
qecKux ImoaMuoroobpasmii M;. Takoit HabOp OpHeHTAIUl HA3bIBAETCH NOAUOPUEH-
mayued. JIms KayKI0ro mOTHOPUEHTHPOBAHHOTO KBA3UTOPUIECKOTO MHOTO00OPA3HS
M onpenenén ero kiacc [M] € QB KOJiblle KOMILJIEKCHBIX KOOOD/IU3MOB.

Teopema 2.4 ([BPRO7|). Kaorcowii kaacce Komniekchor kK060pousmos pasmepHo-
cmu > 2 codepacum Kea3umoputeckoe MHo2000pasue (HENpemenHo c6a3Hoe), cma-
OUNDHO KOMNAEKCHAA CMPYKMYPA KOMOPO20 3a0aEMCA HEKOMOPOT: NOAUOPUEHMA-
yueti, a cAedo8amensbHO CO2AACO8GHA ¢ Jelicmeuem mopa.

JlaHublit pe3yJsibTaT MOYKHO PACCMATPUBATH KaK PellleHne KBa3UTOPHUIECKOrO aHa-
JIoTa M3BECTHOM 1pobseMbl Xupredpyxa o Kjaccax KoOOpAM3Ma, MPeICTaBIIEMbIX
CBSI3HBIMU HEOCOOBIMU aJIre0panvdecKuMu MHOI00Opa3usix.

CaencrBue 2.5. Kaotcouil KAaCC KOMNAEKCHBT K0OOPOUIMOE Pa3ZMEPHOCTU > 2
npedcmasaaemcsa Paxmop-npocmparncmeom NOAHO20 NEPECEUEHUS BEULECTNEEHHBLT
x6adpur No c60600HOMY deticmseulo mopa.
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3. MOMEHT-YI'OJI KOMIIJIEKCBI 1 MHOI'OOBPA3USI

Teopust MOMEHT-YT0J1 KOMIIJIEKCOB SIBJISIETCSI OTHIM M3 OCHOBHBIX MHCTPYMEHTOB
MIPUJIOYKEHUIT TOPUYECKOIl TOIOJIOTUH U O0bEJINHSAET METO/Ibl KOMOMHATOPHOI Teo-
METPHUU, TOMOJIOTUIECKOI aJIreOPbl M SKBUBAPUAHTHON TOTIOJIOTUN.

B npeapiaymeM pas/iesie Mbl COIOCTABUIN KaXKIOMY T'€OMETPUIECKOMY IIPOCTOMY
MHOTOrpaHHuKy (2.1) riiajikoe MOMEHT-yroJ MHOroobpasue Zp ¢ jieficrBueM Topa
T monydaeMoe KaK TOJTHOE TTepecedenne BelecTBeHHbIX KBaapukK B C™. Moxmo
[OKa3aTh, YTO Zp OTOKJIECTBIsAETCs ¢ (hakTopupocTpancTBoM P X T™ / ~ 110 HeKo-
TOPOMY OTHOIIIEHHIO SKBUBAJIEHTHOCTH, OTKY/Ia BBITEKAET, YTO TOTIOJOIMIECKUIT THI
MHOTr000pa3usi Zp OIpeesseTcs JIUITb KOMONMHATOPHOM CTPYKTYPOil MHOTOIDAHHU-
ka P. Dra noceiHss KOHCTPYKIUsS MHOroo6pasust Zp Blepsble nosgsuiach B [DJ91]
u OblIa MOTHBHpPOBaHa KOHCTpyKimsiMu Buubepra [Bu71l| mms rpynn Kokcrepa.
Taxxke B [DJ91] 66110 mOIyUeHo 0600IIeHNEe KOHCTPYKIMKA Zp HA [IPOU3BOJILHBIE
KOHEYHbIE CUMILIAIUAIbHBIE KOMILIEKCH K ¢ m BepmuHaMu (IIPU 9TOM IIPOCTOM
MHOTOTPAHHUK P COOTBETCTBYET CHMILIAIUAILHOMY KOMILIEKCY K p — TpaHuie
JIBOCTBEHHOTO MHOTorpaHHuka). Ilosrygaemble mpocrpancTBa Zi Mbl U Ha3bIBa-
eM MOoMeHM-Yy204 Komnaekcamu. B [DJI1] um orBoauiack i BerioMorareabHast
POJIb IPU U3YYEHUN KBA3UTOPUYECKUX MHOTO00pa3uii, HO BCKOPE CTAJIO SICHO, YTO
MOMEHT-YT0JI KOMILIEKCHI UMEIOT CAMOCTOATEILHOE OOJIBITIOE 3HAYEHUE.

[Iycts K — xoHEUHDBIH aOCTPAKTHBIN CUMILIAIIUAILHBII KOMILJIEKC Ha MHOYKECTBE
m] ={1,...,m}. B |BI199| Hamu GbL1a 1peiozkeHa Jpyras KOHCTPYKIIUST MOMEHT-
yroJI KoMILekca Zx. PaccMoTpuM e IMHUYIHBIN KOMILIEKCHBIM TOJIUTUCK

D*)™ ={(21,...,2m) €C™: |z)* <1, i=1,...,m}.
C KasKJIBIM CHMILTIEKCOM 0 € K CBSI2KEM HOIMHOXKECTBO
By ={(21,..,2m) € (D*)™: |z]*=1upui¢ o}
U OIIPEJIETIAM MOMEHM-Y200 KOMNAEKC
Zx = U B, C (D2)m:
ocek

riae oobeauHeHne OEPETCsI B IIOJIUINCKE (]D2)m. IIo mocrpoenuto, Zx sapistercss 1™ -
WHBAPUAHTHBIM MOJITPOCTPAHCTBOM, COJIEPKAIAM CTAHIAPTHBIN Top T C (]D)Q)m.

Ipumep 3.1. Ecm K = 9(A™™!) — rpanuna (m — 1)-mMepHoro cumiiekca, To
ZIC — 8((@2)771) o SQm_l.

IIpennoxxenne 3.2.

1. ITyemv K = Kp — epanuya CumMniuyuaibho20 MHo202paHHuKa, 060TUCmMeeHHo-
20 K npocmomy muozoepannuky P. Tozda coomseememeyowuti Momenm-y204 KoMm-
naekxce T™ -2K6UBAPUAHIIIHO 20MEOMOPPHEH MOMEHM-Y204 MHO2000pa3u0 Zp.

2. Ecau KK asasemes cumnauyuasvivm pasouenuem (n— 1)-meprot chepol, mo
Zic asasemesa (3amrnymoim) T -mrozo006pasuem.

3. Ecau K asasemes cumnivyuaivhoim pazbuenuem (n — 1)-meprozo mro2o06-
pasus, mo donoarenue Z \ T™ do cmandapmmozo mopa T™ C (D)™ asasemca
omxpvimoim T -mH02000pasuem.

Ilpennoxxenue 3.3. Conocmasaenue K — Zi 3adaém dyrnxmop us xamezopuu
CUMNAUYUAALHDIT KOMNAEKCOE U CUMNAUUUAGNOHBLET 0MOOPAHCEHUT 6 KAME2OPUIO
npocmMparcme ¢ 0eticmeuem mopa U IKEUBAPUAHTHBIT 0ToOPaHCceHU.

OHIM W3 HAIIMX OCHOBHBIX PE3Y/JIbTATOB O MOMEHT-YI'0JI KOMILIEKCAX SBJISIETCS
BBIYHCJICHUE X KOJICI] KOT'OMOJIOT'UH B TepMHUHaAX KOM6HHaTOpI/IKH CUMIIJINIAJIbHBIX
KOMILIEKCOB. HamoMHuM, 910 Koavyom epanets (nam xoavyom Cmenau—Puctepa)
CUMILIUITIAIHLHOTO KOMILTeKca K Ha3bIBaeTCs TPalynpoBaHHOE (PaKTOPKOIBIIO

ZIK) = Z[v1,...,vm]/Z,
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rie degv; = 2, a ujean Z MOPOXKJIEH MOHOMAMHY V;, - - - U;, , TAe {i1, ... ik} & K.

Teopema 3.4. Uwmerom mecmo dyrnkmopuasvhoe no K usomoppusamor epadyupo-
BAHHBIX AN2E0D

H*(Zx) = Toryy,, o (ZIK],2) = H[Aluy, ..., um] © Z[K], d].

3decwv nocaednan wacmov Gopmyavt 0603Hauaem anzebpy kozomosozull duddeperu-
anvrol 2padyuposarnol arzebpol Aluy, . . ., uny,|QZ[K], 2de obpasyrowsue u; enewred
anzebpor umerom cmenenv 1, a dugdepervyuan 3adarn Ha 00PA3YOUWUT CACOYOULUM
obpasom: du; = v;, dv; = 0.

S Um]

Bropoit nzoMopdusm B mpeabIIyIiei TeopeMe OCHOBAH Ha CTAHIAPTHOM BBIYNC-
sgernu Tor-aaredbpnl pu momormu Kowmintekca Korryrsa. JlokazaTeabecTBO M30MOP-
du3zMa MeX) Ty KOrOMOJIOTHSIME MOMEHT-YTOJI KOMILTIeKca U Tor-ajiredpoit oCHOBaH
Ha TIOCTPOEHUN KJIETOYHOrO pa3bueHus: npocTpaHcTBa Zx (MIPU KOTOPOM KaKJIblii
qack D? pasbuBaeTcs Ha TPU KJIETKN) U aHAJIN3E YMHOMKEHHsT B KJIETOTHBIX KOTETISTX
IIpY TTOMOTIIH CIIENAAIBHON KJI€TOYHON alllPOKCHMAIINH JTHArOHAJIHLHOTO 0TOOpazKe-
Hust A: Zx — Zx X Zx, GYHKTOPUAIBHON OTHOCUTETHHO OTOOPAYKEHUN CUMILIU-
MUAJBLHBIX KOMILIEKCOB. [Ipn 3TOM mokazaHo, 9T0 OUTpaiynpoBKa B TOr-MOTyssx
AMeeT FBHYI0 PeOMETPUIECKYIO PeaIn3alIliio, 00yCJIOBIEHHYIO BBeIEHHON B Zx OU-
IpaJlynpOBaHHOl KyieTo9HO! cTpykTypoil. Jeramn cm. B [BII04, §8.1].

Teopema 3.4 maér mocrarouno 3¢ derruBHoe onmcanne Koublia H*(Zx) u jerko
MIPUMEHSIETCST JIJTT KOHKPETHDBIX BBIYUCIEHUN C CHMILTAUIIAAILHBIMA KOMIIJTIEKCAMHU.
B caydae KOMILIEKCOB ¢ OOJIBIITIM YHUCJIOM BEPIUH /I BHIYUC/IEHUS PAa3MEePHOCTEH
OUIpa[ynpOBAHHBIX KOMITIOHEHT TOr-mMo/tyJieit MOXKHO IIPUBJIEYb U3BECTHBIE MTAKEThI
koMmmbioTepHbIx nporpamm (Macaulay2, Bistellar u ap.). Kpome Toro, npumenenue
TeopeMbl XOXCTePa MO3BOJISIET CBECTU BBIYNUCIEHHE K KOTOMOJOTHSIM TOJHBIX ITOJ-
KOMILTIEKCOB B KC:

Teopema 3.5. Umerom mecmo udomophusmo, epynn

H*Zx)= P HIEH(KL),

wC[m]
ede K, — noanvii nodkomnaere 6 I (oepanuvenue K na nodmmnoscecmeo w C [m] ).

Tem caMbIM KOHCTPYKITHST MOMEHT-YTOJ KOMIIJIEKCOB TTO3BOJINIA TIPUMEHUTH Me-
TOABI 3KBI/IBapI/IaHTHOI71 TOIIOJIOTUN JIJId MUI3YYIECHUA KOM6I/IH8.TOpI/IKI/I CUMILJIUII AJIb-
HBIX KOMILJIEKCOB U aJiredpamdecKux CBOMCTB WX KOJIEI[ IpaHeil, mpuaaBas HOBOE,
reoMeTpuvIecKoe, U3MepeHne «KOMOMHATOPHON KOMMYTATUBHOM ajiredbpes. B gact-
HOCTH, BBIYUCIEHIE KOTOMOJIOTUT MOMEHT-YT'0JI KOMIIJIEKCOB TTO3BOJIMIO TOITOJIOTH-
9eCKM MHTEPIPETUPOBATH NOMOJIOTNYECKE NHBAPUAHTHI KOJIEI] TPaHeil, TaKne Kak
Tor-arebpsl u ajnredpandeckue qucaa berTu.

HecMmoTpst Ha TpOCTOTY KOHCTPYKIMI MOMEHT-YTOJT KOMILJIEKCOB U MHOTOOOpa-
3Hif, MX TOMOJIOTHSI JIOCTATOYHO CJIOKHA. DTO BUHO yIKE U3 BHIYUCICHUN (Ha OCHOBE
TeopeMbl 3.4) KOrOMOJIOIH MOMEHT-YT'0JT KOMIIJIEKCOB, COOTBETCTBYFOIIIX KOMITJIEK-
cam K ¢ HebosbiuM dncsioM BepinrH. OKa3aa0ch, 9TO B ajiredpax pardoHaJIbHBIX
KOTI'OMOJIOI'IA MOMEHT-YT'OJI KOMIIJIEKCOB CYHIECTBYIOT HETPUBHAJIbHBIE ITPOU3BEIE-
aust Maccu [Ba03|. B HekoTopsix ciyuasix (Hampumep, st TPAHUI] MHOTOYTOJIb-
HUKOB UJIM OCTOBOB CUMILIEKCOB) yJIAETCsl SIBHO OIUCATH TOIOJIOTUIECKUIT THII TPO-
crpancTBa Zx (cMm. npumep 3.7), HO BCIKUX Pa3 TAKOE OIUCAHUE UCIIOIb3yeT BEChMa
TOHKHUU aHaJINI3 Pa3JIMIHbIX KOHCprKI_[I/Iﬁ MOMEHT-YTI'OJI KOMIIJIEKCOB.

BaxkHbIM acIieKToM TeOPUU MOMEHT-YT0JI KOMILJIEKCOB sIBJISIETCSI UX T€CHAST B3AM-
MOCBSI3b C KOH(MUT'YPAIUAMEI KOOPIUHATHBIX TOITPOCTPAHCTB U UX JIOMOJTHEHUSIMUA.
ODTH MPOCTPAHCTBA UTPAIOT BasKHYIO POJIb B ajrebOpamvdecKoil TeOMeTpUur, TEOPUn
OCODEHHOCTEH U TEOPUU MAPHUPHBIX MEXaHU3MOB.
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Koop&unamuoe nodnpocmpcmcmso C™ moxkHO 3a1aThb B BHUJC
(31) Lw:{(zl,...,zm)ECm:zil:...:zik:O},

riae w = {iy,...,ix} C [m].

JIJ1s1 Kazk10ro CUMILIMIMAILHOTO KOMIUTeKca K Ha MHOXKecTBe [m] paccMoTpum
KOHPU2YPayuI0 KomnaekcHox xoopdunamuuz noonpocmpancmée A(K) = {L,: w ¢
K} u eé donoanenue B C™:

Uk)=Ccm\ | L.
wéK
Conocrasierne K — U(K) onpenessier B3aUMHO OJHO3HATHOE COOTBETCTBUE MEXK-
JIy CUMILIUIAAIBHBIME KOMIIJIEKCAMY Ha MHOYKECTBE [m] 1 JIONOJTHEHUSIME KOOD/IU-
HaTHBIX KoHdurypamnuit 8 C™, coxpaHsrioniee OTHOIEHNE BIIOXKEHUSI.

Teopema 3.6. Jlasa 1106020 cumniuyuaivhozo Komnaiekca K na mmootcecmee [m]
umeemcs T -ax6usapuarnmmas 0ehopMayUOHHAA PEMPAKUUA

Zx — UK) = Zk.

Hasmmaune romoronmaeckoii sksusasenTaoctr U (K) ~ Zx m03BOJISIET IPUMEHSITH
HAIIM Pe3yJIbTAThl O MOMEHT-YI'0JI KOMILJIEKCAX B Teopuu KoHduryparuil. B gacr-
HOCTH, MBI IIOJIy9aeM DellleHre U3BECTHON 3a/1a9u 00 OIMCAHUHU KOJIBIIA KOTOMOJIO-
IUil JONMOJIHEHNS KOH(UIypanuyl KOOPAWHATHBIX MOAIPOCTpaHCcTB. OTMETHM, 9TO
JIpyTHe U3BECTHBIE PE3YJIbTAThI O KOTOMOJIOTHAX JOIOJHEHUI KOH(MUTYPAIIil KOOP-
JIMHATHBIX HOJIPOCTPAHCTB HE OMKCBIBAIOT MY/IbTHILIMKATUBHON CTPYKTYPHI (Kak
obmas Teopema Lopecku—Maxkdepcona [GMS88|), smbo garor juimb onucanue mpo-
U3BEJICHNS JIBYX JAHHBIX KOIMKJIOB B KOMOWHATODHBIX TEPMHUHAX (KAK Pe3yJIbTar
ne Jlonrsuure [dLO00|). Hamr pesynabrar o MOMEHT-yrosl KOMILIEKCaX JaéT HCUep-
IbIBaloIlee IVI0OAIbHOE OIMCAHHE KOJIbIIa KOI'OMOJIOTHI JIONOTHEHHsI KOH(MUIypa-
¥ KOOP/IMHATHBIX TToanpocTpancTs. Pesynbrarsr [opecku—Maxdepcona (B yactn
KOOD/IMHATHBIX KoH(bwuryparwmii) u je JIOHrBujLIe CBOJATCS K YACTHBIM CJIydasiM
HallleTO pe3dyJjbTaTa IIPpU ITOMOIIU ,ZLBOfICTBeHHOCTI/I AﬂeKcaH;Lepa.

IIpumep 3.7. Ilycts K npeacrasisier coboit Habop u3 m touek. Torma Zx romo-
TOIMYIECKN SKBUBAJEHTHO JOIOJTHEHUTO

1<i<jsm
BCEX KOOPAMHATHBIX IJIOCKOCTEH KOpa3MepHOCTH ABa. KoJblo rpaHeil umeer BHI
ZIK]) = Zlvi, ..., o]/ (vivs, i # j).
[TpocrpancTBO KOIUKIIOB B anrebpe Afuq, . . ., uy,| ® Z[K] umeer 6a3uc u3 MOHOMOB
Vi Uiy Wig - Uy, Kk =1m1i, # i upn p # q.

ITpocrpancTso (k+1)-MepHBIX KOrPaHUIL IOPOXKICHO dJ1eMeHTaMu BIa d(u;, - - - U, ).
Brranciigss pasMepHOCTH 3THX IIPOCTPAHCTB, IIOJIYYaeM

dimHO(Zx) =1, dimH'(Z¢) = H2(U(K)) =0,

dim H*1(Z) = mCF Y —CF = (k- 1)Ck, 2<k<m,

a yMHOXKeHHe B Koromostorusix jgonosaenns U(K) TrpuBuasbHo.
B uwactrOCTH, IPN ™M = 3 HOTyYaeM

H*(U(K)) =2 H*(S*Vv S§3v 82 v 8ty sh,
1 MOXKHO IIOKa3aTb, 9YTO 9TOT I/I3OMOp(1)I/13M KOJIeI] KOI'OMOJIOT U UHAyOUPpOBaH I'O-
MOTOIIMYIECKOI 9KBUBAJIEHTHOCTHIO IIPOCTpaHCcTB. Bostee Toro, nonosuenne U (K) u3

3TOT0 IIPUMeEpPa FOMOTOIIMYECKH SKBUBAJIEHTHO 6yKeTy cdep s sroboro m [[T04].
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4. HOBBIE OBJIACTU IMPUJIOXKEHWN

MomeHT-yrosi KOMILIEKCHI HAIIN MPUJIOXKEHUS B TEOPUU JeHCTBUIl ajredpan-
9eCKUX TPYII, a UMEHHO, IIPU MOCTPOCHUN MHoxHcecms muna Kemnga—Hece s
JeficTBUil aJredOpamtdeckoro Topa Ha KBasnad@UHHBIX MHOroobpazusx. B kirac-
CUYECKON CUTyaIlnu JeHCTBUil ajrebpandecKux rpymnin Ha ad@UHHBIX MHOT00Opa-
3ugx moHsaTHe MHOXKecTBa Kemmda—Hecc mo3Bossier 3aMeHUTh KATETOPHBIH (haK-
TOp Ha (PAKTOPIPOCTPAHCTBO O JAEHCTBUIO MAKCUMAJJIBLHOW KOMIAKTHOW TOJTPYII-
nbl. B [[1a08] moka3ano, 9T0 MOMEHT-YIoJI KOMIUIEKC Zj UI'PaeT POJib MHOXKECTBA
Kemnda-Hecc mis kiacca jgeficTBuit ajredOpandecKoro Topa Ha KBasuapUHHBIX
MHOTro06pasusax (JIOMOJHEHUAX KOHMUIYDAIUil KOOPIMHATHBIX TO/IIPOCTPAHCTE),
BO3HUKAIOIINX B noaxome bareipeBa—Kokca K ToOpudIeckKnM MHOIOOOpPa3UsM Ha, OC-
HOBE TEeOMEeTPHUIECKON TeOpnr MHBAPHAHTOB. TakmM 0Opa3oM, HAIN PE3YJIbTATHI O
MOMEHT-YT'OJI KOMILJIEKCAaX IMMIPUMEHNUMbI 1 K BBIYUCJICHUIO KOI'OMOJIOTHI 9TUX «TOpu-
qeckux» MHOXkKecTB Kemmnipa—Hecc. B cirydae He0COOBIX TPOEKTUBHBIX TOPUIECKIX
MHOT000Opa3uit cooTBeTcTBYIONNE MHOXKecTBa Kemiicpa—Hece moryT 6bITH OntrcaHb
KaK IIOJTHbIE IIepecedeHrnd BEeIIECTBEHHbIX KBa/JIPUK B KOMIIJIEKCHOM IIDOCTPaHCTBE.

Bosppammasich K HalreMy ONMUCaHUI0 MOMEHT-YT0JI MHOTOOOpasuit Zp Kak IOJIHO-
MY TIepeCeveHHIO BeIeCTBEHHBIX KBAJIPUK, OTMETHM O0JIACTh MPUIOKEHU, OTKPhI-
Tyto B [BMO6]. B 310ii pabore 6bL1 pACCMOTPEH JOCTATOYHO OO KJIACC MOJTHBIX
nepeceveHnit BerecTBeHHbIX KBaapuK B C™, HasbiBaeMbIX aunkamu (YCIOBUS, Ha-
KJIa/IbIBacMble Ha yPaBHEHHsI KBAIPUK 00ECIEINBAIOT HEOCOOOCTD UX II€PECEUCHNST).
B [BM06| nmokazano, 4T0 Bce JIMHKHU JIOIMYCKAIOT CTPYKTYPY HEKJIEPOBBIX KOMILIEKC-
HBIX MHOT00Opasuii (B CJlydae JIMHKOB HEYETHBIX Pa3MepHOCTEl HeOOXOIMMO B3sITh
[IPOU3BEJICHNE C OKPY?KHOCTBIO), T€M CaMbIM 0000IAasi U3BECTHBIE CEPUH HEK3JIe-
poBbIx MHOTOOOpasmit Xomnda un Kamadbum—Ikmana. MoKHO TOKa3aTh, YTO KJIACC
JITHKOB COBII&JIAET C KJIACCOM MOMEHT-YTOJI MHOT00Opa3nit Zp, COOTBETCTBYIOIIIX
IIPOCTBIM MHOI'OI'PaHHUKaM. TeM CaMbIM OTKPBIBaIOTCA HOBBIEC BSaUMOCBA3U ME2KIY
TOPUYECKON TOIOJIOTAEH M KOMILJIEKCHON I'eOMeTpHEH.

Ba mocyiemgaue 10 JieT MOSBUINCH pPa3IUYIHbIE KOHCTPYKIIUU MIHPOKOIO KJIac-
ca TPOCTBIX MHOTOTPAHHUKOB, OOOOIMAIONINX 3aMedaTebHbIE CEPUM TEPMYTOII-
poB, acconusapos (MHOrorpannkos Crarneda), uKI031poB (MHOTOrpannkosB bora—
Tay6ca). Hanpumep, kaxkaomy cBsisHoMy 1poctomy rpady (T.e. rpady 6e3 meressb
U KpaTHbIX pebep) ¢ (n + 1) BepIIUHON COMOCTABIISIETCS TPOCTON N-MEePHBIH MHOTO-
IPAHHUK, TAK 9TO IEPMYTO3IPY COOTBETCTBYET MOJIHBII rpad, acComuyipy — My Th,
a nuKJI09apy — ki (cM. Hanpumep, [PRWOT]).

Biaromapst KOHCTPYKIIMM MOMEHT-YTOJI MHOT000pa3ust Zp U KBA3UTOPUIECKOTO
MHOTO006pasus B Buje M?" = Zp /K (A) sTu pe3y/ bTaThl HO3BOJIUIA BBECTH SBHbIE
IIpUMePhbl HOBBIX KJIACCOB MHOT000pas3nit m 6eccrropHo OyayT CIocobCTBOBATH pas3-
BUTHIO B3ANMOCBA3€EH MEXK/Iy KOMOMHATOPUKOIA, Teopueit rpadoB U ajredpandecKoit
tonostorueii (cm. [BuO8§]).

CIIUCOK JIMTEPATYPHI

[Ba03] . B. bBackakos. Tpotinvie npoussedenus Maccu 6 K020MOA02UAL MOMEHM-Y204 KOM-
naexcos. Ycrnexu mar. HayK 58 (2003), Beim. 5, 199-200.

[BBII04] U.B. Backakos, B. M. Byxmra6ep, T. E. [lanos. Aszebpovr kaemounmnz kouenet u det-
cmeus mopos. Ycuexu Mat. Hayk 59 (2004), Bbm. 3, 159-160.

[BITI99] B.M. Byxmra6ep, T. E. ITanos. /eticmseus mopa u KOMOUHAMOPUKA MHO202DAHHUKOS.
Tpynert MUPAH um. Crekiosa, 225, 1999, 96-131.

[BIT04] B.M. Byxmra6ep, T. E. Ilanos, Topuueckue deticmeus 6 monoaozuy u KoMOUHAMODU-
xe. Usparesscreo MITHMO, Mocksa, 2004.

[BP98] B.M. Byxmrabep, H. Psii. Topuueckue mHo2000pasus u KomnaekcHovie Ko60pou3mos.
Vcenexu mar. Hayk 53 (1998), e 2, c. 139-140.
[Bu71] 9. B. Bunbepr. Juckpemmnvie aunetinvie epynnot, nopostcoéntue ompasceruimu. V3Be-

crust AH CCCP, cep. marem. 35 (1971), 1072-1112.
35



[[T04]
[Ma78|
[11001]
[Ep08]
[My80]

[TTa08]

[At82]
[BMOG6]
[BH9S
[BPO2]
[BPRO7]
[BRO1]

[BROS]

[Bu0g]
[DJ91]
[dL00]
[De88]
[DH82|
[Fu93]
[GKM98

[GMS8S]

[GZ99]

[Ho77]

[PRWO07]
[St96]

[St68]

B.M. BYXIIITABEP, T.E. ITAHOB

E. 'pbudu, C. Tepuo. I'omomonuueckuts mun donosHeHUus KOHPUYPAUUU KOOPOUHATIVHDLE
nodnpocmparcms xopazmeprocmu dea. Ycuexu MaT. Hayk 59 (2004), sein. 6, 203—-204.
B.U. HJauwnos. [eomempus mopuieckur mHozoobpasuti. Ycuexu mart. Hayk 33 (1978),
BbII. 2, 85-134.

H. 3. Jobpunckasi. IIpobaema kaaccupurayuu k6a3umopuieckur mHo2006padutt Had
3adarroim npocmuim mHozozparrukom. PyHK. aH. u ero npui. 35 (2001), Bem. 2, 3-11.
H.1O. Epoxosen. Hneapuanm Byxwmabepa npocmuvir MHO202PAHHUKOS. YCIEXU MAT.
Hayk 63 (2008), sobur. 5, 187-188.

O.P. Mycun. O delicmBuax 0KpYysHcHOCMU HA 20MOMONUMECKUT NPOEKMUSHLIL NPO-
cmpancmeaz. Mar. 3amerku 28 (1980), Bbim. 1, 139-152.

T. E. [Tanos. Topuueckue mnootcecmea muna Kemnga—Hece. Tpymapr Marem. ucr. um.
B. A. Creknosa 263 (2008), 159-172.

M. F. Atiyah. Convexity and commuting Hamiltonians. Bull. London Math. Soc. 14
(1982), no. 1, 1-15.

F. Bosio, L. Meersseman. Real quadrics in C™, complex manifolds and convex polytopes.
Acta Math. 197 (2006), no. 1, 53-127.

W. Bruns, J. Herzog. Cohen—Macaulay Rings, revised edition. Cambridge Studies in
Adv. Math., vol. 39, Cambridge Univ. Press, Cambridge, 1998.

V.M. Buchstaber, T. E. Panov. Torus Actions and Their Applications in Topology and
Combinatorics. University Lecture Series 24. Amer. Math. Soc. Providence, R.I., 2002.
V.M. Buchstaber, T. E. Panov, N. Ray. Spaces of polytopes and cobordism of quasitoric
manifolds. Moscow Math. J. 7 (2007), no. 2, 219-242.

V.M. Buchstaber, N. Ray. Tangential structures on toric manifolds, and connected
sums of polytopes. Internat. Math. Res. Notices 4 (2001), 193-219.

V.M. Buchstaber, N. Ray. An invitation to toric topology: vertex four of a remarkable
tetrahedron, in: “Toric Topology” (M. Harada et al, eds.). Contemp. Math., vol. 460,
Amer. Math. Soc., Providence, RI, 2008, pp. 1-27.

V.M. Buchstaber. Lectures on Toric Topology. Trends in Mathematics, Information
Center for Mathematical Sciences, vol. 11, 2008, no. 1, pp. 1-55.

M. W. Davis, T. Januszkiewicz. Convezx polytopes, Cozeter orbifolds and torus actions.
Duke Math. J., 62 (1991), no. 2, 417-451.

M. de Longueville. The ring structure on the cohomology of coordinate subspace
arrangements. Math. Z. 233 (2000), no. 3, 553-577.

T. Delzant. Hamiltoniens périodiques et images convezxes de l’application moment. Bull.
Soc. Math. France 116 (1988), no. 3, 315-339.

J. Duistermaat, G. Heckman. On the variation in the cohomology of the symplectic form
of the reduced phase space. Invent. Math. 69 (1982), no. 2, 259-268.

W. Fulton. Introduction to Toric Varieties. Ann. of Math. Studies 131, Princeton Univ.
Press, Princeton, N.J., 1993.

M. Goresky, R. Kottwitz, R. MacPherson. Equivariant cohomology, Koszul duality and
the localisation theorem. Invent. Math. 131 (1998), no. 1, 25-83.

M. Goresky, R. MacPherson. Stratified Morse Theory. Springer-Verlag, Berlin—-New
York, 1988. [Pycckuii nepesox: M. T'opecku, P. Makdepcon, Cmpamuduyuposarras
meopusa Mopca, M.: Mup, 1991.]

V. W. Guillemin, C. Zara. Equivariant de Rham theory and graphs. Asian J. Math. 3
(1999), no. 1, 49-76.

M. Hochster. Cohen—Macaulay rings, combinatorics, and simplicial complexes, in Ring
Theory II (Proc. Second Oklahoma Conference). B.R. McDonald and R. Morris, eds.,
Dekker, New York, 1977, pp. 171-223.

A. Postnikov, V. Reiner, L. Williams. Faces of generalized permutohedra. Preprint
arXiv:math/0609184.

R.P. Stanley, Combinatorics and Commutative Algebra, second edition. Progr. in
Math. 41. Birkhauser, Boston, 1996.

R.E. Stong. Notes on Cobordism Theory. Princeton Univ. Press, Princeton, 1968.
[Pycckuit mepesom: P. Cronr, Bamemku no meopuu xo060poudmos (¢ npuaostceruem
B. M. Byrwmabepa), M.: Mup, 1973.]

MEXAHUKO-MATEMATUYECKHN ®AKYILTET MI'Y
E-mail address: buchstab@mi.ras.ru
E-mail address: tpanov@mech.math.msu.su

36



M. V. Burnashev

Institute for Information Transmission Problems
Russian Academy of Sciences

NOISY FEEDBACK IMPROVES CHANNEL
RELIABILITY FUNCTION !

For the information transmission a binary symmetric channel is used. There
is also another noisy binary symmetric channel (feedback channel), and the
transmitter observes without delay all the outputs of the forward channel via
that feedback channel. The transmission of a exponential number of messages
(i.e. the transmission rate is positive) is considered. The achievable decoding
error exponent for such a combination of channels is investigated. It is shown
that if the crossover probability of the feedback channel is less than a certain
positive value, then the achievable error exponent is better than the best known
lower bound for the error exponent of the no-feedback channel.

Results can be generalized for a wide class of memoryless channels.

The binary symmetric channel BSC(p) with crossover probability 0 < p < 1/2 (and
g = 1—p) is considered. It is assumed that there is the feedback BSC(p;) channel, and the
transmitter observes (without delay) all outputs of the forward BSC(p) channel via that
noisy feedback channel. No coding is used in the feedback channel (i.e. the receiver simply
re-transmits all received outputs to the transmitter). In words, the feedback channel is
“passive”.

The overall transmission time n and M = ™ equiprobable messages {0;,...,0y} are
given. After the moment n, the receiver makes a decision 6 on the message transmitted.

Denote FE(R,p) the best decoding error exponent of BSC(p) without feedback, and by
F(R,p,p1) the best error exponent of BSC(p) with the noisy BSC(p;) feedback channel.

Since the Shannon’s paper [1] it has been known that even the noiseless feedback does
not increase the capacity C(p) = In2 — h(p) of the BSC(p) (or any other memoryless
channel). However, the feedback can improve the best error exponent E(R,p). In the
case of BSC with noiseless feedback (i.e. when p; = 0) investigations of the function
F(R,p) = F(R,p,0) have been actively studied since Dobrushin [2|, Horstein [3] and
Berlekamp [4]. In particular, Dobrushin [2] has proved the “sphere-packing” upper bound
for the function F(R,p) (for a wide class of discrete channels). Some characteristics of a
number of efficient transmission methods have been also investigated [1-10]. In particular,
it was shown [4, 7] that F(R,p) > E(R,p) for sufficiently small rates R.

Rn

!The rescarch described in this publication was made possible in part by the Russian Fund for
Fundamental Rescarch (project number 06-01-00226).
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The case of noisy feedback was not investigated. It was not even known whether such
feedback can improve the error exponent E(R,p) of the no-feedback channel. The reason
was that all known transmission methods in the noiseless feedback case [1-10] demanded
an ideal mutual understanding (mutual coordination) between the transmitter and the
receiver. If we try to apply any of the transmission methods from [1-10] to a noisy
feedback case, we find that the transmitter and the receiver rather quickly loose their
mutual coordination. As a result, it implies a very bad decoding error performance.

A certain progress has been done in the recent paper [10] (see also [11]), where the case
of nonexponential (on n) number of messages M was considered (i.e. the transmission rate
R = 0). It was shown that if the crossover probability p; of the feedback channel BSC(p;)
is less then the certain positive value po(p), then F(0,p,p1) > E(0,p) (i.e. it is possible to
improve the best error exponent E(0,p) of BSC(p) without feedback). For the proof the
transmission method with one “switching” moment was used.

In this paper we show that similar result holds for some positive rates R as well.

More exactly, combining Dobrushin [2] upper and Elias [3] lower bounds we get that
F(R,p) = E(R,p) for all rates Ruit(p) < R < C(p), where

Ruit(p) =In2 —h (ﬁ) :

Therefore, at most, we may have F(R,p,p;) > E(R,p) only when R < R (p).

T heorem. There exists a positive function po(R,p) such that if R < Regi(p) and
p1 < pO(Rap)} then F(R7p7p1> > E(R7p)

Some estimates for the functions po(R, p) and F(R,p,p;) will also be presented.
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Gibbs point field models for extraction problems in
image analysis *

X. Descombes, E. Zhizhina
April 21, 2009

1 Probabilistic approach in image analysis.

The basic idea of probabilistic approach in image analysis, see e.g. [1, 2], was to rewrite an
image processing procedure in the language of statistical physics using concepts of statistical
ensembles, equilibrium and non-equilibrium dynamics. Under this view, images are consid-
ered as configurations of a Gibbs field. The implicit assumption behind the probabilistic
approach in image analysis is that, for a given problem, there exists a Gibbs field such that
its ground states represent regularized solutions of the problem. Thus, the crucial step in
the probabilistic approach is the choice of a proper configuration space and the choice of a
distribution, or equivalently, in the case of the Gibbs random fields approach, the choice of
an energy function H(X). The energy function contains usually few types of terms. One of
them arises from the observable image (a data driven term) and has the form of an external
field term. Others are due to generic or prior knowledge on the structure of images. Prior
terms in the energy function are specified by potentials associated with local interactions
of neighboring variables. Thus, each variable directly depends only on its neighborhood,
although from a global point of view, all variables are mutually dependent through the
combination of successive local interactions.

Recently, there has been again growing interest in the applications of Gibbs point fields
and Markov point processes to inverse problems of image processing such as feature extrac-
tion, object detection, surface reconstruction, stereo matching. All these problems related
with consideration of strong geometrical constraints in a priori potential. In this paper we
present a new multiple birth and death algorithm constructed as approximation of a sto-
chastic Glauber type dynamics. We discuss results of its implementation on the example of
two extraction problems.

*The work is partially supported by ECONET project 10203YK, INRIA International team grant
ODESSA,/ 'E/lo\er‘l‘a Zhizhina gratefully acknowledge the financial support of RFBR Grant 08-01-00105, 07-
01-92216-101EE
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2 Gibbs fields models for feature extraction problems.
The general setting.

We discuss here stochastic algorithms in the framework of the Gibbs fields approach for
feature extraction problems. These problems become critical in remote sensing with the
development of high resolution sensors for which the object geometry is well defined. Marked
point processes framework is found very proper for extraction problems, since it is difficult to
incorporate strong non-local geometrical constraints in the potential in lattice based models.
Random sets of objects are represented in the models by marked point configurations in
continuous space. Features of the objects, such as shape and/or size are described by a
mark, and locations of the objects by a point configuration.

If we denote by I' := I'(V) the set of all point configurations from a finite volume V' C R?,
by S a space of marks (a spin space) and by 7, the Poisson measures with activity z, z > 0,
then the marked configuration space I' of the model is:

= {7 7707 V € F 0-7 {O':v<’y)}z€’y = {O-m}xE’ya Ox S S}

A reference measure gy on I' can be written as dug(3) = dw(o,) dr.(v), where dw(o,) =
[I.c, dw(o;) is the conditional (under given configuration v for positions of marks) free
marks measure equals to the product of the free mark measures w over all points from the
configuration . The probability distribution on the configuration space I is defined then as a
Gibbs reconstruction 3 of the reference measure py with the energy function H (%) involving
both objects positions and their marks. To find global minimizers of the energy function,
one can consider various stochastic dynamics with a given stationary Gibbs measure under
the annealing procedure.

Here we will discuss two models for extraction problems (a random disc model and a
random point model), both of them can be described as pure point models without marks,
in this case I' = T'. We consider an equilibrium birth-and-death dynamics with the stationary
Gibbs measure pg given by the following generator

(Ls D) = 3B (f(\a) — f(7)) + 2 /(f(va)—f(v)) By, (1)

rey v

defined in the functional space f(v) € L*(T, ug..), where E(z,y\z) = H(y) — H(y\z).

3 Approximation process

In this section we present the mathematical background of our algorithm, which consists of
two main steps:

1) the construction of the approximation process and the proof of the convergence of the
approximation to the continuous time process as the discretization step tends to zero, and
2) the proof of the convergence of the corresponding evolution of measures under the an-
nealing regime to a measure concentrated on the global minima of the energy function with
a minimal number of points in the configuration.
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We define a discrete time approximation Tss(n),n = 0,1,2,... of the continuous time
birth-and-death process generated by (1). It is a Markov chain on the same space I'(V') with
the transition operator Ps;s (Tjs(n) = Pjs ) of the form:

(Po.sf) (v Z H1+a5 1+a5 )

71Cy zeEM Y\
Sre k:' fnUy V... Uy dyr ... dys,
where Z5 = Z5(V, 2,) is the normalizing factor, a, = a,(y) = e*F@7\2),

Let L = B(I'(V)) be a Banach space of bounded functions on I'(V') with a norm

[Pl = sup [F(v)l,
yer(V)

and by B we denote a family of measures with a bounded density w.r.t. the Poisson measure
7, (and hence also w.r.t. the Gibbs measure f3).
Theorem 3 (Convergence of the approximations) [3]. For each F € L

sl 5P = TPl = suwl@al [P0 = @ORE] - 0 @

as 6 — 0 forall t>0 uniformly on bounded intervals of time.
Let Sgs(n) be an adjoint to T s(n) semigroup acting on measures, such that for any

veB: 4
) v
(Sps(n)v, F) = (py, Tps(n)F),, with p, = T
Hg
Let ng € NU{0} be the minimal number of points in configurations 4 minimizing the energy
function H (7). Then the Gibbs distributions ps converge weakly as 5 — oo to a distribution

foo o0 I'(V') of the form

Moo = Z C505 if ng >0, and pe = dgpy if ng = 0. (4)
¥:I¥l=no
Here d5 is the unit measure concentrated on the configuration 7, and > C5 = 1.
Y:171=no

Theorem 4 (Convergence in the annealing regim) [3]. Let FF € B(T'(V)) and an
initial measure v € B. Then under relation § €** < const withb = SUD,er,(v) SUPzey E(7, 7\7)
we have

lim (F)spstny = (Fucor (5)

B—o00, t—oo, 6—0

where (F)g, ey = (Spa((5])v: F)-
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4 A new Multiple Birth and Death algorithm.

The main idea behind our algorithm is to use the continuous time stochastic dynamics
generated by (1) and then to take the transition operator of the discrete time approximation
process (2) as a base of stochastic iterative steps of the algorithm. The algorithm simulating
the process is defined as follows:

e Computation of the birth map: To speed up the process, we consider instead
of z a non homogeneous birth rate B(s), s € V to favor birth where the data term
is strong. This non homogeneous birth rate refers to a non homogeneous reference
Poisson measure.

e Main program: initialise the inverse temperature parameter 3 = (3, and the dis-
cretization step 0 = dg and alternate birth and death steps. Birth step is taken with
density dB(s) w.r.t. the Lebesgue measure on V. Death step: for each point from the
configuration, the death probability is defined as follows:

_ dag
14 da,

D(x)

Decrease the temperature and the discretization step by a given factor and go back to
the birth step.

5 Results

5.1 Application to birds detection

We consider a model of partially overlapping discs {d,,,...,d,, } of the same radius r with
a hard core distance ey < r between any two elements, lying in a bounded domain V C R2.
Then I' is the configuration space of the centers of the discs. The energy function is a sum
of data and a priori terms

H(vy) = O‘ZHl($> + Z Hy(z,y),

€Y {zy}Cy

where « is a weighting parameter. The second term represents prior knowledge on the discs
configuration and it is defined by pair interactions (repulsion on small distances) between
neighboring discs. A data term is added for each object to fit the disc configuration onto the
data, it is a sum of local energy functions associated with each object. For a given object,
the local energy depends on a statistical test between the pixel distribution inside of the
projection of the disc on the lattice and the pixel distribution in the neighborhood of the
disc. The higher the contrast between the interior of the object and its neighboring ring, the
lower the energy.

The fragment of the initial image of flamingo colony and the result image of detected
birds are given on figure 1.
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Figure 1: Fragment of the image of the bird population, Station Biologique Tour du Valat
(left); image of detected birds (right)

5.2 Application to road network extraction problem

Different approaches for a fully automatic road network extraction from satellite images have
been proposed recently, and Gibbs fields models among them. We present here a new model
with simple objects (points) but with a complicated energy including the interaction energy
of a special form. We propose here a new preprocessing procedure to extract from the input
image a significant information in the form of another pixel-wise marked image P, where
each pixel p has two marks: an angle and a contrast. The value of contrast n, describes how
much pixel p is likely to belong to the road, and then angle 6, defines a local direction of the
road for relevant pixels. The results P of this preprocessing procedure is used in the data
driven energy and in the interaction energy terms.

The energy function is a sum of three terms: the data term, a priori term and an
interaction term. The prior knowledge models the high connectivity and the low curvature
of a road network, the priori potential is used for reconstruction of hidden parts of the
roads as well as for junction detection. The interaction energy is generated by pair potential
depending on preprocessing image P. It is a repulsive energy on short distances to prevent
accumulation of points in the configuration and an attractive energy on fitting distances. In
exceptional situations (junctions or parallel roads), that can be seen from the preprocessing
image, the repulsive energy is vanishing. The data term contributes in the energy through
a sum of local energy functions at each point of the configuration using preprocessing data.
Then we exploit algorithms based on approximations of stochastic birth and death dynamics
embeded into a simulated annealing regime, see Sect. 4 above.
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Figure 2: Aerial image and obtained result (the point configuration)

6 Conclusion

Thus, the main advantages of marked point process in image analysis are in their geomet-
rical adaptativity and generality. Any geometrical properties can easily be introduced into
the model through the object geometry. Different types of objects (trees, roads, buildings,
etc.) can be considered within the same model but with appropriate interactions. Moreover,
interactions between points allows to model some prior information on the object configura-
tion, and the data are taken into account at the object level, thus improving robustness of
the algorithms.
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Abstract

This paper will survey recent progress on clarifying the connection be-
tween enumerative combinatorics and cluster expansions. The combina-
torics side concerns species of combinatorial structures and the associated
exponential generating functions. Cluster expansions, on the other hand,
are supposed to give convergent expressions for measures on infinite di-
mensional spaces, such as those that occur in statistical mechanics. There
is a kind of dictionary between these two subjects that sheds light on each
of them. In particular, it gives insight into convergence results for cluster
expansions.

1 Enumerative combinatorics

1.1 Combinatorial species

We begin with a general framework for constructing combinatorial structures in
a systematic way. Each instance of such a construction is called a “species” of
structures. The theory is explained in detail in the book of Bergeron, Labelle,
and Leroux [1]; here we can only give an outline.

The combinatorial structures under consideration are built over colored sets.
These are defined as follows. There is a set P that serves as a fixed palette of
colors. A colored set is a function a : U — P, where U is a finite set. If j is
a point in U, then a(j) is the color of j. The colored sets form the objects of
a category B. The morphisms in this category are bijections of the underlying
sets that preserve the colors.

In combinatorics the underlying set U is often called a set of labels, and the
coloring is an additional structure that is imposed on a label set. We shall see
that this structure also occurs in physics. In this case the interpretation of the
set P is as a fixed set of locations. A set U is a set of particles, and a function
a : U — P is a particle configuration, that is, an assignment of particles to
locations.

We need another category E with objects that consist of weighted sets. There
is a fixed commutative ring R; for instance this could be the real numbers or
the complex numbers. A weighted set is a finite set H together with a weight
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function wt : H — R. A morphism of weighted sets is a bijection that preserves
the weights. The basic requirement on the category is that the weight function
behaves well on disjoint unions and on cartesian products. The weight function
on a disjoint union must agree with the weights on the individual parts. The
weight function on a cartesian product must assign to each ordered tuple the
product of the weights of the components.

If H is a weighted set, then the total weight of H is the sum of the weights
of the points in H. The total weight of a sum (disjoint union) is obviously the
sum of the total weights of the parts. The total weight of a product (cartesian
product) is the product of the total weights of the factors.

There are many examples of such categories, but the one of most use in
the following is the category of sets of graphs over colored sets. First, one has
a function t that assigns to each ordered pair of colors p,q in P an element
t(p, q) in the ring R. This function is fixed once and for all. It is required to be
symmetric.

Consider a colored set a : U — P with underlying set U. We think of U
as a vertex set. Then a graph g with vertex set U is identified with a set of
two-element subsets {4, j} of U. These are the edges of the graph g. The weight
of a graph g is

wi(g) = ] tali),a()). (1)
{ijteg
An object in the category is a set of graphs g with fixed colored vertex set U.
A morphism is a color preserving bijection of vertices that carries one set of
graphs into another set of graphs.

In this category the product is constructed as follows. Say that for each
U in some indexed family we have a set of graphs. We can take the various
vertex sets U to be disjoint. Then an element of the product is a graph on the
disjoint union of the sets U that comes from an indexed family of graphs on the
individual parts.

In the physics application the palette of colors P represents a set of locations.
The colored set a : U — P represents a particle configuration. A graph g is
a collection of two-element sets of particles that are regarded as interacting.
The interaction between two particles i, 7 depends on their locations a(i), a(j)
and is given by t(a(i),a(j)). The interaction for the entire collection of pairs is
the product of these individual pair interactions, that is, it is the weight of the
graph. The total weight of a set of graphs is of course the sum of the weighs of
the individual graphs.

A combinatorial species is a functor F' from the category B of colored sets
to the appropriate category E of weighted sets. Thus for every colored set
a: U — P there is a corresponding weighted set F[a].

There are several species of interest to us. The species GG associates to each
colored set a : U — P the set G|a] of all 2(2) graphs with vertex set U. The
weight of a graph is as given above.

Even more important is the species C' of connected graphs. A graph is
connected if there exists a vertex ¢ that is connected by a path to every other
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vertex. (Then every vertex is connected by a path to every other vertex.) A
connected graph on an n element vertex set has at least n — 1 edges. The
number of connected graphs in C|a] is somewhat smaller but almost as large as
the number of graphs in G[a].

A final example in this series is the species T' of trees. A graph is a tree
if there is a vertex ¢ that is connected by a unique path to every other vertex.
(Then every vertex is connected by a unique path to every other vertex.) A tree
on an n element vertex set has n — 1 edges. It is a minimal connected graph.
The number of trees in T'[a] is only n" 2.

1.2 Operations on species

There are various important operations on species. If F' is a species, then for
each color p there is another species F;7. Then Fj[a] for a : U — P consists of
all ordered pairs consisting of a point in U of color p and an element of Fla].
Thus this species incorporates a distinguished point of color p. As examples we
have G} and C}) and T7.

Another important operation is the combinatorial exponential. If F is a
species, then F o F' is a new species. The value of this species on a : U — P is

given by
(EoF)a] =) [] Flav]. (2)

I' ver

Here I' ranges over partitions of U into disjoint non-empty sets V. The colored
set ay : V. — ‘P is given by restriction. The sum is disjoint union, and the
product is cartesian product.

One of the most famous examples of the combinatorial exponential is the
relation

G=FEoC. (3)

This says that for every connected graph on U there is a partition I' of U with
a connected graph on each set V' in the partition.

Another important operation is the combinatorial convolution. The convo-
lution of two species F, G is defined by

(F*G)la] = ) Flay] x Glagv). (4)

VCU

In other words, one splits the underlying set in all possible ways. This gives
a disjoint union of a cartesian product corresponding to the two parts in the
splitting.

Here is an example. We have

Go=C2 G (5)

This says that a graph together with a distinguished point of color p corresponds
to a connected graph with a distinguished point of color p on a subset together
with a graph on the complement.
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1.3 Exponential generating functions

A key idea in the theory of species is the exponential generating function. A
species is a functor F' from the category of colored sets to the category of
weighted sets. If a is a colored set, then we write the corresponding weighted
set of combinatorial structures as F[a]. The sum of weights of Fa] is written
f(a). The exponential generating function is a function of many variables, one
for each possible color. Thus we use a variable w, for each color p € P. For
each n let U, be a set with n points. The exponential generating function is

written
Fay=3" 3 5@ I] waer (6)

n=0a:U,—P €Uy,

The operation of choosing a distinguished point has a simple expression in
terms of exponential generating functions. It is

F () = = F(w) @

ow,,
The operation of taking the combinatorial exponential is also simple; we have
(E o F)(w) = exp(F(w)). (8)
The combinatorial convolution is easy; in this case
(F * G)(w) = F(w)G(w). (9)

As an example, note that G(w) = exp(C(w)), and G} (w) = wy,(9/0w,)G(w) =
Cp(w)G(w), as one would expect from the combinatorial convolution.

1.4 Combinatorial fixed point equations

The next topic is combinatorial fixed point equations. One case where this is
straightforward is for rooted trees. Let E! be the species that indicates one
point sets of color p. In other words, it produces a single point for each such
set, and the empty set otherwise. The rooted tree equation is actually a family
of equations, one for each color p. Thus we should think of T3 as a family of
species. For each color p, one can construct a single species T*P as follows. Take
T*P[a] to be the set of all trees (of whatever color) on the underlying set U, with
the weight of each tree with root of color ¢ multiplied by ¢(p, ¢). Then the fixed
point equation is

TS = By x (EoT™). (10)

This says that a rooted tree with root of color p consists of a single point of color
p, together with a structure on the complement of this point. This structure
consists of a partition of the tree into disjoint non-empty sets V. On each set
V' in the partition there is a tree with a root of some color q. These trees get
the additional weight t(p, q).
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On the level of exponential generating functions, the rooted tree equation is

T3 (w) = wy exp(3_ t(p, @) T (w). (11)

q

Unfortunately, the equations for rooted graphs and for rooted connected
graphs are more complicated. The problem is that we need to designate entire
subsets rather than individual points.

For the case of graphs, define G#P[a] to be the set of ordered pairs consisting
of a subset W of the underlying set U and a graph. The weight of this ordered
pair is the weight of the graph times [[; .y, t(p,a(j)). The combinatorial equa-
tion is

G? = Eyp « G7P. (12)
This says that every graph with a designated point of color p consists of a point
of that color plus a graphical structure on the complement. This structure also
must incorporate the edges that connect the designated point to some designated
subset of the complement.

On the level of exponential generating functions, the rooted graph equation
is

Gr(w) = wpG((1 +tp)w). (13)

Here t,w denotes the variables t(p, ¢)w,, as ¢ ranges over the colors.

For the case of connected graphs, define C’fp [a] to be the set of ordered pairs
consisting of a non-empty subset W of the underlying set U and a connected
graph. The weight of this ordered pair is the weight of the connected graph
times [];cy t(p, a(j). The combinatorial equation is

Cs = By, * (Eo CTP). (14)

This says that every connected graph with a designated point of color p consists
of a point of that color plus a structure on the complement. The complement is
partitioned into disjoint non-empty subsets V. One each such subset V there is
a connected graph. The structure also must incorporate the edges that connect
the designated point to some designated non-empty subset of V.
On the level of exponential generating functions, the rooted connected graph
equation is
Cp(w) = wp exp(C((1 4 tp)w) — C(w)). (15)

This may be converted into an equation for a rooted connected graph fixed
point. We use

0

= Wy —
p
owy,

C8 (w) C(w) (16)

to get
Cy(w) = w, exp(z t(p, q)/o C3((1 + stp)w) ds) (17)

q
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Let us look at the rooted tree fixed point equation (11) in more detail. Take
each vertex weight w, > 0. Let the edge weights 0 < t(p, q) be positive. The
tree fixed point equation for z, = T (w) is

Zp = Wy exp(z t(p,q)zq)- (18)

q

The Kotecky-Preiss condition is that there exists 0 < z,, < oo such that

wy exp(z t(p,q)xq) < p. (19)

The tree fixed point equation has a least finite solution z if and only if the
Kotecky-Preiss condition holds. In that case z, < x, for all p, This follows from
the Knaster-Tarski fixed point theorem.

2 Cluster expansions

2.1 The equilibrium discrete particle gas model

In the application to a discrete particle gas the terminology is somewhat differ-
ent. The color palette P is a fixed set of particle locations. The vertex set U is a
finite set of particles. The colored set a : U — P is a particle configuration. The
color variable in the exponential generating function 0 < w), is the weight for
particles at p € P (the activity). Finally, there is a quantity 0 < 1+ t(p,q) <1
which is the Boltzmann factor for pair of particles at locations p,q € P. Thus
—1 <t(p,q) <0 is a measure of the interaction between the pair of particles.
The grand partition function

cw)=3" ¥ gl [T waw (20)

n=0a:U,—P i€Up,

is the exponential generating function for graphs.
A particularly convenient quantity for convergence results is the density
(expected number of particles at a location). The density at p is

1 0 1
n(p) - G(w) Wp apr(w) = m

G (w) = 3 (w), (21)

Thus the density n(p) at p of the gas, regarded as a function of the local activity
variables w, is the exponential generating function C(w) for rooted connected
graphs with root of color p. This fundamental relation is at the heart of statis-
tical physics.

2.2 Fixed points and convergence in the gas model

Here are two cluster expansion theorems. The first is a classic result; the second
is relatively recent. See [3, 2| for references for these and earlier results.
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Cluster expansion theorem (Kotecky-Preiss version). If there are xp > 0
such that for each p we have the inequality

Wp eXP(Z t(p: q@)|zq) < 2p, (22)

then the cluster expansion for the density in powers of w converges absolutely.
This theorem may be understand via a comparison of the rooted tree fixed
point equation (11) with the rooted connected graph fixed point equation (17).
Cluster expansion theorem (Fernandez-Procacci version). If there are z, > 0
such that for each p we have the inequality

wpz > [T a+t@@,atn)| T (tw ald)lzae) < @p,  (23)

n= O " a:U,—P {i,5} €U,

then the cluster expansion for the density in powers of w converges absolutely.

The Fernandez-Procacci result [3] is stronger. The factors 1 + t(a(i),a(j))
are between 0 and 1. If one drops the product with these factors, the expression
in the condition can only become larger. The result is

wp Z = > I (. ai)lza) = woexn(Y_ [t o)lzg)- (24)

a:U,—PicU, q

Thus the iteration function in the Fernandez-Procacci condition is majorized by
the iteration function in the Kotecky-Preiss condition.

The combinatorial interpretation of the Fernandez-Procacci condition is in
terms of an enriched rooted tree fixed point equation. See [2] for a proof of their
result based on an identity that relates connected graphs and trees.
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On the limit law of a conditioned random walk

Sergey G. Foss and Anatolii A. Puhalskii

Let &1,&,... be ii.d. random variables with negative mean defined on a probability space
(Q,F,P). Suppose that Eexp(A§1) < oo for some A > 0 and that there exists v > 0 with
Eexp(v&1) = 1. It is known that if, in addition, E&; exp(7&§1) < oo, then the most likely way
for the random walk Sy = Zle &; to reach a high level is to follow a straight line with a positive
slope. We study the case where E& exp(7£1) = oo. Assuming that the distribution F(dz) =
exp(yx)P ({1 € dx) belongs to the domain of attraction of a spectrally positive stable law, we
obtain a weak convergence limit theorem as r — oo for the conditional distribution of the process
(7’_1 Zth:/fl_F(r))J &t > 0) stopped at the time when it reaches level 1 given that the latter event
occurs. The limit is an increasing jump process. It is shown to be distributed as an increasing
stable Lévy process stopped at the time when it reaches level 1 conditioned on the event this level
is not overshot.

We now state the main results. Let o € (0,1).

Theorem 1. There erists a stochastic process X = (X(t),t € Ry) defined on a filtered probability
space (Q, F,F,P) with the following properties:

1. X isa pure-jump semimartingale with )?(0) =0,

2. the f‘-predictable measure of jumps of)? is of the form

t
T a—1 a1
V([O;ﬂ?G) = 1{0<x<1_)2(5)}(1—1_)2<8)> ar dxds, GEB(R)
0 &\{o}

The distribution of)z is specified uniquely. In addition, X has increasing trajectories a.s., X (t) €
[0,1] a.s. fort € Ry, and X(t) =1 for all t large enough a.s.

Let X = (X (¢),t € R}) represent an increasing pure-jump stable Lévy process starting at zero
with Lévy measure axz~* ! dz. We also denote

T =inf{t: X(t) > 1},
and let X denote the process X stopped at 7: X (t) = X(tAT).

Theorem 2. The conditional laws of)? given the events X (1) < 1+ e weakly converge as € | 0 to
the law of X .

Let, for r > 0,
7 = min{n : S, >r},

1 [t/(1—F(r))]
XOm=_ 3 &
i=1

70 = inf{t: X @) >1}.
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We denote by X () = ()?(T) (t),t € R, ) the process X () stopped at 7). i.e., X0 (t) = X A7),
Theorem 3. Let the following conditions hold:

1. the righthand tail of the distribution function F is reqularly varying at infinity with index —c,
where ac € (1/2,1),

2. there exist C > 0 and p € (0,1) such that, for all y great enough and all x € (p, 1),

1 — F(yx)
——=<1+C(1—2x).
1—F(y)
If, in addition, F is a nonlattice distribution, then, as r — oo, the conditional distributions of the
X @) given (") < 0o weakly converge to the distribution of X. If, instead, F is a lattice distribution
with span h, then, as n — oo, where n € N, the conditional distributions of the X ®h) - given
(") < 50 weakly converge to the distribution of X.
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On Sums of Conditionally Independent Subexponential Random
Variables

Serguei Foss®? and Andrew Richards?

Finding the asymptotic tail behaviour of sums of heavy-tailed random variables is an important
problem in finance, insurance and many other disciplines. The case when the random variables are
independent and subexponentially distributed has been extensively studied and is well-understood.
The key idea is that such a sum will exceed a high threshold because of a single, very large jump;
following other authors we shall refer to this as the principle of the single big jump. However,
for many practical purposes the independence assumption is too restrictive. In recent years,
many authors have developed results in this area (see, for example, [1,2,4,9-13] and references
therein). Denuit, Genest and Marceau [6] constructed bounds for these sums, but did not consider
asymptotics. Goovaerts, Kaas, Tang and Vernic [8] considered the situation of dependent random
variables with regularly varying tails; there have also been results on negative dependence for
various classes of subexponential distributions.

Once we drop the requirement of independence, two questions naturally arise. First, what kind of
behaviours can occur as the dependence between the random variables strengthens? And secondly,
how far beyond the independent case does the principle of the single big jump still hold? These
questions are of real interest, both from theoretical and practical viewpoints.

Albrecher, Asmussen and Kortschak [1] consider the first question for the sum of two dependent
random variables. Their approach, as for many authors, is to study the possible effects of the
dependence by considering the copula structure. They demonstrate that many possible behaviours
naturally occur, and that, in some specific cases the principle of the single big jump is insensitive
to the strength of the copula structure. Other papers that concentrate on the copula structure
include [2, 10]. Mitra and Resnick [13] investigate random variables belonging to the maximum
domain of attraction of the Gumbel distribution and which are asymptotically independent. The
results we present contain overlap with all these approaches, but we neither impose a particular
dependence structure, nor a particular distribution for the random variables, beyond the necessary
constraint that at least one be subexponential.

We consider the second question, and to establish conditions on the strength of the dependence
which will preserve the results of the theory established for independent random variables; in
particular, the principle of the single big jump. This principle is well known. However, we would
like to examine it again from a probabilistic point of view by considering the sum of two identically
distributed subexponential random variables X7, X5.

P(X1+X2 >$) :P(Xl\/XQ >33‘)—|—P(X1\/X2 <z X+ Xs >.7))
:P(X1 >$)+P(X2 >13)—P(X1/\X2 >$)+P(X1\/X2 <z X+ Xo >ZL‘)
=P(X; >2)+P(X2 > x) — P(x) + Pi(x), (1)

where X3 V Xo = max(Xj, X2) and X; A Xy = min(Xy, Xs). If Pi(x) is negligible compared to
P(X; > ), which in the independent case follows from the definition of subexponentiality, we
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shall say that we have the principle of the big jump. If in addition P(x) is negligible compared to
P(X; > z), as again is straightforward in the independent case, then we shall say that we have
the principle of the single big jump. If the dependence is very strong, for instance if X; = Xy
a.s. (almost surely), then clearly the principle of the single big jump fails.

We consider sums of random variables that are conditionally independent on some sigma algebra.
This is a fresh approach to studying the effect of dependence on subexponential sums and allows a
great deal of generality (in particular, we need neither specify a particular subclass of subexponen-
tial distribution for which our results hold, nor assume the summands are identically distributed,
nor specify any particular copula structure). We believe this is a fruitful line of enquiry, both
practically and theoretically, as the range of examples we give illustrates.

Clearly, any sequence of random variables can be considered to be conditionally independent by
choosing an appropriate sigma algebra on which to condition. This is an obvious observation,
and in itself not really helpful. However, there are practical situations where a conditional in-
dependence structure arises naturally from the problem. As an example, consider a sequence of
identical random variables X1, Xs, ..., X, each with distribution function Fj3 depending on some
parameter (3 that is itself drawn from a different distribution. The X; are independent once (3
is known: this is a typically Bayesian situation. It is natural to view the X; as conditionally
independent on the sigma algebra generated by 3. We suppose the X; to have subexponential
(unconditional) distribution F' and ask under what conditions the distribution of the sum follows
the principle of the single big jump.

A distribution function F' supported on the positive half-line is subexponential if and only if

F*2(x) := /Dx F(x —y)F(dy) + F(z) ~ 2F ().

It is known, and may be easily checked, that a distribution supported on the positive half-line is
subexponential if and only if the following two conditions are met:

1. F is long-tailed. That is, there exists a non decreasing function h(z) < z/2, tending to
infinity, such that F(x 4+ h(x)) ~ F(x), x — oo. So, F' is h-insensitive.

2. For such h(zx),

z—h(z) L
| Pl )P = o)),
h(z)

We work in a probability space (Q, F,P). Let X;, i = 1,2,..., be non-negative random variables
with distribution function (d.f.) Fj. Let F' be a subexponential reference distribution concentrated
on the positive half-line and A be a function satisfying the long-tailed condition. Let G be a o-
algebra, G C F. We make the following assumptions about the dependence structure of the
XZ"SI

(D1) X3, Xo,... are conditionally independent given G. That is, for any collection of indices
{#1,...,ir}, and any collection of sets {B;,,...,B;.}, all belonging to F, then P(X;, €
Bil, . 7Xir S BZT\Q)) = P(Xil S leyg)P(Xlz S Bm’g) ce P(XiT S B,r]g)

(D2) For each i > 1, Fy(x) ~ ciF(x),lvith at least one ¢; # 0, and for all ¢ > 1 there exists ¢ > 0
and zg > 0 such that F;(x) < cF(z) for all x > xo.

(D3) For each ¢ > 1 there exists a non-decreasing functions r(z) and an increasing collection of
sets Bi(z) € G, with B;(x) — Q as ¢ — oo, such that

P(X; > z|G)1(B;(x)) < r(x)F(r)1(Bi(r)) almost surely. (2)

and, as * — oo, uniformly in 7,
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(i)

(iii) e B
r(a) /h F(z — y)F(dy) = o(F(x)). (5)

We have the following result.

Proposition.Let X;, i = 1,2, ... satisfy conditions (D1), (D2) and (D3) for some subexponential
F' concentrated on the positive half-line and which is h-insensitive. Let 7 be an independent
counting random variable such that E(e?") < oo for some 7 > 0 Then

PXi+-+X;,>z)~E (ZT:C’> F(x).
i=1

We formulate further results and give a wide range of examples of collections of random variables,
some satisfying the principle of the single big jump, some not, and we suggest that these examples
are of independent interest in and of themselves. We also discuss a number of related problems.
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MICROSCOPIC THEORY OF ISOTHERMAL ELASTICITY:
HYPERBOLIC SCALING BEYOND SHOCKS VIA
COMPENSATED COMPACTNESS.
DEDICATED TO THE MEMORY OF ROLAND LVOVICH
DOBRUSHIN

JOZSEF FRITZ, TU BUDAPEST

Historical Notes and Remarks: The mathematical theory of hydrodynamic
limits has been initiated by Roland Lvovich Dobrushin and co-workers [1,2,4,5].
As motivated by the principles of statistical physics, in the first period hyperbolic
scaling of some simple mechanical systems (hard rods and harmonic oscillators) was
investigated; the study of deterministic models with a more realistic interaction is
still out of question. Results of H. Rost [16] and F. Rezakhanlou [15] are based
on the specific structure of attractive, one-component systems; models with two
conservation laws do not allow an effective coupling. In contrast to diffusive scaling,
in the case of hyperbolic problems a direct strong compactness argument, the Two
Blocks Lemma of Guo - Papanicolau - Varadhan [13] is not available because entropy
production does not vanish. Assuming smoothness of the macroscopic solution, the
method of H.-T. Yau [20] works in fairly general situations, but in a regime of shocks
a synthesis of probabilistic and advanced PDE techniques is required. As far as I
understand, compensated compactness is the only tool that works also in the case
of microscopic systems with two conservation laws. Unfortunately, it is restricted
to one space dimension, and uniqueness of the limit is a formidable open problem.
Of course, verification of the strong ergodic hypothesis, which means a description
of all translation invariant stationary states of the microscopic system, can not be
avoided. That is why we consider random perturbations of a Hamiltonian dynamics,
namely those of the anharmonic chain.
We are going to derive the following couple of conservation laws,

o (t,z) = 0.5 (p(t,z)), Op(t,x) = Opm(t, x) (1)

for m,p e R, t > 0, x € R. This p-system has a direct physical interpretation: =
and p are the velocity and deformation (strain) of an elastic medium in a thermal
equilibrium with total energy x := 72/2 4+ S(p) . In our case the stress S’ : R — R
is the derivative of a smooth convex function, gas dynamics (in Lagrangian coordi-
nates) is obtained when S has a singularity at zero. This second, most interesting
problem is out of the range of our tools.

The Anharmonic Chain: The Hamiltonian of coupled oscillators on Z reads as

H(w) = % kZZ (P} + V(gks1 — ax) + Vge—1 — @)

where pg,qr € R are the momentum and position at site k € Z, w := (pk, @k )kez -
In terms of the deformation ry := qx4+1 — qx , the equations of motion read as

pe=V'(rg) = V'(rg—1), Tk =Pk+1 — Dk, kELZL, (2)
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where V (y) = y?/2 + U(y) such that U,U’,U” are bounded; this is the condition of
the logarithmic Sobolev inequality of [14].

Since H, P := > pr and R := > ry are all preserved by the evolution, we have a
three-parameter family A\g . , of translation invariant stationary product measures
with local densities exp (—ﬁ(pk —7m)2/2 = BV (rg) +yr — F(ﬁ,fy)) , where 6 > 0
denotes the inverse temperature, m,v € R, and F' is the normalization.

Although (2) is a direct lattice approximation of the p-system with § = V|
convergence does not take place because of several reasons. We have (at least) three
conservation laws, therefore a triplet, the compressible Euler equations are expected
to govern macroscopic behavior. In the paper [5] by R. L. Dobrushin and coworkers
a full description of stationary states and that of the associated conserved quantities
of the harmonic chain are given. It turned out that there is a huge class of extra
stationary measures and conservation laws, therefore hydrodynamic limit of the
harmonic chain results in a continuum of macroscopic equations. The anharmonic
chain is much more difficult, there is no real hope to verify any version of the ergodic
hypothesis. Moreover, an approximation scheme like (2) is not a stable one, it has
to be regularized somehow, see [17].

The Small Viscosity Limit: Let u(t,z) := (v,p) and f := —(5’,v), then (1)
becomes Oyu + O, f(u) = 0, and its viscous approximation reads as
Oty + Op f (Ug) = 002Uy (3)

where 0 > 0 may be a matrix, too. The small viscosity limit, i.e. ¢ — 0 is a popular,
although not the most powerful approximation scheme. In many cases it is possible
to show that, at least along subsequences, u, converges to a weak solution, a locally
integrable function satisfying

/OOO/_Z (1 - u+ 1y - fu)) da:dt+/_(:¢(o,x).u(0,x)dx:0

for all compactly supported test functions ¢ : R? +— R2 . Usually (3) admits bounded,
positively invariant regions implying existence of bounded solutions for bounded
initial values, see the pioneering paper [3] by R. DiPerna. Ten years later J. Shearer
[19] and Serre - Shearer [18] managed to prove existence of L solutions for p < 2 in
this way.

Discretized versions of (3) are also available, but the regular stationary states are
killed by such numerical schemes: viscosity results in a relaxation to an evolution at
temperature zero. Random perturbations have to be used to get a fully developed
hydrodynamic behavior. Then the microscopic evolution is generated by an operator
L =Ly + 08, where Ly is the Liouville operator of the Hamiltonian part (2) of the
process, while 8 is symmetric (reversible) with respect to the preferred equilibrium
states. For example, we can do random exchange of velocities across neighboring
sites such that all actions are independent of each other. This mechanism admits
three conservation laws, thus the product measures Ag, . are all stationary states.

The Problem of Stationary States: The anharmonic chain with physical vis-
cosity belongs to the Ginzburg - Landau category, it is given by the following set of
stochastic differential equations:

dpr, = (V'(rg) = V' (rg—1)) dt + o (P41 + pe—1 — 2pk) dt
+ V20 (dwy, — dwi—1), dri = (P41 — pr) dt,
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where 0 > 0 and {wy ,k € Z} is a family of independent Wiener processes. Total
energy is not preserved any more because a thermal equilibrium is maintained by the
noise. The product measures \; , := A1 4 are stationary, and a converse statement
is also true [8]. Indeed, assuming that V is quadratically bounded and convex
at infinity, we prove that every translation invariant stationary measure of finite
specific entropy is a superposition of such product measures. The normalization
(free energy) reads simply as

F(3)i=log [ exp(ya ~ V() do,
some expectations are calculated as Ar,(pr) = ™, A\ry(rx) = F'(2) = p, and

Aeny(V'(r1)) = 7, while S(p) := sup, {yp — F(2)}. Since v = S'(p) = N\, (V') if
p = A,(r) = F'(7y), we expect that the p-system (1) is governing macroscopic be-
havior of the model. Indeed, the relative entropy method of H.-T. Yau [20] applies
when the macroscopic solution is a classical one. Similarly, in the case of random
exchange of velocities, the method of [7] yields a description of translation invariant
stationary measures, thus following Yau, we can derive the set of compressible Euler
equations in a smooth regime.

Main Result: Since no version of the model is attractive, in a regime of shocks
a very strong artificial viscosity should be added to the equations of motion. We
consider a Ginzburg - Landau type stochastic system mimicking the viscous approx-
imation.

dpr, = (V'(rg) = V'(rp—1)) dt + o(€) (Prg1 + pr—1 — 2px) di
+ V/20(e) (dwg, — dwg_1) ,

dry = (prr1 —pr) dt +o(e) (V' (rpq1) + V' (rp1) — 2V (rg)) dt
+/20(2) (dibg 1 — diy)

where {wy} and {w;} are independent families of independent Wiener processes.
The condition eo(g) — 0 is natural, eo?(¢) — +o0o is needed to suppress extreme
fluctuations in the system. Conservation of total energy is violated by the noise,
thus A, , 7,7 € R is the family of stationary product measures.

At a level ¢ > 0 of scaling, po. is the initial distribution, and M,, . denotes
the joint density of the variables w(™ := {(py(0),7(0)) : |k| < n} with respect to
A := Xp,0. Since we can not prove uniqueness of the hydrodynamic limit, our main
hypothesis on the initial distribution is an entropy bound:

Sn(poelA) == /Mn,6 log M, dX < Cn (4)

for all e > 0 and n € N with the same constant C'. Under this condition every
translation invariant stationary state is a superposition of product measures A, . .

The empirical process, u.(t,x) = (e, pe) is now defined by 7. (¢, x) := pg(t/c) and
pe(t) = ri(t/e) if |ek — x| < €/2; P. denotes its distribution. We interpret u. as
Lebesgue density of a measure. The construction of the effective, slowly increasing
entropy pairs of Shearer [19] and Serre [18] requires an implicit condition on the
macroscopic flux: S” has at most one root. Of course, S”(0) = 0 if V is symmetric.
Theorem: P, is a tight family, and its limit distributions are concentrated on a set of
weak solutions to the p-system.

61



JOZSEF FRITZ, TU BUDAPEST

The notion of weak convergence above changes from step to step of the argument.
We start with the Young measure of the block-averaged process, and at the end we
get strong convergence in the local LP(R?2) space for p < 2.

Energy, and Entropy Pairs of the P-system: Additional conservation laws
play a crucial role in the study of hyperbolic systems. For example, total energy
H := [(v?/2 + S(p)) dz is constant along classical solutions to (1), and

OH (1) = o / (n027 + S (p)O2p) dz = —0 / ((85m)? + §"(p)(00p)?) da .

for viscid solutions. More generally, a couple {h(u), J(u)} is called a Lax entropy
pair if formally 0;h + 0,J = 0, i.e. VJ = Vhf’, where f’ is the Jacobian of the
flux. J = —7S’(p) in the previous case of h = H , in general J; (7, p) = —h, (7, p)
and J,(m, p) = —S"(p)hy(m, p) . In the viscous approximation we have

Oth(u) = 00>h(u) — o (hzw(u)(agw)2 + hgp(u)(aip)Z + Qthaxﬂawp) . (5)

If h is convex then there is a negative term on the right hand side, but ¢ — 0, thus we
have no control of d,u. Something else: Compensated Compactness is needed. The
microscopic picture is similar but more complicated, the famous two-blocks estimate
is the missing information in that case. Application of compensated compactness to
stochastic systems has been proposed in [8], where asymmetric exclusions are dis-
cussed in details, some more interesting examples are treated in the papers [9,10,11].

The Microscopic Frame: The microscopic dynamics does not admit additional
conservation laws, entropy pairs can only be recovered in terms of block averages
Pik and 7y of size | = [(e) such that

3
lim A8 0 and lim el”(e) =
e—0 0(8) e—0 O'(E)

Because of some technical reasons, besides the traditional arithmetic means fl’k , We
introduce also the more smooth block averages

l
~ 1 )
§k = 75 > (= 1i]) sy for & =pi or & =ry.
j=—1
As an example, cancelation of oscillations in case of total energy is demonstrated as
follows:

Lo Z (Pin/24 S(Px)) = Z (ﬁz,k(f/sz — V1) + S (i) Brgers — ﬁl,k))
kez kez

= Z(ﬁz,kﬂ — pue) (S (Fu) — Vi) = Re,
kez

where V' denotes the block average of V/ := V/(r). In the scaling limit the mi-
croscopic time is speeded up as t — t/e, thus a fairly singular expression has been
obtained. Nevertheless both factors on the right hand side can be estimated via
LSI, the second one is the deviation of the microscopic flux from its macroscopic
counterpart. Due to e02(¢) — 400, it is possible to show that R. ~ 0 in a mean
sense. Oscillations of other entropies are controlled in a similar way.
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Stochastic Compensated Compactness: The empirical process is defined as
Uc(t,x) = (Pr(t/e), Tii(t/e)) if |ek — x| < /2. Since 4. is bounded in a mean
sense in L2(dt, dx) , we have tightness of the distributions P. of the Young measures
©. These are defined as dO. := dtdz0;,(du), where 07, is the Dirac mass at
the actual value of (¢, ). The Young family controls the asymptotic behavior of
various functions of the empirical process.

Given an entropy pair (h,J), the associated entropy production is defined as

X (1), h) = / / 8L, 7) + T (0L (1, 2)) ded,

where the test function v is compactly supported in the interior of ]R?F .

An entropy pair (h,J) is well controlled if its entropy production decomposes as
X:(,h) =Y(p,h) + Z-(¢, h), and we have two random functionals, A.(¢,h) and
B:(¢, h) such that

Ye(¥o, h)| < Ac(@, M) |0l [Ze(, h)| < Be(o, )[4l 5

where ||-|| denotes the uniform norm, ¥ and ¢ are compactly supported test functions,
limEA.(¢,h) =0 and limsup EB.(¢,h) < +oc ase — 0.

Lemma St-Div-Curl: If (hy,J2) and (he, J2) are well controlled entropy pairs, then
distributions of the Young measure are tight, and

Ot.o(h1J2) — 01 2 (hoJ1) = 01 0 (h1)0¢2(J2) — Ot 2 (h2)0t 2 (J1)
holds true almost surely with respect to any limit distribution of P, .

The proof of this lemma is not difficult, by means of the Skorohod embedding
theorem it can be reduced to the original, deterministic version. The main problem
is the verification of the conditions, LSI of [14] plays an essential role here.

As a consequence of the Div-Curl Lemma, it was shown by DiPerna [3] that oscil-
lations of uniformly bounded approximate solutions die out, thus pointwise conver-
gence takes place along subsequences. Unfortunately, it is not easy to find uniform
bounds for stochastic models, therefore results of J. Shearer [19] and Serre - Shearer
[18] are most useful for us. Starting from the energy inequalities implied by (3),
Shearer derived (??7) by means of an LP theory of the Young measure. Then he has
constructed two clever families of Lax entropy pairs such that (?7?) implies the Dirac
property of 0; ;. Here S > 0 is assumed, while S”’(0) = 0 but S”(p) #0if p #0
in the case of [18].

Energy inequalities are not sufficient to control entropy production of the micro-
scopic system because rapid oscillations are generated by the deterministic part of
the evolution. In view of the Ito lemma, m.(dt,z;h) := dh(a.) — (1/e)Lh(a.) dt
defines a martingale m.(¢, x, h) for each x such that letting

M. (¢, h) : / /wt:cmgdtxh)d
we have

X, h) = £ /0 / (t, 2)Lh(ae) do dt + Mo(4, h)

+/°o /oo Ot @) (J(1)Vete — JL(0)Vp.) dwdt + Na(, h),
0 —00
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where Vop(z) == (1/e)(p(z + €) — ¢(x)), Vip(z) := —V.p(z — €) defines the
adjoint of V., finally V. is the numerical error due to this discretization of the space
derivative. The crucial step of the proof is the replacement of h/_(i.)V* % appearing
in Loh(te) with hl(G4e)VES'(pe). Nevertheless, a full non-gradient analysis is not
needed because calculations are done in terms of mesoscopic block averages. The
fundamental a priori bounds for the proof of the stochastic Div-Curl Lemma follow
from the probabilistic entropy inequality and the associated logarithmic Sobolev
inequality. The proof is then completed by a direct application of the results of J.
Shearer and D. Serre, see also Chapter 9 of [17]
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On movable singularities of Garnier systems

R. R. Gontsov

Abstract

We study movable singularities of Garnier systems using the connection of the latter with
isomonodromic deformations of Fuchsian systems.

8§1. What is Painlevé VI equations and Garnier systems?

We start with the Painlevé VI (Py) equation

Fu 111 1 N du) 111 N du
2 2\u u—1 wu—t) \dt t t—1 wu—t) dt
u(u —1)(u—t) t t—1 tt—1)
— 1
e \CTP e T e Oz ) (1)

the second order ODE for a complex function u(t), where a, 3,7, € C are constants.
However, simply giving the explicit equation seems to be the least helpful introduction to it.
Perhaps, it is more convenient to look at Pvyr as at

e the equation for an apparent (fifth) singularity of isomonodromic family of second order
scalar Fuchsian equations with the four singularities ¢, 0, 1, co;

e the most general second order ODE with the Painlevé property;

e the equation controlling isomonodromic deformations of certain rank 2 Fuchsian systems
with the four singularities ¢, 0, 1, co.

Let us recall the first two viewpoints in more details (the last one will appear in §3).
The monodromy of a linear differential equation

4 p—1
%+b1(z)%+...+bp(z)u:0 (2)
with singularities ai,...,a, € C (which are the poles of the coefficients) can be defined as
follows. In a neighbourhood of a non-singular point zy we consider a basis (u1,...,up) in the
solution space of the equation (2). Analytic continuations of the functions u;(2),. .., u,(2) along
an arbitrary loop 7 outgoing from zg and lying in C\{ay, ..., a,} transform the basis (u, ..., uy)
into a (in general case different) basis (a@1,...,4p). The two bases are related by means of a

non-singular transition matrix G, corresponding to the loop ~:

(ul, PN ,Up) = (221, e .,’ELP)G’y.

The map [y] — G, (which depends only on the homotopy class [y] of the loop ) defines the
representation

x :m(C\ {a1,...,an}, 20) — GL(p,C)

of the fundamental group of the space C \ {ai,...,a,} in the space of non-singular complex
matrices of size p. This representation is called the monodromy of the equation (2).

A singular point a; of the equation (2) is said to be regular if any solution of the equation
has a polynomial (with respect to 1/|z — a;|) growth near a;. Linear differential equations with
regular singular points only are called Fuchsian.
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A. Poincaré [12] has established that the number of parameters determining a Fuchsian equa-
tion of order p with n singular points is less than the dimension of the space of representations
X, ifp>2n>2o0rp=2n>3 (see also [1], pp. 158-159). Hence in the construction of
a Fuchsian equation with the given singularities and monodromy there arise so-called apparent
singularities, at which the coefficients of the equation have poles but the solutions are single-
valued meromorphic functions. In the case p = 2, n = 4 (a1,a2,as3,a4 = t,0,1,00) the number
of such singularities equals one. If we move a little the singularity z = ¢ so that the monodromy
of the equation preserves (this is an isomonodromy property which is defined precisely in the
next paragraph), the apparent (fifth) singularity w(¢) will move satisfying Pyp (this was first
obtained by R.Fuchs [4]).

The equation (1) has three fixed singular points — 0,1, 00. Its movable singularities (which
depend on the initial conditions) can be poles only. In other words, any local solution of the
equation defined in a neighbourhood of tg # 0, 1, 0o can be extended to a meromorphic function
on the universal cover of C\ {0, 1,00}. This is the Painlevé property. The statement on movable
poles of the equation (1) is the following. In the case o # 0 they can be simple only, and in the
case a = 0 their orders do not exceed two (see, for instance, [7], Ch. VI, §6).

The Garnier system G, (6) depending on n + 3 complex parameters 01, ...,0,192,0 is a
completely integrable Hamiltonian system (see [8], Ch. III, §4)

8ui _ oOH 7 c%i OH 7

8CL]' an ’ (‘3@]- Bul ’ b ’ a (3)

with certain Hamiltonians H; = H;(a,u,v,0) rationally depending on a = (ai,...,a,), u =
(Ui, ... up), v = (V1,...,0p), 0 = (61,...,0n42,0x). It was obtained by R.Garnier [5] as
an extension of the first of the above three viewpoints to general case of n + 3 singularities
ai,...,an,0,1,00". Namely, ui(a),...,u,(a) are apparent singular points of a certain isomon-
odromic family of Fuchsian equations with singularities ay, ..., ay, 0,1, c0.

For n > 1 the Garnier system generically does not satisfy the Painlevé property. However,
due to Garnier’s theorem, the elementary symmetric polynomials o;(uq(a), ..., u,(a)), depend-
ing on local solutions of the Garnier system, extend to meromorphic functions Fj(a) on the
universal cover Z' of the space (C\ {0,1})" \ U, ;{a; = a;}. Our addition to this theorem
consists in some estimates for orders of irreducible components of the polar loci of the functions
F; (Theorem 2).

§2. Isomonodromic deformations of Fuchsian systems

Let us include a Fuchsian system

dy (-~ B Y
z " (z) BYeMat(p,C), 3 BY=0, @
— i i=1

of p equations with singularities a, ..., a) into a family

dy —~ Bi(a) 0 0 -

1 (gz_a y,  Bi(a)=B;, ;Bi(a) =0, (5)
of Fuchsian systems holomorphically depending on the parameter a = (ay,...,a,) € D(a’),
where D(a®) is a disk of small radius centered at the point a® = (af,...,a2) of the space

C"\ Ui;ﬁj{ai = a;}.

n the case n = 1 the Garnier system G (61,602, 03,0 ) is an equivalent (Hamiltonian) form of Pyt (1), where

a=30%, B=—303 7= 3036 =3(1—07); see [11].
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One says that the family (5) is isomonodromic (or it is an isomonodromic deformation of the
system (4)), if for all a € D(a®) the monodromies

x :m(C\ {ai,...,a,}) — GL(p,C)

of the corresponding systems are the same. This means that for every value a there exists a
fundamental matrix Y (z, a) of the corresponding system from (5) that has the same monodromy
for all a € D(a®). This matrix Y (2,a) is called an isomonodromic fundamental matriz.

Is it always possible to include the system (4) into an isomonodromic family of Fuchsian
systems? The answer is affirmative. Exactly, if the matrices B;(a) satisfy the Schlesinger
equation [13]

j=1#i
then the family (5) is isomonodromic (in this case it is called the Schlesinger isomonodromic
family).

Due to Malgrange’s theorem [9], for arbitrary initial conditions B;(a’) = BY the Schlesinger
equation has a unique solution {Bj(a),..., By(a)} in some disk D(a"), and the matrices B;(a)
can be extended to the universal cover Z of the space C" \ |, ,;{a; = a;} as meromorphic
functions. Thus, the Schlesinger equation satisfies the Painlevé property. The polar locus
© C Z of the extended matrix functions Bi(a),..., By(a) is called the Malgrange ©-divisor.

In what follows we will use the theorem of Bolibrukh? describing a general solution of the
Schlesinger equation near the ©-divisor in the case p = 2. For the polar locus P C Z of a
function f meromorphic on Z, and a* € P, let us denote by ¥,+(f) the sum of orders of all
irreducible components of P N D(a*).

Theorem 1. If the monodromy of the two-dimensional family (5) is irreducible, then
Yar(Bi) =22 —mn foreverya* €O (i=1,...,n).

The following auxiliary lemma is a simplified version of Proposition 6.4.1 from [8].

Lemma 1. Consider a two-dimensional Schlesinger isomonodromic family of the form

dy ", Bi(a) n L
dz (ZZ—ai)% ;BZ(G)_K_dlag(e’ 0), 0eC,

=1

and the function b(a) = Y, bi%(a)a;, where bi*(a) are the upper-right elements of the matrices

Bi(a) respectively. Then the differential of the function b(a) is given by the formula
db(a) = (20 + 1) > b}*(a)das.
i=1
Proof. The differential db(a) has the form

db(a) =Y aidbj*(a) + Y b*(a)da;.
=1 =1

>This theorem was announced in [3], its particular case contains in [2], the proof can be found in [6].
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To find the first of the two latter summands, let us use the Schlesinger equation for the matrices
Bi(a). Then we have

SN wdBia) = -y Y ain(aiaj):ZZ[Bi(a),Bj(a)]d(aiaj):
=1

i=1 j=1,j#i di = a; i=1 j>i
- —Z[Bi(a), 3 Bj(a)]dai:—Z[Bi(a),K]dai.
=1 =1 g i=1

The upper-right element of the latter matrix 1-form is equal to > -, 20b}%(a)da;, hence
S aidb}(a) = 203", b2 (a)da;, and db(a) = (20 + 1) Y, b}%(a)da;. O

83. Schlesinger isomonodromic deformations and Garnier systems

Let us recall the relationship between Schlesinger isomonodromic deformations and Garnier
systems.
Consider a two-dimensional Schlesinger isomonodromic family

n+2
dy _ (i Bi(a)> y,  Bi(a®) = BY € 51(2,0), (6)

dz 7 —aq
=1

of Fuchsian systems with singular points ai,...,an, an+1 = 0, apt2 = 1, apy3 = oo which
depends holomorphically on the parameter a = (a1,...,a,) € D(a?), where D(a®) is a disk of
small radius centered at the point a” of the space (C\ {0,1})"\ Uiz;{ai = a;}. Denote by £8;
the eigenvalues of the matrices B;(a) respectively®. As follows from the Schlesinger equation,
the matrix residue at the infinity is constant. We assume that it is a diagonalisable matrix, i. e.,
Y177 Bi(a) = —Boo = diag(—fsc, fioc)-

By Malgrange’s theorem the matrix functions

1 a i\a
Bi(a) = ( Z?lgai bZZZZQ((a)) >

can be extended to the universal cover Z’ of the space (C\ {0,1})" \ U, ,;{a; = a;} as mero-
morphic functions (holomorphic off the analytic subset © of codimension one).

Denote by B(z,a) the coefficient matrix of the family (6). Since the upper-right element
of the matrix B, equals zero, for every fixed a the same element of the matrix z(z — 1)(z —

ay)...(z —an)B(z,a) is a polynomial P,(z,a) of degree n in z. We denote by uq(a), ..., u,(a)
the roots of this polynomial and define the functions vi(a),...,v,(a):
n+2 ;11
b;*(a) + G .
vi(a) = 4 j=1,...,n.
! ; uj(a) —a;
Then the following statement takes place: the pair (u(a),v(a)) = (ui, ..., up,v1,...,vy,) satisfies

the Garnier system (3) with the parameters 231, . ..,20n+2,20- — 1 (see [8], Cor. 6.2.2).
One can express the coefficients of the polynomial P,(z,a) in terms of the upper-right ele-
ments b;(a) of the matrices B;(a). Let

n+2

al(a):Zai, oa(a) = Z ajaj, ..., opyi(a)=ar...ay

i=1 1<i<j<n+2

3 An isomonodromic deformation also preserves the eigenvalues of the residue matrices B;(a).
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be the elementary symmetric polynomials in aj,...,an, ant1 = 0, apye = 1, and Q(z) =
[1*2(: - a;). Then

Z bi( =:b(a)2" + fi(a)z" P 4 ...+ fala)

z—az

(recall that 32"*2b;(a) = 0). By the Vidte theorem one has

n+2 n—+2 n

M@::E} a) + a;) Z} z}mm+mﬁ@,
n+2 n+2 =

fita) = Y@ (oale) = Y way) == D (bila) + bya)aiay.
=1 J=Lj#i 1i<g<n+2

In the similar way,

fk(a) = (_l)k Z (bi1 (a) .ot bik+1 (a))all c Qg

1<i1 <. <ijpy1 <nA2

foreach k=1,...,n

Alongside formulae for the transition from a two-dimensional Schlesinger isomonodromic
family with si(2, C)-residues to a Garnier system, there also exist formulae for the inverse tran-
sition (see [8]). This allows to suggest some addition to Garnier’s theorem (which claims that
the elementary symmetric polynomials Fj(a) = o;(ui(a),...,un(a)) of solutions of a Garnier
system are meromorphic on Z’).

Theorem 2. Let (u(a),v(a)) be a solution of the Garnier system (3) that corresponds to
a two-dimensional Schlesinger isomonodromic family with irreducible monodromy, and u;(a) #
uj(a) for i # j. Then for each function Fi(a) and any point a* of its polar locus one has

S (F) = —n — 1.

Proof. Consider the family (6) with the irreducible monodromy, and the functions b(a),
fi(a),..., fu(a) constructed by the residue matrices B;(a). By the Viete theorem, Fj(a) =
(=1)¢fi(a)/b(a). Due to Theorem 1, for each function f;(a) and any point a* of the ©-divisor
of the family (6) one has ¥,+(f;) = —n — 1. Thus, to prove the estimate of Theorem 2, it is
sufficient to prove that the function b(a) is irreducible and does not vanish on the polar locus
of the functions f;(a).

By Lemma 1 we have db(a) = (=20 + 1) i bi(a)da;.

i) In the case B # 1/2

1 0b(a)

bi(a) = ~ 3(1-’ i=1,...,n; (oo =20 —1#0)

boie(a) = Z bi(a)ai, bnpti(a) = —bnya(a Zb (7)

Thus, if the function b(a) is holomorphic at a point o’ € Z’, so are the functions b;(a), i =
1,...,n+ 2, and hence, the functions f;(a).
If for some a’ € {b(a) = 0} one has db(a’) = 0, then Y ;" , bi(a')da; = 0 and bi(a') =
. = by(a’) = 0. Taking into consideration the relations (7), one gets also b,y2(a’) = 0 and
bn+1(a’) = 0. This contradicts the irreducibility of the monodromy of the family (6).
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const # 0. Indeed,

ii) In the case 3o = 1/2 one has db(a) = 0 for all @ € D(a®), hence b(a) =
= u;(a) for some i # j.

if b(a) =0, then P,(z,a) is a polynomial of degree n — 1 in z, and u;(a)
U

Remark. M. Mazzocco [10] has shown that the solutions of the Garnier system (3), that
correspond to two-dimensional Schlesinger isomonodromic families with reducible monodromy,
are classical functions (in each variable, in sense of Umemura [14]) and can be expressed via
Lauricella Hypergeometric equations. Thus, Theorem 2 can be applied, for example, to non-
classical solutions of Garnier systems.
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Invariant Measures for Multivalued Mappings
Gorbachev A.N.

1. Let 2 be a space with o-algebra of measurable sets, R is measurable
multivalued mapping on €2, I'g is graph of R.

Measure g on € x € is called invariant for R, if p(2 x Q\ ') = 0
and projections on the first and second component of product space {2 x {2
(mappings 71, m : Q X Q — Q) m(t1,t2) = t1, ma(t1,t2) = t2) have the same
action on measure 4 [1]. In other words for any measurable set A C 2

w(rPANTR) = p(rg PANTR).

If multivalued mapping R on 2 is parameterized by measurable one-
valued mappings 71,72 : Q — Q, 1e. I'r = (r1(t),r2(t)),t € Q, then we have

PROPOSITION. For multivalued mapping R on the set €, that s
parameterized by mappings r1 u ro, there exists an invariant measure [ if
and only if there exists such measure 1 on ), that r1,.,m = ro.m (i.e. for any
measurable set A C Q n(r;tA) = n(rytA)).

We call measure 7 (71, r2)-invariant for multivalued mapping R.

Let k w [ be coprimes. Linear (k,l)-mapping S* is multivalued mapping
on S! with parametrization ry(t) = kt, ro(t) = It.

2. Let rq,...,7r, be one-valued continuous transformations of the compact
space () with o-algebra of measurable sets. We take the system of equations:

Tisl = Toul/ = ... = TpilV (1)

where 7 is probabilistic measure on €). In that case, when n = 2, any solution
of (I) is by definition (ry,r2)-invariant measure for multivalued mapping,
parameterized be mappings r; and rs.

THEOREM 1. If semigroup S = (r1,...,7,) is amenable and S satisfies

cancellation law, then there exists sequence in group algebra A over S (A =
n

{>° s, s; € S}) such that its action on arbitrary finite measure on € has
i=1
accumulation point — the solution of system (I). In addition, action of this
sequence on any solution of system (1) is fized.
Semigroup S has amenable group of quotients G = S™1S that slides to S

by the right shift [2].
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Let us take the set K = {r{'ro,..., 777} C G. Then Ve > 0 IF. x C
G: Vk e K |F. kg A kF. k| < ¢|F. k|. Let v be an arbitrary finite measure on
£2. We build sequence vy = > (xgn)«v, where gy shifts Fi ginS.

1
F%K‘ zeF 1

-
From the sequence vy we can take subsequence vy, that is weakly convergent
to some normed measure v. In this case forall j = 2,... n: r,vny—7rjvy — 0
when N — 0. Processing to limit by N; we have r,v = rj,vforall j =2...n.
So v is the solution of system (/).

Now we show an example of such mappings rq,...,7, with semigroup
S = (ry...r,) that there exists the solution of system (7) that is not S-
invariant measure.

EXAMPLE. On S! ~ R/Z we take r;(t) = 2""*3'%(mod1), i = 0,...,n.
Then we take invariant for the mapping ¢t — 3¢ measure 7 [3]. Then Th.n =
T3.m, where Ty : t — 2t and T3 : t — 3t. Hence r,m = (7/1%).n = (7:13)«n =
Ti+127, Where 75(t) = 2"7*3't(mod1). Thus 7 is solution of system (I). Le. 1 is
absolutely continuous relatively to Lebesgue measure [3] but doesn’t match
with it, so r;,n # n for all i = 1,...,n, and then 7 is not S-invariant.

3. Let P be nonempty compact subset of locally convex space E, pu is
probabilistic measure on P. It is said that point p € E is represented by
measure p, if f(p) = fP fdu for any continuous linear functional f on FE.
Extreme point of the set P is called such point that doesn’t split to the
linear combination of other elements of P. The set of extreme points we
denote by exP.

THEOREM 2. There ezists such multivalued mapping F on S, point
m € M, where M is the set of invariant measures for F' and two different
measures on exM, that represent m.

Let us take linear (2,3)-mapping F' (with graph I'z) on S* ~ R/Z. As
the point m we take measure with constant density on I'p.

Now we take A = a, u A = @&, — the sets of one-valued mappings S! on
itself such, that their graphs are subsets of ' and defines by the following
ways: .
)

. _ 1 [ 3(t+s), tE[O,i)U[%,%)
as: ri(t) =2(t+s), t €0, 2), ra(1) { 3(t+s)+1, telil)

For any s € [0,1) oy w &5 is piecewise monotonic transformation
with finite number of discontinuities and category C? in all intervals of

ag: ri(t) =2(t+s); ra(t) =3(t+s),t €0
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compliment, so there exist invariant measures for all of them pu, and i [3]
(on their graphs). Moreover measures (s and fis are invariant for F' and are
ergodic for a, m a, respectively, so they are extreme points in the set of
invariant measures for F'. Futhermore, the measures us u jis are pairwise
distinct, because they have different supporters.

Then we take Ofl,usds n Ofl,&sds ((Of1 psds)(A) = j,us(A)dS, (j fisds)(A) =

fis(A)ds), they both have constant density on I'p.

o

So, we've got two representations of point m with measures, that is
concentrated on different subsets of ex)M/ W

Let P be compact convex subset of locally convex space F, A u pu be
non-negative Borel measures on P. We define A = pu, if A(f) > u(f) for any
function f in C(P). We take the measures that are maximal concerning to
this order.

According the Choquet-Meillet theorem [4] one compact convex set P is
simplex if and only if for any p in P there exists unique maximal measure
fp, that represents p. In respect that any measure on exP, is maximal [4] we
have:

THEOREM 3. There exists such multivalued mapping on S*, that the set
of its invariant measures is not semplexes.

For built in theorem 2 set M and point m there exists at least two different
representations by maximal measures.
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DLR thermodynamic formalism and properties of time
and space means

B.M. Gurevich*and A.A. Tempelman

Let X be a metric space, 7 = {7;,t € Z%} an action of the group T = Z4
on X by homeomorphisms, and Z the set of all 7-invariant Borel probability
measures on X. For each y € Z, we denote by h(u) the entropy of 7 with
respect to p. In what follows we assume that the function p +— h(u) is upper
semi-continuous on Z. (This is the case if 7 is expansive.)

If f e C(X;R™) and p € T we denote u(f) = [, fdu. For each func-
tion f = (f1,..., fm) € C(X;R™) and each g = ((,...,n), we consider

the pressure P;(3) := suplh(u) — (3. 1))]. where (3. f) = SIL, (hfi

C(X,R"). Denote by &;5 the set of measures p at which the supremum is

attained ((f, 3)-equilibrium measures), and put & = 5 J Erp-
E m

Let T = {T,} be a sequence of finite subsets of T'. For f € C(X,R™), x €
X, we consider the time mean

afr(z) = lim ! Zf(nx),

n—oo |T,] =

provided the limit exists. We assume that 7 is a Fglner sequence, i.e.
lim,, W = 0 for each t € T’; in this case the time means and the set
of points z where they exist are 7-invariant. Let M be the set of all time
means, [ := {u(f),n € Z} the set of space means, and Ef = {u(f),pn € &}
the set of equilibrium space means.

It is clear that I; is a compact convex set. We first consider properties

of F; and the relationship between Iy and Ef.

Theorem 1. The relative interior 1i(Ey) of Ey coincides with the relative
interior ri(Iy) of Iy.

*The work is supported by the RFBR grants 07-01-92215 CNRS(L) and 08-01-00105
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This theorem is a refinement of Theorem 2 in [1].

Theorem 2. Assume that the function Py has the following property: if Py is
affine on a ray, then it is affine on the whole straight line containing this ray.
Then Ey is convex and relatively open; moreover, it coincides with ri(1y).

Of course, the condition on Py in Theorem 2 is fulfilled if this function is
strictly convex. On the other hand, if the components of the vector function
f are linearly dependent, P; is constant on an affine manifold and satisfies
the condition of Theorem 2 as well.

In what follows we assume that X = ST, where S is a finite set, and
(x)(s) = x(t +s) for x € X, s,t € T. In this case the above semi-
continuity property of the entropy function holds. We also assume that 7

is an increasing sequence of parallelepipeds T, = {t = (t1,...,t4) : 0 < t; <
(n)
n . n . a 7
tE )}ﬂTsuch that hmtg ) = 0o, 1 =1,...,m, and % v
n—00 min{™

7

Theorem 3. M;r = I¢; so the set My 1 is convex, compact, and does not
depend on T .

Define the "standard metric” pg, 0 € (0,1), on X by p(z,y) = 0™ if

r #y, m=min{n : z|n, #yl|r,}, and p(z,y) =0if z = y.
With this metric, we are interested in the Hausdorff dimension (denoted
below by dimy) of the level set

Xf,a,T = {I’ e X: afg—(a:) = a}.

Theorem 3 implies X, 7 # 0 for each o € I.
The following theorem generalizes Theorem 5.1 in [2].

Theorem 4. (1) If « € Iy, then
dimg(Xfa7) =0"" max h(p)=0""inf [P(3) + (B,a)].

RETL,u(f)=a BER™
(2) If « € Ey, i.e. a = po(f) where py € E¢((Bo, ) with some [Fy € R™,
then

dimg(Xj.0,7) = 07 h(o) = 07 [Pr(Bo) + (5o, ).
(3) The function a — dimf(Xf,a,A) is concave and upper semi-continuous
on Iy, continuous on ri(If), and Lipschitz continuous on each closed subset
of ri(Iy); moreover, the restriction of this function to each closed straight line
interval in Iy is continuous.
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It should be mentioned that, for d = 1, some close results were earlier
obtained by different methods (see, for instance [3],[4] ), who applied different
approaches. But when d > 1, the DLR approach seems to be the most
relevant.

References

[1] B.M. Gurevich and A.A. Tempelman. On sets of time and space means

for continuous functions on configuration space (Russian). Uspekhi Mat.
Nauk., 58 (2003), 161-162.

2] B.M. Gurevich and A.A. Tempelman. Multifractal analysis of time

means for continuous functions on configuration space (Russian).
Probab. theor. appl., 51:1 (2006), 4-21.

[3] O. Jenkinson. Rotation, entropy, and equilibrium sates. Trans. Amer.
Math. Soc., 353:9 (2001), 3713-3739.

[4] Takens F., Verbitski E. On the variational principle for the topological
entropy of certain non-compact sets. Ergodic Theory Dynam. Systems.,
23:1 (2003), 317-348.

76



SOME UPPER ESTIMATES ON THE NUMBER OF
LIMIT CYCLES OF EVEN DEGREE LIENARD
EQUATIONS IN THE FOCUS CASE

GRISHA KOLUTSKY

ABSTRACT. We give an explicit upper bound for the number of
limit cycles of Liénard equation & = y — F(x),y = —z of even
degree in the case its unique singular point (0,0) is a focus.

M. Caubergh and F. Dumortier give explicit upper estimates for
large amplitude limit cycles of such equations [CD]. We estimate
the number of mid amplitude limit cycles of Liénard equations
using the Growth-and-Zeros theorem proved by Ilyashenko and
Yakovenko [IYa].

Our estimate depends on four parameters: n, C, a;, R. Let
n—1

F(z) = 2"+ Y a;2°, where n = 2[ is the even degree of the monic
i=1

polynomial F' without constant term, Vi|a;| < C, so C is the size

of a compact subset in the space of parameters, |a;| stands the

distance from the equation linearization to the center case in the

space of parameters and R is the size of the neighborhood of the

origin, such that there are no bigger than [/ limit cycles located

outside of this neighborhood.

1. INTRODUCTION. HISTORY OF THE HILBERT-SMALE PROBLEM

In 1977 A. Lins Neto, W. de Melo and C. C. Pugh [LMP] examined
small perturbations of a linear center for a special class of polynomial
vector fields on the plane. This class is called Liénard equations:

0 {izy—F@)

j=—a

where F' is a polynomial of odd degree.

They proved the finiteness of limit cycles for a Liénard equation of
odd degree n. Also they conjectured that the number of limit cycles of
(1) is not bigger than 7,
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In 1998 S. Smale [S] suggested to consider a restriction of the second
part of the Hilbert’s 16th problem to Liénard equations of odd degree.
He conjectured that there exists an integer n and real C' such that the
number of limit cycles of (1) is not bigger than Cnq.

In 1999 Yu. llyashenko and A. Panov [IP] got an explicit upper bound
for the number of limit cycles of Liénard equations through the (odd)
power of the monic polynomial F and magnitudes of its coefficients.
Their result reclined on the theorem of Ilyashenko and Yakovenko that
binds the number of zeros and the growth of a holomorphic function
[IYa].

In 2007 F. Dumortier, D. Panazzolo and R. Roussarie [DPR] con-
structed a counterexample to the conjecture of A. Lins Neto, W. de Melo
and C. C. Pugh. They constructed an example of a Liénard equation
of odd degree n with at least ”T‘Ll limit cycles.

In 2008 Yu. Ilyashenko [I2] suggested to prove a result analogous to
the one of Ilyashenko and Panov for Liénard equations of even degree.

In 2008 M. Caubergh and F. Dumortier in [CD] proved the following
theorem for Liénard equations of even degree.

Theorem 1. Let K be a compact set of polynomials of degree exactly
n = 2l, then there exists R > 0 such that any system having an expres-

sion (1) with F € K has at most | limit cycles having an intersection

Here Bg(0) denotes the ball around the origin with radius R.

2. NOTATIONS AND THE ILYASHENKO STRATEGY

From now on we will consider a system (1), where F' is a monic
polynomial of even degree n = 2 without a constant term.

Remark. The assumption F(0) = 0 does not reduce the generality; it
may be fulfilled by a shift y — y + a. The assumption that F is monic
may be fulfilled by rescalling in x, y and reversing time if necessary.

Let v be an analytic vector field in the real plane, that may be
extended to C2. For any set D in a metric space denote by U?(D) the
e-neighborhood of D. The metrics in C and C? are given by:

p(z,w) = |z —w|, z,w € C;
p(z,w) = max(|z; — wy|, |22 — wal), z,w € C%
Denote by |D| the length of the segment D. For any larger segment
D" D D, let p(D,0D') be the Hausdorff distance between D and 0D'.
We want to apply the next theorem proved by Ilyashenko and Panov
[IP]. Actually, it is the easy corollary from the Growth-and-Zeros the-
orem for holomorphic functions proved by Ilyashenko and Yakovenko
[IYa].
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Consider the system
(2) T =v(x), r € R%

Theorem 2. Let I' be a cross-section of the vector field v, D C T' a
segment. Let P be the Poincaré map of (2) defined on D, and D C D' =
P(D). Suppose that P may be analytically extended to U = U¢(D) € C,
e <1, and P(U) Cc UYD') Cc C. Then the number #LC (D) of limit
cycles that cross D admits an upper estimate:

1 D/‘ + 2
(3) #LC(D) <e log —p(D, oD

The same is true for P replaced by P~*.

Actually, the Ilyashenko strategy is the application of the previous
theorem. It requires purely qualitative investigation of a vector field,
i.e. a construction of such D for every nest of limit cycles. This strategy
was applied before in papers [I1] and [IP].

We take K from the Theorem 1 to be the space of monic polynomials
of degree exactly n with coefficients, which moduli are bounded by some
positive constant C, i.e.

n—1
F(x) =a2" + Zaixi, Vi :a; < C.
i=1

If |a;] < 2 then the unique singular point (0,0) of the system (1) is
a focus. In our work we will consider only this case.

Let us denote by Y the maximal y-coordinate of the point of inter-
section between the most external limit cycle which lies inside Bg(0)
(if it exists, of course) and y-axis.

i “

FIGURE 1. This is the reversed time picture.
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3. BENDIXSON TRAP FROM WITHIN

In this Section we construct an interval D, which lies inside Bg(0)
and intersects transversally all limit cycles in Bg(0). Also we find an

|\D'| + 2
——————. To do that
p(D,0D) 0

we need to estimate p(D,0D’) from bellow, where D' = P(D) C D
and P is the Poincaré map defined on D.

Let ¢, r be polar coordinates on R?, ¢, 7 be derivatives with respect
to (1).

upper estimate for the Bernstein indez, b = log

ai

Lemma 1. Put o = Tek If ay is negative, then 7 > 0 in U,(0). Let
2
D =1[0,Y] COy. Thend = p(D,dD') > %

Proof. Let us calculate 7.

. wi+yy rcosp(rsing — F(rcosy)) — r?singcos o
T = = =

r r

= —cosF(rcos ) = —rcos’ ¢ Z a;(r cos )™
i=1

If r < p, then r < % and 2Cr < 4. Therefore, 1(17; < 4. Then

u : 1 -t Cr a
Z. < < <—.
ZZ:;a(rcosgo) < Cr - e 5
S0
7 > 1 cos’ @ (—al + %) = —%rcos%p > 0.

This proves the first part of the Lemma.
Consider the orbit 7y of the system (1) that passes through the point
(0, 0). Then the Hausdorff distance d can be estimated as follows:

2 2m 2

a a

/ f(fy)dga‘ > / 517“ cos? pdp > —
0 0

d> —.
- 8C

This inequality completes the proof of the Lemma. O

Remark. For positive ay we can get the same results just by reversing
of the time.

Now we can estimate b from above:

2 2 2 2 2 2
(4) b<log Ui < log —SC(R;_ ) < log C(R2+ ) < C(R;— )
mas aj aj
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4. COMPLEX DOMAIN OF THE POINCARE MAP

In [IP] authors proved that the inverse Poincaré map of the Liénard
equation (1) may be extended to the domain U¢(D) C C, where

(5) e=exp (—n*(X +2)), X=4C+1)° C>4.

This statement is true for our case, but C should be replaced by
max(R,C'). One can prove it using absolutely the same arguments as
Ilyashenko and Panov.

From now on without loss of generality we can replace C' by max(R, C').

5. FINAL ESTIMATE

Theorem 3. The number L(n,C,ay, R) of limit cycles of (1) in the
case when n is even and 0 < |ai| < 2, admits the following upper
bound:

(6) L(n,C, a1, R) < a;?exp(5R? exp(CH"H16)),

Proof. By definition, |D| and |D’'| are less than R. So estimates (3),
(4) and (5) imply:

2 2
L(n,C,a;, R) < exp(2Rexp(n*(4(C +1)* + 2?”“’))% <
1

< a7?exp(5R? exp(n®C°? 3+ < a7 exp(5R? exp(CH"H16)).

This calculation completes the proof of the Theorem. [l
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Global attractor for the nonlinear Klein-Gordon equation
with the mean field interaction

ANDREY KOMECH

Institute for Information Transmission Problems of Russian Academy of Sciences

ABSTRACT. The long time asymptotics for nonlinear wave equations have been the subject of intensive
research, starting with the pioneering papers by Segal and Strauss, where the nonlinear scattering and conver-
gence to zero for small initial data were considered. Global attraction (for large initial data) to zero may not
hold if there are quasistationary localized solutions (solitary waves) of the form (z,t) = ¢(z)e™*".

The existing results on the existence and stability of solitary waves suggest that the global attractor of all
finite energy solutions is finite dimensional and coincides with the set of all solitary waves. In the present work,
we will prove this statement for the nonlinear Klein-Gordon equation with the mean field interaction. We will
prove the convergence to the solitary manifold in the metric which is e-weaker than the local energy seminorms.

AHHOTAILINAA. HoaroBpeMeHHbIE ACUMITTOTHKH JI71s1 HEJTHHEHHBIX BOJTHOBBIX YPABHEHHUIH SIBISIIOTCS OOBEKTOM
MHTEHCHBHBIX UCCJIEI0BAHNN HAYMMHAsA ¢ OcHOBONOs1aranumx pabor Curana u Illrpaycca, rue 6bLI0 pACCMOTPEHO
HEJIMHEMHOE paCCQﬂHI/IQ H CXOOUMOCTH K HyJIIO JJiA MaJIbIX HAYAJIBHBIX JAHHDbIX. FJLOﬁaJL‘bHG,ﬂ CXOANMOCTD (,Z[.Hﬂ
[POU3BOJIbHBIX HAYAJIbHBIX JIAHHBIX ) K HYJIIO HE HMEET MECTA IIPH HAJUIUN KGASUCTAUUCHADHOLT AOKAAUSOEGHHBIT
pewenudi (yedunénmmzr eoan) vuaa (z,t) = ¢(x)e L.

Tlosyvyennnie K HACTOALIEMY BPEMEHM PE3YJThTATHI O CYLIECTRORAHWM M YCTOWYMBOCTH YEAWHEHHRIX BOJTH
HABOJST HA MBICITh, YTO 24000.40HbL{ ATVNMPAXMOP BCEX PEINIEHNIH KOHEYHONH JHEPTUN KOHEYHOMEDPEH M CORIAIAET
€O MHOYKECTBOM RCEX YeAWHEHHBIX BOJTH. B manHoi pabore MBI JOKAXKEM 3TO YTBEPIKIEHWE JUTs HEJIMHEIHOTO
ypasuenus Kieitna-I'opaona ¢ camoneiicTBueM Tuma cpeiHero mnojisi. Mbl TOKaXKeM CXOAMMOCTh PEITeHrH K
COJINTOHHOMY MHOT000ODa3HI0 B METPHUKE, KOTOpas e-cjiabee SHEPreTHIeCKUX IOJYHOPM.
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Andpeii Komen: Ypasuenue Kaeina-Topdona ¢ camodeiicmeuem muna cpeduezo noas

I'mobGanbHBITI aTTpakTOpP AJ8 HEJNHENWHOTO YpaBHEHUS
Kaeiina-I'opaoHa ¢ caMojieiicTBueM THUIla CPeIHEro moJjid

Augpeit KOMEY
Wnemumym Hpobaem Hepedavu Hngopmayuu Poccuiickos Axademuu Hayx

1 I/ICTOpI/ISI COJIMTOHHBIX AaCUMIITOTHUK AJid AVWCIICPCHOHHBIX CHCTEM

KBanToBas Teopm4: BOpOBCKI/Ie Inmepexoabl KakKk riobajbHasd CXOOUMOCTDb K ye,HI/IHéHH])IM BOJIHaAM

CocpeToTOIMVICsT HA TIOREJIEHNH SJIEKTPOHA B aToMe BOoposta. Cormacho 6oporcknm noctynatam [Boh13], meros-
MYIIEHHBIH 3JIEKTPOH BEYHO JIBUIAETCS [0 HEKOTOPOH cimauuonaprol opbume, KOTOPYIo Mbl obozHadnM |E) u
HA30BEM KGAHMOGHM CMAYUUOHAPHOM COCmoAnuem. Haxonach B TAKOM COCTOSHWH, SJIEKTPOH UMeeT IIOCTOSH-
nyo anepruio E. Crapas KBaHTOBasi Teopust Oblla OCHOBAHA HA YC/IOBMM KBaHTOBaHust ¢ p - dq = 2whn, n € N,
¥ TIPUBOJIMIO K 3HAYEHUAM JHEPTUH JJEKTPOHA B ATOME BOJOPOIA B XOPOIIEM COOTBETCTBHUH ¢ IKCIIEPUMEHTOM.
VesioBrue KBAHTOBAHMSI HE OOBSICHSIO BETHONO KPYrOBOrQ JIBHUXKEHHS JIEKTPOHA, TAK KAK, CONIACHO KJIACCH-
9ECKOH JIEKTPOIMHAMUKE, TAKOE JBHUIKEHHE COMPOBOXKIAIOCH Obl morepeli 3nepruu u3-3a paguauuu. Chemyst
uaestm e Bpoiiia, HIpéaunrep oroxkaecTBu OOPOBCKUE CMAUUOHAPHbLE 0POUMbL, WIIM KBAHTOBLIE CTAIHOHAD-
Hble cocrosiHus |F), ¢ BOMHOBbIMU DYHKIMIMU BUJIA

Y(x,t) = ¢w(x)e_m, w=FE/h, (1.1)

rie h — nocrosinuas Ilnanka. Ha duznueckoMm s3bike, IJIOTHOCTH 3apsifia, M TOKA, COOTBETCTBYIOUME (KBa-
3 CTAIIMOHAPHBIM COCTOSHUAM BHAA (X, 1) = ¢, (X)e ™!, He 3aBUCAT OT BpeMeHM, U TAKUM OOPa3OM CO3/IAI0T
MOCTOSTHHOE AJTEKTPOMATHUTHOE TIoJie. Takoe 1mosie He YHOCHT IHEPTUI0 HA BeCKOHEYIHOCTh, MMO3ROJISISA JIEKTPOH-
HOMY 0fOJsiaKy GECKOHEYHO Tedh BOKPYT sApa.

Bropoii nocrymar Bopa riacut, 910 101 BHENTHUM BO3MYIIEHUEM 3JIEKTPOHBI MOTYT [I€PEXOIUTH U3 OHOTO
KBAHTOBOI'O CTAMOHAPHOTO COCTOsiHU (6OPOBCKOH cmMayuonaproli opbumost) B APYTOe, U3/1ydas UK [OIJIOLIAs
KBaHT CBeTa, YHEPIUs KOTOPOTO PABHA PA3HOCTH 3Hepruit B, u F_.

|E-)

|E+)
Puc. 1: Tlox BHemHNM BO3MyLIeHNEM, BOHOBAsI (byHKIus ¥ (¢) mepexonut u3 cocrosiHusi |E_) B cocrosiHue |Ey ).

DTOT NOCTYIAT MPEAIONaraeT JMHAMHYCCKYIO HHTEPIPETAnnio GOPOBCKUX MIEPEXOA0B KaK J0JTOBPEMEHHOH
CXOTAMOCTH
U(t) — |Ey), t— +oo (1.2)
Jutst 060t Tpaektopun W (t) COOTBETCTBYIOMIEH JUHAMUYICCKOH CHCTEMBI. TOT[8 KE6GHIMOGHE CIMAUUORADPHDLE
COCTNOARUA CTICIYeT PACCMATPUBATL KAK TOYKH 24060A5H020 GMMPAXmMopa, KOTOpbli Mbl obozHaunM 2A. Cxomu-
Mocth (1.2) npuHUMaeT BUJ JOITOBPEMEHHON ACUMIITOTUKA

V(@) ~ Po (x)e ™=t — doo, (1.3)

KOTOPAs UMEeT MECTO JIsl KaxKJI0ro pemenns konedanoi sHepruu (ur. 1). Oaaako, u3-3a NPUHIMIA CYIEPIO3H-
e, acuMaToTHKY Brja (1.3) B ofimeM ciaydae HEBO3MOXKHBI JLIsl JIMHEHHOIO ABTOHOMHOLO YPaBHeHus, OyiIb 9TO
ypasuenne IIpéaunrepa ihop) = —%Aw — %1{) WM PeSISITURHCTCKOe yparuenne 1IpénrHrepa niv yparHeHne
Jrpaka B KyJOHOBCKOM IIOJIe. AleKBATHOE ONMHCAHME TAKOrO MpoIecca Tpebyer paccMOTPeTh yPABHEHHE JiIsl
BOMHOBON GyRKTIMK 3nekTpora (ypasrenne Ilpémmarepa nam Makcrenna) svecte ¢ ypasrernem Makrcpemna,
KOTOPOE OMUCKIBALT JROIKONMIO deThipéx-norentmana A(z,t) = (p(z,t), A(z,t)):

{ (ihdy — ep)?yp = (c2V — eA)?y + m2cty, .
O = dmre(yyp — 6(x)), OA = 4W€W.
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Paccmorpenue Takoii CHCTEMBI [IPEJICTABIISIETCs] HEN30EXKHBIM, IIOCKOJIBKY, OIISITh YK€ COIJIACHO DOPOBCKUM MOCTY-
JaTaM, nepexossl |[E_) — |E) cOmpOBOXK/IAIOTCSA 3JeKTPOMATHITHBIM U3JIyYeHUeM, OTBEYAIONINM 33 ATOMHbIE
CreKTpbl (KOTOpbIe Mbl U HABG/II0A2€M B IKCIEPUMEHTE ).

Cucrema B3anmoseiicTByomux ypasHenuit Makcesesia-IlIpénunrepa Obuta usHavdanbHO BBeeHa B [Sch26].
Ouna asaserca U(1)-unBapuanTHON HeJuHEeHHON NraMUIBTOHOBO CUCTEMOH, JIJIsl KOTOPOit MOXKHO 6bL10 Gbl 02KH-
JIATh TAKOTO BOT 0600menns acummtornkm (1.3):

((, 1), A, ) ~ (G (@) 5" Auy (2) . £ — oo, (1.5)

Acuvinroruka (1.5) osHa4daa 6bl, YTO MHOXKECTBO BCEX YEIMHEHHBIX BOJIH {((;L,e_i“”7 Aw) :w € R} cocrapiser
[MIO0AIBHBIH ATTPAKTOP 1A B3aUMOAEHCTBYIOINX ypapHeHnii. Takx aCHMITOTHK B HACTOMALIEe BpeMs ellé He
HOJIY9€HO, OMHAKO YIOMAHEM, YTO CYIIECTBOBAHHIE yeIMHEHHBIX BOJMH JIA cucTeMbl Makcsemia-/Iupaka ObLIO
ycranoBaeHo B [EGS96].

ye,I[I/IHéHH])Ie BOJIHBI KaK rjiaodajbHbie aTTPaKTOPbhI B JUCIIEPCUOHHBLIX CHUCTEMax

CXoauMOCTh K T100aJBHOMY ATTPAKTOPY XOPOINO U3BECTHA B JMCCUMATHBHBIX CHCTEMAX, TAKUX, KAK ypaBHE-
uust HaBbe-Crokca (cmorpure [Hen81, BV92, Tem97]). Tvi062.1bHBIH ATTPAKTOP B TAKHX CHCTEMax 0OPa30BaH
CIMAYUOHAPHBLMU COCTNOAHUAMU, U ACUMITOTUKH (1.3) UMEIOT MECTO TOJIBKO [isd ¢ — —+00.

Hac unrepecyer, MOTyT Jin TaMUJIBTOHOBBI CUCTEMBI TAKXKe 00/Ia7aTh KOHETHOMEPHBIMH [JI00ATbHBIMU aT-
’l"pa,KTOpa]\/[T/I./q " COCTOAT JIW ITHU a,TTpa,KTOpBI "3 ye,EH/IHéHHBIX BOJIH. XOTH B TAaKUX CUCTEMAX HET ANCCUTIAINN
KaK TaKOROW, Mbl OKHIAEM, 9TO CXOIUMOCTh ODYCJIOBJIEHA OTPEIETEHHBIM TPEHHEM 33 CYET JUCTIEPCHOHHOTO
MexaHuzMa (JokajibHoe yObiBanue sHepruu). M3-3a TPyAHOCTEH, BO3HUKAIOUIMX B CUCTEMAX B3AUMOJICHCTBYIO-
mIMX [oJieH, (1, B 4aCTHOCTH, OTCYTCTBUEM AlIPUOPHBIX OLEHOK B MHOMMX TAKMX CHCTEMAX), Mbl OyaeM paborarhk
¢ Bosee TTPOCTHIMK MOAEISTMHA, KOTOPRIE MMEIOT HEKOTOPhIe ODIINE KIIOUYERRIE CRONWCTRA € CUCTEMAMH B3AWMO-
Jgetictrytommx oneit Makerena-dupaka wiam Makcrenna-1Ipémuarepa. Tlonmpobyem BBIACTNTH 3TH KIIIOYEBHIE
CBOHCTBA:

(1) Cucmema U(1)-unsapuarmmua. D10 TpebyeTcs s CYIIECTROBAHNS YEIMHEHARIX BOTH @, (1)e L.
(2) Jlunetimas wacms cucmemv, umeem ducnepcuonnbil tapaxmep. JIOkaIhHOE YORIBAHWE SHEPTUN 9epe3 W3-

.J'[yquT/Ie npn,uaé’[‘ raMHHBTOHOBOﬁ CcucremMe Onpe,ﬂeﬂéHHbIe ANCCUTIATUBHBIE CBOﬁCTBa.

(3) Cucmema neauneing. HeruaeHOCTS HyXHA /15 CXOAMMOCTH K OJHOH ye uHEHHON BOHE. B stuneiinoii
CHUCTEME TAKasl CXOAMMOCTh HEBO3MOMKHA W3-38 TPUHIATIA, CyTIEPIOSUITHH.

MbI moJIATaeM, 9TO 9TO MMEHHO 3TH CBOHCTBA OTBEYAOT 32 CXOAUMOCTH (1.3) K “KBAHTOBBIM CTAIMOHIAPHBIM
COCTOAHUAM .

Sameuanue 1.1. Tnobamwras cxomumocth (1.3) mim (1.5) mnst U(1)-WHBADHAHTHBIX YPABHEHWH HAROANT HA
MBICJIb COOTBETCTBYIOTErO 000bmeHus Ha, obine (F-MHBAPUAHTHBIE YPABHEHUSI:

P, t) ~ Yi(a,t) = eMlor(x),  t— too, (1.6)

rme Q4 — ameMenThl cooTReTcTRyIOmet anrebpnr JIn. Takuv oOpasom, rmobamhHBIN ATTPAKTOP COCTOSLT OBl 13
yenmaénnnx BoH (1.6). B wactrocTn, anst yanraproi rpynmel G = SU(3) acummrorukn (1.6) cesiseiBator “era-
MMOHAPHBIE KBAHTOBBIE COCTOSIHUS CO CTPYKTYPOit coorsercTryouieil anrebpnt JIu su(3). B 910t csi3u, yrnoms-
HEM, uro cornacHo Teopun Lea-Mana — Heemana [GMN64], umeer MecTo cooTBeTCTBHE MeX/ Ty asnrebpavu Jlu
1 KJACCHPUKAIHECH IJIEMEHTAPHBIX YACTHUIl KOTOPBIE ABJISIIOTCA “CTAIMOHAPHBIMA KBAHTOBBIMHM COCTOSTHUSIME .
D10 cooTBeTCTBHE OBLIO TOATBEPIKICHO SKCIIEPUMEHTATBHBIM OTKPbITHEM runepoHa Omera-Munyc.

CymeCTBymmne pe3yJibTaThbl IIO0 aTTpaKTOopaM B raMHIJIbTOHOBBIX CACTeEMax

Joxarvnan u 2a0barvnan crodumocms % nyar. Acumurorukn Tuna (1.3) 6bLIM BIIEPRBIE OTKPBITH JIA CITy-
yas Yy = 0 B Teopun paccesinust. A umenno, Curas, Mopaser u Illrpayce usydmwin (HeJMHEHHYIO) TEOPHUIO
paccesiHusl JUls PelleHuit HequneiiHoro ypasaerus Kueitna-Topyiona B R3 [Seg66, Str68, MS72]. Stu pesysbra-
Thl MO>XXHO T/IHTepnpeTVIpOBaTB KaK AOKAADHYN (T/IMQH B BUIAY MaJble HaYaJIhHBIE ,Z[aHHBIe) CXOOMMOCTh K Hy.HIO,
Y(x,t) ~ 1y =0, t — +oo. Takasi ACUMIITOTHKA UMEET MECTO HA TTPOU3ROIHHOM KOMIIAKTHOM MHOMXKECTBE
W O3HAYAET XOPOITO M3RECTHOE JIOKATRHOE (B TpOCTpancThe) yOnsanne sueprun. Takoil 2406a45100 (B CMBIC-
Jie [IPOU3BOJIbHBIX HAYAJbHBIX JIAHHBIX) CXOAMMOCTH K HYJIIO 3aBeJAOMO He OyJer IpH HAJUYUH PElICHU BUIa
VeJMHEHHBIX BOJH, @y, (z)e !,
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Cyuecmeosanue yedunénnoxr goan. CymecTropanne yeanHSHHBIX BOMH Buaa U, (7, t) = ¢, (v)e” @ w € R,
b, € HY(R"), nns wenmmeitnoro ypasrenust Kineiina-Topaona (kak w nesmnefinoro yparrernust 11pénnrepa)
B R" B goctarouno obmedt cnTyarmm G0 yetanosgaeHo B [Str77]. B tunmmanod cnTyanpm, Takme permenus
CYIIECTBYIOT JUI w M3 MHTEPBAIA UM HAOGODA MHTEPBAJIOB BEIIECTBEHHON OCH. YIOMSIHEM, UTO CYIIECTBYIOT
MHOTOYHC/IEHHBIE PE3YJIBTATHI [0 CYIIECTBOBAHUIO PEIICHUI BUIA, YEIMHEHHBIX BOJH /s HEJTUHEHHBIX TAMUIb-
ToHOBBIX cucteM ¢ U(1) cumverpuei.

Yemotinusocms. B TO BpeMs Kak Bee JIOKAJIN30BAHHbIC CTAIMOHAPHDIE PEIICHHA HEJIMHCHHBIX BOJHOBBIX YPaBHe-
HUH B PA3MEPHOCTAX N > 3 OKa3bIBAIOTCS HeycToluuBbIME (“Teopema deppuka”, [Der64]), xeasucmayuonaproe
VeAMHEHHBIE BOJIHBI MOTYT ObITh OPOUTAIBHO YCTOHYMBRIMA. YCTONIMBOCTD YeIUHEHHBIX BOJIH BEJET CBOE HATAJIO
B [VK73] 1 K HacrosieMy BPEMEHH XOPOIIO U3y4eHA.

JoRaALHAA CTOOUMOCTIL K YeOUHERHBIM G0AHaM. TIePRRIE PE3YIhTaTh TI0 acumnToTnkam Buaa (1.3) ¢ wy # 0
Obuin nostyaenbl gjis HeauderiHoro U(1)-unsapuantaoro ypasHenusi IIpénunrepa B KOHTEKCTE ACHMITOTH-
4Yeckoil yeroiuuBoctu. To ecTh, BbIBOAATCA acuMnTOThKU Tuna (1.3), HO TOIBKO JUld PEUICHHUH, U3HAYAIBHO
G6IM3KUX K YeIMHEHHBIM BOJHAM. DTO BrepBhie Ob10 ¢uenano 3oddepom n Baitamreiinom n Bycraesbiv n

Tlepemswan [SW90, BP93).

Tnobanvnas crodumoce % yedunénnom soanam. Inobasvnas crodumocme Buaa (1.3) ¢ ¢y # 0 u wy = 0 xo-
POIIO U3BECTHA JJsl HEKOTOPOIO YUC/Ia HEJIMHEHHBIX BOJHOBLIX 3a1a4 (cM. nanpumep, [Kom91, Kom99]). B stux
3a371a49aX ATTPAKTOD SABJISETCS MHOXKECTBOM BCEX CMamuyueckur crauuoHapHbix cocrogauii. B [Kom03, KK07a,
KKO07b] cxomuMocTh K MHOZKECTBY YeIMHEHHBIX BOJH JIOKA3aHA juiA nona Kaeitna-Topaona s3anMoneficTByo-
mero ¢ OAHUM M C HECKOJIBKHUMHA HeJ_H/IHeII/JIHI)IMI/I OCLH/I.H.HHTOpaMI/I.

Mg 3naeM Beero onmn Hemasnuit pe3yasrat [Tao07] B obracTr HeTPUBUATBHBIX (HEHYJIEBbIX ) TIOOANBHBIX AT-
TPAKTOPOB FAMUJILTOHOBBIX YPABHEHUN B YaCTHBIX MMPOU3BOIHBIX. B 9T0i paboTe paccMOTPEHO CYIIECTBOBAHME
rnoHaTbHOTO arTpakTopa juist HenmHelinoro ypasuenus: IlIpénunrepa B pasmepaoctax n > 5. JducnepcuoHHast
(yxomsmas) ROJIHA YKA3aHA ARHO, O1aroAaps HCTOTR30RAHAI0 ORICTPOTO JIOKAJIKHOTO YOBIBAHUSA SHEPTUH B MHO-
TOMEPHOM CJiy9ae. Bhia JO0Ka3aHa KOVTAKTHOCTE TIOHATRHOTO ATTPAKTOPA, OJHAKO OH HE OhLT OTOXACCTRICH
€ MHOXKECTBOM Ye/IMHEHHBIX BOJIH, H €0 KOHEYHOMEDHOCTh Takke He Obuia jokazana [Tao07, Remark 1.18].

2 Mogeabs 1 OCHOBHOII pe3yabTaT

Pacevorpum kovmziekcaoe yparuenne Kueitna-lopnona ¢ camomeficTiieM THNa Cpeanero modist B N TOYKax:

N

Ga,t) = Ap(a,t) = m*v(z,t) + Y pr()Fr((pr, (1)), z€R", teR, n>3, (2.1)
I=1

rae m > 0 u (pr, Y (- t)) = [gn pr(x)¥(z,t) d"z. Me1 npeanonaraem, aro pr(z) = p(z — X;), roe X7 € R, ap
— LIaJKas BellecTBeHHO3HauHas GyHkuus u3 npocrpancrsa leapna: p € Z(R™), p Z£ 0.

TIpeanonoxenne 2.1. Mur npexnomaraem, ato ypasrenne (2.1) U(1)-MABAPMAHTHO M 9TO BCe HEIMHEHHOCTH
Fr(2), 1 <1 < N, KOHCEPBATUBHbBI U [IOJMHOMHUAJIBHBL

p
Fi(z) = =VU(2), rie Ur(z) = Zu;ﬂz\m, urg €R, wurp, >0, m pr>2. (2.2)

=1
O6osraumm wepes || - |2 mopmy B L2(R™). Ilycts H*(R"), s € R, — npocrpanctso Cobonesa ¢ HOpMOii
] s = [|(m? — A)*/24)|| 2. Oaa s € R u R > 0, obosnaumm depes H§(B%) NpocTpaHCTBO pacipesiesiennii u3

H?*(R") ¢ nocuresem B B}, (map pazuyca R B R™). O6o3naxanM wepes || - | g, r HOpMy B npoctpanctse H®(BY).

Onpenenenne 2.2. (1) 2 obo3nagaer rmanbepToRo MpocTpancTo coctosanii ¥ = (¢, 7) € H(R") x
L*(R™) ¢ nopwmoii
11% = lI7lZe + IVYIIZe +m?[$ll7e = lImll7e + [vlF-

(2) Badukcupyem ¢ > 0. Ilyers [|U]1%_. » = |7]13_. z + [[¥]3:-c g B > 0, u nycrs & — 6anaxoBo npo-

CTPAHCTBO ¢ HOPMOM
oo

1W]le = 27 F|w

R=1

%—E)R < Q. (2.3)

Samenanue 2.3. Ypasaenue (2.1) siBIseTCs TAMUIBTOHOBOM CHCTEMOI ¢ (DA3Z0OBBIM NPOCTPAHCTBOM % .
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Jlemma 2.4. Baoowwenue X C % womnaxmmo.

Onpepenenne 2.5. (1) O6o3raunm vepe3s S MHOKECTBO BCEX VEJIMHEHHRIX BOJH:
S ={yY e CR,H'R"): (z,t) = ¢u(x)e ™, weR, ¢, H (R")}. (2.4)
(2) ConuroHHOE MHOrOOGPA3UE ABJSETCH MHOXKECTBOM COOTBETCTBYIOIIUX HAYAIBHBIX JIAHHBIX:
S = {($u, —iwd,): du(z)e ™" € &}. (2.5)
Bamenanue 2.6. MuoxkecTso S HHBAPUAHTHO OTHOCHUTEIBHO YMHOKeHusi Ha 7, § € R; dim S = 2.

Ounpenesenne 2.7 (Inobanpubiii arrpakrop). (1) p € 2 dBjsercst OMera-lpee/ibHOM TOYKOH pelleHus

I,

U e C(R, Z) ecun cyniecTByeT TaKas MOC/ICAOBATEJNBHOCTD t; — 00, 910 W(t;) —— p.
j—o0

Pasnocunbno, cnenya [CV02], MHOXKECTBO BeeX oMera-npejesibubix Tovuek pemnenus ¥ € C(R, 27) MoxHO

OIIPEACTINTE TaK:
ww) = [Ure)],.

t>0 s>t
rye [ . } o 0003HaYaeT 3aMbIKAHUE MHOXKECTBA B TOIOJIOTHE IPOCTPAHCTBA ¥ u3 onpenesienus 2.2 (2).

(2) Thobaububiit artpakTop A C 2 ABJSETCH MHOMXKECTBOM BCEX OMETA-IIPEJICJIBHBIX TOYEK BCEX PEleHUi
KOHEYHOHN SHEPrHuu:

A= |J w(®).
v(0)ex
IIycte S;, 7 € R, — oneparop casura:
S () =W(r + ).

Onpenenenne 2.8 (Tpaekroprsni arrpakrop). (1) B € C(R, 27) ssasercs omeza-npedeavnoli mpaexmopu-
et pemenns U € C(R, 27) econ CymecTByeT Takas DOCIELOBATEIBHOCTS £, — 400, 9TO

22
VT >0, sup ||, W(t) — B(t)|o — 0.
_T<t<T j—o0

(2) Tpaekropnbri artpakTop % C C(R, Z7) aABAACTCA MEOXKECTBOM BCEX OMEra-TPeJIeTbHBIX TPAEKTOPHH Beex
petenuii Kone4dnoii sHepruu ¥ = (1), v) ypasuenus (2.1).

ST X)E 56 2
£2+m?2—(w+1i0)2

Onpenesnenne 2.9. Hns p € S (R"), X; € R", u o75(w) = (2;)” Jan
OIIPEJINTAM MHOZKECTBA

d*¢,vme 1 <1, J<N,

Z, = {w € R\[-m,m]: p(€) = 0 ana Beex & € R™ yaowaersopsuonmx m? + &2 = w?};
ZN' = {w €R:3T,7C{l,....N}, || =|T| = N', det ors(w)= o}, 1< N <N.
Iez,Jeg

Ilpeanonoxenne 2.10. Bee ZV /, 1 < N’ < N, aBasroTCst JUCKPETHBIMA MHOXKECTBAMHE, M
zZN'n(~mmluz,)=0, 1<N <N.

Teopema 2.11 (Arrpakrop s Kneiina-Topjona ¢ camogeiicTBueM THIIA CPEHEro 1oJis).

Ipednonoocum, wmo neaunetinocmu Fr(z), 1 < I < N, maxost, wmo npednoaoscenue 2.1 6unoasnaemca.
Ipednonoocum, 4mo cnapusarousas Gymruus p(x) u mowku Xy, 1 < I < N, maxosw, wmo npednososcenue 2.10
sonoansemes. Toeda eeprv caedyrowue (DaGHOCUALHBIE) YMEEPHCIEHUR:

(1) Tpaexmopnwii ammpaxmop ypasnenus (2.1) cosnadaem ¢ MHONCECTIEOM YEOUHEHHBLT BOAM:

A=06.

(2) T'nobasvrnwd ammpaxmop ypasnenus (2.1) cosnadaem ¢ corumonnvm MHOZOOEPASUEM:

A=S.

(3) Han mobmz (Yo, m) € X7, pewenue P(t) ypasnenua (2.1) ¢ navasvromu darnnvimu (Y, ¥)|,_, = (Yo, o)
CTOOUMCA K CONUMOHHOMY MHO200Gpasuo S 6 mempure npocmpancmes Y :

Jlimdist (6, )],.8) = 0, (2.6)

2de dist o (¥, S) = ing ¥ — s|la.
sE
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Abstract
Ising model without external field on Lorentzian triangulation sam-
pled from uniform distribution is considered. We prove the coexistence
of at least two Gibbs measures in low temperature region. The proof
is based on well known contour Peierls method extensively adopted in
statistical physics. And we prove the uniqueness of Gibbs measure on
the high temperature region.
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1 Introduction

Triangulations, and planar graphs in general, appear in physics in the context
of 2-dimensional quantum gravity as a model for the discretized time-space.
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Perhaps the best understood it the model of Euclidean Dynamical Triangu-
lations, which can be viewed as a way of constructing a random graph by
gluing together a large number of equilateral triangles in all possible ways,
with only topological conditions imposed on such gluing. Putting a spin sys-
tem on such a random graph can be interpreted as a coupling of gravity with
matter, and was an object of persistent interest in physics since the successful
application of matrix integral methods to the Ising model on random lattice
by Kazakov [7].

More recently, a model of Casual Dynamical Triangulations was intro-
duced (see [1] for an overview). The distinguishing feature of this model is
its lack of isotropy — the triangulation now has a distinguished time-like
direction, giving it a partial order structure similar to Minkowski space, and
imposing some non-topological restrictions on the way elementary triangles
are glued. This last fact destroys the connection between the model and ma-
trix integrals, in particular the analysis of the Ising model requires completely
different methods (see e.g. [3]).

From a mathematical perspective, we deal here with nothing but a spin
system on a random graph. Random graphs, arising from the CDT approach,
were considered in [8] under the name of Lorentzian models. In the present
paper we consider the Ising model on such graphs. When defining the model
we pursue the formal Gibbsian approach [4]; namely, given a realisation of
an infinite triangulation, we consider probability measures on the set of spin
configurations that correspond to a certain formal Hamiltonian.

Our setting is drastically different from e.g. [7] and [3] in that we do not
consider “simultaneous randomness”, when both the triangulations and spin
configurations are included into one Hamiltonian. Instead we first sample
an infinite triangulation from some natural “uniform” measure, and then
run an Ising model on it, thus the resulting semi-direct product measure is
“quenched”.

A modest goal of this work is to establish a phase transition for the Ising
model in the above described “quenched” setting (the “annealed” version of
the problem is surely interesting, but is also more technically challenging, so
we don’t attempt it for the moment). We use a variant of Peierls method
to prove non-uniqueness of the Gibbs measure at low temperature. Quite
surprisingly, proving the uniqueness at high temperature is not easy — the
difficulty consists in presence of vertices of arbitrarily large degree, which does
not allow for immediate application of uniqueness criteria such as e.g. [10].
We resort instead to the method of disagreement percolation [9], and use
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the idea of “ungluing”, borrowed from the paper [2], to get rid of vertices of
very high degree. Finally, we show that the critical temperature is in fact
non-random and coincides for a.e. random Lorentzian triangulation.

We thank E. Pechersky for numerous useful discussions during the prepa-
ration of this paper.

2 Definitions and Main Results

Now we define rooted infinite Lorentzian triangulations in a cylinder C =
St x [0, 00).

Definition 2.1. Consider a connected graph G embedded in a cylinder C. A
face is a connected component of C\ G. The face is a triangle if its boundary
meets precisely three edges of the graph. An embedded triangulation T is
such a graph G together with a subset of the triangular faces of G. Let
the support S(T) C C be the union of G and the triangular faces in T.
Two embedded triangulations T and T" are considered equivalent if there is a
homeomorphism of S(T) and S(T") that corresponds T and T".

For convenience, we usually abbreviate “equivalence class of embedded
triangulations” to “triangulation”. This should not cause much confusion.
We suppose that the number of the vertices of GG is finite or countable.

Definition 2.2. A triangulation T of C is called Lorentzian if the following
conditions hold: each triangular face of T belongs to some strip S* x [j,7 +
1],7 = 0,1,..., and has all vertices and exactly one edge on the boundary
(St x {7} U (St x {j + 1}) of the strip S* x [j,7 + 1]; and the number of
edges on St x {j} is positive and finite for any 7 =0,1,....

In this paper we will consider only the case when the number of edges
on the first level S x {0} equal to 1. This is not restriction, only it gives
formulas more clean.

Definition 2.3. A triangulation T is called rooted if it has a root. The root
in the triangulation T consists of a triangle t of T, called the root face, with
an ordering on its vertices (x,y,z). The vertex x is the root vertex and the
directed edge (x,vy) is the root edge. The x and (x,y) belong to S* x {0}.

Note that this definition also means that the homeomorphism in the def-
inition of the equivalence class respects the root vertex and the root edge.
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For convenience, we usually abbreviate “equivalence class of embedded rooted
Lorentzian triangulations” to “Lorentzian triangulation” or LT.

In the same way we also can define a Lorentzian triangulation of a cylinder
Cy = S? x [0, N]. Let LTy and LT, denote the set of Lorentzian triangula-
tions with support Cy and C correspondingly.

Gibbs and Uniform Lorentzian triangulations. Let LTy be the set of
all Lorentzian triangulations with only one (rooted) edge on the root bound-
ary and with N slices. The number of edges on the upper boundary S* x { N'}
is not fixed. Introduce a Gibbs measure on the (countable) set LT y:

Pru(T) = Zg yy exp(—pF(T)), (2.1)

where F'(T') denotes the number of triangles in a triangulation 7" and Zj n
is the partition function:

Zopn = Y exp(—uF(T)).

TeLT N

The measure on the set of infinite triangulations LT, is then defined as a
weak limit

P,:= ]\}lm Py -
— 00

It was shown in [8] that this limit exists for all g > pe. :=1In2.

Ising model on Uniform Infinite Lorentzian triangulation — quenched
case. Let T be some fixed Lorentzian triangulation, 7" € ILT.,. Let T be
the projection of T" on the cylinder Cy. We associate with every vertex v a
spin 0, € {—1,1}. Let ¥(T") and X5 (T") denote the set of of all spin config-
urations on 7" and Ty, respectively. The Ising model on T is defined by a

formal Hamiltonian
H(o) = Z Ty (2.2)
(v')YeV
where (v,v’) means that vertices v,v" are neighbours, i.e. are connected by
an edge in T. Let 0Ty be the set of vertices of T' that lie on the circle

St x {N + 1}. Fix some configuration on the boundary 9Ty and denote it
Oo. The Gibbs distribution with boundary condition do is defined by the
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following. Let V(1) be the set of all vertices in Ty, then the energy of
configuration o € Xy (7T) is

Hy(o|0o) = Z OOy + Z OyOyr (2.3)
(v'): V' eV (TN) vy weV(Tn) W' €dTN

which defines the probability

T _ exp{—BHy(c]do)}
PN,BJ(O) - ZN,(’)U (T)

where

Znoo(T) = Z exp{—FBHy(c|00)}.

O'EEN(T)

When N — oo, for any sequence of boundary conditions do, a limit (at least
along some subsequence) of measures P]:G,aa exists by compactness. Such a
limit is a probability measure on X (7') with a natural o-algebra, which we
refer to as a Gibbs measure.

In general, it is well known that at least one Gibbs measure exists for the
Ising model on any locally finite graph and for any value of the parameter
B (see, e.g., [5] page 71). It is also known that the existence of more than
one Gibbs measure is increasing in 3, i.e. there exists a critical value (. €
[0, 00| such that there is a unique Gibbs measure when 3 > 3., and multiple
Gibbs measures when 3 < (. (see [6] for an overview of relations between
percolation and Ising model on general graphs).

Thus when considering the Ising model on Lorentzian triangulations it is
natural to ask whether the critical temperature is finite (different from both
0 and oo), and whether it depends on the triangulation. In the following
theorems we show that the critical temperature is a.s. bounded both from 0
and oco. And the last theorem proves that the critical temperature obeys a
zero-one law and is therefore a.s. constant.

Theorem 1. There exists a By such that for all B € (By, 00) there exist at
least two Gibbs measures for P, -a.e. T

Theorem 2. There exists a small enough (), such that for every (6 € [0, B)
for P, -a.e. Lorentzian triangulation T' the Gibbs measure for the Ising model
on T is unique.
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Critical temperature is constant a.s. Consider the critical temperature
B.(G) of the Ising model on a graph G as a function of G. In the above two
theorem we show that when 7' is a P,_-random Lorentzian triangulation, we

have 5.(T) € [Bn, o] a-s.

Theorem 3. (.(T) is constant P

fier ~ .S,
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Tail behaviour of multiple random integrals and U-statistics
Péter Major
Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary
e-mail: major@renyi.hu

The following problems will be discussed:

Let &1,...,&, be a sequence of independent and identically distributed random
variables with some probability distribution p on a measurable space (X, X’) and
let pin,

1
Mn(A):E#{jgjeAalgjgn}a Ae X,

denote its empirical distribution. Let a measurable function f(x1,...,zy) of k vari-
ables be given on the product space (X*, X*). Take the k-fold direct product of
the normalized version \/n(u, — p) of this empirical measure p,, and define the
following integral of the function f with respect to this normalized empirical dis-
tribution:

nk/2

Talf) =" [ Fone o) o (don) = o) o (on (o) =l d)),

where the prime in f/ means that the diagonals z; = x;, 1 < j <l <k,

are omitted from the domain of integration.

(1)

Problem A. Give a good estimate on the probabilities P(.J,, x(f) > u) under
appropriate conditions for the function f for all u > 0.

Problem B. Let a nice class F of functions f(x1,...,zy) be given on the space

(X*, X%). Give a good estimate on the probabilities P (Sup In.i(f) > u)
feF

for all w > 0, where J,, (f) denotes the integral of the function f defined in
formula (1).

The solution of Problems A and B is useful in the study of limit theorems for
non-parametric maximum likelihood estimates. The classical proof of the central
limit theorem for maximum likelihood estimates is based on a linearization argu-
ment, where a good asymptotic solution of the maximum likelihood equation is
given by means of a Taylor expansion and the omission of the high order terms
in it. In the proof of the non-parametric versions of this result a similar method
works, but we also need a good estimate in problems A and B in this case. These
results guarantee that the linearization procedure we apply in the proof casuses
only a negligible error.

It turned out useful to study problems A and B together with their U-statistic
analogues. I recall the definition of U-statistics.
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The definition of U-statistics. Let a sequence &1,...,&, of independent and
identically distributed random wvariables be given with values on some measurable
space (X, X) together with a function f(x1,...,xx) on the k-fold product space
(X*, X*) with some k < n. The expression

L= X GG &)

T 1<js<n, s=1,....k
Js#jer if s#s

15 called a U-statistic of order k with kernel function f.

The following versions of problems A and B will be investigated.

Problem A’. Give a good estimate on the probabilities P(n=*/21,, 1 (f) > u)
under appropriate conditions for the function f for all u > 0.

Problem B'. Let a nice class F of functions f(z1,...,zx) be given on a (prod-
uct) space (X%, X¥) together with a sequence of independent and identically
distributed random variables &1, ...,&, with values in (X, X). Give a good

fer
I, (f) denotes the U-statistic of order k£ with kernel function f defined in
formula (2).

estimate on the probabilities P (sup n~k/ 21, o(f) > u | for all u > 0 where

It may be useful to remark that a U-statistic of order k£ with the kernel
function f can be rewritten as

I i ( k'/fxl,...,xk)ﬂn(dxl)...,un(dxk),

where 1, is the empirical distribution of the sequence &1, ..., &,. This shows that
the essential difference between the random integrals introduced in formula (1) and
the U-statistics is that in the random integrals J, 1 (f) integration is taken with
respect to the ‘normalized” measures pu,, — i, while in the integral representation
of the U-statistics I,, 1 (f) with respect to the ‘non-normalized’ measures .

First I discuss problems A and A’ in the simplest case & = 1. In this case a
good estimate on the tail distribution of sum of i.i.d. random variables (with zero
expectation) has to be considered. The following classical result, called Bernstein’s
inequality, gives a useful estimate in this case.

Bernstein’s inequality. Let &,...,&, be independent random variables which
satisfy the relations P(|&;| < 1) =1 and Efj =0,1<j<n. Let us introduce

the notation 0 Ef 1<j<n,S,= Z & and V2 = Var S, = Z a The
Jj=1 Jj=
inequality
2

P(S, >u) <exp{ — “ (3)

22 (14 5 )
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holds for all numbers u > 0.

In nice cases Bernstein’s inequality yields an estimate on the distribution of
sums of independent random variables suggested by the central limit theorem. But
in the general case the situation is more complex because of the coefficient 1+ 3V2
in the denominator in its upper bound. In more detail, Bernstein’s 1nequahty

yields the following estimate.

a) If u < eV2 with some small number & > 0, then P(S,, > u) < e~ (1=9)u*/2V;},
This is almost such a good estimate as the estimate obtained by a formal
application of the central limit theorem.

b) If u < 3V;2, then P(S, > u) < e~°mt-%*/2V.) This is a bound similar to that
suggested by the central limit theorem.

c) If u>> V2 then P(S, >u) <e “

In case c) Bernstein’s inequality yields a very weak estimate which strongly
differs from the estimate suggested by the central limit theorem. This result can
be slightly improved by means of the so-called Bennett’s inequality, but some
examples can be given which show that no essential improvement of this result is
possible. Hence if we are interested in a good estimate in Problem A or A’ for
k =1 and such a function f which is bounded by 1, then it is enough to restrict
our attention to the case when 0 < u < const.nE&2. A similar picture arises for
all £ > 1, but to explain it some questions must be clarified.

In the study of Problem A’ in the case k = 1 it was natural to assume that
Ef(&) = 0. Further investigations show that the natural multivariate counterpart
of this condition is that so-called degenerate U-statistics must be estimated. Its
definition is given below.

Definition of degenerate U-statistics. Take a U-statistic I, i (f) determined

by a sequence of independent and identically distributed random variables &1, ..., &,
with distribution p and a kernel function f(x1,...,x). This U-statistic is degen-
erate if

E(f(&, ., &)|6 = 1,581 =%j-1,&+11 = Tjg1,-- -, 8k = ry) =0
for all indices 1 < j <k and values v, € X, s € {1,...,k} \ {7}

The notion of degenerate U-statistics is useful, because such U-statistics be-
have similarly to sums of independent random variables with expectation zero.
Beside this, the study of general U-statistics can be reduced to the study of de-
generate U-statistics by means of the following Hoeffding-decomposition.

Hoeffding decomposition of general U-statistics. All U-statistics I, 1 (f) of
order k can be written in the form of linear combination

an_ n.g () (4)
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of degenerate U-statistics I,, ;(f;). The kernel functions f; (of j variables) of the
degenerate U-statistics I, j(fj), 0 < j < k, can be calculated explicitly.

The problems about the behaviour of the multiple random integrals J,, x(f)
defined in formula (1) can also be reduced to problems about the behaviour of
degenerate U-statistics by means of their appropriate decomposition. Such ex-
pressions can be written as the linear combination

k
Toi(f) =Y _eln, j)n =71, 5(f;) (5)

j=0

of degenerate U-statistics with the same kernel functions f; which appear in for-
mula (4) and with some appropriate coefficients c¢(n, j) such that c¢(n,j) < K(j)
with some universal constant K(j).

In the definition of the random integral .J, x(f) integration is taken with
respect to the signed measure pu,, — p, and this ‘normalization’ diminishes the
value of the integral. This diminishing effect is reflected in the relatively small
value of the coefficients ¢(n, j)n=7/? in formula (5).

In an informal way we can interpret Bernstein’s inequality so that sums of
independent random variables with expectation zero behave so as the central limit
theorem suggests. To find its multivariate version we have to know the appropriate
limit theorem for degenerate U-statistics. Such a limit theorem can be formulated
by means of multiple Wiener—Ito integrals. To formulate it I recall the definition of
white noise and make some comments about the definition of multiple Wiener—Ito
integrals.

The notion of white noise. Let a measure p be given on some measurable space
(X, X). A system of jointly Gaussian random variables indezxed by the measurable
sets A C X such that u(A) < oo is a white noise with reference measure p if

Epw (A)pw (B) = p(ANB)  and  Epw(A) =0

for all measurable sets A, B C X such that p(A) < oo and p(B) < oo.

If a white noise puy is given with some reference measure u together with a
function f(z1,...,7s) square integrable with respect to the k-fold product p* of
the measure pu, then the k-fold Wiener—It6 integral

Zul$) = 5 [ Hlars oy (do) . (o) )

of this function f with respect to the white noise uy can be defined in a natural
way. (First this integral is defined for simple so-called step functions which take
a constant value on finitely many rectangles, and disappear outside them. Then
the integral can be extended to general functions by means of an appropriate
Ls-isomorphism.)
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The following limit theorem holds.

Limit distribution theorem for degenerate U-statistics. Let us consider
such a sequence I (f), n = k,k+1,..., of degenerate U-statistics which is
determined by a sequence of independent and identically distributed random vari-
ables &1,&3, ..., on a measurable space (X, X) with distribution p and a (canonical)
function f(xq,...,x) square integrable with respect to the measure u¥. The nor-
malized degenerate U -statistics n‘k/2In7k(f) converge 1n distribution to the k-fold
Wiener—Ito integral

Zuw(f = /f T1,. . op)pw (drr) .. pw (dog)

of the function f with respect to a white noise uyw with reference measure p if
n — oo.

It is natural to consider that version of problems A and B where Wiener—Ito
integrals are considered instead of the integrals J,, x(f). This is is done in the
formulation of the following Problems A” and B”.

Let us consider the Wiener—It6 integral Z,, 1 (f) of a function f(z1,...,zx) of
k variables with respect to a white noise puy with reference measure p introduced
in formula (3.3) and study the following problems.

Problem A”. Let us give a good estimate on the probability P(Z, (f) > u)
for all numbers v > 0.

Problem B”. Let a nice class F of functions f(z1,...,z) of k variables
be given. Take the Wiener-Ito integral Z, (f) of all functions f € F
with respect to a white noise py. Give a good estimate on the distri-
bution of the supremum of these random integrals, i.e. on the probability

P (sup Zux(f) > u) for all numbers u > 0.
fer

The following result gives the solution of Problem A”.

Estimation about the tail distribution of Wiener—Ito integrals. Let
a white noise pw be given with reference measure p together with a function
f(x1,...,xk) of k variables on a measurable space (X, X) such that

/f2($1, o xp)p(dry) . .op(day) < o

with some number o < oo. The Wiener—Ité integral
Zualh) = 3 /f 21, ) (dan) . . o ( d)
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introduced in formula (6) satisfies the inequality

P(k!Zyk(f)] > u) < Cexp {_% (g)z/k}

for all numbers u > 0 with some constant C = C(k) > 0 depending only on the
multiplicity k of the integral.

It can be proved that this estimate is sharp.

Similar, but slightly weaker estimates hold for degenerate U-statistics and
multiple random integrals with respect to normalized empirical distributions.

Estimate on the tail distribution of degenerate U-statistics. Let &q,...,&,
be a sequence of independent and identically distributed random wvariables on a
measurable space (X, X) with distribution p. Take a function f(zi,...,z5) on
the space (X%, X*) canonical with respect to the measure p which satisfies the
conditions

[fllo = sup  [f(z1,...,2x)] <1
z;€X,1<j<k

||f||§:/f2(x1,,l‘k)ﬂ(dﬁUl)M(dl‘k)SO‘Q

with some number 0 < o? < 1, and consider the (degenerate) U -statistic defined
in formula (1.2) with the help of these quantities. Then there exist some constants
A= A(k) >0 and B = B(k) > 0 depending only on the order k of the U -statistic
such that the inequality

u2/k

P(kin™"2|L, ()] > u) < Aexp { —
: 952/ (1 +B (un—k/20—(k+1))1/k)

holds for all numbers 0 < u < nk/2gk+1,

Estimate about the tail distribution of random integrals with respect to
normalized empirical distributions. Let a sequence &1, ...,&, of independent
and identically distributed random variables be given with distribution u which take
their values on a measurable space (X, X) together with a function f(z1,...,xk)
on the k-fold product space (X*, X*) which satisfy relations (4.1) and (4.2) with
some constant 0 < o < 1. Then there exist some constants C = C), > 0 and
a = oy > 0 depending only on the multiplicity k of the integral Jp, 1(f) defined in
formula (1.1) such that the following inequality holds:

2/k
P (|Jnrk(f)] >u) < Cexp {—a (g) } for all numbers 0 < u < n¥/2g*+1,
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It can be proved that under some not too restrictive conditions similar bound can
be given about the tail distribution of the supremum considered in Problems B,
B’ and B” as for the tail distribution of the single terms appearing in these supre-
mums. The introduction of the following definitions proved to be useful.

Definition of Ly-dense classes of functions with respect to some measure.

Let a measurable space be (Y,)) be given together with a o-finite measure v and a

class G of Y-measurable, real valued functions on this space. This class of functions

G is called an Lo-dense class with respect to v with parameter D and exponent L if

for all numbers 1 > & > 0 there exists a subclass G- = {g1,...,9m} C G in the space

Lo(Y, Y, v) consisting of m < De™% elements such that 122 [lg—gj|*dv < &2
9;€G.

for all functions g € G.

Definition of Ly-dense classes of functions. Let us have a measurable space
(Y,Y) and a set G of Y-measurable real valued functions on this space. We call G
an Lo-dense class of functions with parameter D and exponent L if it is Lo-dense
with parameter D and exponent L with respect to all probability measures v on

¥, ).

First I formulate a result about the supremum of Wiener-Ito integrals i.e.
about Problem B”, and then I present a result on Problems B and B’.

Estimate about the tail distribution of the supremum of Wiener—Ito
integrals. Let us consider a measurable space (X,X) together with a o-finite
non-atomic measure p on it, and let puy be a white noise with reference measure
pon (X, X). Let F be a countable and Lo-dense class of functions f(x1,...,xx)
on (X%, X*) with some parameter D and exponent L with respect to the product
measure ¥ such that

/fz(xl,...,xk)u(dxl)...,u(d:ck)§02 with some 0 < 0 <1 for all f € F.

Let us consider the multiple Wiener integrals Z,, 1.(f) introduced in formula (3.3)
for all f € F. The inequality

P (sup Zui ()] > u) < C(D+1)exp {‘O‘ (E)M}

feF o

holds with some universal constants C = C(k) > 0 and a = a(k) > 0 if

2/k 9
(E) > M Llog — with some appropriate constant M = M (k) > 0.
o o
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The next result is an estimate on the tail-distribution of the supremum of
random integrals J,, (f) defined in formula (1).

Estimate on the tail distribution of the supremum of multiple integrals
with respect to a normalized empirical distribution. Let us have a probabil-
ity measure p on a measurable space (X, X) together with a countable and Lo-dense

class F of functions f = f(x1,...,zk) of k variables with some parameter D and
exponent L, L > 1, on the product space (X*, X*) such that
[fllo = sup  [f(21,...,2k)] <1,

z;€X, 1<j<k

and
IflI3 = Ef*(&, .. &) = /fQ(:cl,.--,xk)u(dxl)--.u(dxk) <o?

for all functions f € F with some constant 0 < o < 1. Then there exist some
constants C' = C(k) > 0, a« = a(k) > 0 and M = M(k) > 0 depending only on
the parameter k such that the supremum of the random integrals Jp 1 (f), f € F,
defined by formula (1.1) satisfies the inequality

/k
P (;gngn,k(f) > U> < CDeXp{—oz (3)2 }

provided that
2/k 9
no? > (E) > M (L + B)*?log =,
o o

log D
logn

where 3 = max ( ,O) and the numbers D and L agree with the parameter and

exponent of the Lo-dense class F.

A similar estimate holds for the supremum of degenerate U-statistics I, 1 (f),
f € F. The only difference in comparison with the above result that in the case
of the supremum of U-statistics the additional condition has to be imposed that
the U-statistics I,, (f) must be degenerate.

A more detailed discussion of the results described above can be found in my
work [1]. Beside this, I plan to publish a Lecture Note which also contains a com-
plete discussion of the technical details. For the time being this Lecture Note [2]
can be found only on my homepage. Both works [1] and [2] contain a more detailed
list of references.
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Dynamics of phase boundary with particle
annihilation

V. A. Malyshev, A. D. Manita*

We are happy to dedicate this paper to the memory of R. L. Dobrushin. He was a
very curious person and had wide scope in probability. Now obviously he could bring
his own vision for statistical physics of economic phenomena which is now at its very
beginning.

1 Introduction

On one-dimensional lattice Z. = ¢Z = {em: m € Z}, € > 0, there are particles of two
types — plus particles and minus particles. Denote v (t) the number of plus(minus)-
particles at site em. We define the following continuous time Markov process on [0, 00)
by the following conditions:

1. at any time ¢ > 0 the state of the process is the vector v=(t),m € Z;

2a. any plus particle, independently of other plus particles, performs a simple random
walk: that is it jumps from em to e(m + 1) with rate p and from em to e(m — 1) with
rate ..

2b. any minus particle, independently of other minus particles, performs a simple
random walk: that is it jumps from em to e(m+1) with rate A_ and from em to e(m —1)
with rate p_;

3. at time 0 all plus particles have positive coordinates, all minus particles have
negative coordinates;

4a. if a plus particle jumps to a site where there are minus particles it immediately
annihilates with one of the minus particles at this site ;

4b. if a minus particle jumps to a site where there are plus particles it immediately
annihilates with one of the plus particles at this site.

There are no problems with the existence of this process. Let (.(t) € Z. be the point
where the last annihilation before the time ¢t happened. We call it the phase boundary.

Besides the interpretation related to annihilation of particles there is another one —
the microdynamics of the price formation, where the market contains many players and
is formed by their behaviour. Namely, (.(t) is the price of some product at time ¢. Plus
particles are bears which want to lower the price of this product (we assume further on
that a, = Ay — g > 0), minus particles are bulls which want to increase the price (we
assume a_ = A_ — p_ > 0). Annihilation is a bargain which is performed when the
demand and offer prices coincide. Recent models of price formation |5, 2, 3, 4] have much
in common with our model, however they are closer in spirit to queueing models. Our
model is closer to statistical physics models. Anyway. all such models cannot pretend on
practical implementation, mainly because external influence on the action of players is
not taken into account.

*Faculty of Mathematics and Mechanics, Lomonosov Moscow State University, Moscow, Russia.
E-mail: malyshev2@yahoo.com, manita@mech.math.msu.su.
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Our goal is to find asymptotic (for large times) behaviour of the (macro)price 5.(t)
as the result of many micro-bargains.

2 Main result

Initial distribution of particles. We assume for simplicity that at time ¢ = 0 the distribu-
tion of plus particles is inhomogeneous Poisson with density py(em), where py () is some
strictly positive function on (0,00). This means that the random variables vy (em) are
independent and have Poisson distribution with rate p, (em). Similarly, the distribution
of minus particles is inhomogeneous Poisson with density p_(em), where p_(x) is some
positive function on (0, 00).

Notation. Next we introduce main definitions and give their intuitive interpretation.
Our interpretation concerns the situation when, instead of point particles on a lattice,
there is a continuous media of infinitesimally small particles of two types, the particles
move with fixed velocities —ay < 0,a_ > 0 and have initial densities py(z) correspond-
ingly. That is there are no fluctuations. Define the functions

0 ,
M_(r) = / p—(y)dy and M, (r) = / pr(y)dy for r>0. (1)
-r 0

We interprete My (r) as the cumulative mass of plus (minus) particles on the distance
less than r from zero. Under above assumptions on p1 we see that the functions My (r)
are strictly increasing on (0, +00) and, therefore, their inverse functions r4 (M), defined
by the equation

Mi(ri(M)) = M

exist and are strictly increasing. For example, the functions 7 (M) define the interval
(0,74) where the mass plus particles equals M. Then the function

ro(M) +r (M)

T(M):= a_ + oy

(2)

defines the time interval (0,7(M)) during which mass M of plus and mass M of minus
particles annihilate. The function T(M) is also strictly increasing on [0,400) and is
invertible. Denote its inverse function by M(T). The place where the latter of these
particles meet

re(M(T)) — oy T = —r_(M(T)) + aT = B(T) (3)

is the coordinate of the boundary at time 7. Excluding from the system (3) the terms
that are linear in T, we get

o_ oy
I=r,(MT)—— —r_-(M(T)) ————.
BUT) = o (M) =2 = - (M) =2
Scaling limit for the stochastic model. Here we return to the stochastic particle model

and formulate the main result.

Theorem 1 For any fized T > 0 the following convergence in probability holds
Be(e7'7) = Bo(7) (e —0),

where the function By : Ry — R is deterministic and has the following explicit form

—agr- (M(7)) + a_ry (M(7))
o + oy

Bo(T) =
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Corollary 1 Consider the homogeneous case p_(y) = p—, y <0, pi(y) = ps, y > 0.

All functions defined above are linear: M_(r) = p_r, My(r)=pyr, r(M) = M/p+,
-1, -1

T(M) = M%, M(T) = T25% | and, hence, the phase boundary B.(1) moves
—TOo pP_ +py

with an asymptotically constant velocity:

-1 -1

—Qyp_ + o -« +a_p_

ﬁa(T) _ 6(7_) - +p_1 - p+ —r +P+ 1Y )
p— try P+ + p-

3 Proof

Our plan is to show that the limiting behavior of 5.(¢) in the stochastic model corresponds
to the deterministic evolution described in (1)—(3). To do this we need some control over
the random fluctuations in the limit &€ — 0. This control can be achieved by use of
exponential bounds for some families of events. The proof uses some ideas from [1].

Definition 1 We say that a family of events A = {A.}.., has a property of exponential
asymptotic sureness (e.a.s.), if there exist constants K4 > 0, qa > 0, €4 > 0 such that
for all e < ey the following inequality holds

P(A) >1—Kaexp(—qac™").

In the sequel, for breavity, we say sometimes that the event A, has probability ex-
ponentially close to one. We will use the following fact: if two sequences A = {A.}__,
and B = {B.}_.., have the property e.a.s., then this property holds also for the sequence
C={A-NB.}_,.

It is helpful to enumerate the particles at time 0 somehow with the only condition
that

<25 (0) a3 (0) < 2 (0) <0 <2y (0) < 23(0) < af(0) <---

Denote by ¢_(1) and ¢4 (1) the indices of plus and minus particles of the first annihilating
pair. For concreteness one can assume that if some plus (minus) particle jumps to a site
where there are several minus (plus) particles then it annihilates with the minus (plus)
particle havine minimal index. l.et o; be the time moment when the first annihilation
occurs. Since particles move independently, their order can change in time, so, in general,
z, 1y(0) # z1(0) and xL(l)(O) # x1(0). Similarly, we define ¢_(m) and ¢, (m) as
indices of particles of the m-th annihilating pair and o, as the time moment of the m-th
annihilation.

To simplify some expressions below we assume that the densities p1 are bounded and
strictly separated from zero: 0 < dy < pr(dy) < dy < +o0, y > 0. This assumption
implies, in particular, that all functions M4 and r4 have uniformly bounded derivatives.

Fix some M > 0. Let N, = [Me~!]. Consider the N.-th pair of annihilating particles
T, (N and x;]:(NE). The main idea is to prove that for small € the random time oy,
is close to the value T(M)e™! and the random coordinate x;(NE)(O) € Z. is close to
—r_(M). Tn more precise terms, it is sufficient to prove that for any small fixed positive
numbers s, s, (_, (4 with probability exponentially close to one (as e — 0)

a) the moment oy belongs to the time interval (to(M,¢),t1(M,e)). where

to(M,e) = (T(M) — 3q)e !, ti(M,e) = (T(M) + 5q)e™; (4)
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b) starting point of the minus particle z_~ (0) belongs to the set (—r_(M) —
(o =r— (M) + () N Z:

¢) similarly, starting point of the plus particle = v (0) belongs to the set (ry (M) —
G (M) + ¢) N Ze.

Assume for a while that the above statements a)-c) are proved. Tet us explain

, , v . y . - _ ot
now }.10\\ to prove the th.eorem. B.eca.ll thqt Be(on. +0) = xqi(NS)(aN?) = $q+(N5)(0Na.)-
Individual motion of a minus particle is a simple random walk on Z. with the mean drift
a_e = (A_ — p_)e, so applying the upper bound of the large deviation theory, we get
that for any fixed i € N, s > 0 and dy > 0 with probability exponentially close to one

x; (se™h) —x;(0) € ((a_ — o) s, (a_ + &) 5).

In fact, even more stronger result holds: for fixed s; > s1 > 0 and g > 0 the family of
events {D.}, where D, = { z; (se™) — 2;(0) € ((a— — &) s, (= + o) s), Vs € [s1,59] }
has a property of e.a.s. Together with a) this gives that

T, volon) =2, () (0) € ((a- = ) (T(M) = 35) , (- + 60) (T(M) + 511))

with probability exponentially close to one. Combining the latter statement with the
statement b) we conclude that with probability exponentially close to one

Ty v (on.) € (@ T(M) —r(M) = v, T(M) —r_(M) +7)

where v = (0, 50, 721, (_) > 0 can be made arbitrary small, i.e., (o, 500, 71,(_) — 0 as
max(d, #, »#1,(-) — 0. Using (2) we see that

r_ (M) + 1. (M)

—r_(M _T(M) = —r_(M _
r (M) +a_T(M) r (M) +« P
Oé+ _
- (M) — ()Y
r( )a_+a++7”+( )a_+a+

and, hence, G (on.) — —r— (M) - +re (M) 50
To finish the proof of Theorem we need only to check that B.(on.)—B.(e'T(M)) — 0
as € — 0. This corresponds to continuity property of the border on the macroscopic time
scale 7 = T. To establish this fact we should take into account that: 1) due to the
drift assumption (ax > 0) the random sequence {0,411 — 0, m € N} admits uniform
exponential estimates for distribution tails of 0,41 — 0y, (we refer reader to [6] for the
corresponding technique); 2) in finite microtime ¢ displacements of walking particles have
the order O(e) while in finite macrotime 7 their displacements have the order O(1). We
omit details.
To prove the statements a) we need the following main lemma. Denote by N_(0,¢,,(M,¢))
a set of minus particles that collide with plus particles on the time interval (0,¢,,(M,¢€)).

in probability as ¢ — 0.

Lemma 1 For any sufficiently small se5, 3¢5 > 0 the following events F. and G,
F |N—(O7t0(M7 5))‘ < (M - %2>5_17 G : |N—(07t1(M7 5))| > (M_'_ %3)5_17
have probabilities exponentially close to one.

Lemma 1 follows from the next two lemmas. LLemma 2 deals with initial distribution
of particles and Lemma 3 controls collective deplacements of minus and plus particles.

Lemma 2 Let y; < yp <0 and 0 < 21 < 2o. Then for any § > 0 the following families
of events
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L. = {the number of minus particles sitting at time t =0 in the set (y1,y2) N Z.

is between <fyy12 p—(y)dy — 5) et and <fyyf p—(y)dy + 5) e 1},

R. = {the number of plus particles sitting at time t = 0 in the set (21, 22) N Ze

is between (fzzf po(y) dy — 5) el and (fzzf p+(y) dy + 5) e 1},
have probabilities exponentially close to one.
Lemma 3 For any 6, > 0 cach family of cvents

A, = {all particles 7i£(0) € (—r_ (M) + 6y, ro (M) — 61) N Ze collide
with particles of opposite sign till the time moment t(M)e™1},

B. = {on the time interval t € (0,se™1) none of minus particles, started at t = 0
from the set (—oo, —r_(M) — 61) N Z., collides with any plus particle,
started at t =0 from the set (r (M) + 61, +00) N 2.},

satisfies the c.a.s. property. Morcover, fix any y, 2 > 0 and consider the subscts of 2.
2_2(—00,—y—%), 1_:(_%0)7 Sf_:(07y)v SS_Z(y—i-%,—i-OO).
The below families {V.}and{U.} of events have the property of c.a.s.

event V.: on the time interval t € (0,se7Y) none of minus particles, started at t = 0
from Sy, will meet some minus particle, started from the set Sy ;

event U.: on the time interval t € (0,se™1) none of plus particles, started at t =0 from
S, will mect some minus particle, started from the set Sy

Proofs of Lemmas 2 and 3 are based on stardand probabilistic methods [6] and are omit-
ted. Let us explain now how using these two lemmas one can get, for example, the upper
bound for IN_(0,to(M, €))| in Lemma 1. First we include in this bound all minus particles
starting at ¢t = 0 from the set (—r_ (M(T(M) — 54) ) — J5,0) where §5 > 0 is small and
will be fixed later. By L.emma 2 there is no more than (M_ (r_ ( M(T(M) — 35) ) + 05) + dg)
of such particles (in the sense of e.a.s.) for small §6 > 0. We should add to this bound
all minus particles that started at t = 0 from the set (—oo, —r_ (M(T'(M) — 55) ) — J5)
and annihilated on the time interval (0, (M, €)) with some plus particles. We will show
now that with probability exponentially close to one the number N°(0,to(M,¢e)) of such
minus particles can be estimated as ce! where ¢ > 0 is any prefixed small constant.
Indeed, by Lemma 3 (again in the sense of e.a.s.) the mentioned minus particles can
annihilate only in collisions with some plus particles, started at ¢ = 0 from the set
(0,74 (M(T(M) — 5¢) ) + 05). By Lemma 2 the number of the plus particles in this set
is bounded by (My (ry (M(T(M) — »)) + 85) + d6) e~ '. From this bound we should
exclude plus particles which was annihilated in collisions with minus particles started
from the set (—r_ (M(T(M) — 55) ) + d5,0), since by the part “V.” of Lemma 3 dur-
ing the time interval (0,¢o(M,¢)) the latter minus particles will go ahead of the minus
particles started from (—oo, —r_ (M (T (M) — 3¢) ) — 05). By Lemma 2 initially in the set
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(—r_ (M(T(M) — 55)) + 85, 0) there was no less than (M_ (r_ (M(T(M) — »q) ) — 05) — 0) e "
particles. So using the mean value theorem from analysis we get

e N°(0,t0(M,e)) < (M (rs (M(T(M) — 5)) + 85) + 0) —
— (M= (r— (M(T'(M) = 5%) ) — 05) — d6) =
= M(T(M) - 50) + M. (61)d5 + d6 — ((M(T(M) — ) ) — M (62)d5 — 56) <
< O(IMLlle + 1M [lc) + 2d6.

Hence. in the sense of e.a.s.

e IN-(0,to(M, )| < (M- (r— (M(T(M) = 350) ) + 85) + 35) + 85 (| M' || + | M7 | ) + 26 =
— M(T(M) = 50) + M (85)35 + (|| M. || + | ML ]|c) + 365 <
< M(T(M) = 520) + 82| M |- + [ M) + 36

It follows from (2) and assumptions on py that M'(t) > k for some k& > 0. Therefore.,
M(T(M) — s9) < M — k. Given 3¢ > 0 we are allowed to chose positive constants d
and &g as small as we like. So. finally, we get that with probability exponentially close to
one the following estimate holds

IN_(0,t(M, )| < (M - %) et

Lower bound for [N_(0,t;(M,e))| can be obtained in a similar way.
To get the proof of statement b) one should combine Lemma 3 with the next lemma.

Lemma 4 For any »5 > 0
event H. : z;(0) € (—(1 4 555)r_(M),0) Vie N_(0,t1(M,¢))
has the property of e.a.s.

Proof of this lemma uses arguments similar to the proof of Lemma 1. The statement c)
is just a mirror modification of the statement b).
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The MDL-PRINCIPLE
in ATTRIBUTING AUTHORSHIP of TEXTS

Mikhail Malyutov
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ABSTRACT

We study a new context-free computationally simple stylometry-based
attributor: the mean sliced conditional compression complexity (CCC) of
literary texts which is inspired by the incomputable Kolmogorov conditional
complexity. Whereas other stylometry tools can occasionally almost coincide
for different authors, our CCC-attributor introduced in Malyutov (2005) is
asymptotically strictly minimal for the true author, if the query texts are suf-
ficiently large but much less than the training texts, universal compressor is
good and sampling bias is avoided. This classifier simplifies the Ryabko and
Astola (2006) homogeneity test (partly based on compression) under in-
significant difference of unconditional complexities of training and
query texts which can be verified using its asymptotic normality proved in
Szpankowski (2001) and elsewhere for IID and Markov sources and normal
plots for real literary texts. It is consistent under large text approximation
as a stationary ergodic sequence which follows from the lower bound for the
minimazx compression redundancy of piecewise stationary strings (Merhav
(1993)) and from our elementary combinatorial arguments and simulation
for IID sources. The t-ratio use measuring how many standard deviations
are in the mean difference between slices’ mean CCCs enables evaluation of
its P-value of statistical significance. It is based on the asymptotic normality
of slices” CCC verified by their normal plots in all cases studied and expected
to be proved soon for simplified statistical models of literary texts.

The asymptotic CCC study is complemented by many literary case studies
processed by Sufeng Li, Irosha Wickramasinghe, Slava Brodsky, Gabriel Cun-
ningham and Andrew Michaelson: attributing the Federalist papers agreeing
with previous results, significant (beyond any doubt) mean CCC-difference
between two translations of Shakespeare sonnets into Russian, between the
two parts of M. Sholokhov’s early short novel and less so between the two
Isaiah books from the Bible, intriguing SCCC-relations between certain Eliz-
abethan poems. Two different S. Brodsky’s novels deliberately written in
different styles and various Madison’s papers showed insignificant mean CCC-
difference as the useless Vitanyi-Cilibrasi test did in ALL cases studied.
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1 Discrimination with Universal Compressors

C. Shannon (1948, 1949) created a comprehensive theory of information
transmission based on Kolmogorov’s statistical theory. In particular, given a
distribution on an alphabet, the mean length of the Shannon-Fano compres-
sion of the IID string with elements from this alphabet attains asymptotically
the Shannon’s entropy lower bound for the length (complexity) of compres-
sion. A.N. Kolmogorov (1965) developed a complexity theory of an indi-
vidual string such that for large strings belonging to a statistical ensemble
their mean complexity approximates their entropy, and sketched (for IID in-
put) the first so-called universal compressor (UC) which adapts to an un-
known stationary ergodic distribution (SED) of strings attaining asymptoti-
cally the Shannon entropy lower bound. P is the class of SED sources approx-
imated by n-MC’s. Compressor family L = {L,, : B" = B® n=1,2,...} is
(weakly) universal, if for any P € P and € > 0,B = {0, 1}), it holds:

lim P(x € B" : |L,(x)| 4+ log P(z) < ne) =1, (1)

n—oo

where |L(x)| is the length of L(x) and |L,(z)| + log P(x) is called individual
redundancy. Thus for a string generated by a SED, the UC-compression
length is asymptotically its negative loglikelihood which can be used
in nonparametric statistical inference, if the likelthood cannot be evalu-
ated analytically. First UC used estimating parameters of approximating n-
Markov Chains (n-MC) to adapt for good compression. A profoundly smarter
method implementing much fuller the above-mentioned Kolmogorov’s idea
for compressors took more than ten years to emerge in two Lempel-Ziv (LZ)
compressor constructions (1977-78). Both LZ-compressors do not use any
statistics of strings at all. Instead, LZ-78 constructs the tree of binary pat-
terns unseen before in the string consecutively, starting from the first digit
of the string. Wyner and Ziv proved that LZ-78 is an UC implying

lim P(|L,(z)|/|z| = h) =1 as |z|] — o0 (2)

n—oo

for P € P, where h is the binary entropy rate (per symbol) proved to
be the asymptotic lower bound for compressing a SED source in Shannon
(1949), where SED strings were first singled out as popular models of natu-
ral language. By nineties, versions of LZ became everyday tools in computer
practice. Rissanen’s pioneering publication on the Minimum Description
Length principle (MDL) in 1978 (continued in his paper (1984)) and Ziv
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(1988) initiated applications of UC to statistical problems for SED sources
continued in several recent papers of B. Ryabko with coauthors. Of special
interest to us is the homogeneity test in Ryabko and Astola (2006).

1.0.1 Ryabko-Astola and U-statistics

Define |A| and |A.| as the lengths of respectively binary string A and its
compression A..

The concatenated string S = AB is the string starting with A and pro-
ceeding to text B without stop.

The Ryabko and Astola homogeneity of two strings test statistic 1" is

T = h;(s) - ‘Ac‘ - ‘cha (3)

where the empirical Shannon entropy h’ of the concatenated sample S (based
on n-MC approximation) is defined in their formula (6). The local context-
free structure (microstyle) of long (several Kbytes) literary texts (LT) can
be modeled sufficiently accurately only by binary n-MC with n not less than
several dozen. Its evaluation for LT is very intensive computationally and
unstable for texts of moderate size requiring regularization of small or null
estimates for transition probabilities. Therefore, appropriateness of 1" rather
than equally computationally intensive Rosenfeld’s (1996) Likelihood meth-
ods based on n-MC training is questionable. For shorter LT accuracy of
SED model may be insufficient, while for very large LT such as novel af-
fected by long literary form relations (‘architecture’ features such as ‘repeat’
variations), the microstyle describes only a local part of the author’s style as
emphasized in Chomsky (1956).

Consider U(Q,A) = |S.| — |A:] — |Q|. Quantity U(Q, A) mimics the
Ryabko and Astola statistic T. In U(Q, A) we replace their empirical Shannon
entropy h* of the concatenated sample S (based on n-MC approximation)
with |.S.| since both are asymptotically equivalent to h(|Q|+|A|) for identical
distribution in @), A with entropy rate h and exceed this quantity for different
A,QQ . Test T is asymptotically invariant w.r.t. interchanging A, Q and
strictly positive for different laws of A, Q, if a < |A]/|Q| < 1/a,a > 0).
The last but not the first property seemed to hold also for U(Q, A) in some
range of |A|/|Q| due to the lower bound for the minimax mean UC-
compression redundancy of piecewise-stationary sources (Merhav
(1993)) which is logarithmic in (|Q] + |A]).

Claim. The U performance on IID extensive simulations in a large range
of |@Q| (made recently by NEU PhD student Stefan Savev), was not as pre-
dicted above (actually empirical mean of U was negative!) due apparently
to the additional subtracting of |@.|. For small |@Q.| this is due to excessively
large ‘transition value’ of |Q.|, since ‘entropy’ asymptotics is not yet attained.
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For large |Q.|, the small increase of U due to inhomogeneity ‘is drowned’ in
the large ‘noise’ of variable |S.|. Averaging different slices of identically dis-
tributed moderately large );,7 = 1,... can make mean U positive, but it is
not applicable in our LT studies.

1.0.2 CCC- and CC-statistics

Fortunately, another statistic, CCC defined below, overcomes the shortfalls
of statistic U.

In our applications |A|/|@| is large to statistically assess reliability of at-
tribution and upperbounded by an approximate empirical condition |Q| >
2000 bytes (requiring further study) for appropriateness of SED approxima-
tion.

The Conditional Complezity of Compression of text B given text A are
respectively

CCO(B|A) = |Sc| = |Acl. (4)

The CCC mimics an abstract conditional Kolmogorov Complexity in our
settings and measures how adapting to patterns in the training text helps
to compress the query text. It presumably approximates the most powerful
Likelihood Ratio Test of (), A homogeneity under our condition on sample
sizes and validity of SED approximation for both @, A.

The only difference of CCC from U is canceling the |@Q.| removal which
prevents the aforementioned inconsistency of U - statistic.

We average sliced CCC' of text Q;,1 = 1,...,m = [|Q|/L], given the
firmly attributed text A, dividing the query text Q into slices of equal length
L and used the same UC for all sizes of texts.

m s coc( QZ\A = OCmQ) (5)

We call the last two emplrlcal quantltles ‘Mean CCC(Q) and Mean CC(Q)’
respectively.

Claim. Both our case studies and statistical simulation in section 3
show that the sliced CCC-attribution has a good homogeneity discrimination
power in this range for moderate |()]) in a surprisingly wide range of case
studies with insignificantly varying mean unconditional complexity
CC of compression.

Statistical testing of the latter condition is straightforward due to the
asymptotic normality results of the compression complexity described in
Szpankowski (2001). Its very plausible extension for CCC would theoret-
ically support a quite unusual sample size relation for UC-attributing
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authorship: sample size of the training text must dramatically ex-
ceed those of slices of a query text. The training test A being fixed,
VarCCC(Q;|A) of independent copies @;,7 = 1,..., N of the query text Q,
are of order of |@|, while the mean increase in CCC(Q|A) redundancy for
different distributions of Q and A as compared to their identity seems to be
o(](A|Q)|°) for any b > 0 (accurate upper bound even for LZ78 is absent
so far (see some LZ-78 upper bounds in Savari (1997)), the lower bound in
Merhav(1993) is only O(log(|(A|@)|))). Thus, the t-ratio is negligible under
the asymptotics |[A] — 00,0 < € < |Q|/|A|. Malyutov (2005) explains this
informally as follows: if the training A and alternative style query text Q
sizes are comparable, then two flaws happen: a UC adapts to both at the
extra length cost o(|(A|Q)[®) for any b > 0, this extra amount of CCC(Q|A)
is hidden in the noise with VarCCC((A|Q)| of order |(A|Q)|. Second, the
mean CCC(Q|A) of larger slices of query texts have a bigger bias due to
self-adapting of UC to the slices’ patterns.

This makes sample size requirements and symmetry arguments in Cili-
brasi and Vitanyi (2005) (CV05) also based on the conditional compression
complexity although ignoring assessment of statistical stability, unap-
pealing, and explains examples of CV05 misclassification shown in Rocha et
al (2006). It can explain also the roots of early heated discussion around sim-
pler development in Benedetto et al (2002), where the sample size relation
and statistical stability issues were not addressed.

Due to space limitation, we skip sections: Brief survey of micro-
stylometry tools, Methodology, Simulation study of CCC-attributor,
Extended LZ index and many exciting examples of Attribution of
literary texts which are described in detail in my larger paper in Russian
under review in ‘Problems of Information Transmission’, MalBrod09 and in

MWLO7.

1.1 Follow up Analysis

LZ-78 generates the binary tree of all patterns found in LT: thus for every
pattern v we can evaluate frequency of the cases when v is a prefix of the
further text which is the cardinality of the subtree rooted in v.

G. Cunningham implemented in Perl language my algorithm (MWLOT)
of economic LZ-tree construction and evaluating cardinalities of interesting
subtrees. Subtree rooted in v is called interesting, if ‘t-value’ for its cardi-
nalities n(v, A), is large for competing candidates for authorship.

‘© = (n(v, A)—n(v, A’))/\/[n(z/, A)(cr —n(v, A))/cr +n(v, A)(ca — n(v, A)(’g)/cg],
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Table 1: Most ‘interesting patterns for Federalist papers

Binary pattern t-value Pagflegﬁ?;lm
011100100110010101101001 4,08 rei
001000000110010001100101 3,62 de

0110100001100101001000000101001101110100 3,43 he St
01100001011010010110111001110011 3,38 ains
01100101011100100110000101101100 3,38 eral
01110100011010000110111101110010 3,28 thor

011010000010000001110111 3,15 h w
01100101011011100110010001100101 3,15 ende
01101100011001010010000001100001 3,15 le a
0111010101100100 3,15 ud
001000000110000101101110011001000010000001110010 | 3,14 and r
01110100011010000110010101101101 3,12 them
011001100110010101100100 3,12 fed
011001110110111000100000 3,12 gn

where ¢;,7 = 1,2, are total patterns cardinalities for competing candidates.
Finally, the tables of English patterns corresponding to interesting binary
patterns are tabulated.

Any solid judgement about corresponding P-values is hard due to vast
multiplicities of not independent patterns. Still the tables like the shown one
for Federalist papers may be useful source of information for linguists.
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Cramér-von Mises test for the Weibull and Pareto
distributions®

Gennadi V. Martynov
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martynov@iitp.ru

Abstract

Here we will consider the goodness-of-fit tests for testing a form of the
distribution function of the observed random variable. Let a distribution
function belongs under hypothesis to a parametric family. Generally, the
limit distributions of statistics, based on the empirical process, depend of
the unknown parameters. It was stated in 1955 (see [8]) that this depen-
dance is absent for the distribution family {G((x — u)/o), o > 0}. This
class includes the normal distribution. We will present now the second
class of the parametric distribution families with such property. This is
the family {R((z/5)")), « >0, 8 >0, x € X C [0,00)}, where a and
(8 are unknown parameters. This class includes the Pareto and Weibull
distribution families. The exponential distribution family is included in
both ones.

1 Introduction

Let X" = {X1, Xo, ..., X;,} be the sample from the r.v. with the distribution
function F(x), = € R;. We will test the hypothesis

Hy: F(z)€G={G(x,0), 0= (01,02,..0,)" €O C Ry},

where 6 is an unknown vector of parameters. We will consider the Cramér-von
Mises statistic

w2 = n/_oo V2 (G(x, 0,))(Fp(x) — G(x,0,))% dG(x,6,),

0,, is an estimator of 0, 1 (t) is the weight function, F,(z) is the empirical
distribution function. The results below are applicable also to the Kolmogorov-
Smirnov statistic

Dy =+vn  sup  [Y(G(x,0n))(Fn(x) — G(z,00))].

—oo<xr <00

*This work was supported by grant RFFI 09-01-00740-a.
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The exact methods for calculating the limit distribution are developed mostly
for the Cramér-von Mises statistic (see [4], [8], [10], [11], [12]).

Let 6,, be the likelihood maximum estimator of #. Under the certain number

of the regularity conditions and under Hy limit distribution of the statistics w?

coincide with the distribution of the functional

w_/¢ 2(t, 00)d

of the Gauss process 1(t)&(t, 0p) with Ey?(t)&(t,09) = 0, and with the covari-
ance function

K(t,7) = E(¥(t)§(t, 00)y(T)E(T, 00))
= p(O)(1)(Ko(t,7) — ¢ (t,00) I (60)q(T,00)),
),

where Ko(t,7) = min(¢,7) —t7, t,7 € (0, 1
parameter 6,

0y is an unknown value of the

qT (ta 9) = (8G(x7 9)/8017 X 8G(x, 9)/89k)|t:G(w,9) )
I1(0) is the Fisher information matrix,
1(0) = (E((0/06:) log g(X, 0)(9/00;) log g(X, 0)))1 <; i< »

g(x,0) = (0G(x,0)/0z).
The follow condition must be fulfilled:

/ V2K (¢, t)dt < oo.
The limit distribution for D,, coincides with the distribution of

D = sup [(t)E(,00)l,

0<t<1

but the conditions on v(¢) and another conditions are different from the con-
ditions for w?. They was studied in [3], [13]. The distribution of w? depends
generally from 0y and the distribution family G. Khmaladze [9] has proposed
the method of empirical process transformation for eliminate such dependance.
Khmaladze and Haywood [7] has applied this method to exponentiality testing
by the Cramér-von Mises statistic.

We will use here the traditional approach consistsing in using of the statistic
w2. Tt is well known (see for example [8], [10]]) that the empirical process does
not depend on unknown parameter 6, for the family of the form

G={G(zx—m)/o), —oc0 <z <o00,0 >0}

Most known example of such family is the normal distribution family (see [5],

[8)]-
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We will propose here another class of the distribution family with such property:
R =A{R((x/B)*), a >0, >0,z € X C[0,00)},

where X is the support of the distribution R((x/3)®). Here R(z) is a distribution
function with the support Z C [0,00). Particular cases of such families are
Weibull and Pareto distributions. The limit distributions of Cramér-von Mises
and Kolmogorov-Smirnov statistics do not depend on the unknown parameters
in both families. Additionally, the limit distribution for Pareto family coincide
with analogous distribution for exponential family. The goodness-of-fit tests
was discussed for the general Pareto distribution in many articles, particularly,
in [1], [2], [6].

The w?-distribution can be calculated exactly with using the method of
calculation the eigenvalues of the covariance operator. It was presented in [12].
This method is applicable for the power function ¥ (t) = t* o > —1. The method
for the corresponding quadratic forms calculation was particularly presented in
[10].

2 General result

Let X" = {X;,X5,...,X,,} be the sample from the r.v. with a distribution
function F(x), = € R;. We will test the hypothesis

Hy: F(z) € R={R((z/8)")), >0, 3>0, z € X C[0,00)},

where a and § are unknown parameters. The set of the alternative distributions
contains all another distributions. Here R(z) is the distribution function with
the support Z C [0,00). We note the corresponding density function by r(z).
R is the family of Pareto distributions with R(z) =1—1/z, z>1and x> 3.
The family R consists of Weibull distributions when R(z) = 1 —exp(—z), z > 0,
and z > 0 . We will use the Cramér-von Mises and Kolmogorov-Smirnov tests.
Both of them based on the empirical process &, (z) = vn(Fa(x) — R((z/5)%))),
where & and B are the ML estimates of a and 3. If the regularity conditions are
fulfilled for them we can write the follow covariance function for the transformed
to (0, 1) limit Gauss process £(t):

K(t,7) = min(t,7) — t — (1/(B11Byy — B%,))
X(BQQSl(t)Sl(T) - B12(81 (t)SQ(T) + 82(t>81 (7')) + Bllsg(t)SQ(T)).

Here, t,7 € (0, 1),

Bn :/Z (mi(;;;(z)—l—logz—i—l)2r(z)dz, Bos = /Z (z:(i';) —i—1>2r(z)dz,

Bio = /Z (Zloi(;;;(z) tlogz + 1) (Z:(/S) + 1) r(2)dz

119




and
s1(t) = r(R™'())R™ (1) log(R™H(t)), sa(t) =r(R™(t))R™H(1).

It follows from these formulae that the limit distributions of the considered
statistics do not depend from the parameters o and 3. Let § be known. Then
the covariance function of the process £(t)is follow:

K(t,’r) = min(t,T) — i — Sl(t)Sl(T)/Bll.

It does not depend of « in his turn. These results are used in the follow two
sections.

3 Pareto distribution

We will consider the Pareto distribution in the form
Flz)=1-(z/B)"* >8>0, a>0.

For this distribution R(z) =1—1/z and Z = [, o0]. It exists the supereffective

unbiased estimate of 3
~  na—1 )
= min X;.
no 1=1,....,n

We can transform the sample X3, ..., X;, to new sample Y1, ..., Yy, where Y; =
X; /. The limit process 1 (t)£(t) is equivalent to the process with 3 = 1. The
MLE of parameter « is

a=n /Z log X;.
i=1
Hence the covariance function of &(t) (without the pound function) is
K(t,7) =min(t,7) —tT — (1 — t)log(1 —t))(1 — 7) log(1 — 7).

There
Sl(t) = —(1 - t) log(l — t), Bll =1.

This covariation function coincides with the corresponding covariance function
for the exponential family

F(z) =1—exp(—z/pB), 20, z > 0.

It can be concluded that the limit distributions of the considered statistics for
both families are the same one.
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4 Weibull distribution

Consider the two parametric Weibull distribution family

—

Flz)=1—¢ @8 2>0,8>0, a>0.

We can note that R(z) = 1—e~* and Z = [0, co]. Maximum likelihood estimates

B and & for 8 and a can be found by numerical methods from the equation
system

n 1/& n &
5 1 & n X1Xn Xz Xz o
ﬁ‘(@EXi) () R (5) = (F) -

=1

The covariance function of £(¢) in this example has the follow elements:
s1(t) = —(1 —t)log(1 — t) log(—log(1 — 1)),
52(8) = —(1 — ) log(1 — 1)
2

Bi1(t) = /OOO((I —2)log z—1)? e *dz = (1 - O)* + %,

Bis(t) = /000((1 —2)log z—1)(1—2)e *dz=1-C,

Bao(t) = / (1—2)* e ?dz =1,
0

B11Bys — By = 7% /6,

where C'is the Euler constant. It was found by simulation that the critical levels
corresponding to the significance levels 0.1 and 0.05 are approximatively 0.10
and 0.12.

5 Power distribution on [0, 1]

We consider now the distribution function

r—a

F(x) = <b—a> , « € [a,b], b>a, a>0.

A supereffective estimates exist for the parameters a and b. Hence, we can
transform the sample to the interval [0, 1] without changing the limit distribution
of the statistics. It is sufficient to consider tests for the hypothetical distribution
family

F(z)=2% z€]0,1], a >0,

with R(z) = z, Z2 = [0,1]. It’s easy to derive the covariance function of the
limit empirical process £(t):

K(t,7) = min(¢t,7) — t7 — tlogtTlogT.

The limit distribution of the statistics w?» and D,, for this distribution coincides
with the corresponding statistics distributions for the exponential and Pareto
distribution and for the Weibull distribution with known parameter «.
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Renormalization group flows: facts and conjectures

M. D. Missarov
Kazan State University

Moukadas.Missarov@ksu.ru

Exact renormalization group (RG) solution of the hierarchical fermionic model reveals
several non-trivial dynamical and symmetry properties of RG-transformation. Fermionic
model on the hierarchical lattice is defined by the Hamiltonian

H(y" ) = Z d, (i, 7)1 ()01 (5) 4 ()12 (5)]+

i,JEA

D (@161 (i) + o) ba(d)) + gubr ()b (1) (i) ()],

ieA
where d,(7,j) denote hierarchical distance on the hierarchical lattice A with elementary
cell size n, « is model parameter, r and g are real-valued coupling constants, all compo-
nents of the fermionic field are generators of a Grassmann algebra.

Action of block-spin RG-transformation in the plane of coupling constants (r,g) is
given by the rational map R(a) . This map has two trivial and two non-trivial fixed
points and cycles of any order. We describe hierarchical structure of the RG-invariant
sets and curves and using projective space representation we give global description of
RG-flow and critical phenomena in the whole plane of the coupling constants. It is shown
that when RG-parameter o goes to 1 all non-trivial fixed points and cycles of RG-map
tend to the singular point r = —1, g = 0. There is commutative relation between RG and
Fourier transformations R(«)F = F'R(2—«) which points to the special role of & = 1. We
show also that formal (o — 3/2)— and (4 — d)— expansions describe the same non-trivial
fixed point (where d is formal dimension of the hierarchical lattice) in the fermionic and
discuss this problem for the bosonic hierarchical model.

In fact, fermionic hierarchical model can be considered as discretized version of fermionic
field model over p-adic space. The relation between coupling constants of p-adic model
and its discretized hierarchical version is given by non-trivial functional integral and its
convergence follows from Poincare and Siegel theorems. Renormalization procedure can be
defined as a normal form to the RG-transformation at the trivial (zero) fixed point. With
the use of p-adic quantum field formalism it is possible to construct epsilon-expansion
for the critical exponents in the bosonic case and up to the second order of perturbation
theory we see interesting analogy with the results of Euclidean models. p-Adic models
have strong algebraic simularity with Euclidean ones and we discuss some new non-trivial
conjectures for the bosonic and fermionic Euclidean models, generated by exact solution
of hierarchical fermionic model.
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Stochastic Comparison of Ellipsoidal and
Interval Error Estimation in Vector Operations

Alexander Ovseevich*

1 Introduction

Consider the following elementary problem of numerical linear algebra. Sup-
pose we are given a vector x € R", not known exactly but located within
a known bounded domain €2, and a matrix A which is known exactly. We
would like to localize the vector Ax as good as possible. Certainly, Ax is
contained in A€), and that’s the best one can say. In practice this answer
may be not good enough, since it might be unfit for computer. In particular,
the domains €2 of uncertainty should have a simple description, that would
allow to check easily (for a computer) whether a given vector is contained in
it.

There are at least two classes of suitable domains: boxes B = {z €
R" : |z; — a;] < b;}, and ellipsoids £ = {z € R" : (Q"'(z —a),z —a) <
1}. Methods of computations with vectors, localized in boxes, are known
as interval analysis, similar methods for vectors, localized in ellipsoids, are
known as ellipsoidal analysis.

The present paper is inspired by [4], where some evidences are presented
that in the problem of multiplication of a vector by matrix the ellipsoidal
analysis is, in certain sense, better than the interval one. More precisely,
suppose the vector is localized in a box B, and &£ is the minimum volume
ellipsoid containing B. Certainly, £ also localizes the vector, and, at this
stage, the substitution of £ for B results in a loss of accuracy. However,
upon multiplication by A the domain AB is not necessarily a box, while the
domain A& is still an ellipsoid. To stay within the interval framework one
should substitute the minimal box Box(AB), containing AB, for AB. Finally
we get two localization domains: Box(AB) and AE. It is suggested in [4] to

*Research partially supported by RFBR grants 08-08-00292, 08-01-00411
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compare the quality of methods by means of volumes of the final localization
domains.

1.1 Main inequality

The result of comparison does not depend on the initial box, but only on the

matrix A, and is determined by the sign § in the inequality

2 | det A
13 ol Tam (11)

=1 j=1

The < sign specifies the set of matrices such that the ellipsoidal method turns
to be worse than the interval one. The inequality (1.1) comes directly from
exact formulas for volumes of ellipsoid and box, while the factor 7/2/I'(2+1)
arises as volume of the circumscribed ball for unit cube. Real problems of
numerical linear algebra correspond to a large dimension n. That’s why we
will compare ellipsoids and boxes as n — oo.

2 Random matrices

The set €, of n X n-matrices A such that (1.1) holds with < sign is quite
complicated. In a rather vague way, one can say that €,, is relatively poor,
i.e. most matrices do not belong to it. Still it is not clear in advance how to
measure properly the size of €2,, and establish that it is small. We suggest
a stochastic approach to this issue. Namely, we assume that the matrix A
is random so that its elements are independent Gaussian random variables
with zero mean and unit covariance. In particular, the distribution of any
element a;; of A takes the form

plo) = e (-5 ). 1)

Then, a natural measure for the size of the set §2,, is its probability P(£2,) =
(2m)" " [, e 1 AN YA Here, Tr AA* = 3" a2, and dA = [] day;.

3 Main result

Theorem 1 The probability of the event §,, that intervals are better than
ellipsoids tends to zero as n — o0o. In other words,

P(Q,) = (27T)—“2/2/Q e 2T GA = (1) (3.1)
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More precisely, P(Q,) = O(1/(n*logn)).

aj

Denote log > \/—% by x;, and define
i=1
1 : 1 A
Vn = — ZXZ'> Cn = log 2 1/n’ Ap = —log|det (_) ‘ '
= 21 (2 +1) " vn
2

The set €2, is defined by inequality
Y < Cp + Ay (3.2)

and our main result says that this inequality holds with a very small probabil-
ity. The reason is that each term in (3.2) has a definite, and even determinis-
tic “limit in probability” as n — oco: ¥, = 1 log 22 40(1), C,, = 1 log Z=+0(1),
A, = —3 + o(1), but the limit inequality log2* < ZlogZt — 1 is totally
false. In what follows we expound the above arguments.

3.1 A heuristic analysis of inequality (3.2)

The functions y; can be regarded as independent random variables on the
Gaussian probability space of n x n-matrices, and the left-hand side of (3.2)
has a form of a mean value ,, = % > xi. Hence, when n — oo one can apply

1=1
the Law of Large Numbers (LLN) to analyze the left-hand side of (3.2) and

conclude that
1 n
Y, = - Z; xi — Ex1 in probability. (3.3)
By virtue of the Central Limit Theorem (CLT) the distribution of f; =

n

2.

j=1

expectation 4/ 2?” Therefore,

>
Ex; = Elog f; = log 1/ 7” +o(1) (3.4)

ﬁ with probability 1+o0(1).

™

aij

Jn

is approximately Gaussian with covariance 1 — % and mathematical

and 1, is contained in o(1)-neighborhood of log

Hence, if n is large the inequality (3.2) with an overwhelming probability
takes the form

2 1 1 1
Anzlog\/£+§log§+o(1):ilogn—i—i—l—o(l), (3.5)
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where 1, is absent. Thanks to Siegel [1, 2] we have explicit expression
k —n?/2 k —STr(AA* e T P(w>
B det A[* — (27) /|det AfF et gy =22 T[22 ) (3.6)
i=1 I (5)
for E|det A|* with any complex k. In particular, it follows from (3.6) that

Ec"®" = 0(1). Therefore, A, can be large only with (exponentially) small
probability. In particular, the probability of (3.5) decays as n — oo.

3.2 Rigorous analysis of the left-hand side of (3.2)

The above arguments tacitly assume that some limit processes commute. We

will not justify exactly this, and use subgaussian random variables instead
of CLT.
A real random variable is said to be subgaussian if

EeM < 2V
for any real A. The fact which is very important for us is this:

Theorem 2 If x is a standard Gaussian random variable, then, the random
variable & = |z| — E|x| is subgaussian.

A proof is based on the so-called theory of logarithmic concavity [5]. This
immediately implies the following corollary.

Corollary 1 Fach random variable f; — 4/ 2?" => % 15 subgaussian.
j=1

On the basis of this corollary one can show that

Elog f; = log \/? + o(1) (3.7)

2
Elog? f; = log? {/ — + o(1) (3.8)
T

1
E[log f; — Elog fi|> = O(=21) (3.9)
In particular, the asymptotic equality (3.4) holds, and LLN can be applied
in order to justify (3.3). Thus, ¥, — log 4/ 2?” — 0 in a reasonable sense.
Finally, from (3.9), (3.4) and the Chebyshev inequality we obtain:

n

p (wn < ilogn + 0) — (1), (3.10)

where C'is an arbitrary constant, while o(1) is, in fact, O(m). Therefore,
Y, is large with a large probability.
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3.3 Analysis of the right-hand side of (3.2)

As to the random variable A, = %log ’det (\%)‘ in the right-hand side of

(3.2), it is not large with an overwhelming probability. In fact, one can show
that A, — —1 in probability so that the (absolute value of) determinant of
a random matrix becomes more and more deterministic as n — oo.

It follows from the Siegel formula (3.6) that

n

Ec"a = (%) ’ EE:_%)) (3.11)

The logarithm of the right-hand side of (3.11) is

n 1
R — 1

in view of the Stirling formula. Now, by means of the Chebyshev inequality
we can estimate the probability of large values of A,, as follows:

n

1
P(A, > 12) < e ™R ~ e T2,

In particular,
1
F (An > logn+ C) < (14 o(1))e~Hn1om, (3.12)

where C' is an arbitrary constant.

3.4 Summing up

Now we get back to inequality (3.2), where C,, — C = LllogZt by the
Stirling formula. If the inequality (3.2) holds for a large n, then either ¢, <
tlogn+C+1,0or A, > 1logn —C — 1. But, in view of (3.10), (3.12) these
events have small probabilities as n — oo. This proves the main Theorem 1
to the effect that probability of advantage of intervals over ellipsoids is small
as n — oo. In fact, it is shown that this probability is O(1/(n?logn)).
These considerations can be regarded as an evidence in favor of ellipsoids vs.
boxes in linear algebraic computations with a guaranteed accuracy.
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ENERGY TRANSFER AND JOINT DIFFUSION

ZSOLT PAJOR-GYULAI, DOMOKOS SZASZ

Dedicated to the memory of R. L. Dobrushin on the occasion of his 80’th anniversary

ABSTRACT. A paradigm model is suggested for describing the
diffusive limit of trajectories of two Lorentz disks moving in a
finite horizon periodic configuration of smooth, strictly convex
scatterers and interacting with each other via elastic collisions.
For this model the diffusive limit of the two trajectories is a mix-
ture of joint Gaussian laws (analogous behavior is expected for
the mechanical model of two Lorentz disks).

Mathematics Subject Classification: 37D50, 37A60, 60F99.

1. INTRODUCTION

Beside the dynamics itself, the joint motion of two particles inter-
acting with each other and with a dynamical environment also de-
pends on the spatial dimension. In the first model where this ques-
tion was addressed (cf. [Sz 80]), the asymptotically diffusive mo-
tions of the two particles either glue together or are independent de-
pending on the initial distance of the particles. The model was actu-
ally that of Harris and Spitzer, (see [S 69]) (equilibrium dynamics of
elastically colliding point particles) generalized by Major and Szész,
[MSz 80] (non-equilibrium dynamics). On the other hand, Kipnis
and Varadhan, [KV 86] have shown that the diffusive limits of two
particles in a symmetric exclusion process are independent Brown-
ian motions.

Turning from stochastic dynamics to a deterministic one, let us
consider the planar, finite-horizon Lorentz process with a periodic
configuration of scatterers. It is known that its limit in the diffusive
scaling is a Brownian motion (cf. [BS 81] and [BCS 91]). Of course,
two point like Lorentz particles do not interact, but if we take two
small disks then the case is quite different.

D. Sz. is grateful to Hungarian National Foundation for Scientific Research
grants No. T 046187, K 71693, NK 63066 and TS 049835.
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The motion of one small disk is itself isomorphic to a Lorentz pro-
cess, so its diffusive limit is the Wiener process. However, if one
considers two small Lorentz disks, then the naive heuristics would
suggest that, since the two particles collide very rarely (i. e. O(logn)
times during the first n collisions), the situation is similar to the lo-
cally perturbed Lorentz process where the diffusive limit is the same
Brownian motion as it was for the unperturbed Lorentz process (cf.
[DSzV 09]). This analogy is, however, misleading and the aim of the
present work is exactly to clarify the situation. The difference with
the preceding models is that the interaction: elastic collision of the disks
also changes the energies of the two particles. Moreover, in dimension
two, by borrowing heuristics from random walk theory (cf. [S 76])
and estimates from [DSzV 08], one can convince himself/herself that
the time intervals between consecutive collisions have a slowly vary-
ing tail, and consequently with a probability close to one, for ¢ large,
the last collision of the disks preceding time  befell at time o(¢). Thus
the energies of the disks at time f, determining the limiting variance
are the random energies obtained at the aforementioned last colli-
sion before t ergo the diffusive limit of each disk is a Brownian mo-
tion with a random covariance (and their joint limit can already be
calculated based upon the previous line of ideas).

The goal of the present work is make the above heuristic argument
precise on the level of a stochastic model mimicking the determinis-
tic model of two Lorentz disks.

Remark: For treating the deterministic model the realistic alterna-
tive is to rely upon the averaging method of [ChD 07]. Indeed, be-
tween two collisions of the disks typically there occur long collision
sequences of the particular disks with the periodic configuration of
tixed scatterers. During these long intervals their orbits become ap-
proximately Brownian and their velocities and the normal of impact
incoming into a particular collision of the two disks correspond to an
equilibrium distribution and finally their outgoing velocities from
the collision can be calculated analogously to the collision operator
appearing in the derivation of Boltzmann’s equation for a hard disk
fluid. To the deterministic model we plan to return in a forthcoming

paper.

2. THE STOCHASTIC (PARADIGM) MODEL

2.1. Continuous Time Random Walks with Continuous Internal
States. Discrete time random walks with a finite number of inter-
nal states were introduced by Sinai, [S 81] where the internal states
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were meant to represent elements of a Markov partition. Their the-
ory was elaborated in a series of works [KSz 83, KSz 84, KSSz 86]. In
our case the internal states will also represent particle velocity there-
fore we have to generalize Sinai’s model and to consider random
walks with internal states where the internal states belong to a more
general state space. Moreover, for being able to include speed we
take continuous time. In [KSz 83], a local limit theorem was estab-
lished for random walks on Z? with a finite number of internal states
and we will also use much of the techniques presented there.

Definition 1. (Sinai, 1980) Let H, |H| < oo be the set of states. On the set
7% x H the Markov chain &, = (1n, €n) is a Random Walk with Internal
States (RWwIS) if for ¥ x,,, x,, 11 € 7% we HACH

P(§n+1 = (xn—l—lr U),Z) € A|§n = (xn/ u)) = Px,p1—xn (u/ A)

Of course, {e;;n > 0}, is also a Markov chain. Our paradigm
for the mechanical model will be introduced in two steps. First, the
individual motion of each of the two particles will be a random walk
with internal states with some state space H and exponential jump
rate A € A (so far we do not specify H).

Definition 2. Assume we are given arate A > 0and a family {Px(u,.)|x €
z4 of substochastic kernels over H such that Q = Y vczd Px is a stochas-

tic kerzfzel over H. A continuous time Markov chain with internal states
from H and with rate A is a Markov process {&y = (x¢, ut) } such that

P(Crrar = Cr) = 1—Adt +o(dt)
and for every (x;,u) € Z% x HandVu € H VYA C H
PG = (tipa ), € AJZs = (v0,1)) = APy (1, A)dt +o(d)

In other words, the generator for jump x € Z“ is described by the
operators

Pof(u) = /H F)Pe(u,d’)  x € Z°

and the generator for the Markov chain {¢,; n > 0}, of internal states
is Q. For simplicity let us assume that Py = 0.

As said our RWwIS is to mimic a Lorentz disk process in R? and
from now on we will restrict our discussion to the planar case. Con-
cretely we will have H = S for the directions ﬁ of velocities, whereas

A will be for the speed |v| = /2 energy. Let H = S x A where

A =lab], 0 <a<b< oo Ais,of course, conserved between
collisions of the two disks.
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2.2. Interaction: the collision operator. Next we define the collision
interaction. Let ¢} = (#},¢€.), i = 1,2 be two RWwIS.

Whenever 17} # 77, the joint generator of the two Markov pro-
cesses is the product of the two individual generators. Whenever

=1 (=x),
P(¢l, = (x+2,0L), 8 =(x+2%,0%);0) € Al,v% € A?
G- = (x,01), 8 = (x,v7))
= CZIIZZ(Ul_,Uz_,Al,Az)

is the collision kernel. We assume that C satisfies conservation of en-
ergy: (v1)? + (v2)? = (v})? + (v2)? (momentum is not conserved
since the collision kernel contains averaging over normal of impact).
Consequently we can and do assume that in our two particle model

(01)2 + (0?)? = 1.

Warning: the pair (¢}, &2) is not a RWwIS on Z% x Z? anymore
since translation invariance is hurt on the diagonal.

2.3. Conditions.

e (is ergodic with a positive spectral gap (and with invariant
probability measure p);

o Y ez ¥ [ Px(v,H)p(dv) = 0 (i. e. no drift);

e P, =0if |x| > 1 (for simplicity);

e trivial arithmetic, i. e. the minimal lattice £ the RWwIS is
coincides with Z2;

¢ nonsingular asymptotic covariance matrix X (cf. local CLT of
[KSz 83));

e our definition of the interaction implies that by denoting
{v} (n),v% (n)| n > 0} the outgoing velocities at consecutive
collisions (of course (v')?(n) + (v?)?(n) = 1) their process is
a Markov chain with transition kernel C. We assume that this
Markov chain is ergodic with a gap in its spectrum (as to the
proof of existence for the physical model cf. [C 75], Chapter
IV, section 6). We denote its invariant measure by p(vl,0%)

and further by ps(|v4|) the marginal of p(v},v? ) providing
the density of |v4|.

3. MAIN RESULT
Denote by (S}, S?) the joint trajectory of the two interacting RWwIS's.
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Theorem 1. The limiting density of \/%(S}, S?) is

T27X2

(@) Tt
e 2
dA (xl, xp € R )

27r )|Z| / A /1 _
where ¥, is the limiting covariance matrix for any of the interacting RWwlIS’s

with speed 1, and ps(A) is the stationary probability density of the speed of
the first particle in the Markov chain of energy change.

N =

h(xl, xz)

The proof is based on

e the probability theory of order statistic of random variables
with slowly varying distributions (cf. [HM 91])
e a far-reaching generalization of renewal theory for renewal
processes
— with slowly varying renewal distributions;
— with renewal laws coming from a family of similar dis-
tributions;
— directed by a Markov chain.

To the technical proof we return in a forthcoming paper.
. Acknowledgement. Thanks are due to D. Dolgopyat, in a discus-
sion with whom the phenomenon discussed above had been raised.
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Analytical Approach to the Study of Gibbs Measures

Tetyana Pasurek
Bielefeld University (Germany)
tpasurek@math.uni-bielefeld.de

Developing Dobrushin’s ideas [1, 2], we present an analytical method to prove
existence and uniform a-priori estimates for Gibbs measures associated with
classical particle systems in continuum. The method is based on the choice of
appropriate Lyapunov functionals and on the corresponding exponential bounds
for the local Gibbs specification. As a further application, we discuss existence
and uniqueness problems for Gibbsian fields on graphs with unbounded degree,
which extends the result of Bassalygo and Dobrushin [3] to the unbounded spin
case.

References:

[1] R. L. Dobrushin, Prescribing a system of random variables by condi-
tional distributions, Theory Probab. Appl. 15 (1970), 101-118.

2] R. L. Dobrushin, Gibbsian random fields for particles without hard
core, Theor. Math. Fizika 4 (1970), 458-486.

[3] L. A. Bassalygo, R. L. Dobrushin, Uniqueness of a Gibbs field with a
random potential — an elementary approach, Theory Probab. Appl. 31 (1986),
572-589.

[4] Yu. G. Kondratiev, M. Rockner, T. Pasurek, Gibbs measures of con-
tinuous spin systems: an analytical approach, University Bielefeld, SFB 701
Preprint 09-119 (2009).

[5] Yu. G. Kondratiev, Yu. Kozitsky, T. Pasurek, Gibbsian random
fields with unbounded spins on unbounded degree graphs, submitted to Annals
Applied Probab.; arXiv: 0904.3207 (2009).

136



Percolation in a lattice model of non-ideal gas.
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There exist a lot of works about the percolation in as discrete as con-
tinuum cases. Overwhelming majority of the works devoted to percolation
models with an independence. It is either Bernoulli distribution for discrete
cases like, for example, the lattice case, or Poisson distribution for the par-
ticle system in R? (see, for example, [1] and [2]). There are some works on
the percolation where a dependence is presented, where a 'random cluster
models’ are studied. Those models are connected to Izing and Potts models.

In the present work we study the percolation properties of a lattice model
having a finite spin space with interactions between spins. We consider d = 2.
The similar problem was investigated in [3], where the percolation problem
was studied for a field of interacted particles in R?. There are two parameters
A and 3 which drive the percolation properties. The parameter A is connected
to a density of the particles and g = % as usually is the inverse temperature.
Our result describes regions in the plane {\, 5}, where the percolation does
not occur with probability 1, where the percolation occurs with probability
1, and there is a region where we can not answer on the question on the
percolation (see Fig.1).

1 Model

We specify three objects to define the model: Z?, S, @. The spin space S is
finite and we assume that S = {0,1,..., N}. The Gibbs measure on the set of
all configurations X = {X : Z* — S} is defined by two potential functions
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wo(s) = a(Z), with a > 0,

and (1.1)
01(81, 82) = —bs18y, with b > 0.

Formal Hamiltonian of the model is

H(X) = Z p1(X(t), X(t2)) + Z po(X (1)), (1.2)

t1,ta€Z%:||t1—t2||=1 tezd
where ||t|] = max{t',#*}, when t = (¢},¢*) € Z?. One dimensional marginal
of the free measure is v(s) = ﬁg, where Ty = S0, 2—’7 and A > 0.

The Gibbs distributions are defined in the standard way by specification
which is a set of densities with respect to the free measure:

1
Py (X) = —5— exp{—BH(X|Y)}, (1.3)
Zvy
where V' C Z? is finite volume, X is a configuration on V, Y is a boundary
configuration out of V,

H(X|Y) = > P1(X (1), X (t2)) + Y po(X (1))

tl,tQEV:HtlftQH:l teV

+ > p1(X(t1), X (t2))

tieVitaeVe:|t1—to||=1

is conditional Hamiltonian, Zéyy is a normalized constant, § is a positive
constant which is called inverse temperature. The expression for the condi-
tional Hamiltonian H(X|Y) is not formal since all sums in the formula are
finite. Existence at least one Gibbs measure is consequence of the finiteness
of S. However the number of Gibbs state depends on the parameters.

The model can be interpreted in the following way. Consider a spin value
X (t) as the number of particles at a site t € Z%. Every pair of the particles
at the same site interacts with the repulsion energy equal to a. Thus the
repulsion energy of X () particles is a(XQ(t)). Any pair of the particles located
at a neighboring sites t1,%t; attracts with the energy —b. The neighbors
in the model are any sites t;,%y such that they are vertices of the same
elementary square of Z2. If X (¢;) and X (t5) are the numbers of the particles
at neighboring sites tq,t5 then the attractive energy is —bX (¢1)X (¢2).
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2 Problem

We study the percolation over sites where spin values belong to a set S =
{k+1,..,N}, k< N. The set U C Z? is connected if for any pair ¢, t € U
there exists a set E(t,t) = {t; = t,ty,....,t, =t } C U such that [t; ., —t;| = 1
for any i = 1,...,n — 1. The norm | - | is Euclidean in contrast || - ||.

A cluster is a pair (U, X),U C Z%, X € X, if U is connected and X (t) €
Sy for any t € U. A cluster (U, X) is infinite if U is an infinite set. We also
say in this case that the configuration X has infinite cluster.

The issue we address in this work is: when almost all configurations have
infinite clusters. The answer depends on the parameters A and 3. If A and 3
are such that almost all configurations have infinite clusters then the models
with these parameters calls percolated. If almost all configurations have no
infinite clusters then the model does not percolate.

For any k& we consider the models with the parameters a and b such that

< f(k),

S e

where f(-) is a function which can be specified.

3 Results

The following two theorems are the main results.

Theorem 3.1. There exists A\g < 0o such that for any N < g there exists
B~ (N\) > 0 such that for any B < 5~ (X) all clusters are finite with probability
1. The value B~ (A) is growing to the infinity when A — 0.

Theorem 3.2. There exists a positive value of \° < oo such that for A > A\
there exists an infinite cluster for any 3. For A < \° there exists 3(\) such
that for any B > BT (\) there exists an infinite cluster.

Fig.1 shows the regions of percolation and non-percolation.
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Figure 1: Percolation and non-percolation regions.

References

[1] Geoffry R. Grimmett. Percolation. Springer-Verlag, Ney York, 1989.

[2] Ronald Meester and Rahul Roy. Continuum Percolation. Series: Cam-
bridge Tracts in Mathematics (No. 119). Cambrige University Press,
199

[3] E. Pechersky, A. Yambartsev. Percolation properties of non-ideal gas.
arxiv arXiv:0903.0841, 2009.

140



Homogenization of a random singularly perturbed parabolic PDE

Andrey Piatnitski

Lebedev Physical institute, Moscow, Russia
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Abstract. The talk will focus on averaging problem for a parabolic equation
of the form

ou® 10 -\ Ouf 1 T
_— = - — —_ _— _ J— € > .
ot (t,2) 20x <a<5) 0m>(t’x)+\/gc(a)u(t’$)’ t20 zeR;

u¥(0,z2) =g(z), z€R,

with random stationary mixing coefficients a and ¢, in the presence of a large
parameter in front of zero order term. We will show that, under proper
mixing assumptions on a and ¢, the family of solutions u® converges in law,
a ¢ — 0, and describe the limits process. It should be noted that the limit
dynamics remains random.

141



RECTANGLING RECTANGLES AND ALTERNATING CURRENT

M. PRASOLOV AND M. SKOPENKOV

This talk deals with the following problem: for which numbers R and r a rectangle with side ratio R can
be dissected into rectangles of side ratio r and 1/r? (Here the sides of all rectangles are parallel to coordinate
axes, the side ratio of a rectangle is the horizontal side divided by the vertical one.) The classical Dehn
theorem (1903) asserts that for » = 1 such a dissection is possible if and only if R is rational. For arbitrary r
and R a result of Freiling, Laszkovich and Rinne (1997) provides a criterion for existence of such a dissection.
But this result does not give an algorithm for description of all possible pairs (R,7). A joint result of these
authors with Szekeres gives such an algorithm in case when R = 1.

We present an analogous ”algorithmic” criterion in case when R = r:

Theorem. For R > 0 the following 4 conditions are equivalent:

(i) A rectangle with ratio R can be dissected into rectangles with ratio R and 1/R (in such a way that there
is at least one rectangle in the dissection with ratio 1/R).
(ii) The number R? is algebraic and all its algebraic conjugates (distinct from R?) are negative real numbers.

(iii) For certain positive rational numbers ¢, ..., ¢, we have
1
=R.
ClR +
R+ -+
2 cn R

(iv) There is a network of total resistance R ohm consisting of resistors of resistance R ohm and 1/R ohm
(such that the network contains at least one resistor of resistance 1/R with nonzero current).

The proof is based on a physical interpretation of the problem. To a dissection of a rectangle Brooks,
Smith, Stone and Tutte (1940) assigned a direct-current circuit. Our new approach is based on application
of alternating-current circuit theory to the problem.
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On estimating special type of divergences
via Kolmogorov distance *

Viacheslav V. Prelov

Institute for Information Transmission Problems
of the Russian Academy of Sciences
19 Bol’shoi Karetnyi, 127994 Moscow, Russia.

Abstract — Some upper and lower bounds are presented for the maximum
of the divergence D(Px, x,||Px, X -+ X Px,) between the joint distribution
Px, x, of discrete random variables X, ..., X, and the product distribution
Px, x---x Px, of these variables via the Kolmogorov distance between Px,  x,
and Px, x---xPx, . In some special cases, our upper and lower bounds coincide
or are asymptotically tight.

Let P = {p;} and Q = {¢;}, 1 € T C N={1,2,...}, be two discrete probability
distribution. Recall that the (information) divergence between P and () is defined as

P ||Q sz hl -
and the variational distance V' (P, Q) between these probability distributions is the
Lq—distance, i.e.,
= Z lpi — ail.

The problem of estimating the information divergence D(P||Q) via V (P, Q) was con-
sidered in several papers (see, e.g., [1] and references therein). Among many results in
this areas we mention Pinsker’s inequality [2,3]

1
D>_-V?
> 2V
and Vajda’s lower bound [4]
2+V 2V
D >1 - —
= Og(2—V() 24V’

*This work was carried out with the partial support of the Russian Foundation for Basic Research
(project no. 09-01-00536) .
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where D = D(P||Q) and V =V (P, Q).

Note that in the general case (without additional assumptions on probability dis-
tributions P and @) it is impossible to upper estimate D(P||Q) via V (P, Q) since
D(P||Q) can be arbitrary large as V(P, Q) is arbitrary small.

Here, we consider the special case where P = Px, x, is the joint distribution

of discrete random variables Xi,...,X,, and Q = Px, X --- X Py, is the product
distribution of these random variables. In what follows we assume that all random
variables are discrete such that X; takes values in Z; C N, ¢ = 1,...,n. In this case

the divergence
I(Xy;...;X,) = D(Px,.x,||Px, x---x Px,)

is called the mutual information for random variables Xi,..., X, (see, e.g., [3]) which
coincides with the usual mutual information I(X;; X3) between two random variables
X7 and X5 for n = 2. At the same time, the variational distance

T(Xl,...,Xn) = V(PXL..XWPXl X - X PXn)

is sometimes called Kolmogorov distance (the latter with the factor 1/2 and for n = 2
was introduced by Kolmogorov [5]).
Consider the quantities

L(Xy . 0 X,) = sup I(Xy;. . 5 X Y), (1)

where the supremum is taken over all discrete random variables Y such that
7(X1, ..., Xy, Y) < 7. Note that I.(Xy;...;X,) is defined only for 7 > 7(X3,..., X,)
since 7(Xy, ..., Xp,Y) > 7(Xy,..., X,) for any Y. For given integers Ny, ..., N,, let

J(N1Nn) = sup (X505 X0), (2)

where | X| denotes the cardinality of the range of a random variable X.

In the case n = 1, the quantities I,(X) and ™) were introduced and studied by
Pinsker [6]. The further investigations of these quantities were continued in [7,8]. Here
we present some upper and lower bounds and asymptotic expressions for quantities
I(Xy;...;X,) and NN defined above.

The mutual information I(Xy;...; X,;Y) for random variables Xi,..., X,,,Y can
be represented as

[(Xy;..:XY) = Y HX)+HY)-H(X;,...,X,,Y) =

— ZH(Xi) — H(Xy,...,X,) +1(Xy,...,X;Y), (3)

i=1

where, as usual, H(-) denotes the entropy. Therefore, considering the vector (X1, ..., X,)

as a single random variable, we can use some results of [6-8] to estimate sup 1(X7;...; X;,;Y)
Y

via 7, provided that 7((Xy,...,X,),Y) < 7, where

T((X1,..., X0),Y) = V(Px, x,v || Px,..x, X Py).
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However, our problem is to estimate sup I(X7;...; X,,;Y) via 7, provided that
Y

7(X1,...,X,,Y) < 7, but there are no direct relations between 7((Xy,...,X,),Y)
and 7(X1,...,X,,Y); namely, we can show that 7((X1,...,X,),Y) can be both larger
and smaller than 7(X1, ..., X,,Y). Therefore, in general, we cannot apply the results
of [6-8], but in the special case, where X,..., X, are independent (and therefore,
T((X1,...,X,),Y)=7(Xy,...,X,,Y)), we can.

Let us introduce some definitions which are necessary to formulate our results.
For a collection of random variables Xi,..., X,,, denote the joint and the marginal
distributions as

Pivin =Pr{Xi=i1,... . Xy =in}, P =Pr{Xp=i}, €Ly, k=1,....n

Let
X, .., X)) = max 7(X1,...,X,,Y),

where the maximum is over all random variables Y. It is possible to show that

(X ) =2 (1 -y p“...z-npgj>...pg:>). )
i1

----- in

Assume that the vectors (pgll), o pz(:)) are ordered in such a way that (pgll), o piM

(pﬁ), . ,p§:)) if T pgj) < II pg-];). For a given vector s = (S1,...,8,), Sk € Zg, k =
k=1 k=1

) >~

in

1,...,n, set
Ds = {(ily . ,Zn) : (pgll)’ . ’p£:)> — (pg)’ - ,piﬁ))} , (5>
mee X () (100, o
(i1,..in)€Ds \k=1 k=1
and

L= — (Hzﬁ?) In ( pﬁ’?) : (7)
k=1 k=1

Moreover, define

First of all note, that
L(Xy;.. 5 X,) =Y H(X;)

if 7 > 7%(Xy,...,X,). Indeed, this equality immediately follows from (3) if we put Y =
(X1,...,Xn). Therefore, it is sufficient to investigate the behavior of I.(Xy;...; X,,)
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for 7(Xq,...,X,) <7 < 7(Xy,...,X,). Our first proposition gives an upper bound
for I(Xq,...,Xn).
Proposition 1. For any 7, 7(X1,..., X)) <7 <7(Xy,...,X,), we have

L(Xy;.. .5 Xn) < Ks+aLs+ M, 9)

where the real number x, 0 < x < 1, and the vector s = (s1,...,8,), Sk € Iy, k =
1,...,n, are defined by the equality

> U =pia)py) B + 21—y, )P =7/2, (10)

and the quantities 7*(X1,...,X,), Ds, Ks, Ls, and M are defined in (4)—(8).

Nn)

An upper bound for [iNl"' is presented in the next proposition.

n

Proposition 2. For any 7, 0 <7 <2(1—-1/N), N = [[ Nk, we have

k=1
10980 < ZIn(N — 1) + h (%) , (11)
where h(z) = —xlnz — (1 — ) In(1 — ) is the binary entropy function and
IWNe-N) —In N if 7> 2(1 = 1/N). (12)

Note that the right-hand side of (11) is equal to log N if 7 = 2(1 — 1/N), and
therefore estimate (11) is tight for such 7.

Proposition 3. For any 7, 7(X1,...,X,) <7 <7%(X1,...,X,), we have

n T*(Xl,...,Xn>—7'
L(Xy;...;X,) > H(X;) —
(X n)—; )~ R X) = (X %)

H(Xy,...,X,). (13)

Note that in the special case where random variables X7, ..., X,, are independent,
it is easy to verify that the upper and lower bounds for I.(X,...,X,) and T Nn)
described in propositions 1-3 coincide with corresponding estimates obtained in [6-8]
if the vector (X1,...,X,,) is considered as a single random variable whose the set of
values is Z =77 X ... X Z,. In particular, this remark allows us to claim that

TN

IT(Xl,...,Xn):Z(N—_l)

N, 0<7<21-1/N), N=]][MN,
k=1

if Xi,..., X, are independent and each X; has uniform distribution on the set Z;, |X;| =
Ni 1= 1,...,7’L.

Note also that for 7 = 7(Xy,..., X,,) (i.e., for the minimum value of 7) the lower
bound (13) reduces to the inequality I, (Xi,...,X,) > I(Xy;...; X,). It seems that
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this estimate is tight, i.e., this inequality should be replaced by the equality, since
(X1, ..., X,,Y) = 7(X1,...,X,) if Y does not depend on the collection of random
variables X, ..., X,, and then we would have I (X,...,X,) = I(Xy;...;X,). How-
ever, in the real case, we have the strong inequality I (X,..., X,) > [(Xy;...; X,,) if

Xi1,..., X, are dependent since it is possible to show that there exists a random vari-
able Y such that 7(Xy,...,X,,Y) =7(Xy,..., X,,) but, at the same time, Y depends
on the collections of random variables X1, ..., X,,, and therefore, we obtain

L(X1, . X) > I(Xys 5 X5 V) = (X5 X)X, X V) > I(X5 5 X,).
One can derive the following corollaries from Propositions 1-3.

Corollary 1. The following relations are valid:

10350 — (21 N) (14 0(1), N = [N — o0

and
™ 1 T, 1
————In =+ O0(7) < [WrN) < _In = 4 O 0.
Sy Ry TOMsL Sghz+00m), 7
It seems natural to consider more general quantities Iﬁm) (X1,...,X,) defined by
the equality
I™(Xy, ..., X,) = sup I(Xy; .. X YY),

Ylw-nYm:T(Xl7--~1XnaY17-~-7Ym)§7—
However, this definition is not useful as the following claim shows.

Corollary 2. For any random variables Xq,..., X, any 7 > 7(X1,...,X,,), and
any integer m > 2, we have

I™(X,,...,X,) = co.

The proof of all statements formulated above can be found in [9]. Here, we only show
how to prove equality (4). Let a joint distribution {p;, ;, } of the random variables

Xi,..., X, is given. Let us upper estimate 7(Xy,..., X,11) for any random variable

Xn+1. Let

. . . n+1
A= {01, Ing1) t Pigeine > p§1 . pf,jl )}

Then, using definition of 7(X3,..., X,11), we obtain

1 n+1
T(X]_, e 7XTL+1) - 2 Z (pil...’in+l _pgl) .. -pgnjl )) S
A
1 n
< 2 Z (pilv--~7inpin+1 [i1,eesin pz('1) o 'pgn)pil"'i"H) -
A
1 n
= 2 Zpin+1 |41..in (pi1...in — Diy... znp;) . pl(n)> S
A

1 n
S 2 Z <pi1---in+1 p1n+1|21 inPiy.. an’El) < pgn)> =

T1,eenylnt1

= 2 (1— Z Pil...z'npz('ll : PE?)- (14)

Ulsensin
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On the other hand, we have

T*(Xh...,Xn) 2 T(Xl,...,Xn,(Xl,...,Xn)

) =
= 2 (1 - > pil...inpﬁf)---pg)) : (15)
11

..... in

Equality (4) immediately follows from (14) and (15).
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Abstract

We present an example of a highly connected closed network of
servers, where the time correlations do not go to zero in the infinite
volume limit. The limiting interacting particle system behaves in a
periodic manner. This phenomenon is similar to the continuous sym-
metry breaking at low temperatures in statistical mechanics, with the
average load playing the role of the inverse temperature.

Keywords: coupled dynamical systems, non-linear Markov pro-
cesses, stable attractor, phase transition, long-range order.
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1 Introduction

1.1 Interacting particle systems with long range mem-
ory

The theory of the phase transition provides, among many results, a positive
answer to the question about the possibility of constructing reliable systems
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from non-reliable elements. As an example, consider the infinite volume
stochastic Ising model at low temperature 7" in dimension > 2, see [L]. As is
well known, if we start this system from the configuration of all pluses, then
the evolution under Glauber dynamics has the property that the fraction
of plus spins will at any time be exceeding HmQ*(T), which is bigger than
s for T < T, (Here m*(T) is the spontaneous magnetization.) On the
other hand, if we consider finite volume Ising model (with empty boundary
condition, say), then this property does not hold, and, started from the all
plus state, the system at some later (random) times will be found in the state
with the majority of the spins to be minuses. Therefore, the infinite system
can remember, to some extent, its initial state, while the finite system can
not.

There are many other examples of that kind, which belong to the theory
of interacting particle systems, such as voter model, contact model, etc. In
all these examples we see systems, which are capable of “remembering” their
initial state for arbitrary long times.

In the present paper we are constructing a particle system which is “re-
membering its initial phase”. The rough analogy can be described as follows.
Imagine a brownian particle ¢ (), with a unit drift, which lives on a circle.
Suppose the initial phase ¢ (0) = 0. Then the mean phase ¢ (t) = tmod (27) ,
but with time we know the phase ¢ (t) less and less precisely, since its vari-
ance grows, and in the limit ¢ — oo the distribution of ¢ (¢) tends to uniform.
However, one can combine infinitely many such particles, by introducing suit-
able interaction between them, in such a way that the memory of the initial
phase will not vanish and will persist in time.

This is roughly what we will do in the present paper. We will consider a
network of simple servers, which are processing messages. Since the service
time of every message is random, in the course of time each single server
looses the memory of its initial state. So, in particular, the network of non-
interacting servers, started in the same state, would become de-synchronized
after a finite time. However, if one introduces certain natural interconnection
between servers, then it can happen that they are staying synchronized after
an arbitrary long time, thus breaking some generally believed properties of
large networks. We have to add here that such a phenomenon is possible
only if the mean number of particles per server is high enough; otherwise
the infinite network becomes de-synchronized, no matter what interaction
between servers is taking place. So the parameter of the mean number of
particles per server, called hereafter the load, plays here the same role as the
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temperature in the statistical mechanics.

In other words, the transition we describe happens due to the fact that
at low load the behavior of our system is governed by the fixed point of the
underlying dynamical system, while at high load the dominant role is played
by its periodic attractor. A similar phenomenon was described by Hepp and
Lieb in [HL].

Below we present the simplest example of the above behavior. But we
believe that the phenomenon we describe is fairly general. Its origin lies in
the fact that any large network of the general type possesses in the infinite
limit some kind of the continuous symmetry, and it is the breaking of that
symmetry at high load which causes the long-range order behavior of the
network.

1.2 Information networks and their collective behavior

Now we will describe one pattern of behavior of certain large networks, which
was assumed to be universal. It is known under the name of Poisson Hy-
pothesis.

The Poisson Hypothesis is a device to predict the behavior of large queu-
ing networks. It was formulated first by L. Kleinrock in [K], and concerns
the following situation. Suppose we have a large network of servers, through
which many customers are traveling, being served at different nodes of the
network. If the node is busy, the customers wait in the queue. Customers
are entering into the network from the outside via some nodes, and these
external flows of customers are Poissonian, with constant rates. The service
time at each node is random, depending on the node, and the customer. The
PH prediction about the (long-time, large-size) behavior of the network is
the following:

e consider the total flow F of customers to a given node A. Then F is
approximately equal to a Poisson flow, P, with a time dependent rate
function Ay (7).

e The exit flow from N — not Poissonian in general! — has a rate function
v (T) , which is smoother than Ay (T') (due to averaging, taking place
at the node N).

e Asaresult, the flows Ay (T') at various nodes A should go to a constant
limits Ay &~ & fOT A(t)dt, as T — oo, the flows to different nodes being
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almost independent.

e The above convergence is uniform in the size of the network.

Note that the distributions of the service times at the nodes of the network
can be arbitrary, so PH deals with quite a general situation. The range of
validity of PH is supposed to be the class of networks where the internal
flow to every node N is a union of flows from many other nodes, and each
of these flows constitute only a small fraction of the total flow to N. If true,
PH provides one with means to make easy computations of quantities of
importance in network design.

The rationale behind this conjectured behavior is natural: since the inflow
is a sum of many small inputs, it is approximately Poissonian. And due
to the randomness of the service time the outflow from each node should
be “smoother” than the total inflow to it. (This statement was proven in
[RShV] under quite general conditions.) In particular, the variation of the
latter should be smaller than that of the former, and so all the flows should
go with time to corresponding constant values.

In the paper [RSh| the Poisson Hypothesis is proven for simple networks
in the infinite volume limit, under some natural conditions. For systems with
constant service times it was proven earlier in [St1].

The purpose of the present paper is to construct a network, satisfying
all the above assumptions — namely, that the flow to every given node is
an “infinite” sum of “infinitesimally small” flows from other nodes — which
network, nevertheless, has coherent states. That means that the states of
the servers are evolving in a synchronous manner, and the “phase” of a given
server behaves (in the thermodynamic limit — i.e. in the limit of infinite
network) as a periodic non-random function, the same for different servers.

We have to stress that our network exhibits these coherent states only in
the regime when the average number N of the customers per server — called
in what follows the load — is large. For low load we expect the convergence to
the unique stationary state. This “high temperature” kind of behavior will
be the subject of the forthcoming work.

Our network Vo, is constructed from infinitely many elementary “triangu-
lar” networks V (described below, in Section 77). A single triangle network
V = V; with N customers is just a Markov continuous time ergodic jump
process with finitely many states. As N becomes large, this Markov process
tends (in the appropriate “Euler” limit) to a (5-dimensional) dynamical sys-
tem A, possessing a periodic trajectory C, which turns out to be a stable
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(local) attractor. The coordinate ¢ parameterizing that attractor C is the
“phase”, alluded to in the previous subsection. The combined network corre-
sponds in the same sense to the coupled family A, of dynamical systems A.
We establish the synchronization property of that coupled family A., and
that allows us to construct coherent states of the network V.

The networks V,,, combined from M triangle networks V., are ergodic.
Their evolution is given by irreducible finite state Markov processes with
continuous time. Let m); be the invariant measure of the process Vj;. As
M — oo, the sequence of Markov processes V), converges weakly on finite
time intervals to a certain limiting (non-linear Markov) process V.. By the
theorem of Khasminsky — see Theorem 1.2.14 in [L] — any accumulation point
of the sequence 7, is a stationary measure of V.. The special measure yo,
describing “the Poisson Hypothesis behavior”, is also a stationary measure
of V. If xs is a global attractor of V., then, of course, the Poisson
Hypothesis holds. The proof of the Poisson Hypothesis in [RSh] was based
on this argument. The existence of an accumulation point of the sequence 7,
that differs from y., would be the strongest counterexample to the Poisson
Hypothesis. This problem will be addressed in forthcoming papers. Here we
prove a weaker statement that y., is not a global attractor for V.

In [RSt] Rybko and Stolyar observed that the condition that the work-
load at every node of a multiclass open queueing network is less than 1 is not
sufficient for the network to be ergodic. In connection with this, they intro-
duced a new approach to the analysis of ergodicity of networks, which reduces
the problem to the question of stability of the associated fluid models. It was
shown by them that considered in [RSt] two-node priority network is ergodic
if and only if for every initial state of the corresponding fluid model the total
amount of fluid eventually vanishes. This approach was further developed
by Dai [D], Stolyar [St2], and Puhalsky and Rybko [PR], who proved that
stability of the fluid model is necessary and sufficient for ergodicity of a cer-
tain class of general networks. Interesting instances of non-ergodic queueing
networks with mean load being smaller than the capacity, where considered
by Bramson [B1, B2]. Our construction will be based on the following open
network, introduced by Rybko and Stolyar (RS-network) in [RSt].

It is represented by the following 4-dimensional Markov process, which
describes the open queuing network with two types of customers. They
arrive to the network according to Poisson inflows of constant rate \. The
network consists of two nodes — A and B — through which the customers
go. All the service times are exponential, so to describe the network we need
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to specify only the rates, the evolution of types of the customers and the
priorities. The customer of type A (respectively, B) arrives to the node A
(respectively, B). The customer A is served with the rate 4, then is sent
to B, with type AB. There he is served with the rate y45 and leaves the
network. Symmetrically, v5 = 4, and yga4 = vap. Each customer AB is
served before all the customers B, and vice versa. The nominal workload at
nodes A and B equals to p = )\(721 + fygil). The service rates satisfy the
conditions y4p < 2\ and p < 1. It is proved in [RSt] that for certain values
of the parameters the resulting Markov process is transient. The fluid limit
(or Euler limit) of this network evolves in the following non-trivial manner:
each node is empty during a positive fraction of time, but at other moments
it is non-empty, and moreover the total amount of the fluid in the network
grows linearly to infinity:.

The rest of the paper is organized as follows. In the next Section 2 we
will define our networks V4. Here M is the size of the network and N is the
load per node. We formulate the preliminary version of our Main Result. In
Section 3 we study the limiting network, VY = and we prove the convergence
VA, — VY. In Section 4 we introduce the fluid networks, Aj;, which are
coupled dynamical systems, and their limit, A,,, which turns out to be a
non-linear dynamical system, in the sense made precise in this Section. In
particular, we show that A, is not ergodic. In the next Section 5 we prove
the convergence of the Non-Linear Markov Process VX to its Euler fluid
limit, A, as N — oo. The last Section 6 contains the formulation and the
proof of our Main Result.

To save on notation, we consider throughout this paper the simplest el-
ementary symmetric model, depending on 3 parameters. We stress the fact
that this (discrete) symmetry is not essential in our case, and our results are
valid for any small 6D-perturbation of our model, since the above mentioned
limiting continuous symmetry holds in this more general setting.
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Macroscopic sensitivity to localized defects: slow bond and many others...

Abstract: Consider one dimensional Totally Asymmetric Exclusion Process on Z, with
the density of particles being 1/2, and their jump rates being 1 everywhere, but the origin.
At the origin the jump rate is different: once particle arrives to the origin its jump rate
decreases to 1 — A, 0 < A < 1, and becomes again equal to 1, as soon as particle jumps away
from the origin. The central question is to find out for which values of A the current on the
far-right-side of the system is affected by such local slowdown? This problem is known as
the ”slow bond problem”, and the search for the critical value )., above which the current
is affected and below it is not, was a demanding question.

The model has several equivalent representations such as the Polynuclear Growth Model
with ”columnar defect” or, as a directed Last Passage Percolation with "reinforced diagonal”,
and can be treated by Random Matrices techniques as well, using the language of generalized
permutations.

Using Polynuclear Growth language (and other ingredients from random matrices and
interacting particle systems techniques), I first of all will show that A\, = 0. Then, in contrast,
I will show that for some ”similar” growth systems A. could be strictly positive. It will bring
to the general discussion about sensitivity of growth systems to localized defects, questions
of polymer pinning in presence of bulk disorder and other closely related issues.

The talk based on joint works with V. Beffara, T. Sasamoto and M.E. Vares.

157
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ABSTRACT. Let F be afield, V = Fx1+- - -+ Fx, avector space of dimension n
over ', and G < GL(n, F) a finite group acting on V' via F-linear transformations
of the basis elements x1, ..., z,. Let V™ = V@...®V be the m-fold direct sum
of the space V with diagonal action of the group G. Then the group G naturally
acts on the symmetric graded algebra A, = Fx;1,..., 24 | 1 < i < m]. Let
A% denote the subalgebra of invariants of the polynomial algebra A,,, with
respect to G. A classical result of Emmy Noether [8], [9] implies that in the
non-modular case, that is when the characteristic p of F' does not divide |G|
(in particular, when char F = 0) the ring A¢, is generated as F-algebra by
homogeneous polynomials of degree at most |G|, no matter how large m is. On
the other hand, it was proved by D. Richman [10]|-[12] that this result is no
longer hold in the modular case when the characteristic p of F' divides |G|. Let
p > 2 be a prime number, F' = F), a finite field with p elements, H a cyclic group
of order p acting on a linear F,-space V of dimension n, and AZ  the subalgebra
of invariants of the polynomial algebra A,,,, = Fp[zi1,...,2in | 1 <i < m| with
respect to H. In this paper we give a further development of the orbit sum
method proposed by the author in [16] and determine explicitly a complete
system of generators of the algebra AZ in the case when n = 3. In addition,
we find a lower degree bound for the maximal possible degree of homogeneous
invariants forming a complete system of generators of the algebra AX . These
results extend the corresponding results of D. Richman [10]-[12], a result of
Campbell and Hughes [1] concerning the case n = 2, and a more general result
of the author [16] in the case of cyclic groups H of a special form.

LINTRODUCTION

Let F' be a field, A = R[z1,...,z,] a finitely generated commutative R-algebra,
G a finite group of its R-algebra automorphisms, and A“ the subalgebra of
polynomial invariants of G. If zq,..., 2z, are commuting variables, we set

P(z1,..z) = [[ (1 +o(@1)z1 + - olan)2n)
ceG

and denote by 3(A%) the smallest positive integer for which A“ can be generated
as an R-algebra by polynomials of degree at most 3. If each nonzero integer is
invertible in R, then Noether’s classical result [8], [9] states that AY is generated
over R by the coefficients of P(zi,...,z,), so that 8(A%) < |G|. The last
inequality is known as Noether’s bound. The above mentioned result of Richman
[12] and standard arguments based on the use of the Noether map [9] show that
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Noether’s bound 3(A%) < |G| holds under a much weaker assumption that |G/!
is invertible in R. A recent result of Fleishmann [5] demonstrates that in fact the
last inequality holds under the assumption that the order |G| of G is invertible
in R.

If the characteristic p of F' is positive and divide |G|, we speak of the modular
case. Otherwise, we have the non-modular case, which includes the classical
case of polynomial invariants over algebraically closed fields of characteristic
zero. Almost everything that is usually used in the non-modular case (see, for
example, [3], [13], [14]) is missing in the modular case: the Cohen-Macaulay
property fails in general, we have no Reynolds operator (averaging over |G|)
and no Molien’s formula for the generating Poincaré series. Nevertheless, if F' is
a field of prime characteristic p, and H a p-Sylow subgroup of G, the modular
case admits a possibility of very extensive applications of generalized orbit Chern
classes related to H, especially, orbit traces (orbit sums of monomials) and top
orbit classes (orbit norms of monomials). Let F' = F), be a prime finite field with
p elements, and H a cyclic group of order p acting linearly on the vector space
V = F,x1+ -+ Fyx,. Set Appn = F,[VP™] and denote by AX  the algebra
of invariants of A,,, with respect to the diagonal action of H on the space
VM =V @@ V. It turns out that there exist a F,-linear space V containing
V' as a subspace and a cyclic group H (closely related to to the group H and
acting linearly on f/) such that every invariant u € AZ  can be written as a
special F)-linear combination of orbit sums Sz (f), orbit norms Ny (g) (related
to the group H) and also their products Sz (f)Nz(g), for various monomials

f,g € Fp[f/m]. It should be noted that if H is a cyclic group of prime order
p , and F' = F}, a prime field with p elements, then S5 (f) and Ng(g) can be
determined exactly that gives a possibility to write out a system of generating
elements of AX in an explicit form.

The most significant distinction between the non-modular and the modular
case is as follows: Noether’s bound no longer holds in the modular case. For
the first time this phenomenon was discovered by Richman [10] in course of
the study of H-invariant polynomials of the algebra A,,o = Fj[x;,y; | 1 < i <
m|, where H is a cyclic group of prime order p. In this paper he proved that
B(AH,) > m(p — 1). More generally, if G is a finite group of order divisible by
a prime number p and A,,, a polynomial algebra over an arbitrary field F' of
characteristic p, Richman [11] proved that

m(p — 1)
B(AS,) = e

In the case of permutation groups this bound was later improved by Kemper |[6]
and by the author [15] as follows: if F' is a field of prime characteristic p, and
G C S, a permutation group which contains an element of order p®, then

BAL,) = max{n,m(p® — 1)} .

This result implies, in particular, that if R = Z is the ring of integers then
B(ASn ) > max{n,m(n — 1)/2}. It has been recently shown by Fleischmann
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[4] that the above low degree bound B(A% ) > max{n, m(p* — 1)} is sharp: if
n = p~ and m > 1 then

B(Apr) < max{n,m(n —1)} .

The last result can be regarded as a refinement of the Campbell-Hughes -Pollack

upper bound [2]
B(A;S)’znn) < max{n, mn(n - 1)/2}7 )

which holds in the case of an arbitrary polynomial algebra A,,,, over a commutative
ring R.

2. CONSTRUCTION OF A COMPLETE SYSTEM OF GENERATORS

Theorem 1. Let H < GL(3, F,) be a cyclic group of order p which is generated
by the matrix

1 0
y=1| 0 1
0 0 1

There exists a system of homogeneous polynomials
Tz, Ti,g .3 Wiee UG08

Clinins Vining  Vinins  Wiinios s Su(f),

where
lo = (i1,...,00), 1<i1<...<iy,<m, 1<o0<3,

such that every invariant u € A2, is a polynomial over F, in elements of this
system.

Corollary 2. If m > 1, then every system of generating elements of the
algebra Ag,g contains a polynomial of degree at least m(p — 1).

Theorem 1 provides an explicit construction of generating elements of the
algebra AL in terms of the orbit sums and the orbit sums of monomials. The
algebra of vector invariants AH, over F,, where H < GL(2,F},) is a cyclic
subgroup of order p generated by

(11
(0 1)
for the first time was studied by Richman in [10]. In particular, he found a
minimal generating system of the above algebra in the case when p = 2 and
conjectured that a similar system would generate A%, in the case of odd prime p.
This conjecture was proved by Campbell and Hughes in [1]. Another important

result of the last paper is that for m > 2 the algebra AH is not Cohen—
Macaulay. Independently, an analogous generating system for the algebra AH
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where n = 2r > 2 and H < GL(n, F},) is a cyclic subgroup of order p generated
by the matrix
J1
J2

Jr

with the basic Jordan blocks Jy, Jo,...,J, of sizes ny =ny = -+ =n, = 2, was
found by the author [16].

In principle, the result of Theorem 1 can be extended to the general case of
the algebra A of polynomials f € A,,, that are invariant under the action of
an arbitrary cyclic subgroup H < GL(n, F},) of order p generated by the n x n
matrix

J1
J2

Ir

with the basic Jordan blocks Ji, Js, ..., J,. of sizes ni,ns,...,n,, respectively.
Moreover, the arguments of the paper give also a possibility to find a low bound
for the maximal possible degree of a generator in a complete generating system
of the algebra A in the case when G < GL(n, F,) is an arbitrary group
containing the cyclic subgroup H as a subgroup.

3. A BRIEF DESCRIPTION OF THE MAIN IDEAS
We now explain briefly the main ideas underlying the proof of Theorem 1. Let
App =Flzi; |1 <i<m,1 <j<n]

be a polynomial algebra over F,, G < GL(n,F,) a finite group, and f a
monomial from A,,,,. The use of orbit sums

Sa(f)= ) |oeGlu

ue{o(f

is most efficient in the case when the group G acts on elements of the algebra
A,.n by permutations of the vector variables

Ir1T — (xll,...,xml),...,xn = (Iln,...,l‘mn) .

In that case each invariant u € A% is an Fj-linear combination of the above
orbit sums S (f) for various monomials f. This important result is an easy
consequence of the following fact: if a monomial f appears in an invariant u with
a nonzero coefficient a, then for each ¢ € G the corresponding monomial o(f)

also appears in u with the same coefficient a. Unfortunately, the above property
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is no longer hold for finite groups G of a more general form, in particular, for
cyclic groups H generated by matrices

J1
J2

Jr

with basic Jordan blocks Jy, Jo, ..., J, of sizes ny,no,...,n,, respectively, such
that 1 < n; < p, for at least one i = 1,2,...,r. On the other hand, if ny = ny, =

- =n, = p, then after a non-singular linear transformation we can proceed to
a new system of vector variables

i’l = (jlla---fml)gw-,jjn = (jlna---ai'mn)
on which the group H acts by cyclic permutations.

Let H be the cyclic group of prime order p > 2 generated by a non-singular
square matrix v with the basic Jordan blocks J1, Js, ..., J,. of sizes ny,no, ..., n,,
respectively, and recall that H acts linearly on the vector space V" of dimension
m(ni + -+ -+ n,.). The proof of Theorem 1 falls into three steps.

(i) At the first step we 'blow up’ each Jordan block J;, 1 < ¢ < r, of
the matrix v to a Jordan block of the largest possible size p. As a result, the
generating matrix y of the cyclic group H is transformed into the corresponding
square matrix v of size v = rp and the group H into the corresponding cyclic
group generating by 4 and acting on the vector space V™ of dimension muv. It
follows from the above that then one can find new vector variables

531 - (i'lly---»jml)v--'vxn - (jlny---y-%mn) )

obtained from the original variables

571 :(jlla---ajml)a---axn: (jlny---ajmn)

by a non-degenerate linear transformation, on which the group H by cyclic
permutations. This property of the group H allows us to show that every
invariant v of the algebra AL is an F,-linear combination of the orbit sums
Sg(f), orbit norms Ng(g) and also their products Sz (f)Nz(g) for various
monomials f,g € A.,..

(ii) At the second step we we demonstrate that an appropriate embedding

of the algebra A,, 3 into A,, , results a fairly simple test distinguishing among

the H-invariants v € Agp the polynomial invariants with respect to the action
of H. The use of this test makes possible an explicit construction of invariants
u € Ay, 3 as Fp-linear combinations of orbit sums S (f) and orbit norms Ny (g)
a special form, and also their products products Sz (f)Ng(9).

(iii) At the third step we form a complete system of generators of the algebra
ANl 5 by selecting certain families of homogeneous polynomials u € Ay, 3 of
bounded degree.
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Tarasov A.G.
Spectrum of resonances in one dimension

Consider Schrodinger operator on real line. The potential V(z) is supposed to be super-
exponentially decaying, i.e such that for every M > 0, there exists a constant C'= C(M) > 0
such that

V()] < Ce M- (%)
for any = € R. The scattering matrix for operator Ly = —d?/dx? + V(z) is defined as
_ (Ak) B(k)
s = (e pie)

where the reflection and transitions coefficients (since V' satisfies to condition (%) ) for k € C,
can be represented in the following form

1

B — - —ikx (=)
W = g [V O
1 .
Clk) = 2 |, e*e V() y® (z, k) dz |
and
1 .
Ak) = 1 + — [ e™V(2)y™(z, k) dx,
QZk’ R
1 .
Dk) = 1 + — [ e V(z)y(z,k)dx
2ik [y
respectively. Here y® (2, k) = e**(1—e¥* Ry, (k)e*™* V'), and Ry (k) is the resolvent for Ly .

Definition 1 A resonance for operator Ly is a pole in C_ in the meromorphic continuation

of S(k).

Since matrix S(k) is unitary, it follows from the Schwartz symmetry principle that poles of
the scattering matrix in C_ coincide with zeroes of the determinant F(k) = det S(—k). The
transition coefficients are bounden in C,, so for k € C_ one can write
1 -1

Ek) = 1+ mB(—k)C(—k) + O(k™).
Thus the problem under consideration is reduced to analysis of behavior of the transition
coefficients. By means of rude bounds on these coefficients on can determine asymptotically
free poles regions.

Statement 1 Let V(z) satisfies to condition (x). Suppose that Fourier transform V (k) is
bounded in the sectors {| arg(+k)| < ¢} Then there are only finitely many scattering poles in
these sectors.

Let potential be of the form V(z) = e 7@ where P(x) = 2% /2m and m € N. In this case
the asymptotic formulas for distribution of resonances are inferred.

il
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_2m . .
Theorema 1 Suppose Ly = —d?/dx?4-e="/>™ Then spectrum of resonances of Ly consists
of two series

Fidm 2 e 3m —2)(2m —1) 1
et ™m [liFi(m )(2m )nn:F

k‘ . _ :|: ( ) 2m
+ 2 2m—1n 4mm? n

. (2m - 1)Ci 1 1-3m
—_ O 2m
T T a + O(n )|
2m —1 2mm o
where Cy = m In - +(3m—2)<ln2m_1 :I:z§).

Function V (k) is super-exponentially decaying in the sectors |arg(+k)| < m/4m. Hence, it
follows from statement 1 that these sectors are asymptotically free of resonances. By means of
saddle point method (see [1]) one can obtain that in region K := { argk € (—7+7/4m, —7/4m)}
the following formula holds

~

1 _—m_
V(2k) = e O (S(z0(k), k) (1 +0(k m—1)> .

Here 29(k) = (QZk)Wl—l is a saddle point for phase function S(z,k) = 2ikz — P(2).
The main part of the proof of the theorem 1 is

Proposition 1 Let k € K = {k € C_, ReS(z(k),k) > 0}, then
B(—k) = \/%?(—Qk)<1+0(k%))

and

C(—k) = V2rV(2k) (1 + O(k%)).

To obtain these formulas one should estimate integrals
/ 2RV (1) y ) (z, —k) dax.
R

That can be done via some modification of the saddle point method. One of the most important
step of this modification is contraction and bound of meromorphic continuation for function
y ) (z, —k) to the domain containing the saddle carve R_U[0, 2z(k)]U (20(k) +R4) for S(z, k).

Using asymptotics for A(—k) and D(—k) the equation E(k) = 0 can be rewritten in the
form

InS(zo(k), k) + O(k'5) = min — iln (r/2), neN,

which allows to calculate resonances with qualified error.

The described above scheme of calculating resonances can be extended to rather wide class
of potentials.

Theorema 2 Suppose that function V(x) is even and

Viz) = e, Pa) = ayna® + az2™ + ... + ap,
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where Ao, aoy, > 0. Then the spectrum of resonances for Ly = — d2/dx2 + V(x) consists of
two series kT, such that sufficiently large v € N the following holds

v

3m — 2
2m

S(z(ky) k) = we + nws, + O<V_min{1_%,%_%}>’

1/(2m—1)
) is the saddle point for S(z,k) = 2ikz + P(x) and

where zo(k) ~ (ik/man

3m —2
2m

Wy, = LWy — In ((2m — 1)a2m) + % In (4m3(2m - 1>a§m/ﬂ-) -

In this case contraction of saddle carve for S(z, k) is rather difficult problem. For such curve can
be chosen the line L consists of two rays R_ and £(k) + Ry C 29(k) + Ry and crosspiece v(k),
connecting z = 0 with (k). Shape of the v considerable depends on positional relationship
between saddle point zy(k) and set Q¢ = {Re P(z) > —C}.

In [2] is determined the leading asymptotics of the resonances counting function for Schrodinger
operator in one dimension with super-exponentially decaying potential. Results described above
confirm and refinement this information.
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Dynamic Routing; Configuration of Overloaded
Interacting Servers

N.D. Vvedenskaya*

We consider a symmetrical network with k servers and [ Poisson in-
put flows. The protocol uses dynamic routing: each flow is assigned
to a subgroup of m servers, upon its arrival a message is directed to
the least busy of these servers. Under the condition that at least m
servers are overloaded the number of overloaded servers depends on
the rate of input flows. The work prolongs [1], where a similar effect
is described for a circle of interacting servers.

1 Description of problem, main theorem

We consider networks that use dynamic routing FIFO protocol where each flow
is assigned to a subgroup of m servers. Upon its arrival a message selects the
least busy server among the assigned ones. We are interested in probability of
large fluctuations where the massages of a flow have large delays.

There are many works investigating large fluctuations in networks with dy-
namic routing (see for example the bibliography in [1]). This work is a contin-
uation of [1], where a circle network with k servers and k Poisson input flows is
considered and the distribution of message lengths has light tails. Each flow is
assigned to 2 servers; upon its arrival a message is directed to the server with
smallest workload. It is shown that under the condition that at least 2 servers
are overloaded the number of overloaded servers depends on the rate of input
flows.

Consider a symmetrical system S = S(k,m) formed by k identical servers
S =(s1,...,8¢) and | = (7]:;) independent Poisson flows F' = (fa,,..., fa,), each
of rate A\. Here A; = (j1,...,jm) are the numbers of servers Sa, = (sj,,...,5j,,)
assigned to fa,. The servers have infinite buffers and operate with equal rate
1. Upon its arrival with f4, a message is directed to a server from Sy, that at
the time of its arrival has the smallest workload. The flows are described by the
sequences of independent pairs

(57(1Aj)7T7(1Aj))7 n=..,-10,1,.... j=1,..,1

* Kharkevich Institute for Information Transmission Problems, RAS, Moscow, ndv@iitp.ru
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where T,SAj ) are the intervals between arrivals of two messages and &

the message lengths. All variables are iid, T,(f‘j ) are exponentially distributed,
Pr(rs™ ) > t) = e=*. The time ¢} of message (&(flj ) )) arrival is nega-
tive if n < 0 and positive if n > 0. The distributions of 55{4” are identical. We
require that there exists such 6., 0 < 6, < oo, that

7(lAj) B

(Aj)

00) =Fe% " <00 as 0<4,, 01%1911 o(f) = oo. (1)
+

The mean intensity of the sum of Poisson flows upon one server is A =
The system is in stationary state,

AP (0) <1, A<A=Fk(o0) " .

If during some time period the flow intensity is large the flow is said to be
overheated, if there is a lot of unserved messages in a buffer of a server the
server is said to be overloaded.

We shown that if a message of some flow waits for a long time to be served
then the performance of network depends on mean flow rate: there exists value
of input flow rate such that if the arrival rates are above it a long waiting time
for a messages most probably coincides with overload of all servers. On the
other hand in case of low rate the overload of m servers most probably is not
connected with overload of others. The proof of this facts is based on comparison
of § with a network where each message selects one of m assigned servers with
a fixed probability. The probability of large workload decreases exponentially
with increase of workload. Remark that in a limit system with infinite number
of servers in case of dynamic routing the stationary distribution of queue lengths
decreases superexponentially (see [2]).

Introduce a notion of virtual messages. These are messages that arrive upon
S at time moment ¢ = 0 with flows fa;, have zero lengths and are directed
to the servers according to the dynamic routing protocol. The delay (waiting
time) of virtual message that arrived with f4, is denoted by w;. The delay of
virtual message that arrived with flow fa,, A1 = (1,2,...,m), is denoted by wy.
We are interested in probability of large w; and are looking for the asymptotics

of probability
-1
J = lim — InPr(w; > n)
n—oo n
Consider three random processes:

1. The I dimensional compound Poisson process ¢(t) = (¢(41(t), ..., (A (1)),
Aj _ A;j)
C( J)(t) = Zn: Oﬁt;Aj)<t gn il
2. The k dimensional process w(t) = (@' (t),...,w"(t)) that describes the
amount of work delivered to the servers during time [0, ).

3. The k dimensional Markov process w(t) = (w'(t), ..., w*(¢)) that describes
the workload (the amount of unserved work) at the servers at moment ¢.

Consider also the scaled versions of these processes: df‘j )(t) = 1) (nt),
i (t) = Lwt(nt), wi(t) = Lwi(nt).

n n
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It is clear that Pr(w; > nd) = Pr[ min(w},...,w™) > d].

A topological space of not-decreasing functions defined on [0, 00) and equal
to 0 at x = 0 is introduced; the space is equipped with uniformly week topology
(see [3]); a sequence of measures is defined by the processes ¢,,. On this space
a rate function I is considered. By conditions (1) we can consider only the

subspace of absolutely continuous functions where I is defined by

I(z) = /000 sup {0%(t) — A[p(f) — 1]}dt, x € X,,

9<9+

here # is a derivative on ¢t. For z(t) that is a trajectory of f4, we call  the flow
speed.

In our problem as n — oo the components of optimal trajectories ¢, where
rate function reaches its conditional minimum, converge to the functions of form

, a ast € [0,7),
o(t) = «(0)=0 2
t1.0(t) {)\gp’(O) =a* ast>T, 77.0(0) 2)

Below we always presume that as n — oo the trajectories converge to such
functions. The asymptotics of large delay probability is estimated for the limit
trajectories of form (2). For a set of trajectories Z(t), that converge to zr 4
I(z) = inf I(z) = T'sup {0a — Alp(0) — 1]}.

Introduce an event
L'j(n) = (w; > nd),

it indicates that a virtual message that arrived with f4,, has a delay > nd.

THEOREM 1. Foranyk, k>3, and any d > 0 there exist A\, AE)
0<Am) < AF) < X, that depend on €4 distribution such that

> If A< Ay, then J=lim, .o =X InPr(I1(n)) = mb,,d, where 0,, is a
positive root to equation mf = A[p(6) — 1].

The limit dynamic of conditional process ¢,, under the condition I'y(n) is
Cpn = (T a0y TT %y ooy TT 0 )y a1 = AP (O1). (3)

> If A > XE) then J = lim,_o0 _TllnPr (T'1(n)) = kbOrd, where 0y is a
positive root to equation k = )\(qu) [p(0) —1].

The limit dynamic of conditional process ¢,, under the condition I'1(n) is
Cn - (xT,akaa---axT,ak>a ar = )‘Qol(ek) (4)

Remark that the event I'y in case A < A is mainly defined by f4,, only this

flow is overheated, and in case A > A(¥) all flows are overheated.
Below we consider several scenarios that bring the events I'y (n) and estimate
there probability.
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2 Comparison of two protocols of routing

In addition to system S with dynamic routing introduce an auxiliary system
S with similar k servers and [ flows. The realization of flows in both systems
are identical. At S(© the routing is random: a message of flow f 4, with given
probability a(j, r) is directed to the server s,., s, € S4,. Naturally, 0 < a(j,r) <
1, >, a(j,r) = 1. Remark that in auxiliary system the flows upon the
servers are independent and Poisson. We say that fa, is served by servers
SpyseSryy ¢ <mif a(f,r1) > 0,...,a(f,m¢) > 0.

Suppose that during some time interval T" the flows F' have the speeds
aAy,...,a4,.- We call these flows balanced with respect to servers S if for any
j,r there exist such a(j,r) and such b > 0 that

. Zl': QA;
Za(y,r)aAj = % =b.
J

Note that a(j,r) may be defined not uniquely.

Now compare the performance of systems S and balanced system S(©).

In case of system S(9) consider the random processes ¥ and v that are similar
to processes w and w for system S.

In space R* denote by W;(t) and W, (t) the projections of w(t) and w(t)
upon the bisectrix w! = ... = w* and denote by /Wp(t) and W,(¢) the projections
of the same vectors upon a hyperplane orthogonal to the bisectrix. Similarly
denote by Vi (t), Vi(t) and V,(t), V,(t) the projections of ¥(¢) and v(t) upon the
bisectrix v! = ... :/\fuk and upon a hyperplane orthogonal to the bisectrix.

Remark that |W;(t)| = |Vi(t)|. (Here and below |a| is the length of vector
a.)

We call both systems overloaded if Z;Zl a; >k (and b > 1).

Below we present without proofs several statements.

LEMMA 1.1IfS and S© are overloaded and flows F are balanced then

BlI5 ()|~ [ (@)]] <O (), Bl'()] ~ (1)l <O ("), <<, (5

E||@'(t)] — @’ (1)|| < O (t), E|w'®)]— v (t)]| <O (t7), % <pB<1. (6)
|E|W, ()] — E|V,(t)|| <const uniformly in t.

Lemma 1 states that both in S and S(® the load vectors are concentrated in
the neighborhood of bisectrix. The following example shows that in fact in a
system with dynamic routing the load vectors are more concentrated.
Ezxample. Consider a system with 2 servers and 1 flow ( k =2,1 =1, m = 2).
In auxiliary system set a(1,1) = «(1,2) = 1. At the moment ¢, of message
arrival vector Vj,(t,, +0) — V,,(t,, — 0) is directed with equal probability towards

the bisectrix or towards the opposite direction, E|V,,(t)| = O (n'/2) for V t. If
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|W,(t 4+ 0)| # |W,(t — 0)| then vector W, (t + 0) — W,,(¢t — 0) is directed towards
the bisectrix and E|W,(t)| = O (1).

If the flows are not balanced then F' and S can be divided into r groups of
flows F(p) and servers S(p), F = ,_, F(p), S = U,—; S(p), so that the flows
of F(p) are served by the servers S(p) and F(p) are balanced with respect to
S(p). Denote by b(p) the mean sum of speeds of flows upon a server s; € S(p),
let b(p) < b(p —1).

The dividing can be performed in correspondence with dynamic routing:
Condition 1. If some flow is assigned to servers of different groups it
is served by the servers of the group with the smallest possible b(p).

The dividing for which Condition 1 is fulfilled is called a proper dividing. It
can be shown that a proper dividing is unique.

Ezample of proper dividing: £k =1 =3, m = 2, Ay = (1,2),a4, =
As = (2,3),a4, = 1, A3 = (1,3),aa, = 1, a(1,1) = a(1,2) = 1/2, a(2,2) =
0,a(2,3) =1, a(3,3) = 1,(3,1) = 0, b(1) = 2.5,b(2) = 2.

Below we use the same notation S(p), F(p) for groups of S and S.

After a proper dividing is chosen the space R* of v is divided into r subspaces
R*» where k, is the number of s; € S(p). If b(p) > 1 the load vectors vP(t) =
(vPr(t),...,vP*» (t)) are "mainly" concentrated in neighborhood of sub-bisectrix
vP1 = ... = vP*» and increase with speed b(p) — 1 (compare with (5)). .

ot

LEMMA 2. If proper dividing is chosen and b(p) > 1 then for load
vectors wP(t) = (wP'(t),...,wP*» (t)) the inequalities of type (6) take place, the
components of wP(t) increase with speed b(p) — 1.

(0)

Consider an event Fj

L'j(n).

(n) = ([minsiegAj v'] > nd) that is similar to event

COROLLARY 1.Asn— oo asymptotics of Pr(I';(n)) coincide with
asymptotics of Pr(Fgo) (n)).

Let the evens I';(n) and Fgo)(n) take place under the condition:
C) during time interval 7' the flows F' have the speeds aa4,,...,a4, and are
divided properly. Let s, be a server where r = argmin;’; v?(7) and s, € S(p).
That means that in the limit n — oo the speed of increase of v (and of wl),
1 < g < m, is not less then b(p) — 1.

Set F' = Ug—1 F(q), [F'[ =1" and 5" = Uy, S(q), |8'] = ¥/, here I = (fr;)

PrRoPoOSsITION 1. Therate function of events I'y(n) and Fgﬂ) (n)
under the conditions C) is not less then the rate function of similar events for

a properly divided flows where speeds of flows fa, € F(q) C F' are equal to
ay, = le(—zgp), the speeds of fa, € F\ F' are equal to a*, |v7(t)| and |w?(t)],
s; € 5, increase with speed b(p) — 1.

From large deviation theory and from above statements follows
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LEMMA 3. The rate function J(k',m) of events Fgo)(n) and 'y (n) un-
der the condition that I’ flows assigned to k' servers have equal speeds and are
overheated, ' = (f’n), while I — ' flows have speed a*, is equal to

J(K',m) = k'6d, (7)
where 6 is the root to equation
Ko=9NK)=UX(p)—1). (8)
The speed of overheated flows is a = A’ ().

We see now that the rate function of events I'y (n) and F(lo)(n) caused by some
configuration of flows is bounded from below by rate function of similar events
caused by configuration of flows where I’, 1 < I’ < [ flows have equal speeds
a > a* and [ — I’ flows are of speed a*.

To prove the theorem me have to investigate the dependance of J(k',m)

on A and k. Remind that \ = %, A < (£(0))"". Tt follows from (7),(8)

that as A — A = (¢/(0)) ™" (and A — ) then lim,,_, , 3 ¥(\ k) = 0, and
w <k A—i V(A k') > 0. Therefore if A is sufficiently large then J(k',m) takes
its minimum at &’ = k, the event w; > nd is most probable as all flows are
equally overheated, see (4).

Further, as limy_,o 6’ = 0T the function 9¥(\, k') increases the faster the less
is k’. Therefore for sufficiently small A J(k’,m) takes its minimum as k' = m.
The event wy > nd is most probable as only one flow f4, is overheated, see (3).

Remark that for not symmetrical system the statement of Theorem 1 may
be wrong.

We thank V.M. Blinovskii, E.A. Pecherskii and Y.M. Suhov for useful dis-

cussions.
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On games of continuous and discrete randomized
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Abstract. Using the game-theoretic framework for probability, Vovk
and Shafer [7] have shown that it is always possible, using randomiza-
tion, to make sequential probability forecasts that pass any well-behaved
statistical test. We show that Vovk and Shafer’s result is valid only when
the forecasts are computed with unrestrictedly increasing degree of ac-
curacy. We present a test failing any given method of randomized fore-
casting which uses a fixed level of discreteness.

Using the game-theoretic framework for probability [6], Vovk and Shafer have
shown in [7] that it is always possible, using randomization, to make sequential
probability forecasts that pass any well-behaved statistical test. This result gen-
eralizes work by other authors, among them are Foster and Vohra [2], Kakade
and Foster [3], Lehrer [4], Sandrony et al. [5], who consider only tests of calibra-
tion.

We complement this result with a lower bound. We show that Vovk and
Shafer’s result is valid only when the forecasts are computed with unrestrictedly
increasing degree of accuracy. We present a test failing any given method of dis-
crete randomized forecasting. To formulate this example, we use the forecasting
game presented by Vovk and Shafer [7], namely Binary Forecasting Game II.

Let P{0,1} be the set of all measures on the two-element set {0,1}. Any
measure from P{0, 1} is represented by a number p € [0,1] - the probability of
{1}. Let P[0, 1] be the set of all probability measures on the unit interval [0, 1]
supplied with the standard Borel o-field F.

Randomizing forecasting is defined as follows. For each n, a forecaster given
a binary sequence of past outcomes ws ...w,—_1 (and a sequence of past forecasts
Ply---,Pn—1) Outputs a probability distribution P, € P[0, 1]. The forecasts p,
of the the future event w, = 1 are distributed according to this probability
distribution.

Vovk and Shafer’s [7] Binary Forecasting Game II between three players -
Forecaster, Skeptic, Reality, Random Number Generator is described by the
following protocol:

* This research was partially supported by Russian foundation for fundamental re-
search: 09-07-00180a
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Let Ko =1 and Fy = 1.
FORn=1,2,...
Skeptic announces S, : [0,1] — R.
Forecaster announces a probability distribution P, € PJ0, 1].
Reality announces w, € {0, 1}.
Forecaster announces f, : [0,1] — R such that [ f,,(p)P,(dp) <0.
Random Number Generator announces p,, € [0, 1].
Skeptic updates his capital I, = KC;,—1 + Sy (pn) (Wn — Pn)-
Forecaster updates his capital F,, = F,_1 + fn(pn)-
ENDFOR
Restriction on Skeptic: Skeptic must choose the S,, so that his capital IC,, is
nonnegative for all n no matter how the other players move.
Restriction on Forecaster: Forecaster must choose the P, and f,, so that his
capital F,, is nonnegative for all n no matter how the other players move.
Vovk and Shafer [7] showed that Forecaster has a winning strategy in the
Forecasting Game II, where Forecaster wins if either (i) his capital F,, is un-
bounded or (ii) Skeptic’s capital IC,, stays bounded; otherwise the other players
win.
Using some specific forms of S,,(p), Shafer and Vovk [6] have shown that
Forecaster has strategies forcing the strong law of large numbers and the law of
iterated logarithm.

Theorem 1. Forecaster has a winning strateqy in Binary Forecasting Game II.

For completeness of the presentation, we give a sketch of the proof from [7].

At first, at any round n of Binary Forecasting Game II, a simple auxiliary
game between Realty and Forecaster is considered: Forecaster chooses p,, € [0, 1],
Realty chooses w,, € {0,1}. Forecaster losses (and Realty gains) S(py,)(wn —pn)-

For any mixed strategy of Realty Q,, € P{0,1}, let Forecaster’s strategy be
pn = Q{1}. So, the Realty’s expected gain is S(p,,)(1 — Q{1})Q{1} + S(p,)(0 —
Q{1})Q{0} = 0, where Q{0} =1 — Q{1}.

In order to apply von Neumann’s minimax theorem, which requires that move
space be finite, we replace Forecaster move space [0,1] with a finite subset of
[0,1] dense enough that the value of the game is smaller than some arbitrary
small positive number A (depending on n). This is possible, since |S,(p)| <
K1 < 2771 2 The minimax theorem asserts that Forecaster has a mixed
strategy P € P[0, 1] such that

/ S0 (p)(wn — p)P(dp) < A (1)

for both w,, =0 and w,, = 1.
Let Ea be the subset of P[0, 1] consisting all probability measures P satis-
fying (1) for w, = 0 and w,, = 1. Endowed with the weak topology, P[0, 1] is

2 Skeptic must choose Sy, (p) such that KC,, > 0 for all n no matter the other players
move.
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compact. Since each FA is closed, NEa, # (), where A;, i = 1,2,..., is some
decreasing to 0 sequence of real numbers. So there exists P, € P[0, 1] such that

/ S0 (9)(wn — p)Pa(dp) <0

for both w,, = 0 and w,, = 1.

In Binary Forecasting Game II, consider the strategy for Forecaster that
uses at any round n the probability distribution P, just defined and uses as his
second move the function f,, defined f,(p) = S, (p)(wn — p). Then F,, = IC,, for
all n. So either Skeptic’s capital will stay bounded or Forecaster’s capital will be
unbounded. A

In that follows we consider some modification of Binary Forecasting Game
IT in which Skeptic (but not Forecaster) announces f,, : [0,1] — R. This means
that Skeptic defines the test of randomness he needs.

Also, at each step n, Skeptic divide his capital into two accounts: IC,, =
O, + Fn; he uses the capital F,, to force Random Number Generator to generate
random numbers which pass the test f,.

Let IC() = 2.

FORn=1,2,...
Skeptic announces S, : [0,1] — R.
Forecaster announces a probability distribution P, € P[0, 1].
Reality announces w,, € {0, 1}.
Skeptic announces f,, : [0,1] — R such that [ f,(p)P,.(dp) <O0.
Random Number Generator announces p,, € [0, 1].
Skeptic updates his capital IC,, = KCp,—1 4+ Spn(Pn) (Wn — Pn) + fr(Pn)-
ENDFOR
We divide the Skeptic’s capital into two parts:
K, = Q, + F, for all n, where
Qozlandfozl.
Qn = Qn—l + Sn(pn)(wn _pn) and
Frn = Fn-1+ fn(pn) for all n. > 0.

Restriction on Skeptic: Skeptic must choose the S,, and f,, so that his capital
ICy, is nonnegative for all n no matter how the other players move.

Actually, Skeptic will choose the S,, and f, so that both of his capitals Q,,
and F,, are nonnegative for all n no matter how the other players move.

Assume for each n, the probability distribution P, is concentrated on a finite
subset D,, of [0,1], say, D,, = {pn.1,---,Pn,m, - The number A = liminf A,,,

n—oo
where
An = 1nf{|pn,z — Pn,jl - [ 7£ j}:
is called the level of discreteness of the corresponding forecasting scheme on the
sequence wiws . ... In general case D,, is measurable with respect to the o-field

Fn=1 depending on wy ...wp_1.
A typical example is the uniform rounding: for each n, rational points p,, ;
divide the unit interval into equal parts of size 0 < A < 1 and P, is concentrated
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on these points. In this case the level of discreteness equals A for an arbitrary
sequence wiws . . ..

We prove that when Forecaster uses finite subsets of [0, 1] for randomization
Realty and Skeptic can defeat Forecaster (and Random Number Generator) in
this forecasting game, where Realty and Skeptic win if Skeptic’s capital C,, is
unbounded; otherwise Forecaster and Random Number Generator win.

Theorem 2. Assume Forecaster’s uses a randomized strateqy with a positive
level of discreteness on each infinite sequence w. Then Realty and Skeptic win in
the modified Binary Forecasting Game I1I.

Proof. Define a strategy for Realty: at any step n Realty announces an outcome

o — 0 if P,((0.5,1]) > 0.5
™ ] 1 otherwise.

We follow Shafer and Vovk’s [6] method of defining the defensive strategy for
Skeptic.

Let e, = 27% k =1,2,.... We define recursively by n: Q5% =1, $%(p) = 0,
s=1,2,and forn > 1

SyF(p) = Q.51 &(p > 0.5), (2)
SwF(p) = e Q1 E(p < 0.5), (3)
where &(true) = 1, {(false) =0, and for n > 1
Q" = Q% + 8, (pn)(wn — pn)), (4)
Qn* = O + 53 (pa) (wn — ). (5)

We combine S}*(p) and S2*(p) in the Skeptic’s strategy S, (p) = 3(S}(p) +

S2(p)), where S} (p) = 3 e SE%(p) and S2(p) = Y €,52*(p). It can be proved
k=1 k=1

by the mathematical induction on n that 0 < Q%% < 2™ and [SLF(p)| < 27! for

1 = 1,2 and for all k£, p and n. Then these sums are finite for each n and p.

By (4)-(5) the Skeptic’s capital Q,, at step n, when he follows the strategy

Sn(p), equals Qn = 5 37 e (Qy" + Q0F).
k=1

Define for each n the function gn(p) = (26(p < 0.5) — 1)(w,, — p). Let

Ep, (gn) = fgn(p)Pn(dp).
Let Forecaster be used some randomized strategy P,, n=1,2,....
We define recursively by n: FY¥ =1, g¥(p) = 0, and for n > 1

gk (p) = —erFh_1(9n(p) — Ep,(9n)), (6)

where €, = 27%, and ¥ = FF_, + g% (p,) for n > 1.
By definition for any k£ and n,

Fr =110 = exlg;(p;) — Ep,(9))))- (7)

J=1
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By (7) 0 < Fk < 2" for all n and k. Finally, Skeptic defines at step n, f,(p) =

> exgk(p). By definition [ f,,(p)Pn(dp) < 0.
k=1

By (7) the Skeptic’s capital F,, at step n, when he follows the strategy f,(p),

equals F,, = > exFF. Also, F,, > 0 for all n.
k=1

Suppose that Sup]: = C < oo, where C' > 0. Then Sup Fk < C for each k.
We have for each k,

In F) > _Ekz 9;(pj) — Ep,(95)) — nej,.

Here we use the inequality In(1+ 1) > r —r? for all |r| < 1.
Since F,, is bounded by C' > 0, we have for any k
1 & —InC + In(eg)
= (9;(p;) — Ep,(g;)) > — €k = —2€ (8)
n neg

for all sufficiently large n.

Define two variables ¥, 1 = Y &(p; > 0.5)(w; —p;) and J, 2 = > &(p; <
j=1 =1
0.5)(w;j —pj). By definition of g;, ¥, 0 — VU1 = Z 9j(pj). Define g1 ;(p) = &(p >

0.5)(w;j —p) and g2,;(p) = &(p < 0.5)(w; — p). Then 9;(p) = 92,5 (p) — 91,;(p)-
Assume for any n the probability dlstrlbutlon P, is concentrated on a finite

set {Pn1,--»Pn.m,, }-

For technical reason, if necessary, we add 0 and 1 to the support set of P,
and set their probabilities to be 0. Denote p,, = max{pn: : pn+t < 0.5} and
py =min{pn ¢ : pnt > 0.5}

By definition w,,, p; and p;, are predictable and p;f —p~ > A for all n, where
A > 0. We have

ZEPJ- (915) < > Pi{p>05}(—pf)+ > Pi{p>05}(1—p]) <

w; =0 w;=1
—0525 0)p; +05Z£ D1 -p). (9
Y Eplg25) > > Pi{p <05} (=p;)+ > P{p<05}(1—p;)>
Jj=1 w;=0 w;=1

—0.52&( +05Z§ 1)(1—pj). (10)
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Subtracting (9) from (10), we obtain

ZE’Pj (95) = ZEPj (92,5) — ZEPj (g1,;) > 0.5An.
Jj=1 j=1

j=1

Using (8), we obtain for all sufficiently large n

1 1 & 1 &
~(Unp = Un1) = E;gj(pj) > E;Epj (95) — 2€x > 0.5A — 2¢;,.  (11)

Now we compute a lower bound of Skeptic’s capital. We have from the defini-
n n

tion (2)-(3) Qp% = T (1 —exé(p; > 0.5)(w; —p;)), and Q3% = [T (14 exé(p; <

J=1 j=1
0.5)(w; — p;))- By these inequalities, 0 < QbF < 27 for all n and for i = 1,2, no
matter how the other players move. Also at step n, In Q1% > —€xUn1 — e%n and
In Q%k > €x0n,2 — ein. These inequalities and (11) imply

In Q,ll + In Q2
n

lim sup n > 0.5ep A — 26; > 267 (12)

n—oo

for all sufficiently large n, where ¢; < %A. From this, we obtain
In Q%:Fk
lim sup f” > ez

n—oo

for i = 1 or for ¢ = 2, and for all sufficiently large n.
Hence, we obtain for the total capital of Skeptic K" = Q™ + F"

lim sup IC,, = o0
n—aoo

no matter how Forecaster moves if Realty uses her strategy defined above.
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The M/D/1—EPS QUEUE REVISITED

S.F.Yashkov*

Abstract

Starting from previous results of studying the M/G/1 queue with egalitarian processor sharing
(EPS), we consider a special case: the M/D/1—EPS, and show how to obtain the (conditional)
sojourn time distribution for this special case from more general results. Some new properties of such
queues are discovered. We also establish some connections between the M/D/1—EPS queue and some
known results from geometrical probability and uniform spacings.

Keywords: processor sharing, queues, Laplace transforms, sojourn time distribution, branching
processes, covering a circle

1 Introduction

One of the most interesting service disciplines in queueing theory is that of egalitarian processor sharing
(EPS): when n > 0 jobs are present in the system, then every job is being served with rate 1/n. In
other words, all these jobs simultaneously receive 1/n times the rate of service which a solitary job in
the processor (server) would receive. Jumps of the service rate occur at the instants of arrivals and
departures from the system. Therefore, the rate of service received by a specific job fluctuates with time
and, importantly, its sojourn time depends not only on the jobs in the server at its time of arrival there,
but also on subsequent arrivals shorter of which can overtake a specific job. This makes the EPS queue
intrinsically harder to analyse than, say, the classical First Come—First Served (FCFS) queue or many
other classical disciplines. The system works in steady state.

EPS queue was introduced by Kleinrock [1] in 1964 and has been the subject of much research over
the past 40+ years. In this model one of the main measures of performance is a (tagged) job’s sojourn
time distribution, conditioned on that job’s service time (job’s size). The (stationary) sojourn time is
the time the tagged job leaves the system after being served, assuming the job arrives at time zero.

We denote by V(u) the conditional sojourn time, with u being the service time. If the tagged job
arrived to an empty system and no further arrivals occurred in the time interval [0, u], then V(u) = w.
But in general V(u) > wu as the tagged job must share the capacity of the server. We denote by (3(u)
the service time density, by v(z|u) the conditional sojourn time density, and by v(z) = 3 v(z|u)3(u) du
the unconditional sojourn time density. In general, v(z|u) has a probability mass along = = u, but v(z)
is generally continuous function.

The M/M/1—EPS queue assumes Poisson arrivals and i.i.d. service times with density 5(u) = pe™#".
An expression for E[e™*V (] (that is, for the Laplace transform (LT) of v(z|u)) is known since 1970 (see,
e.g., Kleinrock’s book [2, Eq. (4.19)] (1976)).

*Institute for Information Transmission Problems of RAS (Kharkevich Institute), 19, Bol’shoi Karetny, GSP-4, Moscow,
127994, Russia.
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A more difficult model is the M/G/1—EPS queue, where the service density is general. This was
independently analysed by the author in [3] (1981), [4] (1983) and by Schassberger [5] (1984) by means
of completely different new analytical methods (in particular, the papers [3, 4] use the view of the EPS
queue as a branching process.) These authors obtained an explicit, albeit complicated, expression for
E[e~*V®)]. Inverting the LT leads to an expression for v(z|u) as a contour integral (see Theorem 1), but
the integrand is a nonlinear function of another contour integral, which is in turn defined in terms of the
LT of the service density.

In this paper we will give a brief derivation of the Laplace-Stieltjes transform (LST) of the conditional
sojourn time distribution in the M/D/1—EPS queue with deterministic service density. This was derived
by the author (see [6, p. 73]) and more recently in [7, 8]. However, in most cases authors use arguments
that are specific to the case G = D. But these results also follow easily from the general M/G/1—EPS
model. This note shows how such special results can be obtained from the general results. We also give
some insight to the properties of the main ingredient of sojourn time in the M/D/1—EPS queue, which
are related to well-known problems from geometrical probability and uniform spacings.

2 Preliminaries

In this section we give a short representation about the main results of the determination of the stationary
sojourn time distribution (in terms of double Laplace transforms) for the M/G/1—EPS queue.

Let jobs arrive to the single server according to a Poisson process N = {N(t) : t > 0} with the rate
A > 0. Their sizes are i.i.d. random variables with a general distribution function B(u) = P(B < u),
(B(0) = 0, B(co) = 1) with the mean 3; < oo and the LST (s f+oo U dB(u). ! We assume
that p = A3 < 1.

We recall that V(u) denotes the conditional sojourn time of a job of the size u upon its arrival. The
LST of V(u) is defined by v(s,u) 2 E[e=*V®)] for Re s > 0 and u > 0.

Let 7(s) be the LST of the busy period distribution. In other words, it is the positive root of the
well-known Kendall-Takacs functional equation

m(s) = [(s+ A — An(s)) (2.1)

with the smallest absolutely value

To obtain the LST wv(s,u) fooo T dP(V (u) < z) the following (non-trivial) decomposition of the
random variable V (u) was carried out. We tagged some (virtual) job of the length u and examined the
process of the accumulation of its attained service time. We assume that this tagged job enters into
the EPS system at time ¢ = 0 under the condition that it meets at its arrival time n > 0 other jobs
(the ancestors) in the system with the remaining sizes which lie in infinitesimal neighbourhood of the
points x1, ..., x, (that is, the EPS system is in the state (n;x1,...,x,) if n > 0 or the system is empty
if n =0). Then the sojourn time of the tagged virtual job is decomposed as:

Va(ul(ns 1, ... ) £ 3 ®(ai,u) + D(u). (2.2)
=1

"We assumed that B(-) has no atom in the origin. For otherwise, the pattern of busy and idle periods is essentially the
same as in a queueing process for which arrival rate is reduced to A[1 —P(B = 0)], and service time has the distribution of
B given that B > 0.
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Here ®(x,u) is the sum of increments of attained service time (an age) of a job—ancestor of the
initial size x and its direct jobs—descendants for the time interval during which the remaining size of
other ancestor (say, the tagged job) is reduced by u. This random variable may be also considered as
some (Markovian) functional of the corresponding branching process which describes its total lifetime.
However, it is more simple to interpret the random variable ®(x,u) as a duration of some terminating
(sub)busy period initiated by ancestor with the size x. It is terminated at time when the increment of the
attained service time of the tagged job reaches the level u. The probabilistic structure of the ingredients
of such a busy period is reminiscent of the structure of the components of a standard busy period, but
with the important difference that each subsequent component depends on the termination time of a
branching process and the size of a descendant. Therefore a subsequent component is stochastically

1
smaller than a preceding component (in the sense of some stochastic order relation of type < for the
distribution functions.)

As u — oo, then the random variable ®(z,u) is reduced to the standard busy period with the fixed
size x of the job which opens it. The random variable ®(z,u) does not depend on z as x > u. For
convenience, the special notation for this case was introduced in Eq. (2.2):

4

D(u) = ®(z,u) for x> u. (2.3)

The components of the stochastic equality (2.2) (which were called delay elements in [4]) are inde-
pendent of each other. The independence of these random variables is an another non—trivial fact which
was elegantly proved by means of two ways: using an equiprobable random selection mechanism for a
distinction of jobs—descendants [4, pp.138-139], and using the random time change [6, §2.8].

To find the distributions of the components of the decomposition (2.2), we need to derive and solve
some system of differential equations (with initial-boundary conditions). Let ¢(s,x,u) 2 E[e—s® ()]
and (s, u) 2 E[e~*P®)]. Then

dp(s, x,u dp(s, x,u e
il ) + il ) + {s + - /\/ o(s,y,u) dB(y)} o(s,z,u) =0, (2.4)
Ox ou 0
06 o0
94(s, u) + [5 +A— )\/ o(s,y,u) dB(y)] d(s,u) =0, (2.5)
u 0
0(s,0) = ¢(s,0,u) = (s, 2,0) = 1. (2.6)
Thus .
Ele™V®W|(n;z1,...,2,)] = 6(s, u) Hcp(s,a;i,u), Re s > 0. (2.7)
i=1
From here we obtain after removing the condition on (n;z1,...,2z,) (that is, after averaging on the
stationary distribution density of the Markov process of the number of jobs with the remaining sizes
which lie in infinitesimal neighbourhood of the points z1,...,z,) the following statement.

Theorem 1 When p < 1, then

00 o P -1
v(s,u) 2 Ele™*V ] = (1 — p)d(s,u) {1 - p/o go(s,:):,u)(lﬁBi())dx , (2.8)
where 5.0 ; -
sz, u) = { 5(s:u)/5(s, u— ) for x Z u: (2.9)
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and
5(s,u) = e N (s u), w>0 (2.10)

are the solutions of the system of equations (2.4) and (2.5) (together with (2.6)). Here 1(s,u) is the
LST (with respect to x) of some function ¥(x,u) of two variables (possessing the probability density on
variable x ), which, in turn, has a LT with respect to u (argument q)

- B g+s+AB(g+s+A)
Y0 = s TN+ ABla + 5+ V)

(s >0, qg>—Am(s)). (2.11)

Eq. (2.8) is a representation of the random variable V (u) in the form of some geometric random sum.
Here we do not consider various subtleties of the proof (all this was described in the works cited). It is
worth noting that the function ¢ (s,q) in (2.11) is given in the form of the two-dimensional transform
of a function ¥(z,u))

U(s,q) = /000 /000 e ST U (z, u)du. (2.12)

In other words, 1 (s, u) is the Laplace transform inversion operator, namely, 1(s,u) = L7 (¢(s, q))(s, u),
that is, the contour Bromvich integral

+100+0 B
P(s,u) = —— / (s, q)e™ da.

27 J —icot0
Remark 1 Briefly, we have derived the expression for E[e_sv(“)] by writing the sojourn time as some
functional on a branching process (like the processes by Crump—Mode—Jagers, see, for example [9]). Using
the structure of the branching process, we found and solved a system of partial differential equations (of
the first order) determining the components of a decomposition of V(u). It leads to Ele=*V W], Many
important details can be found in [6, 10] where the stationary solutions are further extended to the
time—dependent cases.

In some cases, it can be useful the equivalent forms of (2.9). For example,
@(3, T, u) = ef(IAu)(SJF)‘)JF)‘ fozAu B (s,u—y) dy’ = [07 00)7 (213)

where

(o) t ‘
pn(s.) 2 [ pls,a,t)dB(a) = [ e et e () 1 (1= B(pe A Aena
0

" (2.14)
The equality (2.14) represents the functional equation that must be satisfied by the function ¢p(s,-).
The function ¢p(s,t) is the LST of the distribution of some non—trivial terminating busy period (it
terminates at time ¢) for the M/G/1—EPS queue. The solution of the equation (2.14) was obtained in

A
terms of the function ¢ (¥ (s,t) = exp(—A fg vB(s,y)dy)) (more precisely, in terms of the LT for this
function, see (2.11)). This also shows that the study of the sojourn time in the M/G/1 queue requires
deeper analysis in comparison with an analysis that is expected at first sight.

Remark 2 [t is worth mentioning that the random variable D(u) in (2.2) constitutes a “main” ingredient
of the sojourn time: it has the distribution of the sojourn time of a job with the size u that enters into
an empty system. When the system is not empty, the ith job (among the jobs which are sharing the
capacity of the processor), having remaining length x;, “adds” a delay ®(x;,u) = ®(x; Au,u) to the new
job’s sojourn times.
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Next we consider a special case of the M/G/1—EPS queue in equilibrium: the M/D/1 system with
egalitarian processor sharing.

3 The M/D/1—EPS queue

Let us begin from the form of deterministic distribution

0, 0<z<u,
1, T > u.

Hence the LST of this distribution has the form §(s) = exp(—su) with the moments 3; = v, i =
1,2,.... The offered load is equal to p = Au < 1. In this special case, the distributions of conditioned and
unconditioned sojourn times coincide, hence we may use V' = V(u) to denote the steady—state sojourn
time of a job in the queue M/D/1—EPS.

Corollary 1 The LST of the stationary distribution of V(u) in the special case M/D/1—EPS has
simpler form in comparison with (2.8).

(1 p)(s + NPe e
s2+ A[s + (s + A) (1 — p)le st
In the case considered, the formula (2.10) takes the form

v(s) =v(s,u) =

(3.1)

s+ A

B S )

(3.2)

Proof. The solution for v(s,u) for the case M/D/1—EPS can be found from Theorem 1 in explicit
form. In our case, the equation (2.8) is reduced to the form

v(s) =v(s,u) = (1_P)6(S,U)
)= vl = e

(3.3)

where 0(s,u) is given by (3.2). To obtain (3.2), it is easier to use the equation (3.15) from [4] for the
unknown function d(s,u) (reflected as (2.29) in [6] or (2.20) in [10]) instead of inverting the function
1/;(s,q) that is given by (2.11). (However, such inversion is also possible, see [11, pp. 42-43|. Similar
inversion for the case M/M/1—EPS was also executed in [6, p. 74]). Then above equation reduces to

the form

09(s, )
Ox
with the additional condition d(s,0) = 1. This is a Bernoulli equation. It is reduced to linear one after

division of each term by (s, z)? and the change of variable 1/§(s,z) = u. The solution of (3.4) is given
by (3.2). The final result (3.1) follows after the substitution (3.2) into (3.3). O

+ (s + N)d(s, ) — Ao(s,2)* =0 (3.4)

Remark 3 The general expression for the variance of V(u) in the M/G/1—FEPS queue (see Eq. (3.20)
in [4] or (2.33) in [10]) reduces for the M/D/1—EPS system to the form

u? 2u2(e? — 1 — p)

Var[V (u)] = (1—p)2 p?(1—p)
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Another way of obtaining Var[V'(u)] in the M/D/1—EPS queue is described in [8]. That approach
is also based on the results of [4].

Remark 4 In addition to [}], we can give the two new interpretation of a random variable D(u) whose
LST is given by 0(s,u) (for the case M/D/1—EPS queue). (See [3], [4] concerning previous interpreta-
tion via lifetime of some branching process.) First, it is the sojourn time of the first job that arrives to
the empty M/D/1—EPS queue. The explanation of this fact is as follows: until the service requirement
of the first job is completed, a number of other jobs may arrive but none leave the system before that
time, since under EPS discipline with deterministic service time jobs depart from the system without
overtaking, that is, in order of their arrival. Second, the random variable D(u) may be interpreted in
terms of the mazimal length of the pieces of a stick with length u broken randomly (see, for example, the

books [12, 13] for detail).

Let L(t) be the number of jobs at time t. Then D*(t) = N(t) — L(t) be the number of departures by
time ¢ (N (¢) was introduced in the begin of §2), and D} = inf{t : D*(¢) = 1} be the time until the first
departure from the EPS queue. The following theorems comment Remark 4.

Theorem 2 Let the M/G/1—EPS queue starts from the state L(0) = 1. Then the distribution of D}
is given by the LST (3.2) for w =t in the case G = D, and by

(s + NB(s + )

—sDy1 _
Bl =86

(3.5)
in general case.

Proof. Omitted. (We means the proof of (3.5) because the assertion for G = D follows from Remark
4 and definition of D(u) in (2.3).) O

Consider a stick of length u that is randomly broken into n pieces with lengths S1, Ss, . ... It is known
that the distribution of the largest piece (maximal uniform spacing) P(max;—1,. ,S; < x) is given by
Whitworth’s formula? [12, p. 31], [13, p. 29]:

n n—1
< x) = _R(" iy :
P, 8 <o) = SC0(1) (1) 36)
where z4 = max(0, x).
It can be shown [14] that
d xS
e Si=) T
Then it holds
Theorem 3 For the M/D/1—EPS queue ast > 0,
oo n+1
_ Y At (AD)" (n+1 k T\"
P(D(u) <t)=1—e Mlgye, +e n;kzzo w ( LD (1 - k?)+. (3.7)
Proof. Omitted. o

2 Another interpretation of Whitworth’s formula is connected with the determination of a probability that the circle is
completely covered by the arcs of lengths z that are attached to each random point on a circle of length u (these n points
are randomly located on a circumference). It is the so-called Steven’s formula [12] in such interpretation.
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