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On exponential mixing rate for degenerate 2D diffusion

N. Abourashchi,∗ A. Yu. Veretennikov†

June 10, 2009

Abstract

A new existence of weak solution of a degenerate stochastic differential equation is established. A
new method for a verification of a ”local mixing condition” is proposed. An extension of Girsanov–
Beneš’ result on a martingale property of stochastic exponential is established. As an application,
an exponential uniform beta–mixing rate is shown for a degenerate two– dimensional diffusion of
Langevin type studied earlier by Campillo et al.

1 Introduction

In a series of papers by F. Campillo et al. [2], [3], [4] the following system of SDEs in R2 has been
investigated for recurrence, invariant measure, approximation, etc.,

dXt = Yt dt, X0 = x, (1)
dYt = b(Xt, Yt) dt+ dWt, Y0 = y,

where W is a standard Wiener process, and drift b is a Borel measurable function satisfying a linear
growth condition and has a special form,

b(x, y) = −u(x, y)y − β x− γ sign(y), (2)

where β and γ are some positive constants, and u satisfies Assumption (A2)below. The system describes
a mechanical “semi–active” suspension device in a vehicle under external stochastic perturbations treated
as a white noise. The term with γ corresponds to friction, β is a spring coefficient, uY corresponds to
damping (control related to the velocity of the device), and the function u here stands for tuning of this
damping control. Under appropriate assumptions, existence of a (unique) invariant measure has been
proved [2]; however, the question of convergence remained open. In this paper we show exponential
bound on rate of convergence toward the stationary measure in the distance of total variation for the
system (1)–(2) and a bit more general, and a similar exponential bound of beta-mixing, under suitable
assumptions on the coefficients. The method of establishing local mixing proposed below is applicable to
the equation (1), and should be suitable for a wider class of processes, in particular, not necessarily 2D.

Remind the definition of beta-mixing coefficient,

βx,y
t := sup

s≥0
Ex,y sup

B∈B2
(Px,y((Xt+s, Yt+s) ∈ B)− Px,y((Xt+s, Yt+s) ∈ B | FX,Y

s )), (3)

where (x, y) is the initial condition for the equation. The coefficient βx,y
t dominates the (non-stationary)

alpha-mixing coefficient introduced (in the stationary form) by Rosenblatt, and the latter is widely used
for establishing all kinds of limit theorems. Hence, naturally, βx,y

t is also suitable for this goal. The
stationary version of the coefficient βt is widely known as Kolmogorov’s coefficient, although for the
first time it appeared in the joint work by his students Volkonskii and Rosanov. In his lectures in
1970s, Kolmogorov posed general problems of studying mixing coefficients for general processes. The
non-stationary version of beta-coefficient for Markov processes (3) was investigated, in particular, in a
series of papers by the second author. Apart from interest for engineers, there are some mathematical
issues that make this system special. In terms of recurrence properties, we apply Lyapunov’s approach,
using the same Lyapunov function as in [2], based on simple quadratic forms. Apparently, the use of
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†University of Leeds, UK, and Institute of Information Transmission Problems, Moscow, Russia, e-mail: A.Veretennikov
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such simple functions is limited to a relatively narrow class of processes. However, for the equation (1–2)
they are quite sufficient, and possibly could serve certain even wider classes of diffusions. Nevertheless,
for more general systems (1) possibly some other Lyapunov functions could be useful. In terms of local
mixing properties, a real obstacle is a genuine high degeneracy of the SDE system. It is comparatively
not very difficult to verify a local version of the so called general Doeblin–Doob condition (see [5]),
however, this kind of condition even in its global form provides only a rather reduced result about mixing
(formally, about convergence in total variation) just for one particular Markov process, not for a class
of processes. Clearly, for the system (1) there is no global Doeblin–Doob condition available, and the
question how to work with its local version is yet open. There is one more, most standard tool frequently
used in similar situations, which does provide bounds uniform on some class of processes, “pétite set”
condition. However, it apparently fails here completely in an even more severe fashion in compare to a
non-degenerate diffusion, where it is not of any real help either. We tackle this problem by establishing
some appropriate local version of Dobrushin’s ergodicity condition, see (16) below. Notice that this kind of
condition is also rather useful in the non-degenerated case, where it is provided by Harnack’s inequalities,
see [15], [14]. After having a good Lyapunov function and verifying a local Dobrushin condition, the
remaining part of the proof is based on the method of estimating the upper bounds for mixing rate from
[14]. To work with the system (1), we need, at least, weak uniqueness. The latter may be established
by using Girsanov’s transformation with the help of a method similar to [1]. Under (2) this approach
was suggested in [2] with a reference to [1]. Nevertheless, we should notice that apparently the direct
reference does not work, neither applied to (1), nor under the restriction (2), since the paper [1] does not
consider degenerate SDEs, nor does the presentation of its results in [9]. The extension of this result to
our degenerate case being done in the Section 3, the authors realised that the same Lyapunov function
method as for the system (1)–(2) may also work for slightly more general systems of SDEs, which satisfy
(1) & (??). The verification of a local Dobrushin type condition below is also based on Girsanov’s
transformation, although it is not a direct corollary from the section about weak solutions.

In the Section 2 we formulate our main results along with the assumptions. An extension of the
approach from [1] is provided in the Section 3. In particular, in that Section we briefly discuss weak
existence of solution of our system (1) with a strong Markov property. The calculus which we suggest, of
course, resembles the one in [1], – and even more the one in [9], – and may be considered as a complement
to the latter. It also simultaneously provides Novikov’s condition (see [13], [12]) for this particular case,
although this observation does not lead to any further simplification, being just another view on the
problem. In the Section 4 a Lyapunov function is presented for this system, together with some hitting
times inequalities. In the Section 5 a “local Dobrushin’s condition” is established. To the best of the
authors’ knowledge, this is the most general local condition which guarantees “computable” mixing and
convergence in total variation bounds, with practically the best constants. Whether this condition could
be further relaxed, is an open question.

The proof of convergence and mixing rate is given in the last Section 6.

2 Main results

Assumptions for (1) & (2)

(A1) The function b in (1) is Borel measurable, and there exists C such that |b(x, y)| ≤ C(1 + |x|+ |y|).
(A2) The function u in (2) is Borel measurable, and there exist constants 0 < u1 ≤ u2 < ∞ such that

u1 ≤ u ≤ u2; β and γ are strictly positive constants.

In the sequel, µx,y
t denotes the marginal distribution of (Xt, Yt), the couple with the initial state (x, y),

and µ∞ stands for its (unique) invariant distribution if the latter exists.

Theorem 1 Let the system (1) satisfy (A1). Then the following holds true.

1. The equation (1) has a (weak) solution unique in distribution, which is a strong Markov process.

2. If additionally the drift satisfies (2) as well as (A2), then there exists a unique probability distribution
µ∞ and there exist C, c > 0 such that

µt − µ∞TV ≤ C exp(−ct)(1 + x2 + y2), (4)

and also
βx,y

t ≤ C exp(−ct)(1 + x2 + y2). (5)
2
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Now as we accomplished the results from [2] et al. by rate of convergence, let us describe what more general
SDE systems could be tackled in a similar way. Consider the class of drifts f satisfying the following
conditions. Firstly, we require (A1), which turns out to be sufficient both for the local Dobrushin’s
condition and weak existence and uniqueness. To tackle recurrence, we require the following.
Assumptions for (1) without (2)

(A3) The function b in (1) satisfies b(x, y) = b0(x, y)− u(x, y)y − v(x, y)x. where the term b0 is a Borel
bounded function, u satisfies the inequalities from (A2) with some 0 < u1 ≤ u2 < ∞, and the
function v is bounded and satisfies lim(x,y)→∞ v(x, y) = β > 0.

As we shall see below, the latter condition can be relaxed so as to allow for some β > 0 a “small enough”
limit lim sup(x,y)→∞ |v(x, y)−β| << 1. For the precise formulation as to in which sense the left hand side
is << 1 see the calculus in the Lemma 4 and remark 3 below. Now we have a version of Theorem 1 as
follows.

Theorem 2 Let the system (1) satisfy (A1) and (A3). Then again there exists a unique invariant
probability distribution µ∞ and constants C, c > 0 such that (4) and (5) hold true.

3 Weak solution & Girsanov’s transformation

First of all let us show that there exists a weak solution of the system (1), and that it possesses a
weak uniqueness property. Emphasize that neither (2) nor (A3) is assumed in this section. Basically,
there are two methods available: one based on approximations; and another based on Girsanov’s trans-
formations. In the general case, if we want to use approximations and weak convergence, then we
do have a good a priori bound, – e.g., for the second moment, – but the function u may be dis-
continuous, in particular, in variable x, while the component X has no diffusion term at all. This
is an obstacle while using approximations and passing to a limiting measure. So, we will work with
Grisanov’s transformations. We start with a couple (X, W̃ ) on some probability space (Ω,F , P̃ ), where
W̃ is a Wiener process, and Xt = x +

 t

0
W̃s ds. In the other words, the process (X, W̃ ) solves the

system (1) in the trivial case b ≡ 0. We will use Girsanov’s exponential to solve a general case.

Let ρ̃T := exp

 T

0


b(Xt, y + W̃t) dW̃t −12

 T

0

b(Xt, y + W̃t)

2


dt. We ought to show that this is

a probability density, i.e., that Ẽρ̃T = 1.

Lemma 1 Under the assumption (A1), there exists T > 0 small enough, such that for every R > 0,

sup
(x,y)∈BR

Ẽx,yρ̃
2
T <∞. (6)

Moreover, for every (x, y) ∈ BR and every T > 0 (not only small),

Ẽx,yρ̃T = 1. (7)

Emphasize that the value of the left hand side in (6), of course, may depend on R, however, the value T
may be chosen unique for all R > 0.
Proof. Notice that the assertion (6) guarantees uniform integrability of ρ̃T with respect to the measure
P̃ , for every (x, y) ∈ BR, which implies (7) for small values of T . However, the latter equality is extended
on any T by simple induction based on Markov property (remind that small T in (6) does not depend
on initial data), see [1] or [9, Corollary 3.5.14]. Hence, it suffices to prove only (6). We estimate, using
Cauchy–Bouniakovsky–Schwarz’ inequality (known widely as Cauchy–Schwarz’ or Cauchy’s),


Ẽx,yρ̃

2
T

2

≤ C(T,R, x, y) Ẽ exp

C (T 2 + T 4) sup

0≤t≤1
|W̃t|2


.

it is, indeed, easy to see that with any constant β, the latter expectation is finite if T > 0 is chosen
small enough. The Lemma 1 is proved.

Theorem 3 Under the assumption (A1), there exists a weak solution of the system (1) on [0,∞) which
is unique in distribution. Any solution (X,Y ) on any probability space with a Wiener process W is a
strong Markov process. Also, for any T > 0,

EρT = 1,where ρT := exp


−

 T

0

(b(Xt, Yt) dWt −12
 T

0

|b(Xt, Yt)|2 dt


.

3
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Lemma 2 Under the assumption (A1), there exists T > 0 small enough, such that for every R > 0,

sup
(x,y)∈BR

Eρ
x,yρT <∞. (8)

Proof. Notice that since Eρ
x,yρT = Eρ2

T , the assertion (8) guarantees uniform integrability of ρT with
respect to the measure P , for every (x, y) ∈ BR, which, by the way, again implies theorem 3, at least, for
T > 0 small enough. The inequality (8) can be rewritten as

sup
(x,y)∈BR

Eρ
x,yρT = sup

(x,y)∈BR
Ẽx,y(ρ̃T )−1 <∞.

In this form, it follows from the calculus quite similar to that in the proof of the Lemma 1. The Lemma
2 is proved.

Remark . The result from [1] about Girsanov’s transformation relates to the following SDE in Rd

with a d-dimensional Wiener process (we use another notation Zt for the process, to distinguish it from
the setting (1)),

dZt = b(t, Zt) dt+ dWt, Z0 = z. (9)

In this Remark, drift b is a d-dimensional Borel measurable vector–function, and it satisfies a linear
growth condition with some constant L > 0,

|b(t, z)| ≤ L (1 + |z|), ∀ z ∈ Rd. (10)

The following Theorem is a reformulation of some combination of Lemma 0 and Theorem 1 and a
discussion around them from [1], and the Lemma 7 from [7]. However, it is easier for us to cite a later
presentation from [9, Corollary 3.5.16 & Proposition 5.3.6]. As usual (e.g., as above in the Lemma 1), to
solve (9), we consider a probability space (Ω,F , P̃ ) with a (another) Wiener process W̃t, t ≥ 0.
Theorem 4 [Benes 1971] Under (10), for any T ,

ẼζT = 1, ζT := exp(−
 T

0

b(s, W̃s) dW̃s − 1
2

 T

0

|b(s, W̃s)|2 ds),

the process Wt := W̃t −
 t

0
b(s, W̃s) ds, 0 ≤ t ≤ T , is d-dimensional Wiener under the new measure

dP ≡ dP̃ ζ := ζT dP̃ , and, hence, the equation (9) has a weak solution unique in the sense of distribution.

4 Lyapunov functions and hitting time bounds

Lemma 3 Let (A1)–(A2) be satisfied. Then for the system (1–2) there exists a constant C such that

sup
t≥0

E(|Xt|2 + |Yt|2) ≤ C(1 + x2 + y2). (11)

Of course, the constant C depends on the initial data (x, y). Proof follows from [2], with the Lyapunov
function suggested there,f(x, y) = βx2 + xy + y2, with  > 0 small enough.

Lemma 4 Let (A1) and (A3) be satisfied. Then for the system (1–(A3)) there exists a constant C such
that(11)holds.

Proof. We will use the same Lyapunov function as in (11), (with just a notation β changed to β0), where
 is to be chosen. The calculus is similar to the one in the previous Lemma. We apply Itô’s formula to
f(Xt, Yt):

df(Xt, Yt) = 2βXt dXt + 2Yt dYt + (dYt)2 + Xt dYt + Yt dXt

≤ 2Yt dWt + 2(Yt + Xt)b0(Xt, Yt) dt− ((u1 − )Y 2
t + v(Xt, Yt)X2

t + (2v(Xt, Yt)− 2β + u(Xt, Yt))XtYt) dt.

Here the inequality sign, of course, relates to the dt terms, while the term dWt remains the same. Clearly,
to establish the Lyapunov condition, the terms of the first order are not important if |(Xt, Yt)| > R and
if R is chosen large enough. Next, since the difference 2v(Xt, Yt) − 2β is small enough by modulus for
|(Xt, Yt)| > R due to (7), clearly we can choose  > 0 small enough, so that the expression

t := ((u1 − )Y 2
t + v(Xt, Yt)X2

t + (2v(Xt, Yt)− 2β + u(Xt, Yt))XtYt) (12)
4
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is no less than some positive definite quadratic form, say,
u1

2
Y 2

t + cX2
t (c > 0), if |(Xt, Yt)| > R.

Also, of course,
u1

2
Y 2

t + cX2
t ≥ C−1f(Xt, Yt) (C > 0).

On the other hand, if |(Xt, Yt)| ≤ R, then the whole expression in (12) is bounded. Hence, with the same
notation g(t) := Ef(Xt, Yt) as above, – and with a notice that sups≤t Ef(Xs, Ys) < ∞ for any t > 0, –
taking expectations, we get,

g(t) ≤ −C−1Et1(|(Xt, Yt)| > R)− Et 1(|(Xt, Yt)| ≤ R) ≤ −Es − 2Es 1(|(Xs, Ys)| ≤ R) ≤ −C−1g(s) ds+ 2C0,

with C0 = sup|(x,y)|≤R |(x, y)|, and (x, y) = ((u1 − )y2 + v(x, y)x2 + (2v(x, y)− 2β + u(x, y))xy).
This shows that

d

dt
g(t) ≤ −Cg(t) + C, and hence, (0 ≤) g(t) ≤ C(1 + exp(−Ct)). (13)

The Lemma 4 is proved.

Lemma 5 Let (A1)–(A2) be satisfied, and R be large enough. Then for the system (1–2) there exist
C,α > 0 such that

Ex,y exp(ατ) ≤ C(1 + f(x, y)), (14)

Lemma 6 Let (A1) and (A3) be satisfied, and R be large enough. Then for the system (1) & (A3) there
exist C,α > 0 such that,(14)holds.

The proofs of both Lemmas 5 and 6 follow easily from the standing inequality above (13), similarly to
the calculus in [15] or [14].
We will need a similar technical inequality for a process in a double–dimension state space. Namely, we
consider another independent copy (X̄t, Ȳt, t ≥ 0) of the process (Xt, Yt, t ≥ 0), possibly with another
initial condition. Let Zt = (Xt, Yt), Z̄t = (X̄T , Ȳt).

Lemma 7 Let (A1)–(A2) be satisfied, and R be large enough. Then for the system (1–2) there exist
C,α > 0 and γ, defined as , γ := inf(t ≥ 0 : |Zt| ∨ |Z̄t| ≤ R), such that

Ez,z exp(αγ) ≤ C (1 + f(z) + f(z)), (15)

Lemma 8 Let (A1) and (A3) be satisfied, and R be large enough. Then for the system (1) & (A3) there
exist C,α > 0 such that (15)hold.

The proofs of the Lemmas 7 and 8 follow similarly from the Lyapunov inequality above(13) or cf. [15] or
[14].

5 Dobrushin’s local mixing condition

The next result is the second part of the method used in this paper and our main contribution to the
technique of verification of mixing rate here. We consider any solution to the equation (1), without
restrictions (2).

Lemma 9 Let (A1) be satisfied. Then for any R > 0 there exists c > 0 such that

inf
(x0,y0),(x1,y1)∈BR



BR


µx0,y0(dx dy)
µx1,y1(dx dy)

∧ 1

µx1,y1(dx dy) ≥ c > 0. (16)

Proof. First of all, notice that
µx0,y0(dx dy)

dx dy
> 0, a.s. Indeed, by virtue of Girsanov’s transformation

(cf., e.g., Theorem 3 above), under the measure P ρ we have a representation,

ρT = exp


−

 T

0

b(x0 +
 t

0

W̃s ds, y + W̃t) dW̃t −12
 T

0

b(x0 +
 t

0

W̃s ds, y0 + W̃t)

2

dt


.

Denote µρ
x0,y0

(dx dy) := Eρ
x0,y0

1(XT ∈ dx, YT ∈ dy). We have,

µx0,y0(dx dy)
dx dy

=
µρ

x0,y0
(dx dy)

dx dy
Ex0,y0(ρ

−1 | XT = x, YT = y),
5
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where both multiples
µρ

x0,y0
(dx dy)

dx dy
and Ex0,y0(ρ

−1 | XT = x, YT = y) are positive (a.s. for the second

one). For the second term this is because 0 < ρ−1 < ∞ a.s. For the first one there is an explicit
representation of this density, see (17) below. So, (16) can be rewritten equivalently as

inf
(x0,y0),(x1,y1)∈BR



BR


µx0,y0(dx dy)

dx dy
∧ µx1,y1(dx dy)

dx dy


dx dy ≥ c > 0.

Let L > 0 and consider the densities,

µx0,y0(dx dy)
dx dy

:=
Ex0,y01(XT ∈ dx, YT ∈ dy)

dx dy
,

µL
x0,y0

(dx dy)
dx dy

:=
Ex0,y01(XT ∈ dx, YT ∈ dy) 1(ρT > L)

dx dy
.

Clearly, the measure µL
x,y(dx dy) is absolutely continuous with respect to the Lebesgue measure dxdy,

similarly to µx,y(dx dy). Moreover, ρT is a probability density (see the Proposition 3). So, we can use
the following representations,

µx0,y0(dx dy)
dx dy

=
Eρ

x0,y0
ρ−11(XT ∈ dx, YT ∈ dy)

dx dy
,
µL

x0,y0
(dx dy)

dx dy
=

Eρ
x0,y0

ρ−11(XT ∈ dx, YT ∈ dy) 1(ρT > L)
dx dy

.

We estimate,

µx0,y0(dx dy)
dx dy

≥ L−1
Eρ

x0,y0
1(XT ∈ dx, YT ∈ dy)

dx dy
− L−1

Eρ
x0,y0

1(XT ∈ dx, YT ∈ dy) 1(ρT > L)
dx dy

.

Since here ρ is a probability density on Ω, the first term up to the multiple L−1 is a positive Gaussian
density on R2 under the probability measure P ρ. In the other words,

Eρ
x0,y0

1(XT ∈ dx, YT ∈ dy)
dx dy

=: pρ
x0,y0

(x, y;T ) =
√
12

2πT 2
exp


−1
2
(x− x, y − y)(C−1

T )(x− x, y − y)∗

. (17)

In particular, the density pρ
T is uniformly bounded by the value

√
3/T 2. Next, with any L, the second

term is also a (sub-probability) density, pL
x0,y0

(x, y;T ), which is dominated by p. Let us choose the
constant L so large that

L−1 sup pρ
T ≤ 1.

Then, the lower bound for our density does not exceed one, so that the operation “minimum with one”
disappears under the integral, and we may estimate,

inf
(x0,y0),(x1,y1)∈BR



BR


µx0,y0(dx dy)
µx1,y1(dx dy)

∧ 1


µx1,y1(dx dy)

≥ L−1


inf

(x,y),(x,y)∈BR
px,y(x, y;T ) |BR| − 2 sup

(x,y)∈BR

P ρ
x,y(ρT > L)


.

Here, clearly, inf
(x,y),(x,y)∈BR

px,y(x, y;T ) |BR| = π R2 inf
(x,y),(x,y)∈BR

px,y(x, y;T ) > 0. and this value

does not depend on L. The second term admits the following bound due to Bienaimé–Chebyshev,

sup
(x0,y0)∈BR

P ρ
x0,y0

(ρT (x, y) ≥ L) ≤ L−1 sup
(x0,y))∈BR

Eρ
x0,y0

ρT (x, y).

Hence, in order to complete the proof of the Lemma, it suffices to show that

EρT = 1, & sup
(x0,y0)∈BR

Eρ
x0,y0

ρT <∞, (18)

at least, for T > 0 small enough. Both inequalities in (18) have been established in the Lemma 2 above.
The Lemma 9 is proved.

6 Proof of Theorems 1 and 2

Proof. The plan for the proof is to use the Lemmas 7 and 9 and the calculus from [14], with a natural
replacement of polynomial inequalities by exponential ones. Both Theorems require the same calculus.

6
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A Multidimensional Comparison Theorem for
Solutions of the Skorokhod Problem in a Wedge

with Applications to Control of a Group of Identical
Particles

Svetlana ANULOVA (Institute for Control Science Moscow Russia)

Pathwise comparison theorems for solutions of SDE remain a fresh sub-
ject, see [1], where 1-dimensional reflected processes are studied. We consider
comparison with respect to a partial ordering of the Euclidean space.

Let K (resp. C) be a convex cone of full dimension in Rd with the vertex in 0
and a finite number of faces. Denote π : Rd → K the orthogonal projection on
K and Φ the Skorokhod operator for K (normal reflection on the boundary).
Define an order : for x1, x2 ∈ Rd x1  x2 if x2 − x1 ∈ C, and for y1, y2 :
[0,∞)→ Rd y1  y2 means: y1(0)  y2(0) and y2 − y1 has a locally bounded
variation such that

d(y2 − y1)
d var(y2 − y1)

(t) ∈ C a.e. for t ∈ [0,∞).

Theorem 1. If π is monotonic, then Φ is monotonic (both with respect to ).

Example 1. For d = 1 and K = C = [0,∞) we have for any y1, y2 with
y2 − y1 ≥ 0 and nondecreasing: Φ(y2) ≥ Φ(y1).

As corollary we obtain the solution to the following control problem (cf.
[2]). Ikeda and Watanabe were the first to use comparison theorems in control
theory, see §2 ch.VI [3].

Let (Ω,F , F, P) be a standard stochastic basis, W : [0,∞) → Rd a contin-
uous gaussian F -martingale with independent identically distributed coordi-
nates, u = {u(t) ∈ [0, 1]d,

d
1 ui(t) ≤ 1, t ∈ [0,∞)} a control policy (cf. [3]),

U = {u}. Define u∗ : Rd → Rd:

u∗
i (x) =


1, if i = min{argmin{xj , j = 1, . . . , d}};
0 otherwise.

Theorem 2. For any y ∈ Rd and u ∈ U there exists an extension of the origi-
nal stochastic basis (Ω


,F 

, F

, P


) and a continuous gaussian (F


)-martingale

W

, W  = W  on it such that for

yu(t) = y +
 t

0
u(s)ds + W (t), t ∈ [0,∞),

and

y∗(t) = y +
 t

0
u∗(y∗(s))ds + W̃ (t), t ∈ [0,∞),

holds mini y
∗
i (t) ≥ mini y

u
i (t) provided yu exists.
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The objects we have introduced describe a group of independent identical
particles Wi, i = 1, . . . , d, with controlled drifts. The theorem produces the
optimal policy to hold the group as high as possible.
Proof of Theorem 1. Approximate Φ with its discretization in time with step
δ Φδ. It is monotonic and

lim
δ→0

Φδ = Φ.

Proof of Theorem 2 for d = 2. The two coordinates of the controlled process
are identic, thus we reduce the problem to the control of the pair

ȳu(t) = (min{yu1 (t), yu2 (t)}, max{yu1 (t), yu2 (t)}, t ≥ 0).

The Ito formule shows, that this process is Φ(ȳu) for K = {x ∈ R2 : x1 ≤ x2}
and

ȳu(t) = y +
 t

0
ū(s)ds + W̄ (t), t ∈ [0,∞),

where W̄ (resp. ū) is a new F -martingale (resp. drift) obtained from W (resp.
u). Obviously, d(ȳu−ȳ∗)

dt ∈M , where M is a cone,

M = {λ1(−1, 0)T + λ2(−1, 1)T , λ1, λ2 ≥ 0}.
Unfortunately, Φ is not monotonic with respect to the partial order generated
by M :

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

x1  axis

x 2  a
xi

s

x +  cone M

cone K

point x

π (x)

Figure 1. π(x + M)  π(x) + M
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But if we take another cone

C = {λ1(−1,−1)T + λ2(−1, 1)T , λ1, λ2 ≥ 0},
the assumptions of Theorem 1 are satisfied. Thus

Φ(ȳ∗)  Φ(ȳu),

in particular, Φ(ȳ∗)1 ≥ Φ(ȳu)1, what means the assertion of the theorem for
the process in K. In order to return in the plane we have to extend (Ω,F , F,P)
and construct a new martingale W


by randomizing W̄ .

Proof of Theorem 1 for d > 2. Define a mapping f : Rd → Rd:

{fi(x), i = 1, . . . , d} = {xi, i = 1, . . . , d}
and f1(x) ≤ f2(x) ≤ . . . fd(x). Then define a new F -martingale W̄ :

dW̄ (t) =
∂f

∂x
(yu(t))dW (t)

and solve the equation for f(y∗) with W̄ . It will be an equation in

K = {x ∈ Rd : x1 ≤ x2, . . . ≤ xd}
for a martingale with drift and normal reflection on the boundary. Now apply
Theorem 1 with a cone C, which is a rotated orthant. The first edge of this
orthant is (−1, 1, 0, . . . , 0)T , the d−th is (−1, . . . ,−1)T . At this stage we have,
roughly speaking, a process f(y∗). In order to ”extract” y∗ we have to extend
(Ω,F , F,P) and construct a new martingale W


by randomizing W̄ . That

is, we take a product of the original stochastic basis and a canonical space of
d−dimensional continuous functions and endow it with conditional probability
equal to the distribution of y∗ given f(y∗) and independent from all the rest.

Remark 1. The theorem implies: for T ∈ [0,∞) and real functions G1, G2

monotonic in the second argument with respect to 
 T

0
G1(t,W u(t))dt + G2(T, W u(T ))

is maximal for the policy u∗ in probability.
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Landau-Zener phenomenon
in 2D lattices

via Dirichlet-to-Neumann
map

N. Bagraev 1, G. Martin2, B. Pavlov2,3

1 A.F. Ioffe Physico-Technical Institute, St.
Petersburg, Russia.

2 New Zealand Institute of Advanced Study,
Massey University, New Zealand.

3 V.A. Fock Institute for Physics of St.-
Petersburg University, Petrodvorets, Russia.

Transport properties of periodic lattices are
defined by the structure of the corresponding
Bloch eigenfunctions. In the 1d case the Bloch
eigenfunctions are found based on the trans-
fer matrix constructed of the solutions of the
relevant Cauchy problem. This approach fails
in 2d, and, generally in the multi-dimensional
case, because the Cauchy problem for the multi-
dimensional Schrödinger equation is ill-posed.
The approach based on “tight binding” ideas
(Liner Combination of Atomic Orbitals - LCAO
, see [8]) gives a reasonably good qualitative co-
incidence with experiment, but stays on a shaky
mathematical basement. We develop an alterna-
tive approach to study of transport properties of
quantum periodic lattices, based on Dirichlet-
to-Neumann map, and suggest, on the base of
corresponding 2d Landau-Zener effect, an inter-
pretation of high-mobility of the charge carriers
in bi-layer 2d periodic structures.

Figure 1: One dimensional Landau-Zener effect.

Landau-Zener effect is the transformation of
the intersection of terms λ1(p), λ2(p), see Fig.
(1) into quasi-intersection. It was observed first,
see [1], in one-dimensional lattices, with use of
the transfer-matrix as a main spectral tool for
study of corresponding space or time- periodic
structures, see [2]. It was noticed that the in-
teraction of terms λs(p) in solid-state quantum

problems implies pseudo-relativistic properties
of the corresponding particles / quasi-particles.
Fresh interest for quasi-relativism in solid state
physics arose in connection with discovery of
high mobility of charge carriers in graphen, see
for instance [3]. Recent discovery of quasi-
relativistic behavior of terms in man-made bi-
layer periodic quasi-2d lattices, see [4], allows to
conjecture that the weak interaction of 2d peri-
odic lattices may be used as a source of various
artificial structures with useful transport prop-
erties. Study of the Landau-Zener transforma-
tion of 2d terms requires an adequate analytic
machinery. In [12] the Dirichlet-to-Neumann
map was selected as an appropriate tool to sub-
stitute the transfer-matrix in analysis of per-
turbations of the two-dimensional terms. The
standard DN-map is a linear transformation of

the boundary “potential” ψ


Γ

, Γ ⊂ ∂Ω into the

“boundary current” ∂ψ
∂n


Γ

of the solution ψof the

homogeneous Schrödinger equation on the do-
main Ω, with scaled spectral variable λ = 2mE

2 .

−∆ψ + V ψ = λψ, ψ DN (λ) : ψ

Γ

−→ ∂ψ

∂n


Γ

.

It our talk we consider a modified version of DN-
map, restricted by an orthogonal projection P+
onto a contact subspace E+ of L2(Γ). We ignore
the spin of electron and initially assume that
the one-electron wave functions on the neighbor-
ing romboidal periods, see Fig. 2, communicate
with each other via relatively narrow connecting
channels, which filter the evanescent waves off,
see an extended analysis of the filtering in [5].
We simplify the spectral problem via replace-

Figure 2: A detail of a square lattice with rom-
boidal periods. The connecting leads are not
shown.

ment of the matching condition on Γ in closed
channels by the partial zero boundary condition

1
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on the slots Γ :

P+ [ψΩ − ψΩ ]

ΓΩ,Ω

= 0,

P+


∂ψΩ
∂n

+
∂ψΩ
∂n

 
ΓΩ,Ω

= 0, (1)

P−ψ


Γ

= 0, with P− =


m>l,Γs

em em (2)

We consider the Schrödinger operator −∆ ∗
+V (x)∗ =: L on the periodic 2d lattice with
periods connected by the open channels only,
with normals n = −n. The Schrödinger op-
erator with above boundary conditions is self-
adjoint and can be analyzed based on quasi-
periodic problem on a period, with the partial
matching boundary condition substituted by the
quasi-periodicity on the pairs of opposite slots
Γs
± = {xs = ±1} of the period Ω:

P+


ψΩ


Γs
−


= e−2ipsaP+


ψΩ


Γs
+


,

P+


∂ψΩ
∂n


Γs
−


= −e−2ipsaP+


∂ψΩ
∂n


Γs
+


, (3)

where the differentiation is done with respect to
the outward normals on the boundary of the rel-
evant periods, see Fig. (1). Hereafter we assume
that the width 2a = 2 of the period is equal
to 2, δ/2 << 1, and the entrance subspace Es

+

of the open channel attached to each slot Γs
±

is one-dimensional and spanned by 2
δ sin

πy
δ =

es, P s
+ = es es on each slot. The electrons

with the boundary data on Γs = ∂Ω ∩ ∂Ω

from Es belong to both periods and form a
covalent bond between the blocks Ω, Ω, see
[13]. We use the relative intermediate DN-map
DNΓ associated with spectral/boundary prob-
lems with nonzero data on the slots. Assum-
ing that the neighboring periods are connected
by the leads of certain width δ, denote by Es

±
the entrance subspaces of cross-section eigen-
functions of the open and closed channels re-
spectively, and by P s

± the corresponding projec-
tions. Correspondingly the role of the conduc-
tivity band is played by the first spectral band
in the leads ∆1 = [π2 δ−2, 4π2 δ−2], with Fermi-
level sitting on it: Λ ∈ ∆1. We consider the
intermediate boundary problem with the partial
boundary data and introduce the corresponding
DN-map, see [10],by formal setting the exponen-
tial in the closed channels as K− =∞ and cor-
respondingly choosing the zero boundary condi-
tions on the bottom sections of closed channels.

Then the corresponding partial DN-map DNΛ

is defined as a restriction of the standard DN-
map onto the slots Γ with subsequent framing
by the projections onto E+ =


s=1, sgn=±Es

±:

DNΛ = P+DNP+ =


s,t=1,2, sgn,sgn=±
P s
sgn


Γs

sgn

DNP t
sgn


Γt

sgn

.

The corresponding intermediate DN-map DNΛ

is defined by the matrix elements of the standard
DN-map of the period in the decomposition of
the cross-section space E = E+ + E− into an
orthogonal sum of the entrance subspaces of the
open and closed channels. We characterize the
period Ω on given spectral interval ∆T by the
rational expression

DNΛ(λ) =
n

r=1

Qr

λ− λr
+ P+KP+, λr ∈ ∆T ,

(4)
where Qr

λ−λr
=


s,sgn;t,sgn

essgn
essgn, ∂ψr

∂n  
∂ψr

∂n , etsgn
λ− λr

etsgn ,


s,t,sgn,sgn

essgnessgnKetsgn etsgn = P+KP+.

(5)
Here λr are the eigenvalues of the Schrödinger
operator on the essential spectral interval ∆T

and PKP - the restriction of the regular part of
the DN-map onto the open channels of the leads.
The term P+KP+ contains the contribution to
the DN - map from the complementary spectral
subspace.

The spectral structure of the Schrödinger op-
erator on the 2d periodic lattice is established
based on study of the quasi-periodic spectral
problem on the period Ω, which is represented
via comparison of the projections of the bound-
ary values and the boundary currents of the so-
lutions of the Schrödinger equation Lψ = λψ on
the opposite slots:

P+




ψ1−
ψ1+
ψ2−
ψ2+


 = P+




e−2ip1ψ1+
ψ1+

e−2ip2ψ2+
ψ2+


 = ψ1+ ν1+ψ2+ ν2,

P+




ψ
1
−

ψ
1
+

ψ
2
−

ψ
2
+


) = P+




−e−2ip1ψ
1
+

ψ
1
+

−e−2ip2ψ
2
+

ψ
2
+


 = ψ

1
+ µ1+ψ

2
+ µ2,

(6)

2
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where

ν1 = e1




e−2ip1

1
0
0


 , ν2 = e2




0
0

e−2ip2

1


 , µ1 = e1



−e−2ip1

1
0
0


 , µ2 = e2




0
0

−e−2ip2

1


 ,

and

ψs
+ = ψ


Γs

+

, es, ψs+ = ∂ψ
∂n


Γs

+

, es.

Then the quasi-periodicity condition implies the
equation:

DNΛ[ψ1+ ν1 + ψ2+ ν2] = ψ
1
+ µ1 + ψ

2
+ µ2, (7)

with scalar coefficients ψs
+, ψ

2
+. Notice that

νs, µt = 0, which implies

ν1DNν1ψ1+ + ν1DNν2ψ2+ = 0,

ν2DNν1ψ1+ + ν2DNν2ψ2+ = 0 (8)

The condition of existence of the non-trivial
Bloch function is represented in the determinant
form:

det

ν1,DN 11ν

1 ν1,DN 12ν
2

ν2,DN 21ν
1 ν2,DN 22ν

2


= 0,

(9)
where νs,DN stν

t =

n
r=1


sgn,sgn

νs ∂ψr

∂n Γs
sgn
∂ψr

∂n , νtΓt
sgn

λ− λr
+νs,Kνt.

(10)
We aim on the spectral analysis of a double pe-
riodic 2-d lattice with romboidal periods Ωu,Ωd

playing the roles of basements of the upper and
the lower cones of the two-storey joint period,
see Fig.(2). Assume that first and the second
storeys are connected by the link constructed in
a form of a double cone with the slot Γ0 divid-
ing the upper and lower cones and a tunneling
boundary condition on it defined by a real anti-

symmetric matrix B : P⊥0 ψ
u


Γ0

= 0, P⊥0 ψ
d


Γ0:




P0
∂ψu

∂nu


Γu

0

P0
∂ψd

∂nd


Γd

0


 =


0 −β
β 0





P0ψ
u


Γu

0

P0ψ
d


Γd

0


 .

(11)
with the outward normals nu = −nd,and an
orthogonal 1d projection P0 = e0 e0 onto
the open channels of the link. This tunneling
boundary condition, with large β, emulates the

Figure 3: Detail of the double square lattice
with romboidal periods

potential barrier for the charge carriers, because
implies ψu ≈ 0 ≈ ψd. If the slots of the upper
and lower periods are equipped with the match-
ing boundary conditions on the contact with the
neighboring periods, then the Schrödinger oper-
ator on the whole lattice, with a real, bounded
and piecewise continuous periodic potential is
selfadjoint, and the corresponding dispersion
equation can be derived from the Bloch condi-
tion on a single period, via comparison of the
boundary values ψ =


ψ1u,

ψ2u, ψ
u
0 , ψ

d
0 ,

ψ2d,
ψ1d


,

of the wave-functions on the slots Γs
u,Γ0,Γ

t
d of

the upper and lower periods and the balance
of the corresponding boundary currents ψ =
ψ
1

u,
ψ
2

u, ψ
u
0 , ψ

d
0,

ψ
2

d,
ψ
1

d


with the tunnel-

ing boundary condition. Indeed, the interme-
diate DN-map is obtained via framing of the
standard DN-map by projections P s

+, P
0
+ onto

the open channels of the slots Γs
u,d and ones of

the link Γ0. Imposing the quasi-periodic bound-
ary conditions on the slots Γs

sgn(u), Γ
s
sgn(d) and

the tunneling boundary conditions on Γu
0 , Γ

d
0,

we obtain the linear system for the variables
ψ+ =

�
ψ1+u, ψ

2
+u, ψ

u
0 , ψ

d
0 , ψ

2
+d, ψ

1
+d


, similar to

(9). Existence of a non-trivial solution of this
linear system is guaranteed by an appropriate
determinant condition. Denote

DN u,d :=


ν1u,dDN

u
11ν

1
u,d ν1u,dDN

u,d
12 ν

2
u,d ν1,DN u,d

10 
ν2u,dDN

u,d
21 ν

1
u,d ν2u,dDN

u,d
22 ν

2
u,d ν2,DN u,d

20 
DN u,d

01 , ν
1
u DN u,d

02 , ν
2
u,d DN u,d

00


 ,
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DN u,d
T =:


ν1

u,dDN u,d
11 ν1

u,d ν1
u,dDN u,d

12 ν2
u,d

ν2
u,dDN u,d

21 ν1
u,d ν2

u,dDN u,d
22 ν2

u,d


(12)

In particular, if β → ∞, the linear system
for ψ, ψ derived as (9) splits into a pair of
independent blocks, corresponding to the up-
per and lower period, with the dispersion equa-
tions detDN u

T = 0 and detDN d
T = 0 sim-

ilar to ones we obtained in previous section.
If β is large, then the intersection of terms
detDN u

T detDN d
T = 0 is transformed into a

quasi-intersection. The transport properties for

Figure 4: Two-dimensional Landau-Zener effect.

large β are defined by the second derivatives of
λ with respect to the component pn of the quasi-
momentum p, orthogonal to the intersection l of
the tangent planes of the dispersion surfaces of
the upper and lower layers of the double lattice.
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Random Trees and SPDE Approximation

Yuri Bakhtin
Georgia Institite of Technology, Atlanta, GA, USA

e-mail: bakhtin@math.gatech.edu

In this talk I consider Boltzmann–Gibbs distributions on rooted plane
trees with bounded braching.
The first result, see [1], is a Large Deviation Principle for the branching

type of the tree. Its immediate consequence is a Law of Large Numbers
that states that as the size of the tree grows, the branching frequences
converge in probability to an explicitly computed limiting branching type,
and the deviation rate is exponential. This result is interesting and has some
implications for the RNA secondary structure analysis, see [2], but it does
not take into account the geometry of the tree.
The next result, see [3], addresses this issue, although the limiting pro-

cedure is different. We show that as the order of the tree grows to infinity,
these trees obey a certain “thermodynamic” limit theorem: for each natural
n the distributions of the root’s neighbourhood of depth n in the random
tree converge to a limiting distribution. These distributions are, of course,
consistent with each other for different values of n which allows to con-
sider the limiting infinite tree and restate the theorem in terms of the weak
convergence to this infinite random tree.
The limiting infinite tree possesses several curious properties. Although

it is not a classical branching process, it is a Markov process on “genera-
tions”. This allows to study scaling limits, and we show that the Markov
random tree obeys a functional limit theorem: appropriately rescaled sizes
of generations in the limiting tree admit an approximation by a diffusion
process with explicitly computed characteristics.
That result does not take into account the way the generations are con-

nected to each other. However, one can study finer structure of the random
tree by partitioning some generation into a finite number of subsets and
observing the progeny of each of them. This also leads to a functional limit
theorem under the same scaling.
One can also wonder if there is a limiting object on one probability space

that serves all possible partitions at once. The possibility of this was con-
jectured in [3]. It turns out that the answer is “yes”, and one can introduce
a Stochastic PDE w.r.t. a Brownian sheet such that the solution to this
SPDE serves as a scaling limit for the fine structure of the random trees.
The solution defines stochastic dynamics on monotone maps, and the most
interesting and unexpected property of these maps is that they have jumps
that one has to take into account when studying the scaling limits.
In the last part of the talk, I will define a new type of continuum random

trees as the solutions of the aforementioned SPDE, state the scaling limit
theorem for the random trees, and discuss the approriate topology in which
the weak convergence holds.
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Exclusion type processes in continuum

Michael Blank∗†

Abstract

We introduce and study a new class of exclusion type discrete time particle processes in continuum.
Ergodic averages of particle velocities are obtained and their connections to other statistical quantities,
in particular to the particle density (the so called Fundamental Diagram) is analyzed rigorously.
The main technical tool is a “dynamical” coupling construction applied in a nonstandard fashion:
instead of proving the existence of the successful coupling (which even might not hold) we use its
presence/absence as an important diagnostic tool. Despite that this approach cannot be applied to
lattice systems directly, it allows to obtain new results for the lattice systems embedding them to the
systems in continuum.

1 Introduction

In 1970 Frank Spitzer introduced the (now classical) simple exclusion process as a Markov chain that
describes nearest-neighbor random walks of a collection of particles on the one-dimensional infinite1

integer lattice. Particles interact through the hard core exclusion rule, which means that at most one
particle is allowed at each site. This seemingly very particular process appears naturally in a very broad
list of scientific fields starting from various models of traffic flows [12, 9, 7, 2, 3], molecular motors and
protein synthesis in biology, surface growth or percolation processes in physics (see [13, 5] for a review),
and up to the analysis of Young diagrams in Representation Theory [6].
From the point of view of the order of particle interactions there are two principally different types

of exclusion processes: with synchronous and asynchronous updating rules. In the latter case at each
moment of time a.s. at most one particle may move and hence only a single interaction may take place.
This is the main model considered in the mathematical literature (see e.g. [11] for a general account and
[1, 8] for recent results), and indeed, the assumption about the asynchronous updating is quite natural
in the continuous time setting. The synchronous updating means that all particles are trying to move
simultaneously and hence an arbitrary large (and even infinite) number of interactions may occur at the
same time. This makes the analysis of the synchronous updating case much more difficult, but this is
what happens in the discrete time case.2 This case is much less studied, but still there are a few results
describing ergodic properties of such processes [2, 3, 4, 7, 9, 12].
Our aim is to introduce and study the synchronous updating version of the exclusion process in

continuum. Note that recently some other interacting particle processes were generalized from lattice to
continuum case (see e.g. [13]).
A configuration x := {xi}i∈Z is a bi-infinite sequence of real numbers xi ∈ R interpreted as centers of

particles represented by balls of radius r ≥ 0 (see Fig. 1) and ordered with respect to their positions (i.e.
. . . ≤ x−1 ≤ x0 ≤ x1 ≤ . . .). To emphasize the dependence on the radius r ≥ 0 we shall use the notation
x(r) and drop it only if r = 0, i.e. x ≡ x(0). We say that a configuration x(r) is admissible if

xi(r) + r ≤ xi+1(r)− r ∀i ∈ Z

(the corresponding balls may only touch each other) and denote by X the space of admissible configura-
tions.
For a finite subset of integers I and a collection C := {Ci}i∈I of open intervals the subset CI,C :=

{x ∈ X : xi ∈ Ci ∀i ∈ I} is called a finite cylinder.3 We endow the space of admissible configurations
X by the σ-algebra B generated by the finite cylinders defining a topology in this space.

∗Russian Academy of Sci., Inst. for Information Transm. Problems, e-mail: blank@iitp.ru
†This research has been partially supported by Russian Foundation for Fundamental Research, and program ONIT.
1or finite with periodic boundary conditions
2if one do not consider some “artificial” updating rules like a sequential or random updating.
3In general the cylinder CI,C might be empty for nonempty sets I, C.
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Figure 1: TASEP in continuum.

The dynamics will be defined as follows. For a trivial configuration consisting of a single particle
located at time t ≥ 0 at xt

0 ∈ R (i.e. xt ≡ {xt
0}) the dynamics is defined as

xt+1
0 := xt

0 + vt
0,

and thus vt
0 is considered as a local velocity at time t, i.e this is simply a random walk on R. To

generalize this trivial setting for an infinite configuration x(r) ∈ X we again interpret a (be-infinite on
i ∈ Z) sequence {vt

i}i,t as local velocities for particles in xt(r) performing random walks conditioned to
the order preservation and the hard core exclusion rule.
To simplify presentation we restrict ourselves here to the case of nonnegative local velocities. The

point is that the formulations in the general case are becoming much more involved, but the results and
arguments work with only very slight changes.
Since only nonnegative local velocities are considered the hard core exclusion rule means that the

admissibility condition breaks down for the i-th particle at time t ∈ Z+ if and only if the inequality

xt
i(r) + vt

i + r ≤ xt
i+1(r)− r

does not hold. If this happens we say that there is a conflict between the particles i and i + 1, and to
resolve it one applies a normalizing construction

vt
i → N (vt

i , x
t(r)).

After the normalization the positions of particles are calculated according to the rule

xt+1
i (r) := xt

i(r) +N (vt
i , x

t(r)) ∀i.

The normalization may be done in a number of ways and we restrict ourselves the weak normalization
under which the conflicting velocity is modified to allow the particle to move as far as possible. In terms
of gaps

∆i(xt) ≡ ∆t
i := xt

i+1 − xt
i − 2r

between particles in the configuration xt the normalization can written as follows:

N (vt
i , x

t) :=

vt

i if vt
i ≤ ∆t

i

∆t
i otherwise .

Observe that any two particle configurations x(r), x́(ŕ) having the same sequence of gaps ∆ := {∆i}
may be transformed to each other by a one-to-one map

x́i(ŕ) = ϕ(xi(r)) := xi(r)− 2i(r − ŕ) ∀i ∈ Z.

Since the normalization procedures that we consider depend only on the gaps between particles it is enough
to study the case r = 0. On the other hand, if r = 1/2 and x0

i (r) ∈ Z ∀i ∈ Z and vt
i ∈ Z ∀i ∈ Z, t ≥ 0 then

xt
i(r) ∈ Z ∀i ∈ Z, t ≥ 0 and hence we get a lattice particle system. Thus our results lead to a completely
new approach to the analysis of lattice systems as well. Note however that in the case r = 0 an arbitrary
number of particles may share the same spatial position which is prohibited in the lattice case.
Of course, without some specific assumptions on the structure of local velocities {vt

i}i,t no interesting
results are possible. We assume that vt

i ∈ [0, v] ∀i ∈ Z, t ∈ Z≥ := Z+ ∪ {0} and one of the following
seemingly opposite assumptions holds:

(a) vt
i ≡ vt

0 ∀i ∈ Z, t ∈ Z≥ and ∃ v̄(γ) := lim
t→∞

1
t

t−1
s=0

min(vs
0, γ) ∀γ > 0 (a.s.);

(b) {vt
i} are i.i.d. (both in i and t) random variables.
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Note that the intersection between the sets of local velocities satisfying the assumptions (a) and (b)
contains an important case of pure deterministic velocities: vt

i ≡ v ∀i ∈ Z, t ∈ Z≥. As we shall
show properties of systems with local velocities satisfying to the assumption (a) are close to the pure
deterministic setting. Therefore we refer to the setting (a) as deterministic4 and to the setting (b) as
random.
It is of interest that in the seemingly simplest deterministic setting vt

i ≡ v ∀i ∈ Z, t ∈ Z≥ the behavior
of the corresponding deterministic dynamical system describing the dynamics of particle configurations is
far from being trivial. We prove (Theorem 3) that this system is chaotic in the sense that its topological
entropy is positive (and even infinite).
To emphasize that under dynamics no creation or annihilation of particles may take place this sort of

systems is called diffusive driven systems (DDS) instead of a more general object – interacting particle
systems (IPS).
The main technical tool in our analysis is a (somewhat unusual) “dynamical” coupling construction.

Despite that various couplings are widely used in the analysis of IPS, applications of our approach is
very different from usual. In particular, we do not prove the existence of the so called successful coupling
(which even might not hold) but instead use its presence/absence as an important diagnostic tool. Remark
also that typically one uses the coupling argument to prove the uniqueness of the invariant measure and
to derive later other results from this fact. In our case there might be a very large number of ergodic
invariant measures or no invariant measures at all (recall the trivial example of a single particle performing
a skewed random walk). This indicates that there is another important statistical quantity – average
particles velocity that can be computed at least in this example. The dynamical coupling will be used
directly to find connections between the average particle velocities and other statistical features of the
systems under consideration, in particular with the corresponding particle densities.
It is worth note that all approaches used to study lattice versions of DDS are heavily based on the

combinatorial structure of particle configurations. This structure has no counterparts in the continuum
setting under consideration. In particular the particle – vacancy symmetry is no longer applicable in
our case. This explains the need to develop a fundamentally new techniques for the analysis of DDS in
continuum. This techniques cannot be applied directly in the lattice case. Nevertheless, the embedding
of lattice systems to the continuum setting allows to obtain (indirectly) new results for the lattice systems
as well.

2 Basic properties of DDS

Here we shall study questions related to densities and velocities of DDS.
By the density ρ(x, I) of a configuration x ∈ X in a bounded segment I = [a, b] ∈ R we mean the

number of particles from x whose centers xi belong to I divided by the Lebesgue measure |I| > 0 of the
segment I. If for any sequence of nested bounded segments {In} with |In|

n→∞−→ ∞ the limit

ρ(x) := lim
n→∞

ρ(x, In)

is well defined we call it the density of the configuration x ∈ X. Otherwise one considers upper and lower
(with respect to all possible collections of nested intervals In) particle densities ρ±(x).

Lemma 1 The upper/lower densities ρ±(xt) are preserved by dynamics, i.e. ρ±(xt) = ρ±(xt+1) ∀t.

By the (average) velocity of the i-th particle in the configuration x ∈ X at time t > 0 we mean

V (x, i, t) :=
1
t

t−1
s=0

N (vs
i , x

s) ≡ (xt
i − x0

i )/t.

If the limit
V (x, i) := lim

t→∞
V (x, i, t)

is well defined we call it the (average) velocity of the i-th particle. Otherwise one considers upper and
lower particle velocities V±(x, i).

4In this case vt
0 might be a trajectory of a deterministic chaotic map f : [0, 1] → [0, 1], e.g. vt+1

0 := vf t(vt
0/v), as well

as a realization of a true random Markov chain.
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Lemma 2 Let x ∈ X then |V (x, j, t)− V (x, i, t)| t→∞−→ 0 a.s. ∀i, j ∈ Z.

Corollary 3 The upper and lower particle velocities V±(x, i) do not depend on i (but might be random).

The proof of this result shows that in the deterministic setting the gaps between particles cannot
become much larger than their initial values. The following result demonstrates that under some mild
additional assumptions (which definitely hold for high particle densities) large gaps will disappear with
time.

Lemma 4 Let x ∈ X and we consider only the pure deterministic setting (i.e. vt
i ≡ v). Assume that

∀i, t ∃j > t : ∆j(xt) < v. Then ∀i ∃ti < ∞ : ∆i(xt) < 2v ∀t ≥ ti.

3 Ergodic properties

Lemma 5 The supremum of |W t
ij | := xt

i − x́t
j taken over all mutually paired particles in the coupled

(see Section 4) process (xt, x́t) is uniformly bounded by v for any t ∈ Z≥.

Under our assumptions the (standard) successful coupling5 needs not hold (e.g. in the deterministic
setting when two equally distributed initial configurations are shifted against each other). Therefore one
cannot apply directly Lemma 5 to compare particle velocities. Nevertheless we show that the absence of
coupling is not a serious obstacle and it can be used as a diagnostic tool.

Theorem 1 Let the density ρ(x) of a configuration x ∈ X be well defined. Then the set of limit points
as t →∞ of the sequence {V (x, t)}t∈Z≥ depends only on ρ(x).

Theorem 2 (Fundamental Diagram) In the deterministic setting

V (x) = lim
t→∞

1
t

t−1
s=0

min(1/ρ, vs
0) =


v if ρ(x) ≤ 1/v
1/ρ(x) otherwise if vt

0 ≡ v.

Remark 6 This result looks very similar to the one known for the deterministic version of the lattice
TASEP (see [12, 2]), however the latter case is characterized by the following feature: if the density is
large enough particles inevitably form dense clusters without vacancies inside (static traffic jams). The
proof of the above result actually shows that the “typical” behavior of high density configurations in
continuum is different: they do form particle clusters, but these clusters are not staying at rest but are
moving at a constant velocity as an “echelon”. It is of interest that in order to imitate such behavior a
number of complicated lattice models were developed.

Remark 7 The construction used in the proof is especially striking in that the same family of uniformly
spatially distributed configurations allows to study the limit dynamics in the deterministic setting for
all configurations having densities. Note that this argument cannot be applied directly in the lattice
version of DDS. Nevertheless since the “lattice configurations” are included in DDS under consideration
the result holds as well, which implies completely new results for a lattice TASEP with long jumps.

In the deterministic setting (i.e. vt
i ≡ v ∀i, t) the DDS is defined by a deterministic map Tv : X → X

from the set of admissible configurations into itself. Our aim is to show that this map is chaotic in the
sense that its topological entropy is infinite.6

We refer the reader to [10] for detailed definitions of the topological and metric entropies for deter-
ministic dynamical systems and their properties that we use here. To avoid difficulties related to the
noncompactness of the phase space we define the topological entropy of a map Tv (notation htop(Tv)) as
the supremum of metric entropies of this map taken over all probabilistic invariant measures.

Theorem 3 The topological entropy of the pure deterministic exclusion process in continuum is infinite.
5when a.a. particles are eventually becoming paired.
6Normally one says that a map is chaotic if its topological entropy is positive, so infinite value of the entropy indicates

a very high level of chaoticity.
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The proof of this result is based on a similar result for the action of a shift-map in continuum
σv : X → X defined as

(σvx)i := xi + v i ∈ Z, x ∈ X.

Lemma 8 The topological entropy of the shift-map in continuum σv is infinite.

The idea of the proof is to construct an invariant subset of X on which the map σv is isomorphic
to the full shift-map in the space of sequences with a countable alphabet. The result follows from the
observation that the topological entropy of the full shift-map σ(n) with the alphabet consisting of n
elements is equal to lnn.

4 Coupling

Technically one of the main ingredients of the above mentioned results is special “dynamical” coupling
construction.
Recall that a coupling of two Markov chains xt and yt acting on the space X is an arrangement of

a pair of processes on a common probability space to facilitate their direct comparison, namely this is a
pairs process (xt, yt) defined on the direct product space X ×X satisfying the assumptions

P ((xt, yt) ∈ A×X) = P (xt ∈ A) and P ((xt, yt) ∈ X ×A) = P (yt ∈ A),

i.e. the projections of the pairs process behave as in the individual processes.
Let us discuss the specific coupling between two copies xt, x́t of Markov chains we consider throughout

the paper. Typically in continuous time interacting particle systems one uses (see e.g. [11]) an equal
coupling (pairing) when particles sharing the same sites in the processes xt, x́t are considered to be
paired and all choices of their velocities are assumed to be identical. This sort of coupling works rather
well for continuous time systems when only a single particle may move at a given moment of time. In
the discrete time case the situation is much more complicated since an arbitrary number of particles
may move simultaneously and thus it is possible that the particles of the processes xt, x́t pass each other
and never share the same positions. In fact, this difficulty is not really crucial and can be cured under
some simple technical assumptions. A more important obstacle is that if a pair is created and only
one of its members is blocked at time t by an unpaired particle, then due to the simultaneous motion
of the blocking unpaired particle and the non-blocked particle in the pair the following situation may
happen: •◦

• −→ ◦ ◦
◦ . Thus the old pair will be destroyed but no new pair will be created under the

equal pairing construction. Here we use a diagrammatic representation for coupled configurations where
paired particles are denoted by black circles and unpaired ones by open circles and use the upper line of
the diagram for the x-particles (i.e. particles from the x-process) and the lower line for the x́-particles.
To deal with this obstacle we introduce a dynamical 7 coupling, a very preliminary version of which

was described in [4] for the lattice case and was inspired by the idea proposed by L. Gray in the case the
simplest discrete time lattice TASEP (unpublished). It is worth mention also the coupling proposed for
the lattice continuous time case by O. Angel (see [1, 8]). Lemma 5 shows an important advantage of the
dynamical coupling with respect to the Angel’s construction: the former guarantees that the distances
between mutually paired particles are uniformly bounded, while in the Angel’s construction the distances
may grow to infinity.
Let us give an informal description of the dynamical coupling of the processes xt, x́t. At t = 0 all

particles are assumed to be unpaired and the coupling consists of a gradual pairing of close enough
particles belonging to the opposite processes. Two unpaired particles from different configurations form
a new pair if the segment between them is less or equal to v and it does not contain any other unpaired
particles. Once particles are paired all choices of their velocities in the coupled process are identical. A
member of a pair may be swapped with an unpaired particle from the same process if the latter approaches
another member of the pair closer than it. It is convenient to think about the coupled process as a “gas”
of single (unpaired) particles and “dumbbells” (pairs). A previously paired particle may inherit the role
of the unpaired one from one of its neighbors. Our aim is to get rid of the unpaired particles and in order
to keep track of their positions we shall refer to them as x- and x́-defects depending on the process they
belong.

7The word “dynamical” is meant to emphasize that the mutual arrangement of particles in pairs may change with time
under dynamics in distinction to the conventual equal coupling (where the particles have coinciding positions).

5
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The formal description of the dynamical coupling can be done in terms of the resolution of x-triples
( ◦ •

• or • ◦
• ) and minimal pairs of defects (

◦
◦ or ◦

◦ ) in the coupled process as follows:
(1) each x-triple is recursively resolved: ◦ •

• −→ • ◦
• ,

(2) each x́-triple is recursively resolved: •
◦ • −→ •

• ◦ ,
(3) each minimal pair of defects is resolved: ◦

◦ −→ •
• .

During the time when two particles are paired all choices of their velocities in the coupled process are
assumed to be identical. Therefore the particles from the same pair move synchronously until either the
admissibility condition breaks down for only one of the particles (which basically means that its movement
is blocked by another particle) or an unpaired particle comes close enough to one of the members of the
pair. This construction clearly defines a Markovian coupling between two copies of the Markov chain
describing our DDS.
One of the most important properties of the dynamical coupling construction is that once being

created at time t0 a pair of particles remains present for any moment of time t ≥ t0, however at different
moments of time the roles of the pair’s members may be played by different particles. Indeed, a pair
breaks down only if one of its members is replaced by an unpaired particle, and hence the pair as a whole
survives.

References

[1] Angel O. The Stationary Measure of a 2-type Totally Asymmetric Exclusion Process, J. Combin.
Theory Ser. A, 113:4(2006), 625-635. [arXiv/0501005 math.CO]

[2] Blank M. Ergodic properties of a simple deterministic traffic flow model. J. Stat. Phys., 111:3-4(2003),
903-930.

[3] Blank M. Hysteresis phenomenon in deterministic traffic flows. J. Stat. Phys. 120: 3-4(2005), 627-658.
[math.DS/0408240]

[4] Blank M., Pirogov S. On quasi successful couplings of Markov processes. Problemy Peredachi Infor-
macii, 43:4(2007), 51-67. (Rus), pp.316-330(Eng)

[5] Borodin A., Ferrari P.L., Sasamoto T. Large time asymptotics of growth models on space-like paths
II: PNG and parallel TASEP. [arXiv:0707.4207 math-ph]

[6] Comtet A., Majumdar S.N., Ouvry S. and Sabhapandit S. Integer partitions and exclusion statistics:
limit shapes and the largest parts of Young diagrams. J. Stat. Mech. (2007) P10001. [arXiv:0707.2312]

[7] Evans M. R., Rajewsky N., Speer E. R. Exact solution of a cellular automaton for traffic. J. Stat.
Phys. 95(1999), 45-98.

[8] Evans M.R., Ferrari P.A., Mallick K. Matrix representation of the stationary measure for the mul-
tispecies TASEP. [arXiv:0807.0327 math.PR]

[9] Gray L., Griffeath D. The ergodic theory of traffic jams. J. Stat. Phys., 105:3/4 (2001), 413-452.

[10] Kornfeld E.P., Sinai Ya.G., Fomin S.V. Ergodic theory. M.: Nauka, 1980. (Springer Verlag, 1982)

[11] Liggett T.M. Interacting particle systems. Springer-Verlag, NY, 1985.

[12] Nagel K., Schreckenberg M. A cellular automaton model for freeway traffic, J. Physique I, 2 (1992),
2221-2229.

[13] Penrose M.D. Existence and spatial limit theorems for lattice and continuum particle systems.
Probab. Surveys, 5 (2008), 1-36.

6



27

ТОРИЧЕСКАЯ ТОПОЛОГИЯ

В.М. БУХШТАБЕР, Т.Е. ПАНОВ

Аннотация. В обзоре излагаются методы и основные результаты новой
активно развивающейся области исследований — торической топологии.
В этих исследованиях активное участие принимают сотрудники, аспиран-
ты и студенты кафедры высшей геометрии и топологии мехмата МГУ.

1. Введение в предмет исследования

Теория действий тора имеет длинную историю развития и образует важную
область алгебраической топологии. За последние 15 лет на стыке эквивариант-
ной топологии, алгебраической и симплектической геометрии, комбинаторики,
коммутативной и гомологической алгебры возникла новая область исследова-
ний — торическая топология, которая быстро привлекла внимание большого
числа исследователей и активно развивается в настоящее время.

В центре внимания торической топологии находятся действия тора, про-
странства орбит которых несут богатую комбинаторную структуру. В ней ре-
шаются задачи на основе изучения алгебраических, комбинаторных и топо-
логических свойств таких действий, естественно возникающих в различных
направлениях исследований. Благодаря торической топологии фундаменталь-
ные результаты ряда областей математики получили новое развитие и нашли
неожиданные замечательные приложения.

Первоначальный импульс этому развитию придала торическая геомет-
рия — теория торических многообразий в алгебраической геометрии. Эта
теория устанавливает взаимно однозначное соответствие между комплексны-
ми алгебраическими многообразиями с действием комплексного тора, имею-
щим плотную орбиту, и комбинаторными объектами, называемыми веерами.
При помощи вееров алгебро-геометрические свойства торических многообра-
зий полностью переводятся на язык комбинаторики. Торическая геометрия
предоставляет богатый источник явных примеров алгебраических многообра-
зий и имеет яркие приложения в таких областях, как теория особенностей и
математическая физика. Пространство орбит 2n-мерного неособого проектив-
ного торического многообразия по действию компактного тора Tn представля-
ет собой выпуклый n-мерный простой многогранник P .

В симплектической геометрии, после появления теоремы выпуклости Атьи–
Гиллёмина–Стернберга [At82] и формулы Дуистермаата–Хекмана [DH82] в на-
чале 1980-х годов, активно изучались гамильтоновы действия групп. В работе
Делзанта [De88] было показано, что в случае действия тора размерности, рав-
ной половине размерности многообразия, образ отображения моментов опре-
деляет многообразие с точностью до эквивариантного симплектоморфизма. В
симплектической геометрии, как и в торической геометрии, различные гео-
метрические конструкции имеют комбинаторную интерпретацию в терминах
многогранников.

1
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Имеется тесная взаимосвязь между алгебраическими и симплектическими
многообразиями с действием тора: проективное вложение неособого торическо-
го многообразия определяет симплектическую форму и отображение момен-
тов. Образом отображения моментов является многогранник, двойственный
к вееру. Как в алгебраической, так и в симплектической ситуации, действие
компактного тора локально изоморфно стандартному действию тора Tn на
Cn покоординатными вращениями. Факторпространство многообразия по та-
кому действию тора представляет собой многообразие с углами, которое несёт
комбинаторную структуру, отражающую структуру частично упорядоченно-
го множества стационарных подгрупп. Это позволяет полностью восстановить
многообразие и действие. Замечательно, что такой подход работает и в об-
ратном направлении: в терминах топологических инвариантов пространства с
действием тора удаётся интерпретировать и доказывать весьма тонкие ком-
бинаторные результаты топологически. Оказалось, что данная специфика ал-
гебраических торических многообразий имеет чисто топологическую природу,
что вызвало глубокое проникновение идей и методов торической и симплекти-
ческой геометрии в алгебраическую топологию с начала 1990-х годов.

Дальнейшие исследования выявили ряд важных классов многообразий с
действием тора, происхождение которых восходит к торическим или симплек-
тическим многообразиям. Эти более общие многообразия как правило не яв-
ляются алгебраическими или симплектическими, но в то же время обладают
важнейшими топологическими свойствами их алгебраических или симплекти-
ческих предшественников. Таким образом, была существенно расширена об-
ласть приложений методов торической топологии в комбинаторике и коммута-
тивной алгебре. Опишем некоторые из этих классов.

Подход Дэвиса–Янушкиевича [DJ91] к изучению торических многообразий
топологическими методами привёл к появлению квазиторических многообра-
зий. Этот класс многообразий определяется двумя условиями: действие то-
ра локально выглядит как стандартное представление Tn в комплексном про-
странстве Cn, а пространство орбит Q является комбинаторным простым мно-
гогранником. Оба условия выполнены для действия тора на неособом про-
ективном торическом многообразии. Работы Бухштабера–Рэя [БР98], [BR01]
показали, что квазиторические многообразия играют важную роль в теории
комплексных кобордизмов — классической области алгебраической тополо-
гии [St68]. В отличие от торических многообразий, квазиторические много-
образия могут быть не комплексными и даже не почти комплексными, однако
они всегда допускают стабильно комплексную структуру, которая определя-
ется в чисто комбинаторных терминах — при помощи так называемой харак-
теристической функции, сопоставляющей каждой гиперграни многогранника
некоторый примитивный вектор целочисленной решётки. Характеристическая
функция играет роль веера, сопоставляемого торическому многообразию в ал-
гебраической геометрии.

Комбинаторный подход к изучению гамильтоновых действий тора привёл
к понятию ГКМ-многообразий. Согласно [GZ99], компактное 2n-мерное мно-
гообразие M с эффективным действием тора T k, k  n, называется ГКМ-
многообразием, если множество неподвижных точек конечно, M обладает ин-
вариантной почти комплексной структурой, и веса представлений тора T k в
касательных пространствах к неподвижным точкам попарно линейно незави-
симы. Эти многообразия были названы в честь Горески, Коттвица и Макфер-
сона, которые впервые ввели их в [GKM98]. Там же было показано, что «1-
остов» такого многообразия M , т.е. множество точек, имеющих стационарную
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подгруппу коразмерности не больше 1, может быть описано при помощи гра-
фа с метками (Γ, α). Этот граф, называемый графом весов (или ГКМ-графом),
позволяет вычислять важные топологические инварианты многообразия M ,
такие как его числа Бетти или кольцо эквивариантных когомологий. Изуче-
ние таких графов приобрело самостоятельный комбинаторный интерес благо-
даря работам Гиллёмина–Зары [GZ99] и других. Отметим, что в топологии
идея сопоставления графа с метками многообразию с действием окружности
использовалась начиная с 1970-х годов, см., например, работу Мусина [Му80].

Стенли был одним из первых, кто осознал большой потенциал торических
действий для комбинаторных приложений, использовав их для доказательства
гипотезы Макмюллена о числах граней симплициальных многогранников и
гипотезы о верхней границе для триангуляций сфер. Его результаты и мето-
ды легли в основу известной монографии [St96] и предопределили дальнейшие
приложения коммутативной алгебры и гомологических методов в комбинатор-
ной геометрии.

Многие идеи Стенли нашли топологические применения; так оказалось, что
кольцо граней (или кольцо Стенли–Риснера) Z[K] симплициального комплек-
са K является важной составляющей в вычислении кольца когомологий ква-
зиторического многообразия M . В [DJ91] показано, что эквивариантные кого-
мологии многообразия M изоморфны кольцу граней Z[KP ] симплициального
комплекса KP , двойственного к границе простого многогранника P . Кольцо
обычных когомологий H∗(M) получается из Z[KP ] факторизацией по идеалу,
порождённому некоторыми линейными формами, в точности как и в случае
торических многообразий.

С появлением кольца граней стало ясно, что многие тонкие комбинатор-
ные свойства комплексов K можно интерпретировать алгебраически. Изуче-
ние колец граней получило самостоятельное развитие и привело к новому
классу колец Коэна–Маколея, имеющих геометрическую природу. В частности,
возникло новое топологическое понятие симплициального комплекса Коэна–
Маколея K, для которого Z[K] является кольцом Коэна–Маколея. Подробное
изложение этих понятий можно найти в монографии [BH98], где также под-
чёркивается важность гомологического подхода. Например, в [St96] и [BH98]
рассматриваются размерности биградуированных компонент векторных про-
странств Tork[v1,...,vm](k[K],k), называемые алгебраическими числам Бетти
кольца k[K], для любого поля k. Эти числа являются весьма тонкими инва-
риантами: они зависят от комбинаторики K, а не только от топологии его реа-
лизации |K|, и полностью определяют «обычные» топологические числа Бетти
для |K|. Теорема Хохстера [Ho77] выражает алгебраические числа Бетти через
когомологии полных подкомплексов в K.

Более подробно ознакомиться с основными этапами развития торической
топологии можно по монографии [БП04] и недавнему обзору Бухштабера–
Рэя [BR08]. Среди других работ по торической топологии сотрудников и ас-
пирантов кафедры высшей геометрии и топологии выделим [Ба03], [ББП04],
[До01], [Eр08].

2. Торические и квазиторические многообразия

Рассмотрим выпуклый n-мерный многогранник с m гипергранями в евкли-
довом пространстве Rn, заданный как пересечение m полупространств:

(2.1) P =

x ∈ Rn : (a i,x ) + bi  0 при 1  i  m


,
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где a i ∈ Rn — некоторые векторы и bi ∈ R. Многогранник P называется
простым, если ограничивающие его гиперплоскости находятся в общем по-
ложении в каждой его вершине; далее мы будем рассматривать лишь простые
многогранники.

Многогранник (2.1) можно задать одним матричным неравенством

APx + bP  0,

где AP — матрица размера m× n со строками a i, а bP — столбец из чисел bi;
неравенство считается покоординатным. Тогда аффинное отображение

iP : Rn → Rm; x → APx + bP

отождествляет P с пересечением положительного ортанта Rm и n-мерной
плоскости iP (Rn). Ортант Rm является пространством орбит стандартного
(покоординатного) действия тора Tm на комплексном пространстве Cm; в ка-
честве проекции на пространство орбит возьмем отображение

µ : Cm → Rm ; (z1, . . . , zm) → (|z1|2, . . . , |zm|2).
Теперь определим пространство ZP из коммутативной диаграммы

(2.2)

ZP iZ−−−−→ Cm
µ

P
iP−−−−→ Rm .

По построению, ZP является Tm-инвариантным подмножеством в Cm с про-
странством орбит P , а iZ является Tm-эквивариантным вложением.

Теорема 2.1. Пространство ZP является Tm-инвариантным гладким веще-
ственным (m+ n)-мерным подмногообразием в Cm с тривиальным нормаль-
ным расслоением.

Выбрав вещественную (m− n)×m-матрицу D = (dki) ранга (m− n), такую
что DAP = 0, можно задать ZP как полное пересечение вещественных квадрик
в Cm ∼= R2m:

m
i=1

dki(|zi|2 − bi) = 0, 1  k  m− n.

Мы называем ZP момент-угол многообразием многогранника P (название
связано с тем, что ZP является поверхностью уровня для отображения момен-
тов в симплектической конструкции торических многообразий [БП04, §9.2]).

Действие тора Tm на ZP не является свободным: вершины многогранника
имеют максимальные (n-мерные) стационарные подгруппы. Во многих случаях
удаётся найти (m−n)-мерную подгруппу в Tm, действующую на ZP свободно.
Важнейшие примеры возникают, когда многогранник P является целочислен-
ным, т.е. имеет вершины в точках целочисленной решётки Zn ⊂ Rn. В этом
случае векторы a i в (2.1) можно выбрать целочисленными и примитивными;
тогда отображение AP происходит из эпиморфизма решёток Zm → Zn, кото-
рый задаёт эпиморфизм торов Tm → Tn. Обозначим его ядро через K(P ).

Лемма 2.2. Пусть для каждой вершины многогранника P набор из n векто-
ров ai, ортогональных к гиперграням, содержащим эту вершину, образует
базис целочисленной решётки. Тогда K(P ) является (m− n)-мерным тором,
действующим на ZP свободно.

Соответствующее фактор-многообразие VP = ZP /K(P ) (размерности 2n)
называется торическим многообразием, соответствующим целочисленному
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многограннику P . Оно является неособым проективным алгебраическим мно-
гообразием с действием алгебраического тора (C×)n, имеющим плотную ор-
биту [Да78], [Fu93]. Компактный тор Tn = Tm/K(P ) является максимальной
компактной подгруппой в (C×)n.

Торические подгруппы в Tm, действующие на ZP свободно, можно также
получать из следующей более общей конструкции. Пусть Λ — целочисленная
m×n-матрица, строки которой удовлетворяют условию на векторы a i из лем-
мы 2.2. Тогда ядро K(Λ) соответствующего отображения торов Tm → Tn так-
же действует на ZP свободно. Фактор-многообразие M =M(P,Λ) = ZP /K(Λ)
называется квазиторическим многообразием, задаваемым данными (P,Λ). То-
рические многообразия получаются как частный случай при Λ = AP . Действие
тора Tn = Tm/K(Λ) на M обладает двумя свойствами, которые привели Дэ-
виса и Янушкевича к понятию квазиторического многообразия (см. Введение).
Можно доказать, что любое многообразие с действием тора Tn, удовлетворя-
ющим этим условиям, получается из предыдущей конструкции как фактор-
пространство момент-угол многообразия.

Следующая конструкция показывает, что на каждом квазиторическом мно-
гообразии имеется стабильно комплексная структура.

Пусть F1, . . . , Fm — гиперграни многогранника P и π : M → P — проекция
на пространство орбит квазиторического многообразия. Тогда Mi = π−1(Fi)
является ориентируемым подмногообразием в M коразмерности два, называ-
емым характеристическим подмногообразием. Тем самым определено веще-
ственное 2-мерное ориентируемое расслоение ρi над M , ограничение которого
на Mi совпадает с нормальным расслоением вложения Mi ⊂M .

Теорема 2.3 ([DJ91, BR01]). Имеет место изоморфизм вещественных 2m-
мерных расслоений

TM ⊕ R2(m−n) ∼= ρ1 ⊕ . . .⊕ ρm,

где TM — касательное расслоение, а R2(m−n) — тривиальное 2(m−n)-мерное
расслоение над M .

Так как выбор ориентации в вещественном 2-мерном расслоении эквивален-
тен заданию на нём комплексной структуры, стабильное касательное расслое-
ние кM допускает комплексную структуру. Выбор этой структуры становится
однозначным, если зафиксировать ориентацию самогоM и всех характеристи-
ческих подмногообразий Mi. Такой набор ориентаций называется полиориен-
тацией. Для каждого полиориентированного квазиторического многообразия
M определён его класс [M ] ∈ ΩU в кольце комплексных кобордизмов.

Теорема 2.4 ([BPR07]). Каждый класс комплексных кобордизмов размерно-
сти > 2 содержит квазиторическое многообразие (непременно связное), ста-
бильно комплексная структура которого задаётся некоторой полиориента-
цией, а следовательно согласована с действием тора.

Данный результат можно рассматривать как решение квазиторического ана-
лога известной проблемы Хирцебруха о классах кобордизма, представляемых
связными неособыми алгебраическими многообразиях.

Следствие 2.5. Каждый класс комплексных кобордизмов размерности > 2
представляется фактор-пространством полного пересечения вещественных
квадрик по свободному действию тора.
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3. Момент-угол комплексы и многообразия

Теория момент-угол комплексов является одним из основных инструментов
приложений торической топологии и объединяет методы комбинаторной гео-
метрии, гомологической алгебры и эквивариантной топологии.

В предыдущем разделе мы сопоставили каждому геометрическому простому
многограннику (2.1) гладкое момент-угол многообразие ZP с действием тора
Tm, получаемое как полное пересечение вещественных квадрик в Cm. Можно
показать, что ZP отождествляется с факторпространством P ×Tm/∼ по неко-
торому отношению эквивалентности, откуда вытекает, что топологический тип
многообразия ZP определяется лишь комбинаторной структурой многогранни-
ка P . Эта последняя конструкция многообразия ZP впервые появилась в [DJ91]
и была мотивирована конструкциями Винберга [Ви71] для групп Кокстера.
Также в [DJ91] было получено обобщение конструкции ZP на произвольные
конечные симплициальные комплексы K c m вершинами (при этом простой
многогранник P соответствует симплициальному комплексу KP — границе
двойственного многогранника). Получаемые пространства ZK мы и называ-
ем момент-угол комплексами. В [DJ91] им отводилась лишь вспомогательная
роль при изучении квазиторических многообразий, но вскоре стало ясно, что
момент-угол комплексы имеют самостоятельное большое значение.

Пусть K — конечный абстрактный симплициальный комплекс на множестве
[m] = {1, . . . ,m}. В [БП99] нами была предложена другая конструкция момент-
угол комплекса ZK. Рассмотрим единичный комплексный полидиск

(D2)m =

(z1, . . . , zm) ∈ Cm : |zi|2  1, i = 1, . . . ,m


.

С каждым симплексом σ ∈ K свяжем подмножество

Bσ =

(z1, . . . , zm) ∈ (D2)m : |zi|2 = 1 при i /∈ σ

и определим момент-угол комплекс
ZK =


σ∈K

Bσ ⊂ (D2)m,

где объединение берётся в полидиске (D2)m. По построению, ZK является Tm-
инвариантным подпространством, содержащим стандартный тор Tm ⊂ (D2)m.

Пример 3.1. Если K = ∂(∆m−1) — граница (m − 1)-мерного симплекса, то
ZK = ∂((D2)m) ∼= S2m−1.

Предложение 3.2.
1. Пусть K = KP — граница симплициального многогранника, двойственно-

го к простому многограннику P . Тогда соответствующий момент-угол ком-
плекс Tm-эквивариантно гомеоморфен момент-угол многообразию ZP .

2. Если K является симплициальным разбиением (n− 1)-мерной сферы, то
ZK является (замкнутым) Tm-многообразием.

3. Если K является симплициальным разбиением (n− 1)-мерного многооб-
разия, то дополнение ZK \ Tm до стандартного тора Tm ⊂ (D2)m является
открытым Tm-многообразием.

Предложение 3.3. Сопоставление K → ZK задаёт функтор из категории
симплициальных комплексов и симплициальных отображений в категорию
пространств с действием тора и эквивариантных отображений.

Одним из наших основных результатов о момент-угол комплексах является
вычисление их колец когомологий в терминах комбинаторики симплициальных
комплексов. Напомним, что кольцом граней (или кольцом Стенли–Риснера)
симплициального комплекса K называется градуированное факторкольцо

Z[K] = Z[v1, . . . , vm]/I,
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где deg vi = 2, а идеал I порождён мономами vi1 · · · vik
, где {i1, . . . , ik} /∈ K.

Теорема 3.4. Имеют место функториальные по K изоморфизмы градуиро-
ванных алгебр

H∗(ZK) ∼= Tor∗Z[v1,...,vm]


Z[K],Z

 ∼= H

Λ[u1, . . . , um] ⊗ Z[K], d


.

Здесь последняя часть формулы обозначает алгебру когомологий дифференци-
альной градуированной алгебры Λ[u1, . . . , um]⊗Z[K], где образующие ui внешней
алгебры имеют степень 1, а дифференциал задан на образующих следующим
образом: dui = vi, dvi = 0.

Второй изоморфизм в предыдущей теореме основан на стандартном вычис-
лении Tor-алгебры при помощи комплекса Кошуля. Доказательство изомор-
физма между когомологиями момент-угол комплекса и Tor-алгеброй основан
на построении клеточного разбиения пространства ZK (при котором каждый
диск D2 разбивается на три клетки) и анализе умножения в клеточных коцепях
при помощи специальной клеточной аппроксимации диагонального отображе-
ния ∆: ZK → ZK × ZK, функториальной относительно отображений симпли-
циальных комплексов. При этом показано, что биградуировка в Tor-модулях
имеет явную геометрическую реализацию, обусловленную введённой в ZK би-
градуированной клеточной структурой. Детали см. в [БП04, §8.1].

Теорема 3.4 даёт достаточно эффективное описание кольца H∗(ZK) и легко
применяется для конкретных вычислений с симплициальными комплексами.
В случае комплексов с большим числом вершин для вычисления размерностей
биградуированных компонент Tor-модулей можно привлечь известные пакеты
компьютерных программ (Масаulay2, Bistellar и др.). Кроме того, применение
теоремы Хохстера позволяет свести вычисление к когомологиям полных под-
комплексов в K:

Теорема 3.5. Имеют место изоморфизмы групп

Hk(ZK) ∼=


ω⊂[m]

Hk−|ω|−1(Kω),

где Kω — полный подкомплекс в K (ограничение K на подмножество ω ⊂ [m]).

Тем самым конструкция момент-угол комплексов позволила применить ме-
тоды эквивариантной топологии для изучения комбинаторики симплициаль-
ных комплексов и алгебраических свойств их колец граней, придавая новое,
геометрическое, измерение «комбинаторной коммутативной алгебре». В част-
ности, вычисление когомологий момент-угол комплексов позволило топологи-
чески интерпретировать гомологические инварианты колец граней, такие как
Tor-алгебры и алгебраические числа Бетти.

Несмотря на простоту конструкций момент-угол комплексов и многообра-
зий, их топология достаточно сложна. Это видно уже из вычислений (на основе
теоремы 3.4) когомологий момент-угол комплексов, соответствующих комплек-
сам K с небольшим числом вершин. Оказалось, что в алгебрах рациональных
когомологий момент-угол комплексов существуют нетривиальные произведе-
ния Масси [Ба03]. В некоторых случаях (например, для границ многоуголь-
ников или остовов симплексов) удаётся явно описать топологический тип про-
странства ZK (см. пример 3.7), но всяких раз такое описание использует весьма
тонкий анализ различных конструкций момент-угол комплексов.

Важным аспектом теории момент-угол комплексов является их тесная взаи-
мосвязь с конфигурациями координатных подпространств и их дополнениями.
Эти пространства играют важную роль в алгебраической геометрии, теории
особенностей и теории шарнирных механизмов.
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Координатное подпространство Cm можно задать в виде

(3.1) Lω = {(z1, . . . , zm) ∈ Cm : zi1 = . . . = zik
= 0},

где ω = {i1, . . . , ik} ⊂ [m].
Для каждого симплициального комплекса K на множестве [m] рассмотрим

конфигурацию комплексных координатных подпространств A(K) = {Lω : ω /∈
K} и её дополнение в Cm:

U(K) = Cm \


ω/∈K
Lω.

Сопоставление K → U(K) определяет взаимно однозначное соответствие меж-
ду симплициальными комплексами на множестве [m] и дополнениями коорди-
натных конфигураций в Cm, сохраняющее отношение вложения.

Теорема 3.6. Для любого симплициального комплекса K на множестве [m]
имеется Tm-эквивариантная деформационная ретракция

ZK → U(K) −→ ZK.
Наличие гомотопической эквивалентности U(K)  ZK позволяет применять

наши результаты о момент-угол комплексах в теории конфигураций. В част-
ности, мы получаем решение известной задачи об описании кольца когомоло-
гий дополнения конфигурации координатных подпространств. Отметим, что
другие известные результаты о когомологиях дополнений конфигураций коор-
динатных подпространств не описывают мультипликативной структуры (как
общая теорема Горески–Макферсона [GM88]), либо дают лишь описание про-
изведения двух данных коциклов в комбинаторных терминах (как результат
де Лонгвилле [dL00]). Наш результат о момент-угол комплексах даёт исчер-
пывающее глобальное описание кольца когомологий дополнения конфигура-
ции координатных подпространств. Результаты Горески–Макферсона (в части
координатных конфигураций) и де Лонгвилле сводятся к частным случаям
нашего результата при помощи двойственности Александера.

Пример 3.7. Пусть K представляет собой набор из m точек. Тогда ZK гомо-
топически эквивалентно дополнению

U(K) = Cm \


1i<jm

{zi = zj = 0}

всех координатных плоскостей коразмерности два. Кольцо граней имеет вид

Z[K] = Z[v1, . . . , vm]/(vivj , i = j).
Пространство коциклов в алгебре Λ[u1, . . . , um]⊗Z[K] имеет базис из мономов

vi1ui2ui3 · · ·uik
, k  1 и ip = iq при p = q.

Пространство (k+1)-мерных кограниц порождено элементами вида d(ui1 · · ·uik
).

Вычисляя размерности этих пространств, получаем

dimH0(ZK) = 1, dimH1(ZK) = H2(U(K)) = 0,
dimHk+1(ZK) = mCk−1

m−1 − Ck
m = (k − 1)Ck

m, 2  k  m,
а умножение в когомологиях дополнения U(K) тривиально.

В частности, при m = 3 получаем

H∗(U(K)) ∼= H∗(S3 ∨ S3 ∨ S3 ∨ S4 ∨ S4),

и можно показать, что этот изоморфизм колец когомологий индуцирован го-
мотопической эквивалентностью пространств. Более того, дополнение U(K) из
этого примера гомотопически эквивалентно букету сфер для любого m [ГТ04].



35

ТОРИЧЕСКАЯ ТОПОЛОГИЯ 9

4. Новые области приложений

Момент-угол комплексы нашли приложения в теории действий алгебраи-
ческих групп, а именно, при построении множеств типа Кемпфа–Несс для
действий алгебраического тора на квазиаффинных многообразиях. В клас-
сической ситуации действий алгебраических групп на аффинных многообра-
зиях понятие множества Кемпфа–Несс позволяет заменить категорный фак-
тор на факторпространство по действию максимальной компактной подгруп-
пы. В [Па08] показано, что момент-угол комплекс ZK играет роль множества
Кемпфа–Несс для класса действий алгебраического тора на квазиафинных
многообразиях (дополнениях конфигураций координатных подпространств),
возникающих в подходе Батырева–Кокса к торическим многообразиям на ос-
нове геометрической теории инвариантов. Таким образом, наши результаты о
момент-угол комплексах применимы и к вычислению когомологий этих «тори-
ческих» множеств Кемпфа–Несс. В случае неособых проективных торических
многообразий соответствующие множества Кемпфа–Несс могут быть описаны
как полные пересечения вещественных квадрик в комплексном пространстве.

Возвращаясь к нашему описанию момент-угол многообразий ZP как полно-
му пересечению вещественных квадрик, отметим область приложений, откры-
тую в [BM06]. В этой работе был рассмотрен достаточно общий класс полных
пересечений вещественных квадрик в Cm, называемых линками (условия, на-
кладываемые на уравнения квадрик обеспечивают неособость их пересечения).
В [BM06] показано, что все линки допускают структуру некэлеровых комплекс-
ных многообразий (в случае линков нечётных размерностей необходимо взять
произведение с окружностью), тем самым обобщая известные серии некэле-
ровых многообразий Хопфа и Калаби–Экмана. Можно показать, что класс
линков совпадает с классом момент-угол многообразий ZP , соответствующих
простым многогранникам. Тем самым открываются новые взаимосвязи между
торической топологией и комплексной геометрией.

За последние 10 лет появились различные конструкции широкого клас-
са простых многогранников, обобщающих замечательные серии пермутоэд-
ров, ассоциэдров (многограников Сташефа), циклоэдров (многограников Бота–
Таубса). Например, каждому связному простому графу (т.е. графу без петель
и кратных ребер) с (n+ 1) вершиной сопоставляется простой n-мерный много-
гранник, так что пермутоэдру соответствует полный граф, ассоциэдру — путь,
а циклоэдру — цикл (см. например, [PRW07]).

Благодаря конструкции момент-угол многообразия ZP и квазиторического
многообразия в виде M2n = ZP /K(Λ) эти результаты позволили ввести явные
примеры новых классов многообразий и бесспорно будут способствовать раз-
витию взаимосвязей между комбинаторикой, теорией графов и алгебраической
топологией (см. [Bu08]).
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BSC(p) 0 < p < 1/2
q = 1− p BSC(p1)

BSC(p)

n M = eRn {θ1, . . . , θM}
n θ̂

E(R, p) BSC(p)
F (R, p, p1) BSC(p) BSC(p1)

C(p) = ln 2 − h(p) BSC(p)
E(R, p)

BSC p1 = 0
F (R, p) = F (R, p, 0)

F (R, p)

F (R, p) > E(R, p) R
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E(R, p)

n M
R = 0 p1 BSC(p1)

p0(p) F (0, p, p1) > E(0, p)
E(0, p) BSC(p)

R

F (R, p) = E(R, p) Rcrit(p) ≤ R ≤ C(p)

Rcrit(p) = ln 2− h

� √
p

√
p +

√
q

�

.

F (R, p, p1) > E(R, p) R < Rcrit(p)

p0(R, p) R < Rcrit(p)
p1 < p0(R, p) F (R, p, p1) > E(R, p)

p0(R, p) F (R, p, p1)



39



40

Gibbs point field models for extraction problems in
image analysis ∗

X. Descombes, E. Zhizhina

April 21, 2009

1 Probabilistic approach in image analysis.

The basic idea of probabilistic approach in image analysis, see e.g. [1, 2], was to rewrite an
image processing procedure in the language of statistical physics using concepts of statistical
ensembles, equilibrium and non-equilibrium dynamics. Under this view, images are consid-
ered as configurations of a Gibbs field. The implicit assumption behind the probabilistic
approach in image analysis is that, for a given problem, there exists a Gibbs field such that
its ground states represent regularized solutions of the problem. Thus, the crucial step in
the probabilistic approach is the choice of a proper configuration space and the choice of a
distribution, or equivalently, in the case of the Gibbs random fields approach, the choice of
an energy function H(X). The energy function contains usually few types of terms. One of
them arises from the observable image (a data driven term) and has the form of an external
field term. Others are due to generic or prior knowledge on the structure of images. Prior
terms in the energy function are specified by potentials associated with local interactions
of neighboring variables. Thus, each variable directly depends only on its neighborhood,
although from a global point of view, all variables are mutually dependent through the
combination of successive local interactions.

Recently, there has been again growing interest in the applications of Gibbs point fields
and Markov point processes to inverse problems of image processing such as feature extrac-
tion, object detection, surface reconstruction, stereo matching. All these problems related
with consideration of strong geometrical constraints in a priori potential. In this paper we
present a new multiple birth and death algorithm constructed as approximation of a sto-
chastic Glauber type dynamics. We discuss results of its implementation on the example of
two extraction problems.

∗The work is partially supported by ECONET project 10203YK, INRIA International team grant
ODESSA, Elena Zhizhina gratefully acknowledge the financial support of RFBR Grant 08-01-00105, 07-
01-92216-́IÖÍÈË
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2 Gibbs fields models for feature extraction problems.

The general setting.

We discuss here stochastic algorithms in the framework of the Gibbs fields approach for
feature extraction problems. These problems become critical in remote sensing with the
development of high resolution sensors for which the object geometry is well defined. Marked
point processes framework is found very proper for extraction problems, since it is difficult to
incorporate strong non-local geometrical constraints in the potential in lattice based models.
Random sets of objects are represented in the models by marked point configurations in
continuous space. Features of the objects, such as shape and/or size are described by a
mark, and locations of the objects by a point configuration.

If we denote by Γ := Γ(V ) the set of all point configurations from a finite volume V ⊂ R2,
by S a space of marks (a spin space) and by πz the Poisson measures with activity z, z > 0,
then the marked configuration space Γ̂ of the model is:

Γ̂ :=

γ̂ = (γ, σγ), γ ∈ Γ, σγ = {σx(γ)}x∈γ = {σx}x∈γ, σx ∈ S


.

A reference measure µ0 on Γ̂ can be written as dµ0(γ̂) = dω(σγ) dπz(γ), where dω(σγ) =
x∈γ dω(σx) is the conditional (under given configuration γ for positions of marks) free

marks measure equals to the product of the free mark measures ω over all points from the
configuration γ. The probability distribution on the configuration space Γ̂ is defined then as a
Gibbs reconstruction µβ of the reference measure µ0 with the energy function H(γ̂) involving
both objects positions and their marks. To find global minimizers of the energy function,
one can consider various stochastic dynamics with a given stationary Gibbs measure under
the annealing procedure.

Here we will discuss two models for extraction problems (a random disc model and a
random point model), both of them can be described as pure point models without marks,
in this case Γ̂ = Γ. We consider an equilibrium birth-and-death dynamics with the stationary
Gibbs measure µβ given by the following generator

(Lβ f)(γ) =

x∈γ

eβE(x,γ\x)(f(γ\x)− f(γ)) + z



V

(f(γ ∪ y)− f(γ)) dy, (1)

defined in the functional space f(γ) ∈ L2(Γ, µβ,z), where E(x, γ\x) = H(γ)−H(γ\x).

3 Approximation process

In this section we present the mathematical background of our algorithm, which consists of
two main steps:
1) the construction of the approximation process and the proof of the convergence of the
approximation to the continuous time process as the discretization step tends to zero, and
2) the proof of the convergence of the corresponding evolution of measures under the an-
nealing regime to a measure concentrated on the global minima of the energy function with
a minimal number of points in the configuration.
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We define a discrete time approximation Tβ,δ(n), n = 0, 1, 2, . . . of the continuous time
birth-and-death process generated by (1). It is a Markov chain on the same space Γ(V ) with
the transition operator Pβ,δ (Tβ,δ(n) = P n

β,δ ) of the form:

(Pβ,δf) (γ) =

γ1⊆γ


x∈γ1

1

1 + axδ



x∈γ\γ1

axδ

1 + axδ
(2)

Ξ−1δ

∞

k=0



V k

(zδ)k

k!
f(γ1 ∪ y1 ∪ . . . ∪ yk) dy1 . . . dyk,

where Ξδ = Ξδ(V, z, δ) is the normalizing factor, ax = ax(γ) = eβE(x,γ\x).
Let L = B(Γ(V )) be a Banach space of bounded functions on Γ(V ) with a norm

F = sup
γ∈Γ(V )

|F (γ)|,

and by B we denote a family of measures with a bounded density w.r.t. the Poisson measure
πz (and hence also w.r.t. the Gibbs measure µβ).

Theorem 3 (Convergence of the approximations) [3]. For each F ∈ L

Tβ,δ(

t

δ


)F − Tβ(t)FL = sup

γ
|(Tβ,δ(


t

δ


)F )(γ) − (Tβ(t)F )(γ)| → 0, (3)

as δ → 0 for all t ≥ 0 uniformly on bounded intervals of time.
Let Sβ,δ(n) be an adjoint to Tβ,δ(n) semigroup acting on measures, such that for any

ν ∈ B:
Sβ,δ(n)ν, F  = (pν , Tβ,δ(n)F )µβ with pν =

dν

dµβ
.

Let n0 ∈ N ∪{0} be the minimal number of points in configurations γ̄ minimizing the energy
function H(γ). Then the Gibbs distributions µβ converge weakly as β →∞ to a distribution
µ∞ on Γ(V ) of the form

µ∞ =


γ̄:|γ̄|=n0
Cγ̄δγ̄ if n0 > 0, and µ∞ = δ{∅} if n0 = 0. (4)

Here δγ̄ is the unit measure concentrated on the configuration γ̄, and


γ̄:|γ̄|=n0
Cγ̄ = 1.

Theorem 4 (Convergence in the annealing regim) [3]. Let F ∈ B(Γ(V )) and an
initial measure ν ∈ B. Then under relation δ eβb < const with b = supγ∈Γd(V ) supx∈γ E(x, γ\x)
we have

lim
β→∞, t→∞, δ→0

F Sβ,δ([ tδ ])ν = F µ∞ , (5)

where F Sβ,δ([ tδ ])ν = Sβ,δ([ tδ ])ν, F .
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4 A new Multiple Birth and Death algorithm.

The main idea behind our algorithm is to use the continuous time stochastic dynamics
generated by (1) and then to take the transition operator of the discrete time approximation
process (2) as a base of stochastic iterative steps of the algorithm. The algorithm simulating
the process is defined as follows:

• Computation of the birth map: To speed up the process, we consider instead
of z a non homogeneous birth rate B(s), s ∈ V to favor birth where the data term
is strong. This non homogeneous birth rate refers to a non homogeneous reference
Poisson measure.

• Main program: initialise the inverse temperature parameter β = β0 and the dis-
cretization step δ = δ0 and alternate birth and death steps. Birth step is taken with
density δB(s) w.r.t. the Lebesgue measure on V . Death step: for each point from the
configuration, the death probability is defined as follows:

D(x) =
δax

1 + δax

.

Decrease the temperature and the discretization step by a given factor and go back to
the birth step.

5 Results

5.1 Application to birds detection

We consider a model of partially overlapping discs {dx1 , . . . , dxk
} of the same radius r with

a hard core distance 0 < r between any two elements, lying in a bounded domain V ⊂ R2.
Then Γ is the configuration space of the centers of the discs. The energy function is a sum
of data and a priori terms

H(γ) = α

x∈γ

H1(x) +


{x,y}⊂γ

H2(x, y),

where α is a weighting parameter. The second term represents prior knowledge on the discs
configuration and it is defined by pair interactions (repulsion on small distances) between
neighboring discs. A data term is added for each object to fit the disc configuration onto the
data, it is a sum of local energy functions associated with each object. For a given object,
the local energy depends on a statistical test between the pixel distribution inside of the
projection of the disc on the lattice and the pixel distribution in the neighborhood of the
disc. The higher the contrast between the interior of the object and its neighboring ring, the
lower the energy.

The fragment of the initial image of flamingo colony and the result image of detected
birds are given on figure 1.

4



4444



45

Figure 2: Aerial image and obtained result (the point configuration)

6 Conclusion

Thus, the main advantages of marked point process in image analysis are in their geomet-
rical adaptativity and generality. Any geometrical properties can easily be introduced into
the model through the object geometry. Different types of objects (trees, roads, buildings,
etc.) can be considered within the same model but with appropriate interactions. Moreover,
interactions between points allows to model some prior information on the object configura-
tion, and the data are taken into account at the object level, thus improving robustness of
the algorithms.
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Abstract

This paper will survey recent progress on clarifying the connection be-
tween enumerative combinatorics and cluster expansions. The combina-
torics side concerns species of combinatorial structures and the associated
exponential generating functions. Cluster expansions, on the other hand,
are supposed to give convergent expressions for measures on infinite di-
mensional spaces, such as those that occur in statistical mechanics. There
is a kind of dictionary between these two subjects that sheds light on each
of them. In particular, it gives insight into convergence results for cluster
expansions.

1 Enumerative combinatorics

1.1 Combinatorial species

We begin with a general framework for constructing combinatorial structures in
a systematic way. Each instance of such a construction is called a “species” of
structures. The theory is explained in detail in the book of Bergeron, Labelle,
and Leroux [1]; here we can only give an outline.

The combinatorial structures under consideration are built over colored sets.
These are defined as follows. There is a set P that serves as a fixed palette of
colors. A colored set is a function a : U → P, where U is a finite set. If j is
a point in U , then a(j) is the color of j. The colored sets form the objects of
a category B. The morphisms in this category are bijections of the underlying
sets that preserve the colors.

In combinatorics the underlying set U is often called a set of labels, and the
coloring is an additional structure that is imposed on a label set. We shall see
that this structure also occurs in physics. In this case the interpretation of the
set P is as a fixed set of locations. A set U is a set of particles, and a function
a : U → P is a particle configuration, that is, an assignment of particles to
locations.

We need another category E with objects that consist of weighted sets. There
is a fixed commutative ring R; for instance this could be the real numbers or
the complex numbers. A weighted set is a finite set H together with a weight
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function wt : H → R. A morphism of weighted sets is a bijection that preserves
the weights. The basic requirement on the category is that the weight function
behaves well on disjoint unions and on cartesian products. The weight function
on a disjoint union must agree with the weights on the individual parts. The
weight function on a cartesian product must assign to each ordered tuple the
product of the weights of the components.

If H is a weighted set, then the total weight of H is the sum of the weights
of the points in H. The total weight of a sum (disjoint union) is obviously the
sum of the total weights of the parts. The total weight of a product (cartesian
product) is the product of the total weights of the factors.

There are many examples of such categories, but the one of most use in
the following is the category of sets of graphs over colored sets. First, one has
a function t that assigns to each ordered pair of colors p, q in P an element
t(p, q) in the ring R. This function is fixed once and for all. It is required to be
symmetric.

Consider a colored set a : U → P with underlying set U . We think of U
as a vertex set. Then a graph g with vertex set U is identified with a set of
two-element subsets {i, j} of U . These are the edges of the graph g. The weight
of a graph g is

wt(g) =


{i,j}∈g

t(a(i), a(j)). (1)

An object in the category is a set of graphs g with fixed colored vertex set U .
A morphism is a color preserving bijection of vertices that carries one set of
graphs into another set of graphs.

In this category the product is constructed as follows. Say that for each
U in some indexed family we have a set of graphs. We can take the various
vertex sets U to be disjoint. Then an element of the product is a graph on the
disjoint union of the sets U that comes from an indexed family of graphs on the
individual parts.

In the physics application the palette of colors P represents a set of locations.
The colored set a : U → P represents a particle configuration. A graph g is
a collection of two-element sets of particles that are regarded as interacting.
The interaction between two particles i, j depends on their locations a(i), a(j)
and is given by t(a(i), a(j)). The interaction for the entire collection of pairs is
the product of these individual pair interactions, that is, it is the weight of the
graph. The total weight of a set of graphs is of course the sum of the weighs of
the individual graphs.

A combinatorial species is a functor F from the category B of colored sets
to the appropriate category E of weighted sets. Thus for every colored set
a : U → P there is a corresponding weighted set F [a].

There are several species of interest to us. The species G associates to each
colored set a : U → P the set G[a] of all 2(n

2) graphs with vertex set U . The
weight of a graph is as given above.

Even more important is the species C of connected graphs. A graph is
connected if there exists a vertex i that is connected by a path to every other
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vertex. (Then every vertex is connected by a path to every other vertex.) A
connected graph on an n element vertex set has at least n − 1 edges. The
number of connected graphs in C[a] is somewhat smaller but almost as large as
the number of graphs in G[a].

A final example in this series is the species T of trees. A graph is a tree
if there is a vertex i that is connected by a unique path to every other vertex.
(Then every vertex is connected by a unique path to every other vertex.) A tree
on an n element vertex set has n − 1 edges. It is a minimal connected graph.
The number of trees in T [a] is only nn−2.

1.2 Operations on species

There are various important operations on species. If F is a species, then for
each color p there is another species F •

p . Then F •
p [a] for a : U → P consists of

all ordered pairs consisting of a point in U of color p and an element of F [a].
Thus this species incorporates a distinguished point of color p. As examples we
have G•

p and C•
p and T •

p .
Another important operation is the combinatorial exponential. If F is a

species, then E ◦ F is a new species. The value of this species on a : U → P is
given by

(E ◦ F )[a] =


Γ



V ∈Γ

F [aV ]. (2)

Here Γ ranges over partitions of U into disjoint non-empty sets V . The colored
set aV : V → P is given by restriction. The sum is disjoint union, and the
product is cartesian product.

One of the most famous examples of the combinatorial exponential is the
relation

G = E ◦ C. (3)

This says that for every connected graph on U there is a partition Γ of U with
a connected graph on each set V in the partition.

Another important operation is the combinatorial convolution. The convo-
lution of two species F,G is defined by

(F ∗ G)[a] =


V ⊆U

F [aV ] × G[aU\V ]. (4)

In other words, one splits the underlying set in all possible ways. This gives
a disjoint union of a cartesian product corresponding to the two parts in the
splitting.

Here is an example. We have

G•
p = C•

p ∗ G. (5)

This says that a graph together with a distinguished point of color p corresponds
to a connected graph with a distinguished point of color p on a subset together
with a graph on the complement.
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1.3 Exponential generating functions

A key idea in the theory of species is the exponential generating function. A
species is a functor F from the category of colored sets to the category of
weighted sets. If a is a colored set, then we write the corresponding weighted
set of combinatorial structures as F [a]. The sum of weights of F [a] is written
f(a). The exponential generating function is a function of many variables, one
for each possible color. Thus we use a variable wp for each color p ∈ P. For
each n let Un be a set with n points. The exponential generating function is
written

F (w) =
∞


n=0



a:Un→P

1
n!

f(a)


i∈Un

wa(i). (6)

The operation of choosing a distinguished point has a simple expression in
terms of exponential generating functions. It is

F •
p (w) = wp

∂

∂wp
F (w) (7)

The operation of taking the combinatorial exponential is also simple; we have

(E ◦ F )(w) = exp(F (w)). (8)

The combinatorial convolution is easy; in this case

(F ∗ G)(w) = F (w)G(w). (9)

As an example, note that G(w) = exp(C(w)), and G•
p(w) = wp(∂/∂wp)G(w) =

C•
p (w)G(w), as one would expect from the combinatorial convolution.

1.4 Combinatorial fixed point equations

The next topic is combinatorial fixed point equations. One case where this is
straightforward is for rooted trees. Let Ep

1 be the species that indicates one
point sets of color p. In other words, it produces a single point for each such
set, and the empty set otherwise. The rooted tree equation is actually a family
of equations, one for each color p. Thus we should think of T •

p as a family of
species. For each color p, one can construct a single species T •p as follows. Take
T •p[a] to be the set of all trees (of whatever color) on the underlying set U , with
the weight of each tree with root of color q multiplied by t(p, q). Then the fixed
point equation is

T •
p = E1p ∗ (E ◦ T •p). (10)

This says that a rooted tree with root of color p consists of a single point of color
p, together with a structure on the complement of this point. This structure
consists of a partition of the tree into disjoint non-empty sets V . On each set
V in the partition there is a tree with a root of some color q. These trees get
the additional weight t(p, q).

4
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On the level of exponential generating functions, the rooted tree equation is

T •
p (w) = wp exp(



q

t(p, q)T •
q (w)). (11)

Unfortunately, the equations for rooted graphs and for rooted connected
graphs are more complicated. The problem is that we need to designate entire
subsets rather than individual points.

For the case of graphs, define G#p[a] to be the set of ordered pairs consisting
of a subset W of the underlying set U and a graph. The weight of this ordered
pair is the weight of the graph times



j∈W t(p, a(j)). The combinatorial equa-
tion is

G•
p = E1p ∗ G#p. (12)

This says that every graph with a designated point of color p consists of a point
of that color plus a graphical structure on the complement. This structure also
must incorporate the edges that connect the designated point to some designated
subset of the complement.

On the level of exponential generating functions, the rooted graph equation
is

G•
p(w) = wpG((1 + tp)w). (13)

Here tpw denotes the variables t(p, q)wp, as q ranges over the colors.
For the case of connected graphs, define C#p

+ [a] to be the set of ordered pairs
consisting of a non-empty subset W of the underlying set U and a connected
graph. The weight of this ordered pair is the weight of the connected graph
times



j∈W t(p, a(j). The combinatorial equation is

C•
p = E1p ∗ (E ◦ C#p

+ ). (14)

This says that every connected graph with a designated point of color p consists
of a point of that color plus a structure on the complement. The complement is
partitioned into disjoint non-empty subsets V . One each such subset V there is
a connected graph. The structure also must incorporate the edges that connect
the designated point to some designated non-empty subset of V .

On the level of exponential generating functions, the rooted connected graph
equation is

C•
p (w) = wp exp(C((1 + tp)w) − C(w)). (15)

This may be converted into an equation for a rooted connected graph fixed
point. We use

C•
p (w) = wp

∂

∂wp
C(w) (16)

to get

C•
p (w) = wp exp(



q

t(p, q)
 1

0

C•
q ((1 + stp)w) ds) (17)

5
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Let us look at the rooted tree fixed point equation (11) in more detail. Take
each vertex weight wp ≥ 0. Let the edge weights 0 ≤ t(p, q) be positive. The
tree fixed point equation for zp = T •

p (w) is

zp = wp exp(


q

t(p, q)zq). (18)

The Kotecký-Preiss condition is that there exists 0 ≤ xp < ∞ such that

wp exp(


q

t(p, q)xq) ≤ xp. (19)

The tree fixed point equation has a least finite solution z if and only if the
Kotecký-Preiss condition holds. In that case zp ≤ xp for all p, This follows from
the Knaster-Tarski fixed point theorem.

2 Cluster expansions

2.1 The equilibrium discrete particle gas model

In the application to a discrete particle gas the terminology is somewhat differ-
ent. The color palette P is a fixed set of particle locations. The vertex set U is a
finite set of particles. The colored set a : U → P is a particle configuration. The
color variable in the exponential generating function 0 ≤ wp is the weight for
particles at p ∈ P (the activity). Finally, there is a quantity 0 ≤ 1 + t(p, q) ≤ 1
which is the Boltzmann factor for pair of particles at locations p, q ∈ P. Thus
−1 ≤ t(p, q) ≤ 0 is a measure of the interaction between the pair of particles.

The grand partition function

G(w) =
∞


n=0



a:Un→P

1
n!

g(a)


i∈Un

wa(i) (20)

is the exponential generating function for graphs.
A particularly convenient quantity for convergence results is the density

(expected number of particles at a location). The density at p is

n(p) =
1

G(w)
wp

∂

∂wp
G(w) =

1
G(w)

G•
p(w) = C•

p (w). (21)

Thus the density n(p) at p of the gas, regarded as a function of the local activity
variables w, is the exponential generating function C•

p (w) for rooted connected
graphs with root of color p. This fundamental relation is at the heart of statis-
tical physics.

2.2 Fixed points and convergence in the gas model

Here are two cluster expansion theorems. The first is a classic result; the second
is relatively recent. See [3, 2] for references for these and earlier results.

6
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Cluster expansion theorem (Kotecký-Preiss version). If there are xp ≥ 0
such that for each p we have the inequality

wp exp(


q

|t(p, q)|xq) ≤ xp, (22)

then the cluster expansion for the density in powers of w converges absolutely.
This theorem may be understand via a comparison of the rooted tree fixed

point equation (11) with the rooted connected graph fixed point equation (17).
Cluster expansion theorem (Fernández-Procacci version). If there are xp ≥ 0

such that for each p we have the inequality

wp

∞
n=0

1
n!



a:Un→P




{i,j}
(1 + t(a(i), a(j)))


 

i∈Un

|t(p, a(i))|xa(i)

 ≤ xp, (23)

then the cluster expansion for the density in powers of w converges absolutely.
The Fernández-Procacci result [3] is stronger. The factors 1 + t(a(i), a(j))

are between 0 and 1. If one drops the product with these factors, the expression
in the condition can only become larger. The result is

wp

∞
n=0

1
n!



a:Un→P



i∈Un

|t(p, a(i))|xa(i)


= wp exp(


q

|t(p, q)|xq). (24)

Thus the iteration function in the Fernández-Procacci condition is majorized by
the iteration function in the Kotecký-Preiss condition.

The combinatorial interpretation of the Fernández-Procacci condition is in
terms of an enriched rooted tree fixed point equation. See [2] for a proof of their
result based on an identity that relates connected graphs and trees.
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On the limit law of a conditioned random walk

Sergey G. Foss and Anatolii A. Puhalskii

Let ξ1, ξ2, . . . be i.i.d. random variables with negative mean defined on a probability space
(Ω,F ,P). Suppose that E exp(λξ1) < ∞ for some λ > 0 and that there exists γ > 0 with
E exp(γξ1) = 1 . It is known that if, in addition, E ξ1 exp(γξ1) < ∞, then the most likely way
for the random walk Sk =

k
i=1 ξi to reach a high level is to follow a straight line with a positive

slope. We study the case where E ξ1 exp(γξ1) = ∞. Assuming that the distribution F (dx) =
exp(γx)P(ξ1 ∈ dx) belongs to the domain of attraction of a spectrally positive stable law, we
obtain a weak convergence limit theorem as r →∞ for the conditional distribution of the process�
r−1

t/(1−F (r))
i=1 ξi, t ≥ 0


stopped at the time when it reaches level 1 given that the latter event

occurs. The limit is an increasing jump process. It is shown to be distributed as an increasing
stable Lévy process stopped at the time when it reaches level 1 conditioned on the event this level
is not overshot.

We now state the main results. Let α ∈ (0, 1) .

Theorem 1. There exists a stochastic process X = ( X(t) , t ∈ R+) defined on a filtered probability
space (Ω, F , F, P) with the following properties:

1. X is a pure-jump semimartingale with X(0) = 0,

2. the F-predictable measure of jumps of X is of the form

ν([0, t], G) =

t

0



G\{0}

1{0<x<1−X̃(s)}


1− x

1− X̃(s)

α−1
αx−α−1 dx ds , G ∈ B(R).

.

The distribution of X is specified uniquely. In addition, X has increasing trajectories a.s., X(t) ∈
[0, 1] a.s. for t ∈ R+, and X(t) = 1 for all t large enough a.s.

Let X = (X(t) , t ∈ R+) represent an increasing pure-jump stable Lévy process starting at zero
with Lévy measure αx−α−1 dx . We also denote

τ = inf{t : X(t) ≥ 1},

and let X denote the process X stopped at τ : X(t) = X(t ∧ τ) .

Theorem 2. The conditional laws of X given the events X(τ) ≤ 1 +  weakly converge as  ↓ 0 to
the law of X .

Let, for r > 0,

τ (r) = min{n : Sn ≥ r},

X(r)(t) =
1
r

t/(1−F (r))
i=1

ξi,

τ (r) = inf{t : X(r)(t) ≥ 1} .

1
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We denote by X(r) = ( X(r)(t) , t ∈ R+) the processX(r) stopped at τ (r), i.e., X(r)(t) = X(r)(t∧τ (r)) .

Theorem 3. Let the following conditions hold:

1. the righthand tail of the distribution function F is regularly varying at infinity with index −α,
where α ∈ (1/2, 1),

2. there exist C > 0 and ρ ∈ (0, 1) such that, for all y great enough and all x ∈ (ρ, 1),

1− F (yx)
1− F (y)

≤ 1 + C(1− x) .

If, in addition, F is a nonlattice distribution, then, as r →∞, the conditional distributions of the
X(r) given τ (r) <∞ weakly converge to the distribution of X. If, instead, F is a lattice distribution
with span h, then, as n → ∞, where n ∈ N, the conditional distributions of the X(nh) given
τ (nh) <∞ weakly converge to the distribution of X.

2
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On Sums of Conditionally Independent Subexponential Random

Variables

Serguei Foss1,2 and Andrew Richards2

Finding the asymptotic tail behaviour of sums of heavy-tailed random variables is an important
problem in finance, insurance and many other disciplines. The case when the random variables are
independent and subexponentially distributed has been extensively studied and is well-understood.
The key idea is that such a sum will exceed a high threshold because of a single, very large jump;
following other authors we shall refer to this as the principle of the single big jump. However,
for many practical purposes the independence assumption is too restrictive. In recent years,
many authors have developed results in this area (see, for example, [1,2,4,9-13] and references
therein). Denuit, Genest and Marceau [6] constructed bounds for these sums, but did not consider
asymptotics. Goovaerts, Kaas, Tang and Vernic [8] considered the situation of dependent random
variables with regularly varying tails; there have also been results on negative dependence for
various classes of subexponential distributions.
Once we drop the requirement of independence, two questions naturally arise. First, what kind of
behaviours can occur as the dependence between the random variables strengthens? And secondly,
how far beyond the independent case does the principle of the single big jump still hold? These
questions are of real interest, both from theoretical and practical viewpoints.
Albrecher, Asmussen and Kortschak [1] consider the first question for the sum of two dependent
random variables. Their approach, as for many authors, is to study the possible effects of the
dependence by considering the copula structure. They demonstrate that many possible behaviours
naturally occur, and that, in some specific cases the principle of the single big jump is insensitive
to the strength of the copula structure. Other papers that concentrate on the copula structure
include [2, 10]. Mitra and Resnick [13] investigate random variables belonging to the maximum
domain of attraction of the Gumbel distribution and which are asymptotically independent. The
results we present contain overlap with all these approaches, but we neither impose a particular
dependence structure, nor a particular distribution for the random variables, beyond the necessary
constraint that at least one be subexponential.
We consider the second question, and to establish conditions on the strength of the dependence
which will preserve the results of the theory established for independent random variables; in
particular, the principle of the single big jump. This principle is well known. However, we would
like to examine it again from a probabilistic point of view by considering the sum of two identically
distributed subexponential random variables X1, X2.

P(X1 + X2 > x) = P(X1 ∨X2 > x) +P(X1 ∨X2 ≤ x, X1 + X2 > x)
= P(X1 > x) +P(X2 > x)−P(X1 ∧X2 > x) +P(X1 ∨X2 ≤ x, X1 + X2 > x)
:= P(X1 > x) +P(X2 > x)− P2(x) + P1(x), (1)

where X1 ∨ X2 = max(X1, X2) and X1 ∧ X2 = min(X1, X2). If P1(x) is negligible compared to
P(X1 > x), which in the independent case follows from the definition of subexponentiality, we

1Institute of Mathematics, Novosibirsk, Russia. Email: foss@math.nsc.ru
2School of Mathematics and Computer Sciences and the Maxwell Institute for Mathematical Sciences, Heriot-

Watt University, Edinburgh, EH14 4AS, Scotland, UK. E-mail: S.Foss@hw.ac.uk and awr2@hw.ac.uk
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shall say that we have the principle of the big jump. If in addition P2(x) is negligible compared to
P(X1 > x), as again is straightforward in the independent case, then we shall say that we have
the principle of the single big jump. If the dependence is very strong, for instance if X1 = X2

a.s. (almost surely), then clearly the principle of the single big jump fails.
We consider sums of random variables that are conditionally independent on some sigma algebra.
This is a fresh approach to studying the effect of dependence on subexponential sums and allows a
great deal of generality (in particular, we need neither specify a particular subclass of subexponen-
tial distribution for which our results hold, nor assume the summands are identically distributed,
nor specify any particular copula structure). We believe this is a fruitful line of enquiry, both
practically and theoretically, as the range of examples we give illustrates.
Clearly, any sequence of random variables can be considered to be conditionally independent by
choosing an appropriate sigma algebra on which to condition. This is an obvious observation,
and in itself not really helpful. However, there are practical situations where a conditional in-
dependence structure arises naturally from the problem. As an example, consider a sequence of
identical random variables X1, X2, . . . , Xn, each with distribution function Fβ depending on some
parameter β that is itself drawn from a different distribution. The Xi are independent once β
is known: this is a typically Bayesian situation. It is natural to view the Xi as conditionally
independent on the sigma algebra generated by β. We suppose the Xi to have subexponential
(unconditional) distribution F and ask under what conditions the distribution of the sum follows
the principle of the single big jump.
A distribution function F supported on the positive half-line is subexponential if and only if

F ∗2(x) :=
 x

0
F (x− y)F (dy) + F (x) ∼ 2F (x).

It is known, and may be easily checked, that a distribution supported on the positive half-line is
subexponential if and only if the following two conditions are met:

1. F is long-tailed. That is, there exists a non decreasing function h(x) < x/2, tending to
infinity, such that F (x+ h(x)) ∼ F (x), x→∞. So, F is h-insensitive.

2. For such h(x),  x−h(x)

h(x)
F (x− y)F (dy) = o(F (x)).

We work in a probability space (Ω,F ,P). Let Xi, i = 1, 2, . . ., be non-negative random variables
with distribution function (d.f.) Fi. Let F be a subexponential reference distribution concentrated
on the positive half-line and h be a function satisfying the long-tailed condition. Let G be a σ-
algebra, G ⊂ F . We make the following assumptions about the dependence structure of the
Xi’s:

(D1) X1, X2, . . . are conditionally independent given G. That is, for any collection of indices
{i1, . . . , ir}, and any collection of sets {Bi1 , . . . , Bir}, all belonging to F , then P(Xi1 ∈
Bi1 , . . . , Xir ∈ Bir |G)) = P(Xi1 ∈ Bi1 |G)P(Xi2 ∈ Bi2 |G) . . .P(Xir ∈ Bir |G).

(D2) For each i ≥ 1, F i(x) ∼ ciF (x), with at least one ci = 0, and for all i ≥ 1 there exists c > 0
and x0 > 0 such that F i(x) ≤ cF (x) for all x > x0.

(D3) For each i ≥ 1 there exists a non-decreasing functions r(x) and an increasing collection of
sets Bi(x) ∈ G, with Bi(x)→ Ω as x→∞, such that

P(Xi > x|G)1(Bi(x)) ≤ r(x)F (x)1(Bi(x)) almost surely. (2)

and, as x→∞, uniformly in i,

2



57

(i)
P(Bi(h(x))) = o(F (x)) (3)

(ii)
r(x)F (h(x)) = o(1), (4)

(iii)

r(x)
 x−h(x)

h(x)
F (x− y)F (dy) = o(F (x)). (5)

We have the following result.
Proposition.Let Xi, i = 1, 2, . . . satisfy conditions (D1), (D2) and (D3) for some subexponential
F concentrated on the positive half-line and which is h-insensitive. Let τ be an independent
counting random variable such that E(eγτ ) < ∞ for some γ > 0 Then

P(X1 + · · ·+ Xτ > x) ∼ E


τ

i=1

ci


F (x).

We formulate further results and give a wide range of examples of collections of random variables,
some satisfying the principle of the single big jump, some not, and we suggest that these examples
are of independent interest in and of themselves. We also discuss a number of related problems.
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MICROSCOPIC THEORY OF ISOTHERMAL ELASTICITY:
HYPERBOLIC SCALING BEYOND SHOCKS VIA

COMPENSATED COMPACTNESS.
DEDICATED TO THE MEMORY OF ROLAND LVOVICH

DOBRUSHIN

JÓZSEF FRITZ, TU BUDAPEST

Historical Notes and Remarks: The mathematical theory of hydrodynamic
limits has been initiated by Roland Lvovich Dobrushin and co-workers [1,2,4,5].
As motivated by the principles of statistical physics, in the first period hyperbolic
scaling of some simple mechanical systems (hard rods and harmonic oscillators) was
investigated; the study of deterministic models with a more realistic interaction is
still out of question. Results of H. Rost [16] and F. Rezakhanlou [15] are based
on the specific structure of attractive, one-component systems; models with two
conservation laws do not allow an effective coupling. In contrast to diffusive scaling,
in the case of hyperbolic problems a direct strong compactness argument, the Two
Blocks Lemma of Guo - Papanicolau - Varadhan [13] is not available because entropy
production does not vanish. Assuming smoothness of the macroscopic solution, the
method of H.-T. Yau [20] works in fairly general situations, but in a regime of shocks
a synthesis of probabilistic and advanced PDE techniques is required. As far as I
understand, compensated compactness is the only tool that works also in the case
of microscopic systems with two conservation laws. Unfortunately, it is restricted
to one space dimension, and uniqueness of the limit is a formidable open problem.
Of course, verification of the strong ergodic hypothesis, which means a description
of all translation invariant stationary states of the microscopic system, can not be
avoided. That is why we consider random perturbations of a Hamiltonian dynamics,
namely those of the anharmonic chain.
We are going to derive the following couple of conservation laws,

∂tπ(t, x) = ∂xS
(ρ(t, x)) , ∂tρ(t, x) = ∂xπ(t, x) (1)

for π, ρ ∈ R , t ≥ 0 , x ∈ R . This p-system has a direct physical interpretation: π
and ρ are the velocity and deformation (strain) of an elastic medium in a thermal
equilibrium with total energy χ := π2/2 + S(ρ) . In our case the stress S : R → R
is the derivative of a smooth convex function, gas dynamics (in Lagrangian coordi-
nates) is obtained when S has a singularity at zero. This second, most interesting
problem is out of the range of our tools.

The Anharmonic Chain: The Hamiltonian of coupled oscillators on Z reads as

H(ω) :=
1
2



k∈Z


p2

k + V (qk+1 − qk) + V (qk−1 − qk)

,

where pk , qk ∈ R are the momentum and position at site k ∈ Z , ω := (pk, qk)k∈Z .
In terms of the deformation rk := qk+1 − qk , the equations of motion read as

ṗk = V (rk)− V (rk−1) , ṙk = pk+1 − pk , k ∈ Z , (2)
1
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where V (y) = y2/2 + U(y) such that U,U , U  are bounded; this is the condition of
the logarithmic Sobolev inequality of [14].
Since H , P :=


pk and R :=


rk are all preserved by the evolution, we have a

three-parameter family λβ,π,γ, of translation invariant stationary product measures
with local densities exp

−β(pk − π)2/2− βV (rk) + γrk − F (β, γ)

, where β > 0

denotes the inverse temperature, π, γ ∈ R , and F is the normalization.
Although (2) is a direct lattice approximation of the p-system with S = V ,

convergence does not take place because of several reasons. We have (at least) three
conservation laws, therefore a triplet, the compressible Euler equations are expected
to govern macroscopic behavior. In the paper [5] by R. L. Dobrushin and coworkers
a full description of stationary states and that of the associated conserved quantities
of the harmonic chain are given. It turned out that there is a huge class of extra
stationary measures and conservation laws, therefore hydrodynamic limit of the
harmonic chain results in a continuum of macroscopic equations. The anharmonic
chain is much more difficult, there is no real hope to verify any version of the ergodic
hypothesis. Moreover, an approximation scheme like (2) is not a stable one, it has
to be regularized somehow, see [17].

The Small Viscosity Limit: Let u(t, x) := (v, ρ) and f := −(S, v) , then (1)
becomes ∂tu+ ∂xf(u) = 0 , and its viscous approximation reads as

∂tuσ + ∂xf(uσ) = σ∂2xuσ , (3)

where σ ≥ 0 may be a matrix, too. The small viscosity limit, i.e. σ → 0 is a popular,
although not the most powerful approximation scheme. In many cases it is possible
to show that, at least along subsequences, uσ converges to a weak solution, a locally
integrable function satisfying ∞

0

 ∞

−∞


ψt · u+ ψx · f(u)


dx dt+

 ∞

−∞
ψ(0, x) · u(0, x) dx = 0

for all compactly supported test functions ψ : R2 → R2 . Usually (3) admits bounded,
positively invariant regions implying existence of bounded solutions for bounded
initial values, see the pioneering paper [3] by R. DiPerna. Ten years later J. Shearer
[19] and Serre - Shearer [18] managed to prove existence of Lp solutions for p < 2 in
this way.
Discretized versions of (3) are also available, but the regular stationary states are

killed by such numerical schemes: viscosity results in a relaxation to an evolution at
temperature zero. Random perturbations have to be used to get a fully developed
hydrodynamic behavior. Then the microscopic evolution is generated by an operator
L = L0 + σS , where L0 is the Liouville operator of the Hamiltonian part (2) of the
process, while S is symmetric (reversible) with respect to the preferred equilibrium
states. For example, we can do random exchange of velocities across neighboring
sites such that all actions are independent of each other. This mechanism admits
three conservation laws, thus the product measures λβ,γ,z are all stationary states.

The Problem of Stationary States: The anharmonic chain with physical vis-
cosity belongs to the Ginzburg - Landau category, it is given by the following set of
stochastic differential equations:

dpk = (V (rk)− V (rk−1)) dt+ σ (pk+1 + pk−1 − 2pk) dt
+
√
2σ (dwk − dwk−1) , drk = (pk+1 − pk) dt ,
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where σ > 0 and {wk , k ∈ Z} is a family of independent Wiener processes. Total
energy is not preserved any more because a thermal equilibrium is maintained by the
noise. The product measures λπ,γ := λ1,π,γ are stationary, and a converse statement
is also true [8]. Indeed, assuming that V is quadratically bounded and convex
at infinity, we prove that every translation invariant stationary measure of finite
specific entropy is a superposition of such product measures. The normalization
(free energy) reads simply as

F (γ) := log
 ∞

−∞
exp(γx− V (x)) dx ,

some expectations are calculated as λπ,γ(pk) = π , λπ,γ(rk) = F (z) = ρ , and
λπ,γ(V (rk)) = γ , while S(ρ) := supγ{γρ − F (z)} . Since γ = S(ρ) = λρ(V ) if
ρ := λρ(rk) = F (γ) , we expect that the p-system (1) is governing macroscopic be-
havior of the model. Indeed, the relative entropy method of H.-T. Yau [20] applies
when the macroscopic solution is a classical one. Similarly, in the case of random
exchange of velocities, the method of [7] yields a description of translation invariant
stationary measures, thus following Yau, we can derive the set of compressible Euler
equations in a smooth regime.

Main Result: Since no version of the model is attractive, in a regime of shocks
a very strong artificial viscosity should be added to the equations of motion. We
consider a Ginzburg - Landau type stochastic system mimicking the viscous approx-
imation.

dpk = (V (rk)− V (rk−1)) dt+ σ(ε) (pk+1 + pk−1 − 2pk) dt

+

2σ(ε) (dwk − dwk−1) ,

drk = (pk+1 − pk) dt+ σ(ε) (V (rk+1) + V (rk−1)− 2V (rk)) dt
+


2σ(ε) (dw̃k+1 − dw̃k)

where {wk} and {w̃k} are independent families of independent Wiener processes.
The condition εσ(ε) → 0 is natural, εσ2(ε) → +∞ is needed to suppress extreme
fluctuations in the system. Conservation of total energy is violated by the noise,
thus λπ,γ , π, γ ∈ R is the family of stationary product measures.
At a level ε > 0 of scaling, µ0,ε is the initial distribution, and Mn,ε denotes

the joint density of the variables ω(n) := {(pk(0), rk(0)) : |k| ≤ n} with respect to
λ := λ0,0 . Since we can not prove uniqueness of the hydrodynamic limit, our main
hypothesis on the initial distribution is an entropy bound:

Sn(µ0,ε|λ) :=

Mn,ε logMn,ε dλ ≤ Cn (4)

for all ε > 0 and n ∈ N with the same constant C . Under this condition every
translation invariant stationary state is a superposition of product measures λγ,z .
The empirical process, uε(t, x) = (πε, ρε) is now defined by πε(t, x) := pk(t/ε) and

ρε(t) := rk(t/ε) if |εk − x| < ε/2 ; Pε denotes its distribution. We interpret uε as
Lebesgue density of a measure. The construction of the effective, slowly increasing
entropy pairs of Shearer [19] and Serre [18] requires an implicit condition on the
macroscopic flux: S has at most one root. Of course, S(0) = 0 if V is symmetric.
Theorem: Pε is a tight family, and its limit distributions are concentrated on a set of
weak solutions to the p-system.
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4 JÓZSEF FRITZ, TU BUDAPEST

The notion of weak convergence above changes from step to step of the argument.
We start with the Young measure of the block-averaged process, and at the end we
get strong convergence in the local Lp(R2

+) space for p < 2 .

Energy, and Entropy Pairs of the P-system: Additional conservation laws
play a crucial role in the study of hyperbolic systems. For example, total energy
H :=


(v2/2 + S(ρ)) dx is constant along classical solutions to (1), and

∂tH(u) = σ


(π∂2xπ + S(ρ)∂2xρ) dx = −σ

 
(∂xπ)2 + S(ρ)(∂xρ)2


dx .

for viscid solutions. More generally, a couple {h(u), J(u)} is called a Lax entropy
pair if formally ∂th + ∂xJ = 0 , i.e. ∇J = ∇hf  , where f  is the Jacobian of the
flux. J = −πS(ρ) in the previous case of h = H , in general J π(π, ρ) = −hρ(π, ρ)
and J ρ(π, ρ) = −S(ρ)hπ(π, ρ) . In the viscous approximation we have

∂th(u) = σ∂2xh(u)− σ

hππ(u)(∂

2
xπ)

2 + hρρ(u)(∂
2
xρ)

2 + 2hπρ∂xπ∂xρ

. (5)

If h is convex then there is a negative term on the right hand side, but σ → 0 , thus we
have no control of ∂xu . Something else: Compensated Compactness is needed. The
microscopic picture is similar but more complicated, the famous two-blocks estimate
is the missing information in that case. Application of compensated compactness to
stochastic systems has been proposed in [8], where asymmetric exclusions are dis-
cussed in details, some more interesting examples are treated in the papers [9,10,11].

The Microscopic Frame: The microscopic dynamics does not admit additional
conservation laws, entropy pairs can only be recovered in terms of block averages
p̂l,k and r̂l,k of size l = l(ε) such that

lim
ε→0

l(ε)
σ(ε)

= 0 and lim
ε→0

εl3(ε)
σ(ε)

= +∞ .

Because of some technical reasons, besides the traditional arithmetic means ξ̄l,k , we
introduce also the more smooth block averages

ξ̂l,k :=
1
l2

l

j=−l

(l − |j|) ξk+j for ξk = pk or ξk = rk .

As an example, cancelation of oscillations in case of total energy is demonstrated as
follows:

L0



k∈Z


p̂2l,k/2 + S(r̂l,k)


=



k∈Z


p̂l,k(V̂ l,k − V̂ l,k−1) + S(r̂l,k)(p̂l,k+1 − p̂l,k)



=


k∈Z
(p̂l,k+1 − p̂l,k)(S(r̂l,k)− V̂ l,k) = Rε ,

where V̂  denotes the block average of V k := V (rk) . In the scaling limit the mi-
croscopic time is speeded up as t → t/ε , thus a fairly singular expression has been
obtained. Nevertheless both factors on the right hand side can be estimated via
LSI, the second one is the deviation of the microscopic flux from its macroscopic
counterpart. Due to εσ2(ε) → +∞ , it is possible to show that Rε ≈ 0 in a mean
sense. Oscillations of other entropies are controlled in a similar way.
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Stochastic Compensated Compactness: The empirical process is defined as
ûε(t, x) := (p̂l,k(t/ε), r̂l,k(t/ε)) if |εk − x| < ε/2 . Since ûε is bounded in a mean
sense in L2(dt, dx) , we have tightness of the distributions P̂ε of the Young measures
Θ . These are defined as dΘε := dt dx θε

t,x(du) , where θ
ε
t,x is the Dirac mass at

the actual value of ûε(t, x) . The Young family controls the asymptotic behavior of
various functions of the empirical process.
Given an entropy pair (h, J) , the associated entropy production is defined as

Xε(ψ, h) := −
 ∞

0

 ∞

−∞


h(ûε)ψt(t, x) + J(ûε)ψx(t, x)


dx dt ,

where the test function ψ is compactly supported in the interior of R2
+ .

An entropy pair (h, J) is well controlled if its entropy production decomposes as
Xε(ψ, h) = Yε(ψ, h) + Zε(ψ, h) , and we have two random functionals, Aε(φ, h) and
Bε(φ, h) such that

|Yε(ψφ, h)| ≤ Aε(φ, h)ψH1 , |Zε(ψ, h)| ≤ Bε(φ, h)ψ ;
where · denotes the uniform norm, ψ and φ are compactly supported test functions,
limEAε(φ, h) = 0 and lim supEBε(φ, h) < +∞ as ε→ 0 .
Lemma St-Div-Curl: If (h1, J2) and (h2, J2) are well controlled entropy pairs, then
distributions of the Young measure are tight, and

θt,x(h1J2)− θt,x(h2J1) = θt,x(h1)θt,x(J2)− θt,x(h2)θt,x(J1)

holds true almost surely with respect to any limit distribution of Pε .

The proof of this lemma is not difficult, by means of the Skorohod embedding
theorem it can be reduced to the original, deterministic version. The main problem
is the verification of the conditions, LSI of [14] plays an essential role here.
As a consequence of the Div-Curl Lemma, it was shown by DiPerna [3] that oscil-

lations of uniformly bounded approximate solutions die out, thus pointwise conver-
gence takes place along subsequences. Unfortunately, it is not easy to find uniform
bounds for stochastic models, therefore results of J. Shearer [19] and Serre - Shearer
[18] are most useful for us. Starting from the energy inequalities implied by (3),
Shearer derived (??) by means of an Lp theory of the Young measure. Then he has
constructed two clever families of Lax entropy pairs such that (??) implies the Dirac
property of θt,x . Here S > 0 is assumed, while S(0) = 0 but S(ρ) = 0 if ρ = 0
in the case of [18].
Energy inequalities are not sufficient to control entropy production of the micro-

scopic system because rapid oscillations are generated by the deterministic part of
the evolution. In view of the Ito lemma, mε(dt, x;h) := dh(ûε) − (1/ε)Lh(ûε) dt
defines a martingale mε(t, x, h) for each x such that letting

Mε(ψ, h) :=
 ∞

−∞

 ∞

0
ψ(t, x)mε(dt, x, h) dx

we have

Xε(ψ, h) =
1
ε

 ∞

0

 ∞

−∞
ψ(t, x)Lh(ûε) dx dt+Mε(ψ, h)

+
 ∞

0

 ∞

−∞
ψ(t, x)


J π(ûε)∇επ̂ε − J π(ûε)∇∗ερ̂ε


dx dt+Nε(ψ, h) ,
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where ∇εϕ(x) := (1/ε)

ϕ(x + ε) − ϕ(x)


, ∇∗

εϕ(x) := −∇εϕ(x − ε) defines the
adjoint of ∇ε , finally Nε is the numerical error due to this discretization of the space
derivative. The crucial step of the proof is the replacement of hπ(ûε)∇∗

εV̂
 appearing

in L0h(ûε) with hπ(ûε)∇∗
εS

(ρ̄ε) . Nevertheless, a full non-gradient analysis is not
needed because calculations are done in terms of mesoscopic block averages. The
fundamental a priori bounds for the proof of the stochastic Div-Curl Lemma follow
from the probabilistic entropy inequality and the associated logarithmic Sobolev
inequality. The proof is then completed by a direct application of the results of J.
Shearer and D. Serre, see also Chapter 9 of [17]
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On movable singularities of Garnier systems

R.R.Gontsov

Abstract

We study movable singularities of Garnier systems using the connection of the latter with
isomonodromic deformations of Fuchsian systems.

§1. What is Painlevé VI equations and Garnier systems?

We start with the Painlevé VI (PVI) equation

d2u

dt2
=

1
2


1
u
+

1
u− 1 +

1
u− t


du

dt

2

−

1
t
+

1
t− 1 +

1
u− t


du

dt
+

+
u(u− 1)(u− t)

t2(t− 1)2

α+ β

t

u2
+ γ

t− 1
(u− 1)2 + δ

t(t− 1)
(u− t)2


, (1)

the second order ODE for a complex function u(t), where α, β, γ, δ ∈ C are constants.
However, simply giving the explicit equation seems to be the least helpful introduction to it.

Perhaps, it is more convenient to look at PVI as at

• the equation for an apparent (fifth) singularity of isomonodromic family of second order
scalar Fuchsian equations with the four singularities t, 0, 1,∞;

• the most general second order ODE with the Painlevé property;
• the equation controlling isomonodromic deformations of certain rank 2 Fuchsian systems
with the four singularities t, 0, 1,∞.

Let us recall the first two viewpoints in more details (the last one will appear in §3).
The monodromy of a linear differential equation

dpu

dzp
+ b1(z)

dp−1u

dzp−1
+ . . .+ bp(z)u = 0 (2)

with singularities a1, . . . , an ∈ C (which are the poles of the coefficients) can be defined as
follows. In a neighbourhood of a non-singular point z0 we consider a basis (u1, . . . , up) in the
solution space of the equation (2). Analytic continuations of the functions u1(z), . . . , up(z) along
an arbitrary loop γ outgoing from z0 and lying in C\{a1, . . . , an} transform the basis (u1, . . . , up)
into a (in general case different) basis (ũ1, . . . , ũp). The two bases are related by means of a
non-singular transition matrix Gγ corresponding to the loop γ:

(u1, . . . , up) = (ũ1, . . . , ũp)Gγ .

The map [γ] → Gγ (which depends only on the homotopy class [γ] of the loop γ) defines the
representation

χ : π1(C \ {a1, . . . , an}, z0) −→ GL(p,C)

of the fundamental group of the space C \ {a1, . . . , an} in the space of non-singular complex
matrices of size p. This representation is called the monodromy of the equation (2).

A singular point ai of the equation (2) is said to be regular if any solution of the equation
has a polynomial (with respect to 1/|z − ai|) growth near ai. Linear differential equations with
regular singular points only are called Fuchsian.

1
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A.Poincaré [12] has established that the number of parameters determining a Fuchsian equa-
tion of order p with n singular points is less than the dimension of the space of representations
χ, if p > 2, n > 2 or p = 2, n > 3 (see also [1], pp. 158–159). Hence in the construction of
a Fuchsian equation with the given singularities and monodromy there arise so-called apparent
singularities, at which the coefficients of the equation have poles but the solutions are single-
valued meromorphic functions. In the case p = 2, n = 4 (a1, a2, a3, a4 = t, 0, 1,∞) the number
of such singularities equals one. If we move a little the singularity z = t so that the monodromy
of the equation preserves (this is an isomonodromy property which is defined precisely in the
next paragraph), the apparent (fifth) singularity w(t) will move satisfying PVI (this was first
obtained by R. Fuchs [4]).

The equation (1) has three fixed singular points – 0, 1,∞. Its movable singularities (which
depend on the initial conditions) can be poles only. In other words, any local solution of the
equation defined in a neighbourhood of t0 = 0, 1,∞ can be extended to a meromorphic function
on the universal cover of C\{0, 1,∞}. This is the Painlevé property. The statement on movable
poles of the equation (1) is the following. In the case α = 0 they can be simple only, and in the
case α = 0 their orders do not exceed two (see, for instance, [7], Ch. VI, §6).

The Garnier system Gn(θ) depending on n + 3 complex parameters θ1, . . . , θn+2, θ∞ is a
completely integrable Hamiltonian system (see [8], Ch. III, §4)

∂ui

∂aj
=

∂Hj

∂vi
,

∂vi

∂aj
= −∂Hj

∂ui
, i, j = 1, . . . , n, (3)

with certain Hamiltonians Hi = Hi(a, u, v, θ) rationally depending on a = (a1, . . . , an), u =
(u1, . . . , un), v = (v1, . . . , vn), θ = (θ1, . . . , θn+2, θ∞). It was obtained by R.Garnier [5] as
an extension of the first of the above three viewpoints to general case of n + 3 singularities
a1, . . . , an, 0, 1,∞1. Namely, u1(a), . . . , un(a) are apparent singular points of a certain isomon-
odromic family of Fuchsian equations with singularities a1, . . . , an, 0, 1,∞.

For n > 1 the Garnier system generically does not satisfy the Painlevé property. However,
due to Garnier’s theorem, the elementary symmetric polynomials σi(u1(a), . . . , un(a)), depend-
ing on local solutions of the Garnier system, extend to meromorphic functions Fi(a) on the
universal cover Z  of the space (C \ {0, 1})n \ 

i=j{ai = aj}. Our addition to this theorem
consists in some estimates for orders of irreducible components of the polar loci of the functions
Fi (Theorem 2).

§2. Isomonodromic deformations of Fuchsian systems

Let us include a Fuchsian system

dy

dz
=


n

i=1

B0i
z − a0i


y, B0i ∈ Mat(p,C),

n

i=1

B0i = 0, (4)

of p equations with singularities a01, . . . , a
0
n into a family

dy

dz
=


n

i=1

Bi(a)
z − ai


y, Bi(a0) = B0i ,

n

i=1

Bi(a) = 0, (5)

of Fuchsian systems holomorphically depending on the parameter a = (a1, . . . , an) ∈ D(a0),
where D(a0) is a disk of small radius centered at the point a0 = (a01, . . . , a

0
n) of the space

Cn \
i=j{ai = aj}.

1In the case n = 1 the Garnier system G1(θ1, θ2, θ3, θ∞) is an equivalent (Hamiltonian) form of PVI (1), where
α = 1

2
θ2∞, β = − 1

2
θ22, γ = 1

2
θ23, δ =

1
2
(1− θ21); see [11].

2
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One says that the family (5) is isomonodromic (or it is an isomonodromic deformation of the
system (4)), if for all a ∈ D(a0) the monodromies

χ : π1(C \ {a1, . . . , an}) −→ GL(p,C)

of the corresponding systems are the same. This means that for every value a there exists a
fundamental matrix Y (z, a) of the corresponding system from (5) that has the same monodromy
for all a ∈ D(a0). This matrix Y (z, a) is called an isomonodromic fundamental matrix.

Is it always possible to include the system (4) into an isomonodromic family of Fuchsian
systems? The answer is affirmative. Exactly, if the matrices Bi(a) satisfy the Schlesinger
equation [13]

dBi(a) = −
n

j=1,j =i

[Bi(a), Bj(a)]
ai − aj

d(ai − aj),

then the family (5) is isomonodromic (in this case it is called the Schlesinger isomonodromic
family).

Due to Malgrange’s theorem [9], for arbitrary initial conditions Bi(a0) = B0
i the Schlesinger

equation has a unique solution {B1(a), . . . , Bn(a)} in some disk D(a0), and the matrices Bi(a)
can be extended to the universal cover Z of the space Cn \ 

i=j{ai = aj} as meromorphic
functions. Thus, the Schlesinger equation satisfies the Painlevé property. The polar locus
Θ ⊂ Z of the extended matrix functions B1(a), . . . , Bn(a) is called the Malgrange Θ-divisor.

In what follows we will use the theorem of Bolibrukh2 describing a general solution of the
Schlesinger equation near the Θ-divisor in the case p = 2. For the polar locus P ⊂ Z of a
function f meromorphic on Z, and a∗ ∈ P , let us denote by Σa∗(f) the sum of orders of all
irreducible components of P ∩D(a∗).

Theorem 1. If the monodromy of the two-dimensional family (5) is irreducible, then
Σa∗(Bi)  2− n for every a∗ ∈ Θ (i = 1, . . . , n).

The following auxiliary lemma is a simplified version of Proposition 6.4.1 from [8].

Lemma 1. Consider a two-dimensional Schlesinger isomonodromic family of the form

dy

dz
=


n

i=1

Bi(a)
z − ai


y,

n

i=1

Bi(a) = K = diag(θ,−θ), θ ∈ C,

and the function b(a) =
n

i=1 b
12
i (a)ai, where b12

i (a) are the upper-right elements of the matrices
Bi(a) respectively. Then the differential of the function b(a) is given by the formula

db(a) = (2θ + 1)
n

i=1

b12
i (a)dai.

Proof. The differential db(a) has the form

db(a) =
n

i=1

aidb
12
i (a) +

n

i=1

b12
i (a)dai.

2This theorem was announced in [3], its particular case contains in [2], the proof can be found in [6].

3
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To find the first of the two latter summands, let us use the Schlesinger equation for the matrices
Bi(a). Then we have

n

i=1

ai dBi(a) = −
n

i=1

n

j=1,j =i

ai
[Bi(a), Bj(a)]

ai − aj
d(ai − aj) = −

n

i=1

n

j>i

[Bi(a), Bj(a)]d(ai − aj) =

= −
n

i=1


Bi(a),

n

j=1,j =i

Bj(a)

dai = −

n

i=1

[Bi(a),K]dai.

The upper-right element of the latter matrix 1-form is equal to
n

i=1 2θb
12
i (a)dai, hencen

i=1 aidb
12
i (a) = 2θ

n
i=1 b

12
i (a)dai, and db(a) = (2θ + 1)

n
i=1 b

12
i (a)dai. 

§3. Schlesinger isomonodromic deformations and Garnier systems

Let us recall the relationship between Schlesinger isomonodromic deformations and Garnier
systems.

Consider a two-dimensional Schlesinger isomonodromic family

dy

dz
=


n+2

i=1

Bi(a)
z − ai


y, Bi(a0) = B0i ∈ sl(2,C), (6)

of Fuchsian systems with singular points a1, . . . , an, an+1 = 0, an+2 = 1, an+3 = ∞ which
depends holomorphically on the parameter a = (a1, . . . , an) ∈ D(a0), where D(a0) is a disk of
small radius centered at the point a0 of the space (C \ {0, 1})n \

i=j{ai = aj}. Denote by ±βi

the eigenvalues of the matrices Bi(a) respectively3. As follows from the Schlesinger equation,
the matrix residue at the infinity is constant. We assume that it is a diagonalisable matrix, i. e.,n+2

i=1 Bi(a) = −B∞ = diag(−β∞, β∞).
By Malgrange’s theorem the matrix functions

Bi(a) =


b11i (a) bi(a)
b21i (a) b22i (a)



can be extended to the universal cover Z  of the space (C \ {0, 1})n \ 
i =j{ai = aj} as mero-

morphic functions (holomorphic off the analytic subset Θ of codimension one).
Denote by B(z, a) the coefficient matrix of the family (6). Since the upper-right element

of the matrix B∞ equals zero, for every fixed a the same element of the matrix z(z − 1)(z −
a1) . . . (z − an)B(z, a) is a polynomial Pn(z, a) of degree n in z. We denote by u1(a), . . . , un(a)
the roots of this polynomial and define the functions v1(a), . . . , vn(a):

vj(a) =
n+2

i=1

b11i (a) + βi

uj(a)− ai
, j = 1, . . . , n.

Then the following statement takes place: the pair (u(a), v(a)) = (u1, . . . , un, v1, . . . , vn) satisfies
the Garnier system (3) with the parameters 2β1, . . . , 2βn+2, 2β∞ − 1 (see [8], Cor. 6.2.2).

One can express the coefficients of the polynomial Pn(z, a) in terms of the upper-right ele-
ments bi(a) of the matrices Bi(a). Let

σ1(a) =
n+2

i=1

ai, σ2(a) =


1i<jn+2

aiaj , . . . , σn+1(a) = a1 . . . an

3An isomonodromic deformation also preserves the eigenvalues of the residue matrices Bi(a).
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be the elementary symmetric polynomials in a1, . . . , an, an+1 = 0, an+2 = 1, and Q(z) =n+2
i=1 (z − ai). Then

Pn(z, a) =
n+2

i=1

bi(a)
Q(z)
z − ai

=: b(a)zn + f1(a)zn−1 + . . .+ fn(a)

(recall that
n+2

i=1 bi(a) = 0). By the Viète theorem one has

b(a) =
n+2

i=1

bi(a)(−σ1(a) + ai) =
n+2

i=1

bi(a)ai =
n

i=1

bi(a)ai + bn+2(a),

f1(a) =
n+2

i=1

bi(a)

σ2(a)−

n+2

j=1,j =i

aiaj


= −



1i<jn+2

(bi(a) + bj(a))aiaj .

In the similar way,

fk(a) = (−1)k


1i1<...<ik+1n+2

(bi1(a) + . . .+ bik+1(a))ai1 . . . aik+1

for each k = 1, . . . , n.
Alongside formulae for the transition from a two-dimensional Schlesinger isomonodromic

family with sl(2,C)-residues to a Garnier system, there also exist formulae for the inverse tran-
sition (see [8]). This allows to suggest some addition to Garnier’s theorem (which claims that
the elementary symmetric polynomials Fi(a) = σi(u1(a), . . . , un(a)) of solutions of a Garnier
system are meromorphic on Z ).

Theorem 2. Let (u(a), v(a)) be a solution of the Garnier system (3) that corresponds to
a two-dimensional Schlesinger isomonodromic family with irreducible monodromy, and ui(a) ≡
uj(a) for i = j. Then for each function Fi(a) and any point a∗ of its polar locus one has

Σa∗(Fi)  −n− 1.
Proof. Consider the family (6) with the irreducible monodromy, and the functions b(a),

f1(a), . . . , fn(a) constructed by the residue matrices Bi(a). By the Viète theorem, Fi(a) =
(−1)ifi(a)/b(a). Due to Theorem 1, for each function fi(a) and any point a∗ of the Θ-divisor
of the family (6) one has Σa∗(fi)  −n − 1. Thus, to prove the estimate of Theorem 2, it is
sufficient to prove that the function b(a) is irreducible and does not vanish on the polar locus
of the functions fi(a).

By Lemma 1 we have db(a) = (−2β∞ + 1)
n

i=1 bi(a)dai.
i) In the case β∞ = 1/2

bi(a) = − 1
θ∞

∂b(a)
∂ai

, i = 1, . . . , n; (θ∞ = 2β∞ − 1 = 0)

bn+2(a) = b(a)−
n

i=1

bi(a)ai, bn+1(a) = −bn+2(a)−
n

i=1

bi(a). (7)

Thus, if the function b(a) is holomorphic at a point a ∈ Z , so are the functions bi(a), i =
1, . . . , n+ 2, and hence, the functions fi(a).

If for some a ∈ {b(a) = 0} one has db(a) ≡ 0, then
n

i=1 bi(a
)dai ≡ 0 and b1(a) =

. . . = bn(a) = 0. Taking into consideration the relations (7), one gets also bn+2(a) = 0 and
bn+1(a) = 0. This contradicts the irreducibility of the monodromy of the family (6).
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ii) In the case β∞ = 1/2 one has db(a) ≡ 0 for all a ∈ D(a0), hence b(a) ≡ const = 0. Indeed,
if b(a) ≡ 0, then Pn(z, a) is a polynomial of degree n− 1 in z, and ui(a) ≡ uj(a) for some i = j.


Remark. M.Mazzocco [10] has shown that the solutions of the Garnier system (3), that
correspond to two-dimensional Schlesinger isomonodromic families with reducible monodromy,
are classical functions (in each variable, in sense of Umemura [14]) and can be expressed via
Lauricella Hypergeometric equations. Thus, Theorem 2 can be applied, for example, to non-
classical solutions of Garnier systems.

References

[1] D.V.Anosov, A.A.Bolibruch, The Riemann–Hilbert problem. Aspects Math., E 22, Braun-
schweig: Vieweg, 1994.

[2] A.A.Bolibruch, On orders of movable poles of the Schlesinger equation. J. Dynam. Control
Systems, 2000, 6(1), 57–74.

[3] A.A.Bolibruch, Inverse monodromy problems of the analytic theory of differential equa-
tions. Mathematical events of the twentieth century, Berlin: Springer, 2006, 49–74.
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µ Ω × Ω R µ(Ω × Ω \ ΓR) = 0
Ω × Ω

π1, π2 : Ω× Ω → Ω π1(t1, t2) = t1 π2(t1, t2) = t2
µ A ⊂ Ω

µ(π−1
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R Ω
r1, r2 : Ω → Ω ΓR = (r1(t), r2(t)), t ∈ Ω

R Ω
r1 r2 µ

η Ω r1∗η = r2∗η
A ⊂ Ω η(r−1

1 A) = η(r−1
2 A)

η (r1, r2) R
k l (k, l) S1

S1 r1(t) = kt r2(t) = lt

r1, . . . , rn

Ω σ

r1∗ν = r2∗ν = . . . = rn∗ν (I)

η Ω n = 2
(r1, r2)

r1 r2

S = r1, . . . , rn S
A S A =

{
n

i=1

αisi, si ∈ S} Ω

S G = S−1S S
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K = {r−11 r2, . . . , r−11 rn} ⊂ G ∀ε > 0 ∃Fε,K ⊂
G : ∀k ∈ K |Fε,K  kFε,K | < ε|Fε,K |. ν
Ω νN = 1

|F 1
N

,K
|


x∈F 1
N

,K

(xgN)∗ν gN F 1
N
,K S

νN νNi

ν j = 2, . . . , n r1∗νN−rj∗νN → 0
N → 0 Ni r1∗ν = rj∗ν j = 2 . . . n

ν
r1, . . . , rn

S = r1 . . . rn S

S1  R/Z ri(t) = 2n−i3it( 1) i = 0, . . . , n
t → 3

2
t η T2∗η =

T3∗η T2 : t → 2t T3 : t → 3t ri∗η = (riT2)∗η = (riT3)∗η =
ri+1∗η ri(t) = 2n−i3it( 1) η η

ri∗η = η i = 1, . . . , n η S

P E µ
P p ∈ E

µ f(p) =

P

fdµ f E
P

P
P

F S1

m̂ ∈ M M F
M m̂

(2, 3) F ΓF S1  R/Z
m̂ ΓF

A = αs Ã = α̃s S1

ΓF

αs : r1(t) = 2(t+ s); r2(t) = 3(t+ s), t ∈ [0, 1
2
)

α̃s : r1(t) = 2(t+ s), t ∈ [0, 1
2
); r2(t) =


3(t+ s), t ∈ [0, 1

4
) ∪ [1

3
, 1
2
)

3(t+ s) + 1
2
, t ∈ [1

4
, 1
3
)

s ∈ [0, 1) αs α̃s

C2
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µs µ̃s

µs µ̃s F
αs α̃s

F µs µ̃s

1
0

µsds
1
0

µ̃sds (
1
0

µsds)(A) =
1
0

µs(A)ds (
1
0

µ̃sds)(A) =

1
0

µ̃s(A)ds ΓF

m̂
M 

P E λ µ
P λ  µ λ(f) ≥ µ(f)

f C(P )

P
p P

µp p P

S1

M m̂
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DLR thermodynamic formalism and properties of time
and space means

B.M. Gurevich∗and A.A. Tempelman

Let X be a metric space, τ = {τt, t ∈ Zd} an action of the group T = Zd

on X by homeomorphisms, and I the set of all τ -invariant Borel probability
measures on X. For each µ ∈ I, we denote by h(µ) the entropy of τ with
respect to µ. In what follows we assume that the function µ → h(µ) is upper
semi-continuous on I. (This is the case if τ is expansive.)

If f ∈ C(X;Rm) and µ ∈ I we denote µ(f) =


X
fdµ. For each func-

tion f = (f1, . . . , fm) ∈ C(X;Rm) and each β = (β1, . . . , βm), we consider
the pressure Pf (β) := sup

µ∈I
[h(µ) − µ(β, f)], where β, f :=

m
i=1 βifi ∈

C(X,R1). Denote by Ef,β the set of measures µ at which the supremum is
attained ((f, β)-equilibrium measures), and put Ef = ∪

β∈Rm
Ef,β.

Let T = {Tn} be a sequence of finite subsets of T . For f ∈ C(X,Rm), x ∈
X, we consider the time mean

af,T (x) := lim
n→∞

1

|Tn|

t∈Tn

f(τtx),

provided the limit exists. We assume that T is a Følner sequence, i.e.
limn→∞

|Tn(Tn+t)|
|Tn| = 0 for each t ∈ T ; in this case the time means and the set

of points x where they exist are τ -invariant. Let Mf,T be the set of all time
means, If := {µ(f), µ ∈ I} the set of space means, and Ef = {µ(f), µ ∈ Ef}
the set of equilibrium space means.

It is clear that If is a compact convex set. We first consider properties
of Ef and the relationship between If and Ef .

Theorem 1. The relative interior ri(Ef ) of Ef coincides with the relative
interior ri(If ) of If .

∗The work is supported by the RFBR grants 07-01-92215 CNRS(L) and 08-01-00105
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This theorem is a refinement of Theorem 2 in [1].

Theorem 2. Assume that the function Pf has the following property: if Pf is
affine on a ray, then it is affine on the whole straight line containing this ray.
Then Ef is convex and relatively open; moreover, it coincides with ri(If ).

Of course, the condition on Pf in Theorem 2 is fulfilled if this function is
strictly convex. On the other hand, if the components of the vector function
f are linearly dependent, Pf is constant on an affine manifold and satisfies
the condition of Theorem 2 as well.

In what follows we assume that X = ST , where S is a finite set, and
(τtx)(s) = x(t + s) for x ∈ X, s, t ∈ T . In this case the above semi-
continuity property of the entropy function holds. We also assume that T
is an increasing sequence of parallelepipeds Tn = {t = (t1, . . . , td) : 0 ≤ ti <

t
(n)
i } ∩ T such that lim

n→∞
t
(n)
i = ∞, i = 1, ...,m, and

max
(n)
i

min
(n)
i

< c <∞.

Theorem 3. Mf,T = If ; so the set Mf,T is convex, compact, and does not
depend on T .

Define the ”standard metric” ρθ, θ ∈ (0, 1), on X by ρ(x, y) = θm if
x = y, m = min{n : x|Tn = y|Tn}, and ρ(x, y) = 0 if x = y.

With this metric, we are interested in the Hausdorff dimension (denoted
below by dimθ) of the level set

Xf,α,T = {x ∈ X : af,T (x) = α}.
Theorem 3 implies Xf,α,T = ∅ for each α ∈ If .

The following theorem generalizes Theorem 5.1 in [2].

Theorem 4. (1) If α ∈ If , then

dimθ(Xf,α,T ) = θ−1 max
µ∈I,µ(f)=α

h(µ) = θ−1 inf
β∈Rm

[Pf (β) + β, α].

(2) If α ∈ Ef , i.e. α = µ0(f) where µ0 ∈ Ef (β0, α) with some β0 ∈ Rm,
then

dimθ(Xf,α,T ) = θ−1h(µ0) = θ−1[Pf (β0) + β0, α].
(3) The function α → dimH

ρ (Xf,α,A) is concave and upper semi-continuous
on If , continuous on ri(If ), and Lipschitz continuous on each closed subset
of ri(If ); moreover, the restriction of this function to each closed straight line
interval in If is continuous.
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It should be mentioned that, for d = 1, some close results were earlier
obtained by different methods (see, for instance [3],[4] ), who applied different
approaches. But when d > 1, the DLR approach seems to be the most
relevant.
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SOME UPPER ESTIMATES ON THE NUMBER OF
LIMIT CYCLES OF EVEN DEGREE LIÉNARD

EQUATIONS IN THE FOCUS CASE

GRISHA KOLUTSKY

Abstract. We give an explicit upper bound for the number of
limit cycles of Liénard equation ẋ = y − F (x), ẏ = −x of even
degree in the case its unique singular point (0, 0) is a focus.
M. Caubergh and F. Dumortier give explicit upper estimates for

large amplitude limit cycles of such equations [CD]. We estimate
the number of mid amplitude limit cycles of Liénard equations
using the Growth-and-Zeros theorem proved by Ilyashenko and
Yakovenko [IYa].
Our estimate depends on four parameters: n, C, a1, R. Let

F (x) = xn+
n−1
i=1

aix
i, where n = 2l is the even degree of the monic

polynomial F without constant term, ∀i|ai| < C, so C is the size
of a compact subset in the space of parameters, |a1| stands the
distance from the equation linearization to the center case in the
space of parameters and R is the size of the neighborhood of the
origin, such that there are no bigger than l limit cycles located
outside of this neighborhood.

1. Introduction. History of the Hilbert-Smale problem

In 1977 A. Lins Neto, W. de Melo and C. C. Pugh [LMP] examined
small perturbations of a linear center for a special class of polynomial
vector fields on the plane. This class is called Liénard equations:

(1)


ẋ = y − F (x)

ẏ = −x ,

where F is a polynomial of odd degree.
They proved the finiteness of limit cycles for a Liénard equation of

odd degree n. Also they conjectured that the number of limit cycles of
(1) is not bigger than n−1

2
.

Date: 15 April 2009.
Key words and phrases. Limit cycles, Poincaré map, Liénard equations, Hilbert’s

16th problem, Hilbert-Smale problem.
Mathematics Subject Classification 2000. Primary 34C07, Secondary 34M10.
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In 1998 S. Smale [S] suggested to consider a restriction of the second
part of the Hilbert’s 16th problem to Liénard equations of odd degree.
He conjectured that there exists an integer n and real C such that the
number of limit cycles of (1) is not bigger than Cnq.
In 1999 Yu. Ilyashenko and A. Panov [IP] got an explicit upper bound

for the number of limit cycles of Liénard equations through the (odd)
power of the monic polynomial F and magnitudes of its coefficients.
Their result reclined on the theorem of Ilyashenko and Yakovenko that
binds the number of zeros and the growth of a holomorphic function
[IYa].
In 2007 F. Dumortier, D. Panazzolo and R. Roussarie [DPR] con-

structed a counterexample to the conjecture of A. Lins Neto, W. de Melo
and C. C. Pugh. They constructed an example of a Liénard equation
of odd degree n with at least n+1

2
limit cycles.

In 2008 Yu. Ilyashenko [I2] suggested to prove a result analogous to
the one of Ilyashenko and Panov for Liénard equations of even degree.
In 2008 M. Caubergh and F. Dumortier in [CD] proved the following

theorem for Liénard equations of even degree.

Theorem 1. Let K be a compact set of polynomials of degree exactly
n = 2l, then there exists R > 0 such that any system having an expres-
sion (1) with F ∈ K has at most l limit cycles having an intersection
with R2\BR(0).

Here BR(0) denotes the ball around the origin with radius R.

2. Notations and the Ilyashenko strategy

From now on we will consider a system (1), where F is a monic
polynomial of even degree n = 2l without a constant term.

Remark. The assumption F (0) = 0 does not reduce the generality; it
may be fulfilled by a shift y → y + a. The assumption that F is monic
may be fulfilled by rescalling in x, y and reversing time if necessary.

Let v be an analytic vector field in the real plane, that may be
extended to C2. For any set D in a metric space denote by U ε(D) the
ε-neighborhood of D. The metrics in C and C2 are given by:

ρ(z, w) = |z − w|, z, w ∈ C;
ρ(z, w) = max(|z1 − w1|, |z2 − w2|), z, w ∈ C2.

Denote by |D| the length of the segment D. For any larger segment
D ⊃ D, let ρ(D, ∂D) be the Hausdorff distance between D and ∂D.
We want to apply the next theorem proved by Ilyashenko and Panov

[IP]. Actually, it is the easy corollary from the Growth-and-Zeros the-
orem for holomorphic functions proved by Ilyashenko and Yakovenko
[IYa].



79

NUMBER OF LIMIT CYCLES OF LIÉNARD EQUATIONS 3

Consider the system

(2) ẋ = v(x), x ∈ R2.

Theorem 2. Let Γ be a cross-section of the vector field v, D ⊂ Γ a
segment. Let P be the Poincaré map of (2) defined on D, and D ⊂ D =
P (D). Suppose that P may be analytically extended to U = U ε(D) ∈ C,
ε < 1, and P (U) ⊂ U1(D) ⊂ C. Then the number #LC(D) of limit
cycles that cross D admits an upper estimate:

(3) #LC(D) ≤ e2|D|ε−1 log
|D|+ 2

ρ(D, ∂D)
.

The same is true for P replaced by P−1.

Actually, the Ilyashenko strategy is the application of the previous
theorem. It requires purely qualitative investigation of a vector field,
i.e. a construction of suchD for every nest of limit cycles. This strategy
was applied before in papers [I1] and [IP].
We take K from the Theorem 1 to be the space of monic polynomials

of degree exactly n with coefficients, which moduli are bounded by some
positive constant C, i.e.

F (x) = xn +
n−1
i=1

aix
i, ∀i : |ai| < C.

If |a1| < 2 then the unique singular point (0, 0) of the system (1) is
a focus. In our work we will consider only this case.
Let us denote by Y the maximal y-coordinate of the point of inter-

section between the most external limit cycle which lies inside BR(0)
(if it exists, of course) and y-axis.

Figure 1. This is the reversed time picture.
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3. Bendixson trap from within

In this Section we construct an interval D, which lies inside BR(0)
and intersects transversally all limit cycles in BR(0). Also we find an

upper estimate for the Bernstein index, b = log
|D|+ 2
ρ(D, ∂D)

. To do that

we need to estimate ρ(D, ∂D) from bellow, where D = P (D) ⊂ D
and P is the Poincaré map defined on D.
Let ϕ, r be polar coordinates on R2, ϕ̇, ṙ be derivatives with respect

to (1).

Lemma 1. Put  = − a1

4C
. If a1 is negative, then ṙ > 0 in U(0). Let

D = [, Y ] ⊂ 0y. Then d = ρ(D, ∂D) ≥ πa2
1

8C
.

Proof. Let us calculate ṙ.

ṙ =
xẋ+ yẏ

r
=

r cosϕ(r sinϕ− F (r cosϕ))− r2 sinϕ cosϕ

r
=

= − cosϕF (r cosϕ) = −r cos2 ϕ
n
i=1

ai(r cosϕ)
i−1

If r < , then r < 1
2
and 2Cr < a1

2
. Therefore, Cr

1−r <
a1
2
. Then


n
i=2

ai(r cosϕ)
i−1

 ≤ Cr
1− rn−1

1− r
<

Cr

1− r
<

a1

2
.

So

ṙ > r cos2 ϕ

−a1 +

a1

2


= −a1

2
r cos2 ϕ > 0.

This proves the first part of the Lemma.
Consider the orbit γ of the system (1) that passes through the point

(0, ). Then the Hausdorff distance d can be estimated as follows:

d ≥

 2π

0

ṙ(γ)dϕ

 >
 2π

0

a1

2
r cos2 ϕdϕ >

πa2
1

8C
.

This inequality completes the proof of the Lemma. 

Remark. For positive a1 we can get the same results just by reversing
of the time.

Now we can estimate b from above:

(4) b ≤ log R + 2
d

≤ log 8C(R + 2)
πa2

1

< log
2C(R + 2)

a2
1

<
2C(R + 2)

a2
1

.
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4. Complex domain of the Poincaré map

In [IP] authors proved that the inverse Poincaré map of the Liénard
equation (1) may be extended to the domain U ε(D) ⊂ C, where
(5) ε = exp

−n2(X + 2)2n+3

, X = 4(C + 1)3, C ≥ 4.

This statement is true for our case, but C should be replaced by
max(R,C). One can prove it using absolutely the same arguments as
Ilyashenko and Panov.
From now on without loss of generality we can replace C by max(R,C).

5. Final estimate

Theorem 3. The number L(n,C, a1, R) of limit cycles of (1) in the
case when n is even and 0 < |a1| < 2, admits the following upper
bound:

(6) L(n,C, a1, R) < a−2
1 exp(5R2 exp(C11n+16)).

Proof. By definition, |D| and |D| are less than R. So estimates (3),
(4) and (5) imply:

L(n,C, a1, R) < exp(2R exp(n
2(4(C + 1)3 + 2)2n+3))

2C(R + 2)

a2
1

<

< a−2
1 exp(5R2 exp(n2C5(2n+3)+1)) < a−2

1 exp(5R2 exp(C11n+16)).

This calculation completes the proof of the Theorem. 
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ψ(x, t) = φ(x)e−iωt.

ε

ψ(x, t) = φ(x)e−iωt.

ε
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|E�

E
�

p · dq = 2π�n, n ∈ N,

|E�
ψ(x, t) = φω(x)e

−iωt, ω = E/�,

�
ψ(x, t) = φω(x)e

−iωt

E+ E−

Ψ(t)

|E+�

|E−�

Ψ(t) |E−� |E+�

Ψ(t) −→ |E±�, t→ ±∞
Ψ(t)

A

ψ(x, t) ∼ φω±
(x)e−iω±t, t→ ±∞,

i�∂tψ = − �2

2m∆ψ− e2

|x|ψ

A(x, t) = (ϕ(x, t),A(x, t))
�
(i�∂t − eϕ)2ψ = (c�

i∇− eA)2ψ +m2c4ψ,

�ϕ = 4πe(ψ̄ψ − δ(x)), �A = 4πe ψ̄·∇ψ−∇ψ̄·ψ
2i .
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|E−� �−→ |E+�

U(1)

(ψ(x, t), A(x, t)) ∼
�
φω±

(x)e−iω±t, Aω±
(x)

�
, t→ ±∞.

{
�
φωe

−iωt, Aω

�
: ω ∈ R}

t→ +∞

U(1) φω(x)e
−iωt

U(1)
G

ψ(x, t) ∼ ψ±(x, t) = eΩ±tφ±(x), t→ ±∞,

Ω±

G = SU(3)
su(3)

ψ± = 0
R3

ψ(x, t) ∼ ψ± = 0, t → ±∞

φω(x)e
−iωt
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ψω(x, t) = φω(x)e
−iωt, ω ∈ R,

φω ∈ H1(Rn)
R

n

ω

U(1)

n ≥ 3

ω± �= 0
U(1)

ψ± �= 0 ω± = 0

n ≥ 5

N

ψ̈(x, t) = ∆ψ(x, t)−m2ψ(x, t) +
N�

I=1

ρI(x)FI(�ρI , ψ(·, t)�), x ∈ R
n, t ∈ R, n ≥ 3,

m > 0 �ρI , ψ(·, t)� =
�

Rn ρ̄I(x)ψ(x, t) d
nx. ρI(x) = ρ(x −XI) XI ∈ R

n ρ
ρ ∈ S (Rn) ρ �≡ 0

U(1)
FI(z) 1 ≤ I ≤ N

FI(z) = −∇UI(z), UI(z) =

p�

l=1

uI,l|z|2l, uI,l ∈ R, uI,pI
> 0, pI ≥ 2.

� · �L2 L2(Rn) Hs(Rn) s ∈ R

�ψ�Hs = �(m2 −∆)s/2ψ�L2 . s ∈ R R > 0 Hs
0(B

n
R)

Hs(Rn) B
n
R R R

n � · �Hs,R Hs(Bn
R)

X Ψ = (ψ, π) ∈ H1(Rn) ×
L2(Rn)

�Ψ�2X = �π�2L2 + �∇ψ�2L2 +m2�ψ�2L2 = �π�2L2 + �ψ�2H1 .

ε > 0 �Ψ�2
X −ε,R = �π�2H−ε,R + �ψ�2H1−ε,R, R > 0 Y

�Ψ�Y =
∞�

R=1

2−R�Ψ�X −ε,R <∞.

X
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X ⊂ Y

S

S = {ψ ∈ C(R,H1(Rn)): ψ(x, t) = φω(x)e
−iωt, ω ∈ R, φω ∈ H1(Rn)}.

S =
�

(φω,−iωφω): φω(x)e
−iωt ∈ S

�

.

S eiθ θ ∈ R dimS = 2

p ∈ X

Ψ ∈ C(R,X ) tj → ∞ Ψ(tj)
Y

−−−−→
j→∞

p

Ψ ∈ C(R,X )

ω(Ψ) =
�

t≥0

�

�

s≥t

Ψ(s)
�

Y

,

�

·
�

Y
Y

A ⊂ X

A =
�

Ψ(0)∈X

ω(Ψ).

Sτ τ ∈ R
SτΨ(t) = Ψ(τ + t).

B ∈ C(R,X )
Ψ ∈ C(R,X ) tj → +∞

∀T > 0, sup
−T≤t≤T

�Stj
Ψ(t)− B(t)�Y

Y

−−−−→
j→∞

0.

A ⊂ C(R,X )
Ψ = (ψ, ψ̇)

ρ ∈ S (Rn) XI ∈ Rn σIJ (ω) =
1

(2π)n

�

Rn

ei(XI−XJ )·ξ|ρ̂(ξ)|2

ξ2+m2−(ω+i0)2 dnξ, 1 ≤ I, J ≤ N

Zρ = {ω ∈ R\[−m,m]: ρ̂(ξ) = 0 ξ ∈ Rn m2 + ξ2 = ω2};

ZN �

σ =
�

ω ∈ R: ∃ I,J ⊂ {1, . . . , N}, |I| = |J | = N �, det
I∈I,J∈J

σIJ (ω) = 0
�

, 1 ≤ N � ≤ N.

ZN �

σ 1 ≤ N � ≤ N

ZN �

σ ∩ ([−m,m] ∪ Zρ) = ∅, 1 ≤ N � ≤ N.

FI(z) 1 ≤ I ≤ N
ρ(x) XI 1 ≤ I ≤ N

A = S.

A = S.

(ψ0, π0) ∈ X ψ(t) (ψ, ψ̇)|
t=0 = (ψ0, π0)

S Y

lim
t→±∞

distY ((ψ, ψ̇)|t ,S) = 0,

distY (Ψ,S) := inf
s∈S

�Ψ− s�Y



88

�

U(1)

�u = f(u)
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Abstract
Ising model without external field on Lorentzian triangulation sam-

pled from uniform distribution is considered. We prove the coexistence
of at least two Gibbs measures in low temperature region. The proof
is based on well known contour Peierls method extensively adopted in
statistical physics. And we prove the uniqueness of Gibbs measure on
the high temperature region.
Keywords: Lorentzian triangulation, Ising model, dynamical triangu-
lation, quantum gravity
AMS 2000 Subject Classifications: 82B20, 82B26, 60J80

1 Introduction

Triangulations, and planar graphs in general, appear in physics in the context
of 2-dimensional quantum gravity as a model for the discretized time-space.
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†Partially supported by BQR 2007 UMR7502 IAEM 0039.
‡Partially supported by the “Rede Matemática Brasil-França, CNPq (306092/2007-7)

and CNPR “Edital Universal 2006” (471925/2006-3).
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Perhaps the best understood it the model of Euclidean Dynamical Triangu-
lations, which can be viewed as a way of constructing a random graph by
gluing together a large number of equilateral triangles in all possible ways,
with only topological conditions imposed on such gluing. Putting a spin sys-
tem on such a random graph can be interpreted as a coupling of gravity with
matter, and was an object of persistent interest in physics since the successful
application of matrix integral methods to the Ising model on random lattice
by Kazakov [7].
More recently, a model of Casual Dynamical Triangulations was intro-

duced (see [1] for an overview). The distinguishing feature of this model is
its lack of isotropy — the triangulation now has a distinguished time-like
direction, giving it a partial order structure similar to Minkowski space, and
imposing some non-topological restrictions on the way elementary triangles
are glued. This last fact destroys the connection between the model and ma-
trix integrals, in particular the analysis of the Ising model requires completely
different methods (see e.g. [3]).
From a mathematical perspective, we deal here with nothing but a spin

system on a random graph. Random graphs, arising from the CDT approach,
were considered in [8] under the name of Lorentzian models. In the present
paper we consider the Ising model on such graphs. When defining the model
we pursue the formal Gibbsian approach [4]; namely, given a realisation of
an infinite triangulation, we consider probability measures on the set of spin
configurations that correspond to a certain formal Hamiltonian.
Our setting is drastically different from e.g. [7] and [3] in that we do not

consider “simultaneous randomness”, when both the triangulations and spin
configurations are included into one Hamiltonian. Instead we first sample
an infinite triangulation from some natural “uniform” measure, and then
run an Ising model on it, thus the resulting semi-direct product measure is
“quenched”.
A modest goal of this work is to establish a phase transition for the Ising

model in the above described “quenched” setting (the “annealed” version of
the problem is surely interesting, but is also more technically challenging, so
we don’t attempt it for the moment). We use a variant of Peierls method
to prove non-uniqueness of the Gibbs measure at low temperature. Quite
surprisingly, proving the uniqueness at high temperature is not easy – the
difficulty consists in presence of vertices of arbitrarily large degree, which does
not allow for immediate application of uniqueness criteria such as e.g. [10].
We resort instead to the method of disagreement percolation [9], and use

2
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the idea of “ungluing”, borrowed from the paper [2], to get rid of vertices of
very high degree. Finally, we show that the critical temperature is in fact
non-random and coincides for a.e. random Lorentzian triangulation.
We thank E. Pechersky for numerous useful discussions during the prepa-

ration of this paper.

2 Definitions and Main Results

Now we define rooted infinite Lorentzian triangulations in a cylinder C =
S1 × [0,∞).
Definition 2.1. Consider a connected graph G embedded in a cylinder C. A
face is a connected component of C\G. The face is a triangle if its boundary
meets precisely three edges of the graph. An embedded triangulation T is
such a graph G together with a subset of the triangular faces of G. Let
the support S(T ) ⊂ C be the union of G and the triangular faces in T .
Two embedded triangulations T and T  are considered equivalent if there is a
homeomorphism of S(T ) and S(T ) that corresponds T and T .

For convenience, we usually abbreviate “equivalence class of embedded
triangulations” to “triangulation”. This should not cause much confusion.
We suppose that the number of the vertices of G is finite or countable.

Definition 2.2. A triangulation T of C is called Lorentzian if the following
conditions hold: each triangular face of T belongs to some strip S1 × [j, j +
1], j = 0, 1, . . . , and has all vertices and exactly one edge on the boundary
(S1 × {j}) ∪ (S1 × {j + 1}) of the strip S1 × [j, j + 1]; and the number of
edges on S1 × {j} is positive and finite for any j = 0, 1, . . . .

In this paper we will consider only the case when the number of edges
on the first level S1 × {0} equal to 1. This is not restriction, only it gives
formulas more clean.

Definition 2.3. A triangulation T is called rooted if it has a root. The root
in the triangulation T consists of a triangle t of T , called the root face, with
an ordering on its vertices (x, y, z). The vertex x is the root vertex and the
directed edge (x, y) is the root edge. The x and (x, y) belong to S1 × {0}.
Note that this definition also means that the homeomorphism in the def-

inition of the equivalence class respects the root vertex and the root edge.

3



92

For convenience, we usually abbreviate “equivalence class of embedded rooted
Lorentzian triangulations” to “Lorentzian triangulation” or LT.
In the same way we also can define a Lorentzian triangulation of a cylinder

CN = S1× [0, N ]. Let LTN and LT∞ denote the set of Lorentzian triangula-
tions with support CN and C correspondingly.

Gibbs and Uniform Lorentzian triangulations. Let LTN be the set of
all Lorentzian triangulations with only one (rooted) edge on the root bound-
ary and with N slices. The number of edges on the upper boundary S1×{N}
is not fixed. Introduce a Gibbs measure on the (countable) set LTN :

PN,µ(T ) = Z−1
[0,N ] exp(−µF (T )), (2.1)

where F (T ) denotes the number of triangles in a triangulation T and Z[0,N ]

is the partition function:

Z[0,N ] =


T∈LTN
exp(−µF (T )).

The measure on the set of infinite triangulations LT∞ is then defined as a
weak limit

Pµ := lim
N→∞

PN,µ .

It was shown in [8] that this limit exists for all µ ≥ µcr := ln 2.

Ising model on Uniform Infinite Lorentzian triangulation – quenched
case. Let T be some fixed Lorentzian triangulation, T ∈ LT∞. Let TN be
the projection of T on the cylinder CN . We associate with every vertex v a
spin σv ∈ {−1, 1}. Let Σ(T ) and ΣN(T ) denote the set of of all spin config-
urations on T and TN , respectively. The Ising model on T is defined by a
formal Hamiltonian

H(σ) =


v,v∈V
σvσv (2.2)

where v, v means that vertices v, v are neighbours, i.e. are connected by
an edge in T . Let ∂TN be the set of vertices of T that lie on the circle
S1 × {N + 1}. Fix some configuration on the boundary ∂TN and denote it
∂σ. The Gibbs distribution with boundary condition ∂σ is defined by the

4
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following. Let V (TN) be the set of all vertices in TN , then the energy of
configuration σ ∈ ΣN(T ) is

HN(σ|∂σ) =


v,v: v,v∈V (TN )
σvσv +



v,v:v∈V (TN ),v∈∂TN
σvσv (2.3)

which defines the probability

P T
N,∂σ(σ) =

exp{−βHN(σ|∂σ)}
ZN,∂σ(T )

(2.4)

where
ZN,∂σ(T ) =



σ∈ΣN (T )
exp{−βHN(σ|∂σ)}.

When N →∞, for any sequence of boundary conditions ∂σ, a limit (at least
along some subsequence) of measures P T

N,∂σ exists by compactness. Such a
limit is a probability measure on Σ(T ) with a natural σ-algebra, which we
refer to as a Gibbs measure.
In general, it is well known that at least one Gibbs measure exists for the

Ising model on any locally finite graph and for any value of the parameter
β (see, e.g., [5] page 71). It is also known that the existence of more than
one Gibbs measure is increasing in β, i.e. there exists a critical value βc ∈
[0,∞] such that there is a unique Gibbs measure when β > βc, and multiple
Gibbs measures when β < βc (see [6] for an overview of relations between
percolation and Ising model on general graphs).
Thus when considering the Ising model on Lorentzian triangulations it is

natural to ask whether the critical temperature is finite (different from both
0 and ∞), and whether it depends on the triangulation. In the following
theorems we show that the critical temperature is a.s. bounded both from 0
and ∞. And the last theorem proves that the critical temperature obeys a
zero-one law and is therefore a.s. constant.

Theorem 1. There exists a β0 such that for all β ∈ (β0,∞) there exist at
least two Gibbs measures for Pµcr-a.e. T .

Theorem 2. There exists a small enough βh such that for every β ∈ [0, βh)
for Pµcr-a.e. Lorentzian triangulation T the Gibbs measure for the Ising model
on T is unique.

5
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Critical temperature is constant a.s. Consider the critical temperature
βc(G) of the Ising model on a graph G as a function of G. In the above two
theorem we show that when T is a Pµcr -random Lorentzian triangulation, we
have βc(T ) ∈ [βh, β0] a.s.

Theorem 3. βc(T ) is constant Pµcr-a.s.
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The following problems will be discussed:

Let ξ1, . . . , ξn be a sequence of independent and identically distributed random
variables with some probability distribution µ on a measurable space (X,X ) and
let µn,

µn(A) =
1

n
#{j : ξj ∈ A, 1 ≤ j ≤ n}, A ∈ X ,

denote its empirical distribution. Let a measurable function f(x1, . . . , xk) of k vari-
ables be given on the product space (Xk,X k). Take the k-fold direct product of
the normalized version

√
n(µn − µ) of this empirical measure µn and define the

following integral of the function f with respect to this normalized empirical dis-
tribution:

Jn,k(f) =
nk/2

k!

� �

f(x1, . . . , xk)(µn( dx1)− µ( dx1)) . . . (µn( dxk)− µ( dxk)),

where the prime in
� �

means that the diagonals xj = xl, 1 ≤ j < l ≤ k,

are omitted from the domain of integration.
(1)

Problem A. Give a good estimate on the probabilities P (Jn,k(f) > u) under
appropriate conditions for the function f for all u > 0.

Problem B. Let a nice class F of functions f(x1, . . . , xk) be given on the space

(Xk,X k). Give a good estimate on the probabilities P

�
sup
f∈F

Jn,k(f) > u

�

for all u > 0, where Jn,k(f) denotes the integral of the function f defined in
formula (1).

The solution of Problems A and B is useful in the study of limit theorems for
non-parametric maximum likelihood estimates. The classical proof of the central
limit theorem for maximum likelihood estimates is based on a linearization argu-
ment, where a good asymptotic solution of the maximum likelihood equation is
given by means of a Taylor expansion and the omission of the high order terms
in it. In the proof of the non-parametric versions of this result a similar method
works, but we also need a good estimate in problems A and B in this case. These
results guarantee that the linearization procedure we apply in the proof casuses
only a negligible error.

It turned out useful to study problems A and B together with their U -statistic
analogues. I recall the definition of U -statistics.

1
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The definition of U-statistics. Let a sequence ξ1, . . . , ξn of independent and
identically distributed random variables be given with values on some measurable
space (X,X ) together with a function f(x1, . . . , xk) on the k-fold product space
(Xk,X k) with some k ≤ n. The expression

In,k(f) =
1

k!

�

1≤js≤n, s=1,...,k
js �=js� if s�=s�

f (ξj1 , . . . , ξjk
) (2)

is called a U -statistic of order k with kernel function f .

The following versions of problems A and B will be investigated.

Problem A�. Give a good estimate on the probabilities P (n−k/2In,k(f) > u)
under appropriate conditions for the function f for all u > 0.

Problem B�. Let a nice class F of functions f(x1, . . . , xk) be given on a (prod-
uct) space (Xk,X k) together with a sequence of independent and identically
distributed random variables ξ1, . . . , ξn with values in (X,X ). Give a good

estimate on the probabilities P

�
sup
f∈F

n−k/2In,k(f) > u

�
for all u > 0 where

In,k(f) denotes the U -statistic of order k with kernel function f defined in
formula (2).

It may be useful to remark that a U -statistic of order k with the kernel
function f can be rewritten as

In,k(f) =
nk

k!

� �

f(x1, . . . , xk)µn( dx1) . . . µn( dxk),

where µn is the empirical distribution of the sequence ξ1, . . . , ξn. This shows that
the essential difference between the random integrals introduced in formula (1) and
the U -statistics is that in the random integrals Jn,k(f) integration is taken with
respect to the ‘normalized’ measures µn − µ, while in the integral representation
of the U -statistics In,k(f) with respect to the ‘non-normalized’ measures µn.

First I discuss problems A and A� in the simplest case k = 1. In this case a
good estimate on the tail distribution of sum of i.i.d. random variables (with zero
expectation) has to be considered. The following classical result, called Bernstein’s
inequality, gives a useful estimate in this case.

Bernstein’s inequality. Let ξ1, . . . , ξn be independent random variables which
satisfy the relations P (|ξj | ≤ 1) = 1 and Eξj = 0, 1 ≤ j ≤ n. Let us introduce

the notation σ2
j = Eξ2

j , 1 ≤ j ≤ n, Sn =
n�

j=1

ξj and V 2
n = VarSn =

n�
j=1

σ2
j . The

inequality

P (Sn > u) ≤ exp



− u2

2V 2
n

�
1 + u

3V 2
n

�


 (3)

2
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holds for all numbers u > 0.

In nice cases Bernstein’s inequality yields an estimate on the distribution of
sums of independent random variables suggested by the central limit theorem. But
in the general case the situation is more complex because of the coefficient 1+ u

3V 2
n

in the denominator in its upper bound. In more detail, Bernstein’s inequality
yields the following estimate.

a) If u ≤ εV 2
n with some small number ε > 0, then P (Sn > u) ≤ e−(1−ε)u2/2V 2

n .
This is almost such a good estimate as the estimate obtained by a formal
application of the central limit theorem.

b) If u ≤ 3V 2
n , then P (Sn > u) ≤ e−const. u2/2V 2

n . This is a bound similar to that
suggested by the central limit theorem.

c) If u � V 2
n , then P (Sn > u) ≤ e−u.

In case c) Bernstein’s inequality yields a very weak estimate which strongly
differs from the estimate suggested by the central limit theorem. This result can
be slightly improved by means of the so-called Bennett’s inequality, but some
examples can be given which show that no essential improvement of this result is
possible. Hence if we are interested in a good estimate in Problem A or A� for
k = 1 and such a function f which is bounded by 1, then it is enough to restrict
our attention to the case when 0 ≤ u ≤ const.nEξ2

i . A similar picture arises for
all k ≥ 1, but to explain it some questions must be clarified.

In the study of Problem A� in the case k = 1 it was natural to assume that
Ef(ξ1) = 0. Further investigations show that the natural multivariate counterpart
of this condition is that so-called degenerate U -statistics must be estimated. Its
definition is given below.

Definition of degenerate U-statistics. Take a U -statistic In,k(f) determined
by a sequence of independent and identically distributed random variables ξ1, . . . , ξn

with distribution µ and a kernel function f(x1, . . . , xk). This U -statistic is degen-
erate if

E(f(ξ1, . . . , ξk)|ξ1 = x1, . . . , ξj−1 = xj−1, ξj+1 = xj+1, . . . , ξk = xk) = 0

for all indices 1 ≤ j ≤ k and values xs ∈ X, s ∈ {1, . . . , k} \ {j}.

The notion of degenerate U -statistics is useful, because such U -statistics be-
have similarly to sums of independent random variables with expectation zero.
Beside this, the study of general U -statistics can be reduced to the study of de-
generate U -statistics by means of the following Hoeffding-decomposition.

Hoeffding decomposition of general U-statistics. All U -statistics In,k(f) of
order k can be written in the form of linear combination

In,k(f) =
k�

j=0

nk−jIn,j(fj) (4)

3
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of degenerate U -statistics In,j(fj). The kernel functions fj (of j variables) of the
degenerate U -statistics In,j(fj), 0 ≤ j ≤ k, can be calculated explicitly.

The problems about the behaviour of the multiple random integrals Jn,k(f)
defined in formula (1) can also be reduced to problems about the behaviour of
degenerate U -statistics by means of their appropriate decomposition. Such ex-
pressions can be written as the linear combination

Jn,k(f) =
k�

j=0

c(n, j)n−j/2In,j(fj) (5)

of degenerate U -statistics with the same kernel functions fj which appear in for-
mula (4) and with some appropriate coefficients c(n, j) such that c(n, j) < K(j)
with some universal constant K(j).

In the definition of the random integral Jn,k(f) integration is taken with
respect to the signed measure µn − µ, and this ‘normalization’ diminishes the
value of the integral. This diminishing effect is reflected in the relatively small
value of the coefficients c(n, j)n−j/2 in formula (5).

In an informal way we can interpret Bernstein’s inequality so that sums of
independent random variables with expectation zero behave so as the central limit
theorem suggests. To find its multivariate version we have to know the appropriate
limit theorem for degenerate U -statistics. Such a limit theorem can be formulated
by means of multiple Wiener–Itô integrals. To formulate it I recall the definition of
white noise and make some comments about the definition of multiple Wiener–Itô
integrals.

The notion of white noise. Let a measure µ be given on some measurable space
(X,X ). A system of jointly Gaussian random variables indexed by the measurable
sets A ⊂ X such that µ(A) < ∞ is a white noise with reference measure µ if

EµW (A)µW (B) = µ(A ∩ B) and EµW (A) = 0

for all measurable sets A, B ⊂ X such that µ(A) < ∞ and µ(B) < ∞.

If a white noise µW is given with some reference measure µ together with a
function f(x1, . . . , xk) square integrable with respect to the k-fold product µk of
the measure µ, then the k-fold Wiener–Itô integral

Zµ,k(f) =
1

k!

�
f(x1, . . . , xk)µW ( dx1) . . . µW ( dxk) (6)

of this function f with respect to the white noise µW can be defined in a natural
way. (First this integral is defined for simple so-called step functions which take
a constant value on finitely many rectangles, and disappear outside them. Then
the integral can be extended to general functions by means of an appropriate
L2-isomorphism.)

4
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The following limit theorem holds.

Limit distribution theorem for degenerate U-statistics. Let us consider
such a sequence In,k(f), n = k, k + 1, . . . , of degenerate U -statistics which is
determined by a sequence of independent and identically distributed random vari-
ables ξ1, ξ2, . . . , on a measurable space (X,X ) with distribution µ and a (canonical)
function f(x1, . . . , xk) square integrable with respect to the measure µk. The nor-
malized degenerate U -statistics n−k/2In,k(f) converge in distribution to the k-fold
Wiener–Itô integral

Zµ,k(f) =
1

k!

�
f(x1, . . . , xk)µW ( dx1) . . . µW ( dxk)

of the function f with respect to a white noise µW with reference measure µ if
n → ∞.

It is natural to consider that version of problems A and B where Wiener–Itô
integrals are considered instead of the integrals Jn,k(f). This is is done in the
formulation of the following Problems A�� and B��.

Let us consider the Wiener–Itô integral Zµ,k(f) of a function f(x1, . . . , xk) of
k variables with respect to a white noise µW with reference measure µ introduced
in formula (3.3) and study the following problems.

Problem A��. Let us give a good estimate on the probability P (Zµ,k(f) > u)
for all numbers u > 0.

Problem B��. Let a nice class F of functions f(x1, . . . , xk) of k variables
be given. Take the Wiener–Itô integral Zµ,k(f) of all functions f ∈ F
with respect to a white noise µW . Give a good estimate on the distri-
bution of the supremum of these random integrals, i.e. on the probability

P

�
sup
f∈F

Zµ,k(f) > u

�
for all numbers u > 0.

The following result gives the solution of Problem A��.

Estimation about the tail distribution of Wiener–Itô integrals. Let
a white noise µW be given with reference measure µ together with a function
f(x1, . . . , xk) of k variables on a measurable space (X,X ) such that

�
f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2

with some number σ2 < ∞. The Wiener–Itô integral

Zµ,k(f) =
1

k!

�
f(x1, . . . , xk)µW ( dx1) . . . µW ( dxk)

5
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introduced in formula (6) satisfies the inequality

P (k!|Zµ,k(f)| > u) ≤ C exp

�

−1

2

�u

σ

�2/k
�

for all numbers u > 0 with some constant C = C(k) > 0 depending only on the
multiplicity k of the integral.

It can be proved that this estimate is sharp.

Similar, but slightly weaker estimates hold for degenerate U -statistics and
multiple random integrals with respect to normalized empirical distributions.

Estimate on the tail distribution of degenerate U-statistics. Let ξ1, . . . , ξn

be a sequence of independent and identically distributed random variables on a
measurable space (X,X ) with distribution µ. Take a function f(x1, . . . , xk) on
the space (Xk,X k) canonical with respect to the measure µ which satisfies the
conditions

�f�∞ = sup
xj∈X, 1≤j≤k

|f(x1, . . . , xk)| ≤ 1

�f�2
2 =

�

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2

with some number 0 < σ2 ≤ 1, and consider the (degenerate) U -statistic defined
in formula (1.2) with the help of these quantities. Then there exist some constants
A = A(k) > 0 and B = B(k) > 0 depending only on the order k of the U -statistic
such that the inequality

P (k!n−k/2|In,k(f)| > u) ≤ A exp







− u2/k

2σ2/k
�

1 + B
�

un−k/2σ−(k+1)
�1/k

�







holds for all numbers 0 ≤ u ≤ nk/2σk+1.

Estimate about the tail distribution of random integrals with respect to

normalized empirical distributions. Let a sequence ξ1, . . . , ξn of independent
and identically distributed random variables be given with distribution µ which take
their values on a measurable space (X,X ) together with a function f(x1, . . . , xk)
on the k-fold product space (Xk,X k) which satisfy relations (4.1) and (4.2) with
some constant 0 < σ ≤ 1. Then there exist some constants C = Ck > 0 and
α = αk > 0 depending only on the multiplicity k of the integral Jn,k(f) defined in
formula (1.1) such that the following inequality holds:

P (|Jn,k(f)| > u) ≤ C exp

�

−α
�u

σ

�2/k
�

for all numbers 0 < u ≤ nk/2σk+1.

6
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It can be proved that under some not too restrictive conditions similar bound can
be given about the tail distribution of the supremum considered in Problems B,
B� and B�� as for the tail distribution of the single terms appearing in these supre-
mums. The introduction of the following definitions proved to be useful.

Definition of L2-dense classes of functions with respect to some measure.

Let a measurable space be (Y,Y) be given together with a σ-finite measure ν and a
class G of Y-measurable, real valued functions on this space. This class of functions
G is called an L2-dense class with respect to ν with parameter D and exponent L if
for all numbers 1 ≥ ε > 0 there exists a subclass Gε = {g1, . . . , gm} ⊂ G in the space
L2(Y,Y, ν) consisting of m ≤ Dε−L elements such that inf

gj∈Gε

�
|g − gj |2 dν < ε2

for all functions g ∈ G.

Definition of L2-dense classes of functions. Let us have a measurable space
(Y,Y) and a set G of Y-measurable real valued functions on this space. We call G
an L2-dense class of functions with parameter D and exponent L if it is L2-dense
with parameter D and exponent L with respect to all probability measures ν on
(Y,Y).

First I formulate a result about the supremum of Wiener–Itô integrals i.e.
about Problem B��, and then I present a result on Problems B and B�.

Estimate about the tail distribution of the supremum of Wiener–Itô

integrals. Let us consider a measurable space (X,X ) together with a σ-finite
non-atomic measure µ on it, and let µW be a white noise with reference measure
µ on (X,X ). Let F be a countable and L2-dense class of functions f(x1, . . . , xk)
on (Xk,X k) with some parameter D and exponent L with respect to the product
measure µk such that

�
f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2 with some 0 < σ ≤ 1 for all f ∈ F .

Let us consider the multiple Wiener integrals Zµ,k(f) introduced in formula (3.3)
for all f ∈ F . The inequality

P

�
sup
f∈F

|Zµ,k(f)| > u

�
≤ C(D + 1) exp

�
−α

�u

σ

�2/k
�

holds with some universal constants C = C(k) > 0 and α = α(k) > 0 if

�u

σ

�2/k

≥ ML log
2

σ
with some appropriate constant M = M(k) > 0.

7
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The next result is an estimate on the tail-distribution of the supremum of
random integrals Jn,k(f) defined in formula (1).

Estimate on the tail distribution of the supremum of multiple integrals

with respect to a normalized empirical distribution. Let us have a probabil-
ity measure µ on a measurable space (X,X ) together with a countable and L2-dense
class F of functions f = f(x1, . . . , xk) of k variables with some parameter D and
exponent L, L ≥ 1, on the product space (Xk,X k) such that

�f�∞ = sup
xj∈X, 1≤j≤k

|f(x1, . . . , xk)| ≤ 1,

and

�f�2
2 = Ef2(ξ1, . . . , ξk) =

�
f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2

for all functions f ∈ F with some constant 0 < σ ≤ 1. Then there exist some
constants C = C(k) > 0, α = α(k) > 0 and M = M(k) > 0 depending only on
the parameter k such that the supremum of the random integrals Jn,k(f), f ∈ F ,
defined by formula (1.1) satisfies the inequality

P

�
sup
f∈F

|Jn,k(f)| ≥ u

�
≤ CD exp

�
−α

�u

σ

�2/k
�

,

provided that

nσ2 ≥
�u

σ

�2/k

≥ M(L + β)3/2 log
2

σ
,

where β = max
�

log D
log n , 0

�
and the numbers D and L agree with the parameter and

exponent of the L2-dense class F .
A similar estimate holds for the supremum of degenerate U -statistics In,k(f),

f ∈ F . The only difference in comparison with the above result that in the case
of the supremum of U -statistics the additional condition has to be imposed that
the U -statistics In,k(f) must be degenerate.

A more detailed discussion of the results described above can be found in my
work [1]. Beside this, I plan to publish a Lecture Note which also contains a com-
plete discussion of the technical details. For the time being this Lecture Note [2]
can be found only on my homepage. Both works [1] and [2] contain a more detailed
list of references.
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∗

Zε = εZ = {εm : m ∈ Z} , ε > 0,
ν±

m(t)
εm [0,∞)

t > 0 ν±
m(t), m ∈ Z

εm ε(m + 1) µ+ εm ε(m − 1)
λ+

εm ε(m+1) λ− εm ε(m−1)
µ−

0

βε(t) ∈ Zε

t

βε(t) t

α+ = λ+ − µ+ > 0
α− = λ− − µ− > 0

∗
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βε(t)

t = 0
ρ+(εm) ρ+(x)

(0,∞) ν+(εm)
ρ+(εm)

ρ−(εm) ρ−(x)
(0,∞)

−α+ < 0, α− > 0 ρ±(x)

M−(r) =
0

−r

ρ−(y) dy M+(r) =
r

0

ρ+(y) dy r ≥ 0.

M±(r)
r ρ± M±(r)

(0,+∞) r±(M)

M±(r±(M)) = M

r+(M)
(0, r+) M

T (M) :=
r−(M) + r+(M)

α− + α+

(0, T (M)) M M
T (M) [0,+∞)

M(T )

r+(M(T )) − α+T = −r−(M(T )) + α−T = β(T )

T
T

β(T ) = r+(M(T ))
α−

α− + α+
− r−(M(T ))

α+

α− + α+
.

τ ≥ 0

βε(ε
−1τ) → β0(τ) (ε → 0),

β0 : R+ → R

β0(τ) =
−α+r−(M(τ)) + α−r+(M(τ))

α− + α+
.
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ρ−(y) ≡ ρ−, y < 0, ρ+(y) ≡ ρ+, y > 0.
M−(r) = ρ−r, M+(r) = ρ+r, r±(M) = M/ρ± ,

T (M) = M
ρ−1

−

+ρ−1

+

α
−

+α+
, M(T ) = T α

−
+α+

ρ−1
−

+ρ−1
+

, βε(τ)

βε(τ) → β(τ) = τ
−α+ρ

−1
− + α−ρ

−1
+

ρ−1
− + ρ−1

+

= τ
−α+ρ+ + α−ρ−

ρ+ + ρ−
.

βε(t)

ε → 0

A = {Aε}ε>0

KA > 0 qA > 0 εA > 0
ε < εA

P (Aε) ≥ 1 −KA exp
�

−qAε
−1

�

.

Aε

A = {Aε}ε>0

B = {Bε}ε>0

C = {Aε ∩ Bε}ε>0

0

· · · ≤ x−

3 (0) ≤ x−

2 (0) ≤ x−

1 (0) < 0 < x+
1 (0) ≤ x+

2 (0) ≤ x+
3 (0) ≤ · · · .

q−(1) q+(1)

σ1

x−

q
−

(1)(0) �= x−

1 (0) x+
q+(1)(0) �= x+

1 (0) q−(m) q+(m)
m σm m

ρ±
0 < d1 ≤ ρ±(±y) ≤ d2 < +∞, y ≥ 0.

M± r±
M > 0 Nε = [Mε−1] Nε

x−

q
−

(Nε) x+
q+(Nε)

ε σNε

T (M)ε−1 x−

q
−

(Nε)(0) ∈ Zε

−r−(M)
κ0,κ1, ζ−, ζ+ ε → 0

σNε
(t0(M, ε), t1(M, ε))

t0(M, ε) = (T (M) − κ0)ε
−1, t1(M, ε) = (T (M) + κ1)ε

−1;
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x−

q
−

(Nε)
(0) (−r−(M) −

ζ−,−r−(M) + ζ−) ∩ Zε

x+
q+(Nε)

(0) (r+(M)−
ζ+, r+(M) + ζ+) ∩ Zε

βε(σNε
+ 0) = x−

q
−

(Nε)(σNε
) = x+

q+(Nε)(σNε
)

Zε

α−ε = (λ− − µ−) ε
i ∈ N s > 0 δ0 > 0

x−

i (sε−1) − x−

i (0) ∈ ((α− − δ0) s, (α− + δ0) s) .

s2 > s1 > 0 δ0 > 0
{Dε} Dε =

�

x−

i (sε−1) − x−

i (0) ∈ ((α− − δ0) s, (α− + δ0) s) , ∀s ∈ [s1, s2]
�

,
a)

x−

q
−

(Nε)(σNε
) − x−

q
−

(Nε)(0) ∈ ((α− − δ0) (T (M) − κ0) , (α− + δ0) (T (M) + κ1))

b)

x−

q
−

(Nε)(σNε
) ∈ (α−T (M) − r−(M) − γ, α−T (M) − r−(M) + γ)

γ = γ(δ0,κ0,κ1, ζ−) > 0 γ(δ0,κ0,κ1, ζ−) → 0
max(δ0,κ0,κ1, ζ−) → 0.

−r−(M) + α−T (M) = −r−(M) + α−

r−(M) + r+(M)

α− + α+

= −r−(M)
α+

α− + α+
+ r+(M)

α−

α− + α+

βε(σNε
) → −r−(M) α+

α
−

+α+
+ r+(M) α

−

α
−

+α+
ε → 0

βε(σNε
)−βε(ε

−1T (M)) → 0
ε → 0

τ = T
α± > 0 {σm+1 − σm, m ∈ N}

σm+1 − σm

t
O(ε) τ O(1)

N−(0, tm(M, ε))
(0, tm(M, ε))

κ2,κ3 > 0 Fε Gε

Fε : |N−(0, t0(M, ε))| < (M − κ2)ε
−1, Gε : |N−(0, t1(M, ε))| > (M + κ3)ε

−1,

y1 < y2 ≤ 0 0 ≤ z1 < z2 δ > 0
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Lε = { t = 0 (y1, y2) ∩ Zε

�
y2

y1
ρ−(y) dy − δ

�
ε−1

�
y2

y1
ρ−(y) dy + δ

�
ε−1}

Rε = { t = 0 (z1, z2) ∩ Zε

�
z2

z1
ρ+(y) dy − δ

�
ε−1

�
z2

z1
ρ+(y) dy + δ

�
ε−1}

δ1 > 0

Aε = { x±

k (0) ∈ (−r−(M) + δ1 , r+(M) − δ1) ∩ Zε

t(M)ε−1}

Bε = { t ∈ (0, sε−1) t = 0
(−∞,−r−(M) − δ1) ∩ Zε

t = 0 (r+(M) + δ1,+∞) ∩ Zε}

y,κ > 0 Zε

S−

2 = (−∞,−y − κ) , S−

1 = (−y, 0) , S+
1 = (0, y) , S+

2 = (y + κ,+∞) .

{Vε} {Uε}

Vε t ∈ (0, sε−1) t = 0
S−

2 S−

1

Uε t ∈ (0, sε−1) t = 0
S+

2 S+
1

|N−(0, t0(M, ε))|
t = 0 (−r− (M(T (M) − κ0) ) − δ5, 0) δ5 > 0

(M− (r− (M(T (M) − κ0) ) + δ5) + δ6) ε
−1

δ6 > 0
t = 0 (−∞,−r− (M(T (M) − κ0) ) − δ5)

(0, t0(M, ε))
N◦(0, t0(M, ε))

cε−1 c > 0

t = 0
(0, r+ (M(T (M) − κ0) ) + δ5)

(M+ (r+ (M(T (M) − κ0) ) + δ5) + δ6) ε
−1

(−r− (M(T (M) − κ0) ) + δ5, 0) Vε

(0, t0(M, ε))
(−∞,−r− (M(T (M) − κ0) ) − δ5)



109

(−r− (M(T (M) − κ0) ) + δ5, 0) (M− (r− (M(T (M) − κ0) ) − δ5) − δ6) ε
−1

ε ·N◦(0, t0(M, ε)) ≤ (M+ (r+ (M(T (M) − κ0) ) + δ5) + δ6) −
− (M− (r− (M(T (M) − κ0) ) − δ5) − δ6) =

= M(T (M) − κ0) + M �

+(θ1)δ5 + δ6 −
�

(M(T (M) − κ0) ) −M �

−(θ2)δ5 − δ6

�

≤
≤ δ5(�M �

−�C + �M �

+�C) + 2δ6.

ε · |N−(0, t0(M, ε))| ≤ (M− (r− (M(T (M) − κ0) ) + δ5) + δ6) + δ5(�M �

−�C + �M �

+�C) + 2δ6 =

= M(T (M) − κ0) + M �

−(θ3)δ5 + δ5(�M �

−�C + �M �

+�C) + 3δ6 ≤
≤ M(T (M) − κ0) + δ5(2�M �

−�C + �M �

+�C) + 3δ6

ρ± M �(t) ≥ k k > 0
M(T (M) − κ0) ≤ M − kκ0 κ0 > 0 δ5

δ6

|N−(0, t0(M, ε))| ≤
�

M − kκ0

2

�

ε−1 .

|N−(0, t1(M, ε))|

κ5 > 0

Hε : x−

i (0) ∈ (−(1 + κ5)r−(M), 0) ∀i ∈ N−(0, t1(M, ε))

c)
b)
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The MDL-PRINCIPLE
in ATTRIBUTING AUTHORSHIP of TEXTS

Mikhail Malyutov
Math. Dept., Northeastern University, Boston, MA 02115

ABSTRACT
We study a new context-free computationally simple stylometry-based

attributor: the mean sliced conditional compression complexity (CCC) of
literary texts which is inspired by the incomputable Kolmogorov conditional
complexity. Whereas other stylometry tools can occasionally almost coincide
for different authors, our CCC-attributor introduced in Malyutov (2005) is
asymptotically strictly minimal for the true author, if the query texts are suf-
ficiently large but much less than the training texts, universal compressor is
good and sampling bias is avoided. This classifier simplifies the Ryabko and
Astola (2006) homogeneity test (partly based on compression) under in-
significant difference of unconditional complexities of training and
query texts which can be verified using its asymptotic normality proved in
Szpankowski (2001) and elsewhere for IID and Markov sources and normal
plots for real literary texts. It is consistent under large text approximation
as a stationary ergodic sequence which follows from the lower bound for the
minimax compression redundancy of piecewise stationary strings (Merhav
(1993)) and from our elementary combinatorial arguments and simulation
for IID sources. The t-ratio use measuring how many standard deviations
are in the mean difference between slices’ mean CCCs enables evaluation of
its P-value of statistical significance. It is based on the asymptotic normality
of slices’ CCC verified by their normal plots in all cases studied and expected
to be proved soon for simplified statistical models of literary texts.
The asymptotic CCC study is complemented by many literary case studies

processed by Sufeng Li, Irosha Wickramasinghe, Slava Brodsky, Gabriel Cun-
ningham and Andrew Michaelson: attributing the Federalist papers agreeing
with previous results, significant (beyond any doubt) mean CCC-difference
between two translations of Shakespeare sonnets into Russian, between the
two parts of M. Sholokhov’s early short novel and less so between the two
Isaiah books from the Bible, intriguing SCCC-relations between certain Eliz-
abethan poems. Two different S. Brodsky’s novels deliberately written in
different styles and various Madison’s papers showed insignificant mean CCC-
difference as the useless Vitanyi-Cilibrasi test did in ALL cases studied.
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1 Discrimination with Universal Compressors

C. Shannon (1948, 1949) created a comprehensive theory of information
transmission based on Kolmogorov’s statistical theory. In particular, given a
distribution on an alphabet, the mean length of the Shannon-Fano compres-
sion of the IID string with elements from this alphabet attains asymptotically
the Shannon’s entropy lower bound for the length (complexity) of compres-
sion. A.N. Kolmogorov (1965) developed a complexity theory of an indi-
vidual string such that for large strings belonging to a statistical ensemble
their mean complexity approximates their entropy, and sketched (for IID in-
put) the first so-called universal compressor (UC) which adapts to an un-
known stationary ergodic distribution (SED) of strings attaining asymptoti-
cally the Shannon entropy lower bound. P is the class of SED sources approx-
imated by n-MC’s. Compressor family L = {Ln : B

n → B∞, n = 1, 2, . . .} is
(weakly) universal, if for any P ∈ P and  > 0,B = {0, 1}), it holds:

lim
n→∞

P (x ∈ Bn : |Ln(x)|+ logP (x) ≤ n) = 1, (1)

where |L(x)| is the length of L(x) and |Ln(x)|+ logP (x) is called individual
redundancy. Thus for a string generated by a SED, the UC-compression
length is asymptotically its negative loglikelihood which can be used
in nonparametric statistical inference, if the likelihood cannot be evalu-
ated analytically. First UC used estimating parameters of approximating n-
Markov Chains (n-MC) to adapt for good compression. A profoundly smarter
method implementing much fuller the above-mentioned Kolmogorov’s idea
for compressors took more than ten years to emerge in two Lempel-Ziv (LZ)
compressor constructions (1977-78). Both LZ-compressors do not use any
statistics of strings at all. Instead, LZ-78 constructs the tree of binary pat-
terns unseen before in the string consecutively, starting from the first digit
of the string. Wyner and Ziv proved that LZ-78 is an UC implying

lim
n→∞

P (|Ln(x)|/|x| → h) = 1 as |x| → ∞ (2)

for P ∈ P, where h is the binary entropy rate (per symbol) proved to
be the asymptotic lower bound for compressing a SED source in Shannon
(1949), where SED strings were first singled out as popular models of natu-
ral language. By nineties, versions of LZ became everyday tools in computer
practice. Rissanen’s pioneering publication on the Minimum Description
Length principle (MDL) in 1978 (continued in his paper (1984)) and Ziv
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(1988) initiated applications of UC to statistical problems for SED sources
continued in several recent papers of B. Ryabko with coauthors. Of special
interest to us is the homogeneity test in Ryabko and Astola (2006).

1.0.1 Ryabko-Astola and U-statistics

Define |A| and |Ac| as the lengths of respectively binary string A and its
compression Ac.
The concatenated string S = AB is the string starting with A and pro-

ceeding to text B without stop.
The Ryabko and Astola homogeneity of two strings test statistic T is

T = h∗
n(S)− |Ac| − |Qc|, (3)

where the empirical Shannon entropy h∗
n of the concatenated sample S (based

on n-MC approximation) is defined in their formula (6). The local context-
free structure (microstyle) of long (several Kbytes) literary texts (LT) can
be modeled sufficiently accurately only by binary n-MC with n not less than
several dozen. Its evaluation for LT is very intensive computationally and
unstable for texts of moderate size requiring regularization of small or null
estimates for transition probabilities. Therefore, appropriateness of T rather
than equally computationally intensive Rosenfeld’s (1996) Likelihood meth-
ods based on n-MC training is questionable. For shorter LT accuracy of
SED model may be insufficient, while for very large LT such as novel af-
fected by long literary form relations (‘architecture’ features such as ‘repeat’
variations), the microstyle describes only a local part of the author’s style as
emphasized in Chomsky (1956).
Consider U(Q,A) = |Sc| − |Ac| − |Q|. Quantity U(Q,A) mimics the

Ryabko and Astola statistic T . In U(Q,A) we replace their empirical Shannon
entropy h∗ of the concatenated sample S (based on n-MC approximation)
with |Sc| since both are asymptotically equivalent to h(|Q|+ |A|) for identical
distribution in Q,A with entropy rate h and exceed this quantity for different
A,Q . Test T is asymptotically invariant w.r.t. interchanging A,Q and
strictly positive for different laws of A,Q, if a < |A|/|Q| < 1/a, a > 0).
The last but not the first property seemed to hold also for U(Q,A) in some
range of |A|/|Q| due to the lower bound for the minimax mean UC-
compression redundancy of piecewise-stationary sources (Merhav
(1993)) which is logarithmic in (|Q|+ |A|).

Claim. The U performance on IID extensive simulations in a large range
of |Q| (made recently by NEU PhD student Stefan Savev), was not as pre-
dicted above (actually empirical mean of U was negative!) due apparently
to the additional subtracting of |Qc|. For small |Qc| this is due to excessively
large ‘transition value’ of |Qc|, since ‘entropy’ asymptotics is not yet attained.
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For large |Qc|, the small increase of U due to inhomogeneity ‘is drowned’ in
the large ‘noise’ of variable |Sc|. Averaging different slices of identically dis-
tributed moderately large Qi, i = 1, . . . can make mean U positive, but it is
not applicable in our LT studies.

1.0.2 CCC- and CC-statistics

Fortunately, another statistic, CCC defined below, overcomes the shortfalls
of statistic U .
In our applications |A|/|Q| is large to statistically assess reliability of at-

tribution and upperbounded by an approximate empirical condition |Q| ≥
2000 bytes (requiring further study) for appropriateness of SED approxima-
tion.
The Conditional Complexity of Compression of text B given text A are

respectively

CCC(B|A) = |Sc| − |Ac|. (4)

The CCC mimics an abstract conditional Kolmogorov Complexity in our
settings and measures how adapting to patterns in the training text helps
to compress the query text. It presumably approximates the most powerful
Likelihood Ratio Test of Q,A homogeneity under our condition on sample
sizes and validity of SED approximation for both Q,A.
The only difference of CCC from U is canceling the |Qc| removal which

prevents the aforementioned inconsistency of U - statistic.
We average sliced CCC of text Qi, i = 1, . . . , m = [|Q|/L], given the

firmly attributed text A, dividing the query text Q into slices of equal length
L and used the same UC for all sizes of texts.

CCC(Q|A) := mi=1
CCC(Qi|A)

m
:=
m
i=1

CC(Qi)
m

.(5)
We call the last two empirical quantities ‘Mean CCC(Q) and Mean CC(Q)’

respectively.
Claim. Both our case studies and statistical simulation in section 3

show that the sliced CCC-attribution has a good homogeneity discrimination
power in this range for moderate |Q|) in a surprisingly wide range of case
studies with insignificantly varying mean unconditional complexity

CC of compression.
Statistical testing of the latter condition is straightforward due to the

asymptotic normality results of the compression complexity described in
Szpankowski (2001). Its very plausible extension for CCC would theoret-
ically support a quite unusual sample size relation for UC-attributing
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authorship: sample size of the training text must dramatically ex-

ceed those of slices of a query text. The training test A being fixed,
V arCCC(Qi|A) of independent copies Qi, i = 1, ..., N of the query text Q,
are of order of |Q|, while the mean increase in CCC(Q|A) redundancy for
different distributions of Q and A as compared to their identity seems to be
o(|(A|Q)|b) for any b > 0 (accurate upper bound even for LZ78 is absent
so far (see some LZ-78 upper bounds in Savari (1997)), the lower bound in
Merhav(1993) is only O(log(|(A|Q)|))). Thus, the t-ratio is negligible under
the asymptotics |A| → ∞, 0 <  < |Q|/|A|. Malyutov (2005) explains this
informally as follows: if the training A and alternative style query text Q
sizes are comparable, then two flaws happen: a UC adapts to both at the
extra length cost o(|(A|Q)|b) for any b > 0, this extra amount of CCC(Q|A)
is hidden in the noise with V arCCC((A|Q)| of order |(A|Q)|. Second, the
mean CCC(Q|A) of larger slices of query texts have a bigger bias due to
self-adapting of UC to the slices’ patterns.
This makes sample size requirements and symmetry arguments in Cili-

brasi and Vitanyi (2005) (CV05) also based on the conditional compression
complexity although ignoring assessment of statistical stability, unap-
pealing, and explains examples of CV05 misclassification shown in Rocha et
al (2006). It can explain also the roots of early heated discussion around sim-
pler development in Benedetto et al (2002), where the sample size relation
and statistical stability issues were not addressed.
Due to space limitation, we skip sections: Brief survey of micro-

stylometry tools, Methodology, Simulation study of CCC-attributor,

Extended LZ index and many exciting examples of Attribution of

literary texts which are described in detail in my larger paper in Russian
under review in ‘Problems of Information Transmission’, MalBrod09 and in
MWL07.

1.1 Follow up Analysis

LZ-78 generates the binary tree of all patterns found in LT: thus for every
pattern ν we can evaluate frequency of the cases when ν is a prefix of the
further text which is the cardinality of the subtree rooted in ν.
G. Cunningham implemented in Perl language my algorithm (MWL07)

of economic LZ-tree construction and evaluating cardinalities of interesting
subtrees. Subtree rooted in ν is called interesting, if ‘t-value’ for its cardi-
nalities n(ν, A), is large for competing candidates for authorship.

‘t = (n(ν, A)−n(ν, A))/

[n(ν,A)(c1 − n(ν, A))/c1 + n(ν,A)(c2 − n(ν,A))/c2],

(6)
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Table 1: Most ‘interesting patterns for Federalist papers

Binary pattern t-value
Patterns in
English

011100100110010101101001 4,08 rei
001000000110010001100101 3,62 de

0110100001100101001000000101001101110100 3,43 he St
01100001011010010110111001110011 3,38 ains
01100101011100100110000101101100 3,38 eral
01110100011010000110111101110010 3,28 thor

011010000010000001110111 3,15 h w
01100101011011100110010001100101 3,15 ende
01101100011001010010000001100001 3,15 le a

0111010101100100 3,15 ud
001000000110000101101110011001000010000001110010 3,14 and r

01110100011010000110010101101101 3,12 them
011001100110010101100100 3,12 fed
011001110110111000100000 3,12 gn

where ci, i = 1, 2, are total patterns cardinalities for competing candidates.
Finally, the tables of English patterns corresponding to interesting binary
patterns are tabulated.
Any solid judgement about corresponding P-values is hard due to vast

multiplicities of not independent patterns. Still the tables like the shown one
for Federalist papers may be useful source of information for linguists.
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Abstract

Here we will consider the goodness-of-fit tests for testing a form of the
distribution function of the observed random variable. Let a distribution
function belongs under hypothesis to a parametric family. Generally, the
limit distributions of statistics, based on the empirical process, depend of
the unknown parameters. It was stated in 1955 (see [8]) that this depen-
dance is absent for the distribution family {G((x − µ)/σ), σ > 0}. This
class includes the normal distribution. We will present now the second
class of the parametric distribution families with such property. This is
the family {R((x/β)α)), α > 0, β > 0, x ∈ X ⊂ [0,∞)}, where α and
β are unknown parameters. This class includes the Pareto and Weibull
distribution families. The exponential distribution family is included in
both ones.

1 Introduction

Let Xn = {X1, X2, ..., Xn} be the sample from the r.v. with the distribution
function F (x), x ∈ R1. We will test the hypothesis

H0 : F (x) ∈ G = {G(x, θ), θ = (θ1, θ2, ...θk) ∈ Θ ⊂ Rk},

where θ is an unknown vector of parameters. We will consider the Cramér-von
Mises statistic

ω2
n = n

 ∞

−∞
ψ2(G(x, θn))(Fn(x)−G(x, θn))2 dG(x, θn),

θn is an estimator of θ, ψ(t) is the weight function, Fn(x) is the empirical
distribution function. The results below are applicable also to the Kolmogorov-
Smirnov statistic

Dn =
√
n sup
−∞<x<∞

|ψ(G(x, θn))(Fn(x)−G(x, θn))|.

∗This work was supported by grant RFFI 09-01-00740-a.

1
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The exact methods for calculating the limit distribution are developed mostly
for the Cramér-von Mises statistic (see [4], [8], [10], [11], [12]).
Let θn be the likelihood maximum estimator of θ. Under the certain number
of the regularity conditions and under H0 limit distribution of the statistics ω2

n

coincide with the distribution of the functional

ω2 =
 1

0

ψ2(t)ξ2(t, θ0)dt

of the Gauss process ψ(t)ξ(t, θ0) with Eψ2(t)ξ(t, θ0) = 0, and with the covari-
ance function

K(t, τ) = E(ψ(t)ξ(t, θ0)ψ(τ)ξ(τ, θ0))

= ψ(t)ψ(τ)(K0(t, τ)− q(t, θ0)I−1(θ0)q(τ, θ0)),

where K0(t, τ) = min(t, τ) − tτ, t, τ ∈ (0, 1), θ0 is an unknown value of the
parameter θ,

q(t, θ) = (∂G(x, θ)/∂θ1, ..., ∂G(x, θ)/∂θk)|t=G(x,θ) ,

I(θ) is the Fisher information matrix,

I(θ) = (E((∂/∂θi) log g(X, θ)(∂/∂θj) log g(X, θ)))1≤i,j≤k ,

g(x, θ) = (∂G(x, θ)/∂x).

The follow condition must be fulfilled:
 1

0

ψ2(t)K(t, t)dt <∞.

The limit distribution for Dn coincides with the distribution of

D = sup
0<t<1

|ψ(t)ξ(t, θ0)|,

but the conditions on ψ(t) and another conditions are different from the con-
ditions for ω2. They was studied in [3], [13]. The distribution of ω2 depends
generally from θ0 and the distribution family G. Khmaladze [9] has proposed
the method of empirical process transformation for eliminate such dependance.
Khmaladze and Haywood [7] has applied this method to exponentiality testing
by the Cramér-von Mises statistic.
We will use here the traditional approach consistsing in using of the statistic
ω2

n. It is well known (see for example [8], [10]]) that the empirical process does
not depend on unknown parameter θ0 for the family of the form

G = {G((x−m)/σ), −∞ < x <∞, σ > 0}.

Most known example of such family is the normal distribution family (see [5],
[8)].

2
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We will propose here another class of the distribution family with such property:

R = {R((x/β)α), α > 0, β > 0, x ∈ X ⊂ [0,∞)},

where X is the support of the distributionR((x/β)α). HereR(z) is a distribution
function with the support Z ⊂ [0,∞). Particular cases of such families are
Weibull and Pareto distributions. The limit distributions of Cramér-von Mises
and Kolmogorov-Smirnov statistics do not depend on the unknown parameters
in both families. Additionally, the limit distribution for Pareto family coincide
with analogous distribution for exponential family. The goodness-of-fit tests
was discussed for the general Pareto distribution in many articles, particularly,
in [1], [2], [6].

The ω2-distribution can be calculated exactly with using the method of
calculation the eigenvalues of the covariance operator. It was presented in [12].
This method is applicable for the power function ψ(t) = tα α > −1. The method
for the corresponding quadratic forms calculation was particularly presented in
[10].

2 General result

Let Xn = {X1, X2, ..., Xn} be the sample from the r.v. with a distribution
function F (x), x ∈ R1. We will test the hypothesis

H0 : F (x) ∈ R = {R((x/β)α)), α > 0, β > 0, x ∈ X ⊂ [0,∞)},

where α and β are unknown parameters. The set of the alternative distributions
contains all another distributions. Here R(z) is the distribution function with
the support Z ⊂ [0,∞). We note the corresponding density function by r(z).
R is the family of Pareto distributions with R(z) = 1− 1/z, z > 1 and x > β .
The family R consists of Weibull distributions when R(z) = 1−exp(−z), z > 0,
and x > 0 . We will use the Cramér-von Mises and Kolmogorov-Smirnov tests.
Both of them based on the empirical process ξn(x) =

√
n(Fn(x)−R((x/β̂)α̂))),

where α̂ and β̂ are the ML estimates of α and β. If the regularity conditions are
fulfilled for them we can write the follow covariance function for the transformed
to (0, 1) limit Gauss process ξ(t):

K(t, τ) = min(t, τ)− tτ − (1/(B11B22 −B2
12))

×(B22s1(t)s1(τ)−B12(s1(t)s2(τ) + s2(t)s1(τ)) +B11s2(t)s2(τ)).

Here, t, τ ∈ (0, 1),

B11 =


Z


z log z r(z)

r(z)
+ log z + 1

2

r(z)dz, B22 =


Z


z r(z)
r(z)

+ 1
2

r(z)dz,

B12 =


Z


z log z r(z)

r(z)
+ log z + 1

 
z r(z)
r(z)

+ 1

r(z)dz

3
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and

s1(t) = r(R−1(t))R−1(t) log(R−1(t)), s2(t) = r(R−1(t))R−1(t).

It follows from these formulae that the limit distributions of the considered
statistics do not depend from the parameters α and β. Let β be known. Then
the covariance function of the process ξ(t)is follow:

K(t, τ) = min(t, τ)− tτ − s1(t)s1(τ)/B11.

It does not depend of α in his turn. These results are used in the follow two
sections.

3 Pareto distribution

We will consider the Pareto distribution in the form

F (x) = 1− (x/β)−α, x ≥ β ≥ 0, α > 0.

For this distribution R(z) = 1−1/z and Z = [β,∞]. It exists the supereffective
unbiased estimate of β

β̂ =
nα− 1
nα

min
i=1,...,n

Xi.

We can transform the sample X1, ..., Xn to new sample Y1, ..., Yn, where Yi =
Xi/β̂. The limit process ψ(t)ξ(t) is equivalent to the process with β = 1. The
MLE of parameter α is

α̂ = n
 n
i=1

log Xi.

Hence the covariance function of ξ(t) (without the pound function) is

K(t, τ) = min(t, τ)− tτ − (1− t) log(1− t))(1− τ) log(1− τ).

There
s1(t) = −(1− t) log(1− t), B11 = 1.

This covariation function coincides with the corresponding covariance function
for the exponential family

F (x) = 1− exp(−x/β), β ≥ 0, x ≥ 0.

It can be concluded that the limit distributions of the considered statistics for
both families are the same one.

4



121

4 Weibull distribution

Consider the two parametric Weibull distribution family

F (x) = 1− e−(x/β)−α , x ≥ 0, β ≥ 0, α > 0.

We can note that R(z) = 1−e−z and Z = [0,∞]. Maximum likelihood estimates
β̂ and α̂ for β and α can be found by numerical methods from the equation
system

β̂ =


1
n

n
i=1

X α̂
i

1/α̂

,
n

α̂
+ log


X1 · ... ·Xn

β̂n


−

n
i=1


Xi

β̂

α̂

log

Xi

β̂


= 0.

The covariance function of ξ(t) in this example has the follow elements:

s1(t) = −(1− t) log(1− t) log(− log(1− t)),

s2(t) = −(1− t) log(1− t),

B11(t) =
 ∞

0

((1− z) log z − 1)2 e−zdz = (1− C)2 +
π2

6
,

B12(t) =
 ∞

0

((1− z) log z − 1)(1− z) e−zdz = 1− C,

B22(t) =
 ∞

0

(1− z)2 e−zdz = 1,

B11B22 −B12 = π2/6,
where C is the Euler constant. It was found by simulation that the critical levels
corresponding to the significance levels 0.1 and 0.05 are approximatively 0.10
and 0.12.

5 Power distribution on [0, 1]

We consider now the distribution function

F (x) =

x− a

b− a

α

, x ∈ [a, b], b > a, α > 0.

A supereffective estimates exist for the parameters a and b. Hence, we can
transform the sample to the interval [0, 1] without changing the limit distribution
of the statistics. It is sufficient to consider tests for the hypothetical distribution
family

F (x) = xα, x ∈ [0, 1], α > 0,
with R(z) = z, Z = [0, 1]. It’s easy to derive the covariance function of the
limit empirical process ξ(t):

K(t, τ) = min(t, τ)− tτ − t log t τ log τ.

The limit distribution of the statistics ω2n and Dn for this distribution coincides
with the corresponding statistics distributions for the exponential and Pareto
distribution and for the Weibull distribution with known parameter α.
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[5] Gikhman, I. I. (1954) One conception from the theory of ω2-test. [in
Ukrainian]. Nauk. Zap. Kiiv Univ., 13, 51–60.

[6] Gulati Sneh, Shapiro, S. (2008) Goodness of fit tests for the Pareto distribu-
tion. Statistical Models and Methods for Biomedical and Technical Systems,
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Renormalization group flows: facts and conjectures
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Exact renormalization group (RG) solution of the hierarchical fermionic model reveals
several non-trivial dynamical and symmetry properties of RG-transformation. Fermionic
model on the hierarchical lattice is defined by the Hamiltonian

H(ψ∗;α) =

i,j∈Λ

d−αn (i, j)[ψ̄1(i)ψ1(j) + ψ̄2(i)ψ2(j)]+


i∈Λ
[r(ψ̄1(i)ψ1(i) + ψ̄2(i)ψ2(i)) + gψ̄1(i)ψ1(i)ψ̄2(i)ψ2(i)],

where dn(i, j) denote hierarchical distance on the hierarchical lattice Λ with elementary
cell size n, α is model parameter, r and g are real-valued coupling constants, all compo-
nents of the fermionic field are generators of a Grassmann algebra.

Action of block-spin RG-transformation in the plane of coupling constants (r, g) is
given by the rational map R(α) . This map has two trivial and two non-trivial fixed
points and cycles of any order. We describe hierarchical structure of the RG-invariant
sets and curves and using projective space representation we give global description of
RG-flow and critical phenomena in the whole plane of the coupling constants. It is shown
that when RG-parameter α goes to 1 all non-trivial fixed points and cycles of RG-map
tend to the singular point r = −1, g = 0. There is commutative relation between RG and
Fourier transformations R(α)F = FR(2−α) which points to the special role of α = 1. We
show also that formal (α− 3/2)− and (4− d)− expansions describe the same non-trivial
fixed point (where d is formal dimension of the hierarchical lattice) in the fermionic and
discuss this problem for the bosonic hierarchical model.

In fact, fermionic hierarchical model can be considered as discretized version of fermionic
field model over p-adic space. The relation between coupling constants of p-adic model
and its discretized hierarchical version is given by non-trivial functional integral and its
convergence follows from Poincare and Siegel theorems. Renormalization procedure can be
defined as a normal form to the RG-transformation at the trivial (zero) fixed point. With
the use of p-adic quantum field formalism it is possible to construct epsilon-expansion
for the critical exponents in the bosonic case and up to the second order of perturbation
theory we see interesting analogy with the results of Euclidean models. p-Adic models
have strong algebraic simularity with Euclidean ones and we discuss some new non-trivial
conjectures for the bosonic and fermionic Euclidean models, generated by exact solution
of hierarchical fermionic model.

1
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Stochastic Comparison of Ellipsoidal and
Interval Error Estimation in Vector Operations

Alexander Ovseevich∗

1 Introduction

Consider the following elementary problem of numerical linear algebra. Sup-
pose we are given a vector x ∈ Rn, not known exactly but located within
a known bounded domain Ω, and a matrix A which is known exactly. We
would like to localize the vector Ax as good as possible. Certainly, Ax is
contained in AΩ, and that’s the best one can say. In practice this answer
may be not good enough, since it might be unfit for computer. In particular,
the domains Ω of uncertainty should have a simple description, that would
allow to check easily (for a computer) whether a given vector is contained in
it.

There are at least two classes of suitable domains: boxes B = {x ∈
Rn : |xi − ai| ≤ bi}, and ellipsoids E = {x ∈ Rn : Q−1(x − a), x − a ≤
1}. Methods of computations with vectors, localized in boxes, are known
as interval analysis, similar methods for vectors, localized in ellipsoids, are
known as ellipsoidal analysis.

The present paper is inspired by [4], where some evidences are presented
that in the problem of multiplication of a vector by matrix the ellipsoidal
analysis is, in certain sense, better than the interval one. More precisely,
suppose the vector is localized in a box B, and E is the minimum volume
ellipsoid containing B. Certainly, E also localizes the vector, and, at this
stage, the substitution of E for B results in a loss of accuracy. However,
upon multiplication by A the domain AB is not necessarily a box, while the
domain AE is still an ellipsoid. To stay within the interval framework one
should substitute the minimal box Box(AB), containing AB, for AB. Finally
we get two localization domains: Box(AB) and AE . It is suggested in [4] to

∗Research partially supported by RFBR grants 08-08-00292, 08-01-00411
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compare the quality of methods by means of volumes of the final localization
domains.

1.1 Main inequality

The result of comparison does not depend on the initial box, but only on the
matrix A, and is determined by the sign ≤

≥ in the inequality

n
i=1

n
j=1

|aij|≤≥
(πn)

n
2 | detA|

2n Γ
n

2
+ 1

 . (1.1)

The ≤ sign specifies the set of matrices such that the ellipsoidal method turns
to be worse than the interval one. The inequality (1.1) comes directly from
exact formulas for volumes of ellipsoid and box, while the factor πn/2/Γ(n

2
+1)

arises as volume of the circumscribed ball for unit cube. Real problems of
numerical linear algebra correspond to a large dimension n. That’s why we
will compare ellipsoids and boxes as n →∞.

2 Random matrices

The set Ωn of n × n-matrices A such that (1.1) holds with ≤ sign is quite
complicated. In a rather vague way, one can say that Ωn is relatively poor,
i.e. most matrices do not belong to it. Still it is not clear in advance how to
measure properly the size of Ωn, and establish that it is small. We suggest
a stochastic approach to this issue. Namely, we assume that the matrix A
is random so that its elements are independent Gaussian random variables
with zero mean and unit covariance. In particular, the distribution of any
element aij of A takes the form

p(x) =
1√
2π
exp


−x2

2


. (2.1)

Then, a natural measure for the size of the set Ωn is its probability P(Ωn) =

(2π)−n2/2 
Ωn

e−
1
2

Tr AA∗
dA. Here, TrAA∗ =


a2

ij, and dA =


daij.

3 Main result

Theorem 1 The probability of the event Ωn that intervals are better than
ellipsoids tends to zero as n →∞. In other words,

P(Ωn) = (2π)
−n2/2



Ωn

e−
1
2

Tr AA∗
dA = o(1) (3.1)

2
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More precisely, P(Ωn) = O(1/(n2 log n)).

Denote log
n

j=1

 aij√
n

 by χi, and define

ψn =
1

n

n
i=1

χi, Cn = log
(πn)

1
2

2 Γ
n

2
+ 1

1/n
, ∆n =

1

n
log

det


A√
n

 .

The set Ωn is defined by inequality

ψn ≤ Cn +∆n (3.2)

and our main result says that this inequality holds with a very small probabil-
ity. The reason is that each term in (3.2) has a definite, and even determinis-
tic “limit in probability” as n →∞: ψn =

1
2
log 2n

π
+o(1), Cn =

1
2
log πe

2
+o(1),

∆n = −1
2
+ o(1), but the limit inequality 1

2
log 2n

π
≤ 1

2
log πe

2
− 1

2
is totally

false. In what follows we expound the above arguments.

3.1 A heuristic analysis of inequality (3.2)

The functions χi can be regarded as independent random variables on the
Gaussian probability space of n× n-matrices, and the left-hand side of (3.2)

has a form of a mean value ψn =
1
n

n
i=1

χi. Hence, when n →∞ one can apply

the Law of Large Numbers (LLN) to analyze the left-hand side of (3.2) and
conclude that

ψn =
1

n

n
i=1

χi → Eχ1 in probability. (3.3)

By virtue of the Central Limit Theorem (CLT) the distribution of fi =
n

j=1

 aij√
n

 is approximately Gaussian with covariance 1− 2
π
and mathematical

expectation


2n
π
. Therefore,

Eχ1 = E log f1 = log


2n

π
+ o(1) (3.4)

and ψn is contained in o(1)-neighborhood of log


2n
π
with probability 1+o(1).

Hence, if n is large the inequality (3.2) with an overwhelming probability
takes the form

∆n ≥ log

2n

π
+
1

2
log

πe

2
+ o(1) =

1

2
log n+

1

2
+ o(1), (3.5)

3
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where ψn is absent. Thanks to Siegel [1, 2] we have explicit expression

E| detA|k = (2π)−n2/2


| detA|k e− 1

2
Tr(AA∗)dA = 2

kn
2

n
i=1

Γ

k+i
2



Γ

i
2

 (3.6)

for E| detA|k with any complex k. In particular, it follows from (3.6) that
Een∆n = o(1). Therefore, ∆n can be large only with (exponentially) small
probability. In particular, the probability of (3.5) decays as n→∞.

3.2 Rigorous analysis of the left-hand side of (3.2)

The above arguments tacitly assume that some limit processes commute. We
will not justify exactly this, and use subgaussian random variables instead
of CLT.
A real random variable is said to be subgaussian if

Eeλξ ≤ e
1
2
λ2

for any real λ. The fact which is very important for us is this:

Theorem 2 If x is a standard Gaussian random variable, then, the random
variable ξ = |x| − E|x| is subgaussian.

A proof is based on the so-called theory of logarithmic concavity [5]. This
immediately implies the following corollary.

Corollary 1 Each random variable fi−

2n
π
=

n
j=1

|aij |−E|aij |√
n

is subgaussian.

On the basis of this corollary one can show that

E log fi = log


2n

π
+ o(1) (3.7)

E log2 fi = log
2


2n

π
+ o(1) (3.8)

E |log fi − E log fi|2 = O(
log n

n
) (3.9)

In particular, the asymptotic equality (3.4) holds, and LLN can be applied

in order to justify (3.3). Thus, ψn − log

2n
π
→ 0 in a reasonable sense.

Finally, from (3.9), (3.4) and the Chebyshev inequality we obtain:

P


ψn ≤ 1

4
log n+ C


= o(1), (3.10)

where C is an arbitrary constant, while o(1) is, in fact, O( 1
n2 logn

). Therefore,
ψn is large with a large probability.

4
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3.3 Analysis of the right-hand side of (3.2)

As to the random variable ∆n =
1
n
log

det


A√
n

 in the right-hand side of
(3.2), it is not large with an overwhelming probability. In fact, one can show
that ∆n → −1

2
in probability so that the (absolute value of) determinant of

a random matrix becomes more and more deterministic as n →∞.
It follows from the Siegel formula (3.6) that

Een∆n =


2

n

n
2 Γ


n+1
2


Γ (1/2)

. (3.11)

The logarithm of the right-hand side of (3.11) is

−n

2
− 1
2
+ o(1)

in view of the Stirling formula. Now, by means of the Chebyshev inequality
we can estimate the probability of large values of ∆n as follows:

P(∆n ≥ x) ≤ e−nxEen∆n ∼ e−nx−n
2
− 1

2 .

In particular,

P


∆n ≥ 1

4
log n+ C


≤ (1 + o(1))e−

1
4
n logn, (3.12)

where C is an arbitrary constant.

3.4 Summing up

Now we get back to inequality (3.2), where Cn → C = 1
2
log πe

2
by the

Stirling formula. If the inequality (3.2) holds for a large n, then either ψn ≤
1
4
log n+C + 1, or ∆n ≥ 1

4
log n−C − 1. But, in view of (3.10), (3.12) these

events have small probabilities as n →∞. This proves the main Theorem 1
to the effect that probability of advantage of intervals over ellipsoids is small
as n → ∞. In fact, it is shown that this probability is O(1/(n2 log n)).
These considerations can be regarded as an evidence in favor of ellipsoids vs.
boxes in linear algebraic computations with a guaranteed accuracy.
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ENERGY TRANSFER AND JOINT DIFFUSION

ZSOLT PAJOR-GYULAI, DOMOKOS SZÁSZ

Dedicated to the memory of R. L. Dobrushin on the occasion of his 80’th anniversary

ABSTRACT. A paradigm model is suggested for describing the
diffusive limit of trajectories of two Lorentz disks moving in a
finite horizon periodic configuration of smooth, strictly convex
scatterers and interacting with each other via elastic collisions.
For this model the diffusive limit of the two trajectories is a mix-
ture of joint Gaussian laws (analogous behavior is expected for
the mechanical model of two Lorentz disks).

Mathematics Subject Classification: 37D50, 37A60, 60F99.

1. INTRODUCTION

Beside the dynamics itself, the joint motion of two particles inter-
acting with each other and with a dynamical environment also de-
pends on the spatial dimension. In the first model where this ques-
tion was addressed (cf. [Sz 80]), the asymptotically diffusive mo-
tions of the two particles either glue together or are independent de-
pending on the initial distance of the particles. The model was actu-
ally that of Harris and Spitzer, (see [S 69]) (equilibrium dynamics of
elastically colliding point particles) generalized by Major and Szász,
[MSz 80] (non-equilibrium dynamics). On the other hand, Kipnis
and Varadhan, [KV 86] have shown that the diffusive limits of two
particles in a symmetric exclusion process are independent Brown-
ian motions.

Turning from stochastic dynamics to a deterministic one, let us
consider the planar, finite-horizon Lorentz process with a periodic
configuration of scatterers. It is known that its limit in the diffusive
scaling is a Brownian motion (cf. [BS 81] and [BCS 91]). Of course,
two point like Lorentz particles do not interact, but if we take two
small disks then the case is quite different.

D. Sz. is grateful to Hungarian National Foundation for Scientific Research
grants No. T 046187, K 71693, NK 63066 and TS 049835.
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The motion of one small disk is itself isomorphic to a Lorentz pro-
cess, so its diffusive limit is the Wiener process. However, if one
considers two small Lorentz disks, then the naı̈ve heuristics would
suggest that, since the two particles collide very rarely (i. e. O(log n)
times during the first n collisions), the situation is similar to the lo-
cally perturbed Lorentz process where the diffusive limit is the same
Brownian motion as it was for the unperturbed Lorentz process (cf.
[DSzV 09]). This analogy is, however, misleading and the aim of the
present work is exactly to clarify the situation. The difference with
the preceding models is that the interaction: elastic collision of the disks
also changes the energies of the two particles. Moreover, in dimension
two, by borrowing heuristics from random walk theory (cf. [S 76])
and estimates from [DSzV 08], one can convince himself/herself that
the time intervals between consecutive collisions have a slowly vary-
ing tail, and consequently with a probability close to one, for t large,
the last collision of the disks preceding time t befell at time o(t). Thus
the energies of the disks at time t, determining the limiting variance
are the random energies obtained at the aforementioned last colli-
sion before t ergo the diffusive limit of each disk is a Brownian mo-
tion with a random covariance (and their joint limit can already be
calculated based upon the previous line of ideas).

The goal of the present work is make the above heuristic argument
precise on the level of a stochastic model mimicking the determinis-
tic model of two Lorentz disks.
Remark: For treating the deterministic model the realistic alterna-
tive is to rely upon the averaging method of [ChD 07]. Indeed, be-
tween two collisions of the disks typically there occur long collision
sequences of the particular disks with the periodic configuration of
fixed scatterers. During these long intervals their orbits become ap-
proximately Brownian and their velocities and the normal of impact
incoming into a particular collision of the two disks correspond to an
equilibrium distribution and finally their outgoing velocities from
the collision can be calculated analogously to the collision operator
appearing in the derivation of Boltzmann’s equation for a hard disk
fluid. To the deterministic model we plan to return in a forthcoming
paper.

2. THE STOCHASTIC (PARADIGM) MODEL

2.1. Continuous Time Random Walks with Continuous Internal
States. Discrete time random walks with a finite number of inter-
nal states were introduced by Sinai, [S 81] where the internal states
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were meant to represent elements of a Markov partition. Their the-
ory was elaborated in a series of works [KSz 83, KSz 84, KSSz 86]. In
our case the internal states will also represent particle velocity there-
fore we have to generalize Sinai’s model and to consider random
walks with internal states where the internal states belong to a more
general state space. Moreover, for being able to include speed we
take continuous time. In [KSz 83], a local limit theorem was estab-
lished for random walks on Zd with a finite number of internal states
and we will also use much of the techniques presented there.

Definition 1. (Sinai, 1980) Let H, |H| < ∞ be the set of states. On the set
Zd × H the Markov chain ξn = (ηn, εn) is a Random Walk with Internal
States (RWwIS) if for ∀ xn, xn+1 ∈ Zd, u ∈ H, A ⊂ H

P(ξn+1 = (xn+1, v), v ∈ A|ξn = (xn, u)) = pxn+1−xn(u, A)

Of course, {εn; n ≥ 0}n is also a Markov chain. Our paradigm
for the mechanical model will be introduced in two steps. First, the
individual motion of each of the two particles will be a random walk
with internal states with some state space H̃ and exponential jump
rate λ ∈ Λ (so far we do not specify H̃).

Definition 2. Assume we are given a rate λ > 0 and a family {Px(u, .)|x ∈
Zd} of substochastic kernels over H̃ such that Q = ∑x∈Zd Px is a stochas-
tic kernel over H̃. A continuous time Markov chain with internal states
from H̃ and with rate λ is a Markov process {ξt = (xt, ut)} such that

P(ξt+dt = ξt) = 1− λdt + o(dt)

and for every (xt, u) ∈ Zd × H̃ and ∀u ∈ H̃, ∀A ⊂ H̃

P(ξt+dt = (xt+dt, u), u ∈ A|ξt = (xt, u)) = λPxt+dt−xt(u, A)dt + o(dt)

In other words, the generator for jump x ∈ Zd is described by the
operators

Px f (u) =


H̃
f (u)Px(u, du) x ∈ Zd

and the generator for the Markov chain {εn; n ≥ 0}n of internal states
is Q. For simplicity let us assume that P0 = 0.

As said our RWwIS is to mimic a Lorentz disk process in R2 and
from now on we will restrict our discussion to the planar case. Con-
cretely we will have H̃ = S for the directions v

|v| of velocities, whereas

λ will be for the speed |v| =


2 energy. Let H = S × Λ where
Λ = [a, b], 0 ≤ a < b < ∞. λ is, of course, conserved between
collisions of the two disks.
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2.2. Interaction: the collision operator. Next we define the collision
interaction. Let ξ i

t = (ηi
t, εi

t), i = 1, 2 be two RWwIS.
Whenever η1

t = η2
t , the joint generator of the two Markov pro-

cesses is the product of the two individual generators. Whenever
η1

t = η2
t (= x),

P(ξ1
t+ = (x + z1, v1

+), ξ2
t+ =(x + z2, v2

+); v1
+ ∈ A1, v2

+ ∈ A2

|ξ1
t− = (x, v1−), ξ2

t− = (x, v2
t−))

= Cz1,z2(v1−, v2−, A1, A2)

is the collision kernel. We assume that C satisfies conservation of en-
ergy: (v1−)2 + (v2−)2 = (v1

+)2 + (v2
+)2 (momentum is not conserved

since the collision kernel contains averaging over normal of impact).
Consequently we can and do assume that in our two particle model
(v1)2 + (v2)2 = 1.

Warning: the pair (ξ1
n, ξ2

n) is not a RWwIS on Zd ×Zd anymore
since translation invariance is hurt on the diagonal.

2.3. Conditions.
• Q is ergodic with a positive spectral gap (and with invariant

probability measure ρ);
• ∑x∈Z2 x


H̃ Px(v, H̃)ρ(dv) = 0 (i. e. no drift);

• Px = 0 if |x| > 1 (for simplicity);
• trivial arithmetic, i. e. the minimal lattice L the RWwIS is

coincides with Z2;
• nonsingular asymptotic covariance matrix Σ (cf. local CLT of

[KSz 83]);
• our definition of the interaction implies that by denoting
{v1

+(n), v2
+(n)| n ≥ 0} the outgoing velocities at consecutive

collisions (of course (v1)2(n) + (v2)2(n) = 1) their process is
a Markov chain with transition kernel C. We assume that this
Markov chain is ergodic with a gap in its spectrum (as to the
proof of existence for the physical model cf. [C 75], Chapter
IV, section 6). We denote its invariant measure by ρ(v1

+, v2
+)

and further by ρs(|v+|) the marginal of ρ(v1
+, v2

+) providing
the density of |v+|.

3. MAIN RESULT

Denote by (S1
t , S2

t ) the joint trajectory of the two interacting RWwIS’s.



134

ENERGY TRANSFER AND JOINT DIFFUSION 5

Theorem 1. The limiting density of 1√
t
(S1

t , S2
t ) is

h(x1, x2) =
1

(2π)|Σ|
 1

0

ρs(λ)
λ
√

1− λ2
e
− 1

2


xT

1 (Σ)−1x1
λ +

xT
2 (Σ)−1x2√

1−λ2



dλ (x1, x2 ∈ R2)

where Σ is the limiting covariance matrix for any of the interacting RWwIS’s
with speed 1, and ρs(λ) is the stationary probability density of the speed of
the first particle in the Markov chain of energy change.

The proof is based on
• the probability theory of order statistic of random variables

with slowly varying distributions (cf. [HM 91])
• a far-reaching generalization of renewal theory for renewal

processes
– with slowly varying renewal distributions;
– with renewal laws coming from a family of similar dis-

tributions;
– directed by a Markov chain.

To the technical proof we return in a forthcoming paper.
. Acknowledgement. Thanks are due to D. Dolgopyat, in a discus-
sion with whom the phenomenon discussed above had been raised.
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       
 

  



           
         
            
        
           
          
            



           

       
          

      
             

          

           

         
  
         

          
    


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Percolation in a lattice model of non-ideal gas.

E. Pechersky† and A. Yambartsev‡
† IITP, 19, Bolshoj Karetny per., Moscow, Russia

pech@iitp.ru
‡ IME-USP, Rua do Matão, 1010, 05508-090, São Paulo, Brazil

yambar@ime.usp.br

There exist a lot of works about the percolation in as discrete as con-
tinuum cases. Overwhelming majority of the works devoted to percolation
models with an independence. It is either Bernoulli distribution for discrete
cases like, for example, the lattice case, or Poisson distribution for the par-
ticle system in Rd (see, for example, [1] and [2]). There are some works on
the percolation where a dependence is presented, where a ’random cluster
models’ are studied. Those models are connected to Izing and Potts models.

In the present work we study the percolation properties of a lattice model
having a finite spin space with interactions between spins. We consider d = 2.
The similar problem was investigated in [3], where the percolation problem
was studied for a field of interacted particles in R2. There are two parameters
λ and β which drive the percolation properties. The parameter λ is connected
to a density of the particles and β = 1

T
as usually is the inverse temperature.

Our result describes regions in the plane {λ, β}, where the percolation does
not occur with probability 1, where the percolation occurs with probability
1, and there is a region where we can not answer on the question on the
percolation (see Fig.1).

1 Model

We specify three objects to define the model: Z2, S, ϕ. The spin space S is
finite and we assume that S = {0, 1, ..., N}. The Gibbs measure on the set of
all configurations X = {X : Z2 → S} is defined by two potential functions

1
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ϕ = {ϕ0 : S → R, ϕ1 : S2 → R}:

ϕ0(s) = a


s

2


, with a > 0,

and (1.1)

ϕ1(s1, s2) = −bs1s2, with b > 0.
Formal Hamiltonian of the model is

H(X) =


t1,t2∈Zd:t1−t2=1
ϕ1(X(t1), X(t2)) +



t∈Zd
ϕ0(X(t)), (1.2)

where t = max{t1, t2}, when t = (t1, t2) ∈ Z2. One dimensional marginal
of the free measure is ν(s) = 1

ΠN

λs

s!
, where ΠN =

N
k=0

λk

k!
and λ > 0.

The Gibbs distributions are defined in the standard way by specification
which is a set of densities with respect to the free measure:

pβV,Y (X) =
1

Zβ
V,Y

exp{−βH(X|Y )}, (1.3)

where V ⊂ Z2 is finite volume, X is a configuration on V , Y is a boundary
configuration out of V ,

H(X|Y ) =


t1,t2∈V :t1−t2=1
ϕ1(X(t1), X(t2)) +


t∈V

ϕ0(X(t))

+


t1∈V,t2∈V c:t1−t2=1
ϕ1(X(t1), X(t2))

is conditional Hamiltonian, Zβ
V,Y is a normalized constant, β is a positive

constant which is called inverse temperature. The expression for the condi-
tional Hamiltonian H(X|Y ) is not formal since all sums in the formula are
finite. Existence at least one Gibbs measure is consequence of the finiteness
of S. However the number of Gibbs state depends on the parameters.

The model can be interpreted in the following way. Consider a spin value
X(t) as the number of particles at a site t ∈ Zd. Every pair of the particles
at the same site interacts with the repulsion energy equal to a. Thus the
repulsion energy of X(t) particles is a


X(t)
2


. Any pair of the particles located

at a neighboring sites t1, t2 attracts with the energy −b. The neighbors
in the model are any sites t1, t2 such that they are vertices of the same
elementary square of Z2. If X(t1) and X(t2) are the numbers of the particles
at neighboring sites t1, t2 then the attractive energy is −bX(t1)X(t2).

2
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2 Problem

We study the percolation over sites where spin values belong to a set Sk =
{k + 1, ..., N}, k < N . The set U ⊆ Z2 is connected if for any pair t, t

 ∈ U
there exists a set E(t, t


) = {t1 = t, t2, ..., tn = t

} ⊆ U such that |ti+1−ti| = 1
for any i = 1, ..., n− 1. The norm | · | is Euclidean in contrast  · .

A cluster is a pair (U,X), U ⊆ Zd, X ∈ X , if U is connected and X(t) ∈
Sk for any t ∈ U . A cluster (U,X) is infinite if U is an infinite set. We also
say in this case that the configuration X has infinite cluster.

The issue we address in this work is: when almost all configurations have
infinite clusters. The answer depends on the parameters λ and β. If λ and β
are such that almost all configurations have infinite clusters then the models
with these parameters calls percolated. If almost all configurations have no
infinite clusters then the model does not percolate.

For any k we consider the models with the parameters a and b such that

a

b
≤ f(k),

where f(·) is a function which can be specified.

3 Results

The following two theorems are the main results.

Theorem 3.1. There exists λ0 < ∞ such that for any λ ≤ λ0 there exists
β−(λ) > 0 such that for any β ≤ β−(λ) all clusters are finite with probability
1. The value β−(λ) is growing to the infinity when λ→ 0.

Theorem 3.2. There exists a positive value of λ0 <∞ such that for λ > λ0

there exists an infinite cluster for any β. For λ < λ0 there exists β+(λ) such
that for any β > β+(λ) there exists an infinite cluster.

Fig.1 shows the regions of percolation and non-percolation.

3
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Figure 1: Percolation and non-percolation regions.
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Homogenization of a random singularly perturbed parabolic PDE

Andrey Piatnitski

Lebedev Physical institute, Moscow, Russia
and Narvik University college, Norway

Abstract. The talk will focus on averaging problem for a parabolic equation
of the form

∂uε

∂t
(t, x) =

1

2

∂

∂x


a
 ·
ε


∂uε

∂x


(t, x) +

1√
ε
c

x

ε


uε(t, x), t ≥ 0, x ∈ R;

uε(0, x) = g(x), x ∈ R,

with random stationary mixing coefficients a and c, in the presence of a large
parameter in front of zero order term. We will show that, under proper
mixing assumptions on a and c, the family of solutions uε converges in law,
a ε → 0, and describe the limits process. It should be noted that the limit
dynamics remains random.
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RECTANGLING RECTANGLES AND ALTERNATING CURRENT

M. PRASOLOV AND M. SKOPENKOV

This talk deals with the following problem: for which numbers R and r a rectangle with side ratio R can
be dissected into rectangles of side ratio r and 1/r? (Here the sides of all rectangles are parallel to coordinate
axes, the side ratio of a rectangle is the horizontal side divided by the vertical one.) The classical Dehn
theorem (1903) asserts that for r = 1 such a dissection is possible if and only if R is rational. For arbitrary r
and R a result of Freiling, Laszkovich and Rinne (1997) provides a criterion for existence of such a dissection.
But this result does not give an algorithm for description of all possible pairs (R, r). A joint result of these
authors with Szekeres gives such an algorithm in case when R = 1.

We present an analogous ”algorithmic” criterion in case when R = r:
Theorem. For R > 0 the following 4 conditions are equivalent:

(i) A rectangle with ratio R can be dissected into rectangles with ratio R and 1/R (in such a way that there
is at least one rectangle in the dissection with ratio 1/R).
(ii) The number R2 is algebraic and all its algebraic conjugates (distinct from R2) are negative real numbers.
(iii) For certain positive rational numbers c1, . . . , cn we have

1

c1R +
1

c2R + · · · + 1
cnR

= R.

(iv) There is a network of total resistance R ohm consisting of resistors of resistance R ohm and 1/R ohm
(such that the network contains at least one resistor of resistance 1/R with nonzero current).

The proof is based on a physical interpretation of the problem. To a dissection of a rectangle Brooks,
Smith, Stone and Tutte (1940) assigned a direct-current circuit. Our new approach is based on application
of alternating-current circuit theory to the problem.

1
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On estimating special type of divergences
via Kolmogorov distance ∗

Viacheslav V. Prelov

Institute for Information Transmission Problems

of the Russian Academy of Sciences

19 Bol’shoi Karetnyi, 127994 Moscow, Russia.

Abstract – Some upper and lower bounds are presented for the maximum
of the divergence D(PX1...Xn||PX1 × · · · × PXn) between the joint distribution
PX1...Xn of discrete random variables X1, . . . , Xn and the product distribution
PX1×· · ·×PXn of these variables via the Kolmogorov distance between PX1...Xn

and PX1×· · ·×PXn. In some special cases, our upper and lower bounds coincide
or are asymptotically tight.

Let P = {pi} and Q = {qi}, i ∈ I ⊆ N .
= {1, 2, . . .}, be two discrete probability

distribution. Recall that the (information) divergence between P and Q is defined as

D(P ||Q) =


i

pi ln
pi

qi

,

and the variational distance V (P, Q) between these probability distributions is the
L1–distance, i.e.,

V (P, Q) =


i

|pi − qi|.

The problem of estimating the information divergence D(P ||Q) via V (P, Q) was con-
sidered in several papers (see, e.g., [1] and references therein). Among many results in
this areas we mention Pinsker’s inequality [2,3]

D ≥ 1

2
V 2

and Vajda’s lower bound [4]

D ≥ log


2 + V

2− V (


− 2V

2 + V
,

∗This work was carried out with the partial support of the Russian Foundation for Basic Research
(project no. 09-01-00536) .
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where D = D(P ||Q) and V = V (P,Q).
Note that in the general case (without additional assumptions on probability dis-

tributions P and Q) it is impossible to upper estimate D(P ||Q) via V (P,Q) since
D(P ||Q) can be arbitrary large as V (P,Q) is arbitrary small.

Here, we consider the special case where P = PX1...Xn is the joint distribution
of discrete random variables X1, . . . , Xn and Q = PX1 × · · · × PXn is the product
distribution of these random variables. In what follows we assume that all random
variables are discrete such that Xi takes values in Ii ⊆ N, i = 1, . . . , n. In this case
the divergence

I(X1; . . . ;Xn)
.
= D(PX1...Xn||PX1 × · · · × PXn)

is called the mutual information for random variables X1, . . . , Xn (see, e.g., [3]) which
coincides with the usual mutual information I(X1;X2) between two random variables
X1 and X2 for n = 2. At the same time, the variational distance

τ(X1, . . . , Xn)
.
= V (PX1...Xn , PX1 × · · · × PXn)

is sometimes called Kolmogorov distance (the latter with the factor 1/2 and for n = 2
was introduced by Kolmogorov [5]).

Consider the quantities

Iτ (X1; . . . ;Xn)
.
= sup

Y : τ(X1,...,Xn,Y )≤τ

I(X1; . . . ;Xn;Y ), (1)

where the supremum is taken over all discrete random variables Y such that
τ(X1, . . . , Xn, Y ) ≤ τ . Note that Iτ (X1; . . . ;Xn) is defined only for τ ≥ τ(X1, . . . , Xn)
since τ(X1, . . . , Xn, Y ) ≥ τ(X1, . . . , Xn) for any Y . For given integers N1, . . . , Nn, let

I(N1,...,Nn)
τ

.
= sup

Xi : |Xi|=Ni, i=1,...,n

Iτ (X1; . . . ;Xn), (2)

where |X| denotes the cardinality of the range of a random variable X.

In the case n = 1, the quantities Iτ (X) and I
(N)
τ were introduced and studied by

Pinsker [6]. The further investigations of these quantities were continued in [7,8]. Here
we present some upper and lower bounds and asymptotic expressions for quantities
Iτ (X1; . . . ;Xn) and I

(N1,...,Nn)
τ defined above.

The mutual information I(X1; . . . ;Xn;Y ) for random variables X1, . . . , Xn, Y can
be represented as

I(X1; . . . ;Xn;Y ) =
n

i=1

H(Xi) +H(Y )−H(X1, . . . , Xn, Y ) =

=
n

i=1

H(Xi)−H(X1, . . . , Xn) + I(X1, . . . , Xn;Y ), (3)

where, as usual, H(·) denotes the entropy. Therefore, considering the vector (X1, . . . , Xn)
as a single random variable, we can use some results of [6–8] to estimate sup

Y
I(X1; . . . ;Xn;Y )

via τ , provided that τ((X1, . . . , Xn), Y ) ≤ τ , where

τ((X1, . . . , Xn), Y )
.
= V (PX1...XnY ||PX1...Xn × PY ).
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However, our problem is to estimate sup
Y

I(X1; . . . ;Xn;Y ) via τ , provided that

τ(X1, . . . , Xn, Y ) ≤ τ , but there are no direct relations between τ((X1, . . . , Xn), Y )
and τ(X1, . . . , Xn, Y ); namely, we can show that τ((X1, . . . , Xn), Y ) can be both larger
and smaller than τ(X1, . . . , Xn, Y ). Therefore, in general, we cannot apply the results
of [6–8], but in the special case, where X1, . . . , Xn are independent (and therefore,
τ((X1, . . . , Xn), Y ) = τ(X1, . . . , Xn, Y )), we can.

Let us introduce some definitions which are necessary to formulate our results.
For a collection of random variables X1, . . . , Xn, denote the joint and the marginal
distributions as

pi1...in
.
= Pr{X1 = i1, . . . , Xn = in}, p

(k)
ik

.
= Pr{Xk = ik}, ik ∈ Ik, k = 1, . . . , n.

Let
τ ∗(X1, . . . , Xn)

.
= max

Y
τ(X1, . . . , Xn, Y ),

where the maximum is over all random variables Y . It is possible to show that

τ ∗(X1, . . . , Xn) = 2


1−


i1,...,in

pi1...inp
(1)
i1

. . . p
(n)
in


. (4)

Assume that the vectors (p
(1)
i1

, . . . , p
(n)
in

) are ordered in such a way that (p
(1)
i1

, . . . , p
(n)
in

) 

(p
(1)
j1

, . . . , p
(n)
jn

) if
n

k=1

p
(k)
ik
≤

n
k=1

p
(k)
jk
. For a given vector s = (s1, . . . , sn), sk ∈ Ik, k =

1, . . . , n, set

Ds
.
=


(i1, . . . , in) : (p

(1)
i1

, . . . , p
(n)
in

)  (p(1)
s1

, . . . , p(n)
sn

)

, (5)

Ks
.
= −


(i1,...,in)∈Ds


n

k=1

p
(k)
ik


ln


n

k=1

p
(k)
ik


, (6)

and

Ls
.
= −


n

k=1

p(k)
sk


ln


n

k=1

p(k)
sk


. (7)

Moreover, define

M
.
=


i1,...,in


n

k=1

p
(k)
ik

 
pi1...in −

n
k=1

p
(k)
ik



1−
n

k=1

p
(k)
ik

ln


n

k=1

p
(k)
ik


(8)

First of all note, that

Iτ (X1; . . . ;Xn) =
n

i=1

H(Xi)

if τ ≥ τ ∗(X1, . . . , Xn). Indeed, this equality immediately follows from (3) if we put Y =
(X1, . . . , Xn). Therefore, it is sufficient to investigate the behavior of Iτ (X1; . . . ;Xn)
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for τ(X1, . . . , Xn) ≤ τ < τ ∗(X1, . . . , Xn). Our first proposition gives an upper bound

for Iτ (X1, . . . , Xn).

Proposition 1. For any τ, τ(X1, . . . , Xn) ≤ τ < τ ∗(X1, . . . , Xn), we have

Iτ (X1; . . . ;Xn) ≤ Ks + xLs +M, (9)

where the real number x, 0 ≤ x < 1, and the vector s = (s1, . . . , sn), sk ∈ Ik, k =
1, . . . , n, are defined by the equality


(i1,...,in)∈Ds

(1− pi1...in)p
(1)
i1

. . . p
(n)
in

+ x(1− ps1...sn)p
(1)
s1

. . . p(n)
sn

= τ/2, (10)

and the quantities τ ∗(X1, . . . , Xn), Ds, Ks, Ls, and M are defined in (4)–(8).

An upper bound for I
(N1...Nn)
τ is presented in the next proposition.

Proposition 2. For any τ, 0 ≤ τ ≤ 2(1− 1/N), N
.
=

n
k=1

Nk, we have

I(N1...Nn)
τ ≤ τ

2
ln(N − 1) + h

τ

2


, (11)

where h(x)
.
= −x ln x− (1− x) ln(1− x) is the binary entropy function and

I(N1...Nn)
τ = lnN if τ ≥ 2(1− 1/N). (12)

Note that the right-hand side of (11) is equal to logN if τ = 2(1 − 1/N), and
therefore estimate (11) is tight for such τ .

Proposition 3. For any τ, τ(X1, . . . , Xn) ≤ τ < τ ∗(X1, . . . , Xn), we have

Iτ (X1; . . . ;Xn) ≥
n

i=1

H(Xi)−
τ ∗(X1, . . . , Xn)− τ

τ ∗(X1, . . . , Xn)− τ(X1, . . . , Xn)
H(X1, . . . , Xn). (13)

Note that in the special case where random variables X1, . . . , Xn are independent,
it is easy to verify that the upper and lower bounds for Iτ (X1, . . . , Xn) and I

(N1,...,Nn)
τ

described in propositions 1–3 coincide with corresponding estimates obtained in [6–8]
if the vector (X1, . . . , Xn) is considered as a single random variable whose the set of
values is I = I1 × . . .× In. In particular, this remark allows us to claim that

Iτ (X1, . . . , Xn) =
τN

2(N − 1)
lnN, 0 ≤ τ ≤ 2(1− 1/N), N =

n
k=1

Nk,

ifX1, . . . , Xn are independent and eachXi has uniform distribution on the set Ii, |Xi| =
Ni, i = 1, . . . , n.

Note also that for τ = τ(X1, . . . , Xn) (i.e., for the minimum value of τ) the lower
bound (13) reduces to the inequality Iτ (X1, . . . , Xn) ≥ I(X1; . . . ;Xn). It seems that
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this estimate is tight, i.e., this inequality should be replaced by the equality, since
τ(X1, . . . , Xn, Y ) = τ(X1, . . . , Xn) if Y does not depend on the collection of random
variables X1, . . . , Xn, and then we would have Iτ (X1, . . . , Xn) = I(X1; . . . ;Xn). How-
ever, in the real case, we have the strong inequality Iτ (X1, . . . , Xn) > I(X1; . . . ;Xn) if
X1, . . . , Xn are dependent since it is possible to show that there exists a random vari-
able Y such that τ(X1, . . . , Xn, Y ) = τ(X1, . . . , Xn) but, at the same time, Y depends
on the collections of random variables X1, . . . , Xn, and therefore, we obtain

Iτ (X1, . . . , Xn) ≥ I(X1; . . . ;Xn;Y ) = I(X1; . . . ;Xn)+I(X1, . . . , Xn;Y ) > I(X1; . . . ;Xn).

One can derive the following corollaries from Propositions 1–3.

Corollary 1. The following relations are valid:

I(N1,...,Nn)
τ =

τ

2
lnN


(1 + o(1)), N

.
=

n
k=1

Nk →∞

and
τn

2(n+ 1)
ln

1

τ
+O(τ) ≤ I(N1,...,Nn)

τ ≤ τ

2
ln

1

τ
+O(τ), τ → 0.

It seems natural to consider more general quantities I
(m)
τ (X1, . . . , Xn) defined by

the equality

I(m)
τ (X1, . . . , Xn)

.
= sup

Y1,...,Ym : τ(X1,...,Xn,Y1,...,Ym)≤τ

I(X1; . . . ;Xn;Y1; . . . ;Ym).

However, this definition is not useful as the following claim shows.

Corollary 2. For any random variables X1, . . . , Xn, any τ > τ(X1, . . . , Xn), and
any integer m ≥ 2, we have

I(m)
τ (X1, . . . , Xn) =∞.

The proof of all statements formulated above can be found in [9]. Here, we only show
how to prove equality (4). Let a joint distribution {pi1...in} of the random variables
X1, . . . , Xn is given. Let us upper estimate τ(X1, . . . , Xn+1) for any random variable
Xn+1. Let

A
.
= {(i1, . . . , in+1) : pi1...in+1 > p

(1)
i1

. . . p
(n+1)
in+1

}.
Then, using definition of τ(X1, . . . , Xn+1), we obtain

τ(X1, . . . , Xn+1) = 2

A


pi1...in+1 − p

(1)
i1

. . . p
(n+1)
in+1


≤

≤ 2

A


pi1,...,inpin+1 | i1,...,in − p

(1)
i1

. . . p
(n)
in

pi1...in+1


=

= 2

A

pin+1 | i1...in

pi1...in − pi1...inp

(1)
i1

. . . p
(n)
in


≤

≤ 2


i1,...,in+1


pi1...in+1 − pin+1 | i1...inpi1...inp

(1)
i1

. . . p
(n)
in


=

= 2


1−


i1,...,in

pi1...inp
(1)
i1

. . . p
(n)
in


. (14)
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On the other hand, we have

τ ∗(X1, . . . , Xn) ≥ τ(X1, . . . , Xn, (X1, . . . , Xn)) =

= 2


1−


i1,...,in

pi1...inp
(1)
i1

. . . p
(n)
in


. (15)

Equality (4) immediately follows from (14) and (15).
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Abstract
We present an example of a highly connected closed network of

servers, where the time correlations do not go to zero in the infinite
volume limit. The limiting interacting particle system behaves in a
periodic manner. This phenomenon is similar to the continuous sym-
metry breaking at low temperatures in statistical mechanics, with the
average load playing the role of the inverse temperature.
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1 Introduction

1.1 Interacting particle systems with long range mem-
ory

The theory of the phase transition provides, among many results, a positive
answer to the question about the possibility of constructing reliable systems

1
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from non-reliable elements. As an example, consider the infinite volume
stochastic Ising model at low temperature T in dimension ≥ 2, see [L]. As is
well known, if we start this system from the configuration of all pluses, then
the evolution under Glauber dynamics has the property that the fraction
of plus spins will at any time be exceeding 1+m∗(T )

2
, which is bigger than

1
2
for T < Tcr. (Here m∗ (T ) is the spontaneous magnetization.) On the

other hand, if we consider finite volume Ising model (with empty boundary
condition, say), then this property does not hold, and, started from the all
plus state, the system at some later (random) times will be found in the state
with the majority of the spins to be minuses. Therefore, the infinite system
can remember, to some extent, its initial state, while the finite system can
not.

There are many other examples of that kind, which belong to the theory
of interacting particle systems, such as voter model, contact model, etc. In
all these examples we see systems, which are capable of “remembering” their
initial state for arbitrary long times.

In the present paper we are constructing a particle system which is “re-
membering its initial phase”. The rough analogy can be described as follows.
Imagine a brownian particle ϕ (t) , with a unit drift, which lives on a circle.
Suppose the initial phase ϕ (0) = 0. Then the mean phase ϕ̄ (t) = tmod (2π) ,
but with time we know the phase ϕ (t) less and less precisely, since its vari-
ance grows, and in the limit t → ∞ the distribution of ϕ (t) tends to uniform.
However, one can combine infinitely many such particles, by introducing suit-
able interaction between them, in such a way that the memory of the initial
phase will not vanish and will persist in time.

This is roughly what we will do in the present paper. We will consider a
network of simple servers, which are processing messages. Since the service
time of every message is random, in the course of time each single server
looses the memory of its initial state. So, in particular, the network of non-
interacting servers, started in the same state, would become de-synchronized
after a finite time. However, if one introduces certain natural interconnection
between servers, then it can happen that they are staying synchronized after
an arbitrary long time, thus breaking some generally believed properties of
large networks. We have to add here that such a phenomenon is possible
only if the mean number of particles per server is high enough; otherwise
the infinite network becomes de-synchronized, no matter what interaction
between servers is taking place. So the parameter of the mean number of
particles per server, called hereafter the load, plays here the same role as the

2
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temperature in the statistical mechanics.
In other words, the transition we describe happens due to the fact that

at low load the behavior of our system is governed by the fixed point of the
underlying dynamical system, while at high load the dominant role is played
by its periodic attractor. A similar phenomenon was described by Hepp and
Lieb in [HL].

Below we present the simplest example of the above behavior. But we
believe that the phenomenon we describe is fairly general. Its origin lies in
the fact that any large network of the general type possesses in the infinite
limit some kind of the continuous symmetry, and it is the breaking of that
symmetry at high load which causes the long-range order behavior of the
network.

1.2 Information networks and their collective behavior

Now we will describe one pattern of behavior of certain large networks, which
was assumed to be universal. It is known under the name of Poisson Hy-
pothesis.

The Poisson Hypothesis is a device to predict the behavior of large queu-
ing networks. It was formulated first by L. Kleinrock in [K], and concerns
the following situation. Suppose we have a large network of servers, through
which many customers are traveling, being served at different nodes of the
network. If the node is busy, the customers wait in the queue. Customers
are entering into the network from the outside via some nodes, and these
external flows of customers are Poissonian, with constant rates. The service
time at each node is random, depending on the node, and the customer. The
PH prediction about the (long-time, large-size) behavior of the network is
the following:

• consider the total flow F of customers to a given node N . Then F is
approximately equal to a Poisson flow, P , with a time dependent rate
function λN (T ) .

• The exit flow from N – not Poissonian in general! – has a rate function
γN (T ) , which is smoother than λN (T ) (due to averaging, taking place
at the node N ).

• As a result, the flows λN (T ) at various nodesN should go to a constant

limits λ̄N ≈ 1
T

 T

0
λ (t) dt, as T → ∞, the flows to different nodes being

3
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almost independent.

• The above convergence is uniform in the size of the network.
Note that the distributions of the service times at the nodes of the network

can be arbitrary, so PH deals with quite a general situation. The range of
validity of PH is supposed to be the class of networks where the internal
flow to every node N is a union of flows from many other nodes, and each
of these flows constitute only a small fraction of the total flow to N . If true,
PH provides one with means to make easy computations of quantities of
importance in network design.
The rationale behind this conjectured behavior is natural: since the inflow

is a sum of many small inputs, it is approximately Poissonian. And due
to the randomness of the service time the outflow from each node should
be “smoother” than the total inflow to it. (This statement was proven in
[RShV] under quite general conditions.) In particular, the variation of the
latter should be smaller than that of the former, and so all the flows should
go with time to corresponding constant values.
In the paper [RSh] the Poisson Hypothesis is proven for simple networks

in the infinite volume limit, under some natural conditions. For systems with
constant service times it was proven earlier in [St1].
The purpose of the present paper is to construct a network, satisfying

all the above assumptions – namely, that the flow to every given node is
an “infinite” sum of “infinitesimally small” flows from other nodes – which
network, nevertheless, has coherent states. That means that the states of
the servers are evolving in a synchronous manner, and the “phase” of a given
server behaves (in the thermodynamic limit – i.e. in the limit of infinite
network) as a periodic non-random function, the same for different servers.
We have to stress that our network exhibits these coherent states only in

the regime when the average number N of the customers per server – called
in what follows the load – is large. For low load we expect the convergence to
the unique stationary state. This “high temperature” kind of behavior will
be the subject of the forthcoming work.
Our network∇∞ is constructed from infinitely many elementary “triangu-

lar” networks ∇ (described below, in Section ??). A single triangle network
∇ = ∇1 with N customers is just a Markov continuous time ergodic jump
process with finitely many states. As N becomes large, this Markov process
tends (in the appropriate “Euler” limit) to a (5-dimensional) dynamical sys-
tem ∆, possessing a periodic trajectory C, which turns out to be a stable
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(local) attractor. The coordinate ϕ parameterizing that attractor C is the
“phase”, alluded to in the previous subsection. The combined network corre-
sponds in the same sense to the coupled family ∆∞ of dynamical systems ∆.
We establish the synchronization property of that coupled family ∆∞, and
that allows us to construct coherent states of the network ∇∞.
The networks ∇M , combined from M triangle networks ∇, are ergodic.

Their evolution is given by irreducible finite state Markov processes with
continuous time. Let πM be the invariant measure of the process ∇M . As
M → ∞, the sequence of Markov processes ∇M converges weakly on finite
time intervals to a certain limiting (non-linear Markov) process ∇∞. By the
theorem of Khasminsky – see Theorem 1.2.14 in [L] – any accumulation point
of the sequence πM is a stationary measure of ∇∞. The special measure χ∞,
describing “the Poisson Hypothesis behavior”, is also a stationary measure
of ∇∞. If χ∞ is a global attractor of ∇∞, then, of course, the Poisson
Hypothesis holds. The proof of the Poisson Hypothesis in [RSh] was based
on this argument. The existence of an accumulation point of the sequence πM

that differs from χ∞ would be the strongest counterexample to the Poisson
Hypothesis. This problem will be addressed in forthcoming papers. Here we
prove a weaker statement that χ∞ is not a global attractor for ∇∞.

In [RSt] Rybko and Stolyar observed that the condition that the work-
load at every node of a multiclass open queueing network is less than 1 is not
sufficient for the network to be ergodic. In connection with this, they intro-
duced a new approach to the analysis of ergodicity of networks, which reduces
the problem to the question of stability of the associated fluid models. It was
shown by them that considered in [RSt] two-node priority network is ergodic
if and only if for every initial state of the corresponding fluid model the total
amount of fluid eventually vanishes. This approach was further developed
by Dai [D], Stolyar [St2], and Puhalsky and Rybko [PR], who proved that
stability of the fluid model is necessary and sufficient for ergodicity of a cer-
tain class of general networks. Interesting instances of non-ergodic queueing
networks with mean load being smaller than the capacity, where considered
by Bramson [B1, B2]. Our construction will be based on the following open
network, introduced by Rybko and Stolyar (RS-network) in [RSt].
It is represented by the following 4-dimensional Markov process, which

describes the open queuing network with two types of customers. They
arrive to the network according to Poisson inflows of constant rate λ. The
network consists of two nodes – Ā and B̄ – through which the customers
go. All the service times are exponential, so to describe the network we need
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to specify only the rates, the evolution of types of the customers and the
priorities. The customer of type A (respectively, B) arrives to the node Ā
(respectively, B̄). The customer A is served with the rate γA, then is sent
to B̄, with type AB. There he is served with the rate γAB and leaves the
network. Symmetrically, γB = γA, and γBA = γAB. Each customer AB is
served before all the customers B, and vice versa. The nominal workload at
nodes Ā and B̄ equals to ρ = λ(γ−1

A + γ−1
BA). The service rates satisfy the

conditions γAB < 2λ and ρ < 1. It is proved in [RSt] that for certain values
of the parameters the resulting Markov process is transient. The fluid limit
(or Euler limit) of this network evolves in the following non-trivial manner:
each node is empty during a positive fraction of time, but at other moments
it is non-empty, and moreover the total amount of the fluid in the network
grows linearly to infinity.
The rest of the paper is organized as follows. In the next Section 2 we

will define our networks ∇N
M . Here M is the size of the network and N is the

load per node. We formulate the preliminary version of our Main Result. In
Section 3 we study the limiting network, ∇N

∞, and we prove the convergence
∇N

M → ∇N
∞. In Section 4 we introduce the fluid networks, ∆M , which are

coupled dynamical systems, and their limit, ∆∞, which turns out to be a
non-linear dynamical system, in the sense made precise in this Section. In
particular, we show that ∆∞ is not ergodic. In the next Section 5 we prove
the convergence of the Non-Linear Markov Process ∇N

∞ to its Euler fluid
limit, ∆∞, as N → ∞. The last Section 6 contains the formulation and the
proof of our Main Result.
To save on notation, we consider throughout this paper the simplest el-

ementary symmetric model, depending on 3 parameters. We stress the fact
that this (discrete) symmetry is not essential in our case, and our results are
valid for any small 6D-perturbation of our model, since the above mentioned
limiting continuous symmetry holds in this more general setting.
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Vladas Sidoravicius
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Macroscopic sensitivity to localized defects: slow bond and many others...

Abstract: Consider one dimensional Totally Asymmetric Exclusion Process on Z, with
the density of particles being 1/2, and their jump rates being 1 everywhere, but the origin.
At the origin the jump rate is different: once particle arrives to the origin its jump rate
decreases to 1−λ, 0 < λ < 1, and becomes again equal to 1, as soon as particle jumps away
from the origin. The central question is to find out for which values of λ the current on the
far-right-side of the system is affected by such local slowdown? This problem is known as
the ”slow bond problem”, and the search for the critical value λc, above which the current
is affected and below it is not, was a demanding question.

The model has several equivalent representations such as the Polynuclear Growth Model
with ”columnar defect” or, as a directed Last Passage Percolation with ”reinforced diagonal”,
and can be treated by Random Matrices techniques as well, using the language of generalized
permutations.

Using Polynuclear Growth language (and other ingredients from random matrices and
interacting particle systems techniques), I first of all will show that λc = 0. Then, in contrast,
I will show that for some ”similar” growth systems λc could be strictly positive. It will bring
to the general discussion about sensitivity of growth systems to localized defects, questions
of polymer pinning in presence of bulk disorder and other closely related issues.

The talk based on joint works with V. Beffara, T. Sasamoto and M.E. Vares.
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MODULAR VECTOR INVARIANTS OF CYCLIC GROUPS

Sergey A. Stepanov
Institute for Information Transmission Problems,
Russian Academe of Sciences, Moscow, Russia

ABSTRACT. Let F be a field, V = Fx1+· · ·+Fxn a vector space of dimension n
over F , andG ≤ GL(n, F ) a finite group acting on V via F -linear transformations
of the basis elements x1, . . . , xn. Let V ⊕m = V ⊕· · ·⊕V be the m-fold direct sum
of the space V with diagonal action of the group G. Then the group G naturally
acts on the symmetric graded algebra Amn = F [xi1, . . . , xin | 1 ≤ i ≤ m]. Let
AG

mn denote the subalgebra of invariants of the polynomial algebra Amn with
respect to G. A classical result of Emmy Noether [8], [9] implies that in the
non-modular case, that is when the characteristic p of F does not divide |G|
(in particular, when char F = 0) the ring AG

mn is generated as F -algebra by
homogeneous polynomials of degree at most |G|, no matter how large m is. On
the other hand, it was proved by D. Richman [10]–[12] that this result is no
longer hold in the modular case when the characteristic p of F divides |G|. Let
p > 2 be a prime number, F = Fp a finite field with p elements, H a cyclic group
of order p acting on a linear Fp-space V of dimension n, and AH

mn the subalgebra
of invariants of the polynomial algebra Amn = Fp[xi1, . . . , xin | 1 ≤ i ≤ m] with
respect to H. In this paper we give a further development of the orbit sum
method proposed by the author in [16] and determine explicitly a complete
system of generators of the algebra AH

mn in the case when n = 3. In addition,
we find a lower degree bound for the maximal possible degree of homogeneous
invariants forming a complete system of generators of the algebra AH

mn. These
results extend the corresponding results of D. Richman [10]–[12], a result of
Campbell and Hughes [1] concerning the case n = 2, and a more general result
of the author [16] in the case of cyclic groups H of a special form.

I.INTRODUCTION

Let F be a field, A = R[x1, . . . , xn] a finitely generated commutative R-algebra,
G a finite group of its R-algebra automorphisms, and AG the subalgebra of
polynomial invariants of G. If z1, . . . , zn are commuting variables, we set

P (z1, . . . , zn) =

σ∈G

(1 + σ(x1)z1 + · · ·σ(xn)zn)

and denote by β(AG) the smallest positive integer for which AG can be generated
as an R-algebra by polynomials of degree at most β. If each nonzero integer is
invertible in R, then Noether’s classical result [8], [9] states that AG is generated
over R by the coefficients of P (z1, . . . , zn), so that β(AG) ≤ |G|. The last
inequality is known as Noether’s bound. The above mentioned result of Richman
[12] and standard arguments based on the use of the Noether map [9] show that
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Noether’s bound β(AG) ≤ |G| holds under a much weaker assumption that |G|!
is invertible in R. A recent result of Fleishmann [5] demonstrates that in fact the
last inequality holds under the assumption that the order |G| of G is invertible
in R.

If the characteristic p of F is positive and divide |G|, we speak of the modular
case. Otherwise, we have the non-modular case, which includes the classical
case of polynomial invariants over algebraically closed fields of characteristic
zero. Almost everything that is usually used in the non-modular case (see, for
example, [3], [13], [14]) is missing in the modular case: the Cohen–Macaulay
property fails in general, we have no Reynolds operator (averaging over |G|)
and no Molien’s formula for the generating Poincaré series. Nevertheless, if F is
a field of prime characteristic p, and H a p-Sylow subgroup of G, the modular
case admits a possibility of very extensive applications of generalized orbit Chern
classes related to H, especially, orbit traces (orbit sums of monomials) and top
orbit classes (orbit norms of monomials). Let F = Fp be a prime finite field with
p elements, and H a cyclic group of order p acting linearly on the vector space
V = Fpx1 + · · · + Fpxn. Set Amn = Fp[V ⊕m] and denote by AHmn the algebra
of invariants of Amn with respect to the diagonal action of H on the space
V ⊕m = V ⊕· · ·⊕V . It turns out that there exist a Fp-linear space Ṽ containing
V as a subspace and a cyclic group H̃ (closely related to to the group H and
acting linearly on Ṽ ) such that every invariant u ∈ AHmn can be written as a
special Fp-linear combination of orbit sums SH̃(f), orbit norms NH̃(g) (related
to the group H̃) and also their products SH̃(f)NH̃(g), for various monomials
f, g ∈ Fp[Ṽ m]. It should be noted that if H is a cyclic group of prime order
p , and F = Fp a prime field with p elements, then SH̃(f) and NH̃(g) can be
determined exactly that gives a possibility to write out a system of generating
elements of AHmn in an explicit form.

The most significant distinction between the non-modular and the modular
case is as follows: Noether’s bound no longer holds in the modular case. For
the first time this phenomenon was discovered by Richman [10] in course of
the study of H-invariant polynomials of the algebra Am2 = Fp[xi, yi | 1 ≤ i ≤
m], where H is a cyclic group of prime order p. In this paper he proved that
β(AHm2) ≥ m(p − 1). More generally, if G is a finite group of order divisible by
a prime number p and Anm a polynomial algebra over an arbitrary field F of
characteristic p, Richman [11] proved that

β(AGmn) ≥ m(p− 1)
p|G|−1 − 1

.

In the case of permutation groups this bound was later improved by Kemper [6]
and by the author [15] as follows: if F is a field of prime characteristic p, and
G ⊂ Sn a permutation group which contains an element of order pα, then

β(AGmn) ≥ max{n,m(pα − 1)} .

This result implies, in particular, that if R = Z is the ring of integers then
β(ASn

mn) ≥ max{n,m(n − 1)/2}. It has been recently shown by Fleischmann
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[4] that the above low degree bound β(AGmn) ≥ max{n,m(pα − 1)} is sharp: if
n = pα and m > 1 then

β(ASnmn) ≤ max{n,m(n− 1)} .

The last result can be regarded as a refinement of the Campbell-Hughes -Pollack
upper bound [2]

β(ASnmn) ≤ max{n,mn(n− 1)/2}, ,

which holds in the case of an arbitrary polynomial algebraAmn over a commutative
ring R.

2. CONSTRUCTION OF A COMPLETE SYSTEM OF GENERATORS

Theorem 1. Let H ≤ GL(3, Fp) be a cyclic group of order p which is generated
by the matrix

γ =




1 1 0
0 1 1
0 0 1


 .

There exists a system of homogeneous polynomials

xi3, xĩσ,3, ζĩσ,3, ωĩσ,3, u(̃iσ ,̃iτ ),3
,

ϕ(̃iσ ,̃iτ ),3
, ψ(̃iσ ,̃iτ ),3

, v(̃iσ ,̃iτ ),3, w(̃iρ ,̃iσ ,̃iτ ),3
, i,3, SH(f ) ,

where
ĩσ = (i1, . . . , iσ), 1 ≤ i1 < . . . < iσ ≤ m, 1 ≤ σ ≤ 3,

such that every invariant u ∈ AHm3 is a polynomial over Fp in elements of this
system.

Corollary 2. If m > 1, then every system of generating elements of the
algebra AHm,3 contains a polynomial of degree at least m(p− 1).

Theorem 1 provides an explicit construction of generating elements of the
algebra AHm3 in terms of the orbit sums and the orbit sums of monomials. The
algebra of vector invariants AHm2 over Fp, where H ≤ GL(2, Fp) is a cyclic
subgroup of order p generated by

γ =


1 1
0 1



for the first time was studied by Richman in [10]. In particular, he found a
minimal generating system of the above algebra in the case when p = 2 and
conjectured that a similar system would generate AHm2 in the case of odd prime p.
This conjecture was proved by Campbell and Hughes in [1]. Another important
result of the last paper is that for m > 2 the algebra AHm,2 is not Cohen–
Macaulay. Independently, an analogous generating system for the algebra AHmn,
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where n = 2r > 2 and H ≤ GL(n, Fp) is a cyclic subgroup of order p generated
by the matrix

γ =




J1

J2

. . .
Jr




with the basic Jordan blocks J1, J2, . . . , Jr of sizes n1 = n2 = · · · = nr = 2, was
found by the author [16].

In principle, the result of Theorem 1 can be extended to the general case of
the algebra AH

mn of polynomials f ∈ Amn that are invariant under the action of
an arbitrary cyclic subgroup H ≤ GL(n, Fp) of order p generated by the n× n
matrix

γ =




J1

J2

. . .
Jr




with the basic Jordan blocks J1, J2, . . . , Jr of sizes n1, n2, . . . , nr, respectively.
Moreover, the arguments of the paper give also a possibility to find a low bound
for the maximal possible degree of a generator in a complete generating system
of the algebra AG

mn in the case when G ≤ GL(n, Fp) is an arbitrary group
containing the cyclic subgroup H as a subgroup.

3. A BRIEF DESCRIPTION OF THE MAIN IDEAS

We now explain briefly the main ideas underlying the proof of Theorem 1. Let

Amn = F [xij | 1 ≤ i ≤ m, 1 ≤ j ≤ n]

be a polynomial algebra over Fp, G ≤ GL(n, Fp) a finite group, and f a
monomial from Amn. The use of orbit sums

SG(f) =


u∈{σ(f

| σ ∈ G}u

is most efficient in the case when the group G acts on elements of the algebra
Amn by permutations of the vector variables

x1 = (x11, . . . , xm1), . . . , xn = (x1n, . . . , xmn) .

In that case each invariant u ∈ AG
mn is an Fp-linear combination of the above

orbit sums SG(f) for various monomials f . This important result is an easy
consequence of the following fact: if a monomial f appears in an invariant u with
a nonzero coefficient a, then for each σ ∈ G the corresponding monomial σ(f)
also appears in u with the same coefficient a. Unfortunately, the above property
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is no longer hold for finite groups G of a more general form, in particular, for
cyclic groups H generated by matrices

γ =




J1

J2

. . .
Jr




with basic Jordan blocks J1, J2, . . . , Jr of sizes n1, n2, . . . , nr, respectively, such
that 1 < ni < p, for at least one i = 1, 2, . . . , r. On the other hand, if n1 = n2 =
· · · = nr = p, then after a non-singular linear transformation we can proceed to
a new system of vector variables

x̃1 = (x̃11, . . . x̃m1), . . . , x̃n = (x̃1n, . . . , x̃mn)

on which the group H acts by cyclic permutations.
Let H be the cyclic group of prime order p > 2 generated by a non-singular

square matrix γ with the basic Jordan blocks J1, J2, . . . , Jr of sizes n1, n2, . . . , nr,
respectively, and recall that H acts linearly on the vector space V m of dimension
m(n1 + · · · + nr). The proof of Theorem 1 falls into three steps.

(i) At the first step we ’blow up’ each Jordan block Ji, 1 ≤ i ≤ r, of
the matrix γ to a Jordan block of the largest possible size p. As a result, the
generating matrix γ of the cyclic group H is transformed into the corresponding
square matrix γ̃ of size ν = rp and the group H into the corresponding cyclic
group generating by γ̃ and acting on the vector space Ṽ m of dimension mν. It
follows from the above that then one can find new vector variables

x̃1 = (x̃11, . . . , x̃m1), . . . , x̃n = (x̃1n, . . . , x̃mn) ,

obtained from the original variables

x̃1 = (x̃11, . . . , x̃m1), . . . , xn = (x̃1n, . . . , x̃mn)

by a non-degenerate linear transformation, on which the group H̃ by cyclic
permutations. This property of the group H̃ allows us to show that every
invariant v of the algebra AH̃

mn is an Fp-linear combination of the orbit sums
SH̃(f), orbit norms NH̃(g) and also their products SH̃(f)NH̃(g) for various
monomials f, g ∈ Amν .

(ii) At the second step we we demonstrate that an appropriate embedding
of the algebra Am,3 into Am,p results a fairly simple test distinguishing among
the H̃-invariants v ∈ AH̃

mp the polynomial invariants with respect to the action
of H. The use of this test makes possible an explicit construction of invariants
u ∈ Am,3 as Fp-linear combinations of orbit sums SH̃(f) and orbit norms NH̃(g)
a special form, and also their products products SH̃(f)NH̃(g).

(iii) At the third step we form a complete system of generators of the algebra
AH

m,3 by selecting certain families of homogeneous polynomials u ∈ Am,3 of
bounded degree.
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V (x)
M > 0 C = C(M) > 0

|V (x) |  C e−M |x| (∗)
x ∈ R LV = −d2/dx2 + V (x)

S(k) =


A(k) B(k)
C(k) D(k)


,

V ∗ k ∈ C+

B(k) =
1

2ik



R
e−ikx V (x) y(−)(x, k) dx ,

C(k) =
1

2ik



R
eikx V (x) y(+)(x, k) dx ,

A(k) = 1 +
1

2ik



R
e−ikx V (x) y(+)(x, k) dx ,

D(k) = 1 +
1

2ik



R
eikx V (x) y(−)(x, k) dx

y(±)(x, k) = e±ikx

1−e∓ikxRV (k)e±ikxV


RV (k) LV

LV C−
S(k)

S(k)
C− E(k) = detS(−k)

C+ k ∈ C−

E(k) = 1 +
1

4k2
B(−k)C(−k) + O(k−1) .

V (x) (∗) V (k)| arg(±k)|  ψ

.

V (x) = e−P (x), P (x) = x2m/2m m ∈ N
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LV = −d2/dx2+e−x2m/2m LV

k±n = ± e∓i π
4m

2

 2πm

2m− 1
n
 2m−1

2m


1 ∓ i

(3m− 2)(2m− 1)

4πm2

lnn

n
∓

∓ i
(2m− 1)C±

4πm2

1

n
+ O


n

1−3m
2m

 
,

C± = m ln
2m− 1

2π
+ (3m− 2)


ln

2πm

2m− 1
± i

π

2


.

V (k) | arg(±k)|  π/4m

K :=


arg k ∈ (−π+π/4m,−π/4m)


V (2k) =
1

P (z0(k))
exp


S(z0(k), k)


1 + O


k
−m
2m−1


.

z0(k) = (2ik)
1

2m−1 S(z, k) = 2ikz − P (z)

k ∈ K =

k ∈ C−, ReS(z0(k), k) > 0



B(−k) =
√

2π V (−2k)

1 + O


k

1−m
2m−1



C(−k) =
√

2π V (2k)

1 + O


k

1−m
2m−1


.



R
e±2ikx V (x) y(∓)(x,−k) dx.

y(∓)(x,−k) R−∪[0, 2z0(k)]∪z0(k)+R+


S(x, k)

A(−k) D(−k) E(k) = 0

S(z0(k), k) − 3m− 2

2m
lnS(z0(k), k) + O(k

1−m
2m ) = πin − 1

4
ln


π/2


, n ∈ N,

V (x)

V (x) = e−P (x) , P (x) = a2mx2m + a2nx
2n + . . . + a0,
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a2m, a2n > 0. LV = − d2

dx2 + V (x)

k±ν , ν ∈ N

S

z0(k

±
ν ), k

±
ν


= ω±ν +

3m− 2
2m

lnω±ν + O

ν−min


1− n

m
, 1
2
− 1

m


,

z0(k) ∼

ik

ma2m

1/(2m−1)

S(z, k) = 2ikz + P (x)

ω±ν = ± πiν − 3m− 2
2m

ln

(2m− 1)a2m


+

1

2
ln


4m3(2m− 1)a3

2m/π

.

S(z, k)
L R− ξ(k) +R+ ⊂ z0(k) +R+ γ(k)

z = 0 ξ(k) γ
z0(k) ΩC =


P (z)  −C


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Dynamic Routing; Configuration of Overloaded
Interacting Servers

N.D. Vvedenskaya∗

We consider a symmetrical network with k servers and l Poisson in-
put flows. The protocol uses dynamic routing: each flow is assigned
to a subgroup of m servers, upon its arrival a message is directed to
the least busy of these servers. Under the condition that at least m
servers are overloaded the number of overloaded servers depends on
the rate of input flows. The work prolongs [1], where a similar effect
is described for a circle of interacting servers.

1 Description of problem, main theorem
We consider networks that use dynamic routing FIFO protocol where each flow
is assigned to a subgroup of m servers. Upon its arrival a message selects the
least busy server among the assigned ones. We are interested in probability of
large fluctuations where the massages of a flow have large delays.

There are many works investigating large fluctuations in networks with dy-
namic routing (see for example the bibliography in [1]). This work is a contin-
uation of [1], where a circle network with k servers and k Poisson input flows is
considered and the distribution of message lengths has light tails. Each flow is
assigned to 2 servers; upon its arrival a message is directed to the server with
smallest workload. It is shown that under the condition that at least 2 servers
are overloaded the number of overloaded servers depends on the rate of input
flows.

Consider a symmetrical system S = S(k,m) formed by k identical servers
S = (s1, ..., sk) and l =

�
k
m


independent Poisson flows F = (fA1 , ..., fAl

), each
of rate λ. Here Aj = (j1, ..., jm) are the numbers of servers SAj

= (sj1 , ..., sjm
)

assigned to fAj . The servers have infinite buffers and operate with equal rate
1. Upon its arrival with fAj a message is directed to a server from SAj that at
the time of its arrival has the smallest workload. The flows are described by the
sequences of independent pairs

(ξ(Aj)
n , τ (Aj)

n ), n = ...,−1, 0, 1, ..., j = 1, ..., l,

∗ Kharkevich Institute for Information Transmission Problems, RAS, Moscow, ndv@iitp.ru
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where τ (Aj)n are the intervals between arrivals of two messages and ξ(Aj)n –
the message lengths. All variables are iid, τ (Aj)n are exponentially distributed,
Pr(τ (Aj)n > t) = e−λt. The time t(Aj)n of message (ξ(Aj)n , τ

(Aj)
n ) arrival is nega-

tive if n < 0 and positive if n ≥ 0. The distributions of ξ(Aj)n are identical. We
require that there exists such θ+, 0 < θ+ ≤ ∞, that

ϕ(θ) = Eeθξ
(Aj)
n <∞ as θ < θ+, lim

θ↑θ+
ϕ(θ) =∞. (1)

The mean intensity of the sum of Poisson flows upon one server is Λ =
λ(km)

k .
The system is in stationary state,

Λϕ(0) < 1, λ < λ = k (lϕ(0))−1
.

If during some time period the flow intensity is large the flow is said to be
overheated, if there is a lot of unserved messages in a buffer of a server the
server is said to be overloaded.

We shown that if a message of some flow waits for a long time to be served
then the performance of network depends on mean flow rate: there exists value
of input flow rate such that if the arrival rates are above it a long waiting time
for a messages most probably coincides with overload of all servers. On the
other hand in case of low rate the overload of m servers most probably is not
connected with overload of others. The proof of this facts is based on comparison
of S with a network where each message selects one of m assigned servers with
a fixed probability. The probability of large workload decreases exponentially
with increase of workload. Remark that in a limit system with infinite number
of servers in case of dynamic routing the stationary distribution of queue lengths
decreases superexponentially (see [2]).

Introduce a notion of virtual messages. These are messages that arrive upon
S at time moment t = 0 with flows fAj , have zero lengths and are directed
to the servers according to the dynamic routing protocol. The delay (waiting
time) of virtual message that arrived with fAj is denoted by ωj . The delay of
virtual message that arrived with flow fA1 , A1 = (1, 2, ...,m), is denoted by ω1.
We are interested in probability of large ω1 and are looking for the asymptotics
of probability

J = lim
n→∞

−1
n

ln Pr(ω1 ≥ n)

Consider three random processes:
1. The l dimensional compound Poisson process ζ(t) = (ζ(A1(t), ..., ζ(Al)(t)),

ζ(Aj)(t) =


n: 0≤t
(Aj)
n <t

ξ
(Aj)
n .

2. The k dimensional process w(t) = ( w1(t), ..., wk(t)) that describes the
amount of work delivered to the servers during time [0, t).

3. The k dimensional Markov process w(t) = (w1(t), ..., wk(t)) that describes
the workload (the amount of unserved work) at the servers at moment t.

Consider also the scaled versions of these processes: ζ(Aj)n (t) = 1
nζ

(Aj)(nt),
wi

n(t) = 1
n wi(nt), wi

n(t) = 1
nw

i(nt).

2
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It is clear that Pr(ω1 > nd) = Pr[ min(w1
n, ..., w

m
n ) > d].

A topological space of not-decreasing functions defined on [0,∞) and equal
to 0 at x = 0 is introduced; the space is equipped with uniformly week topology
(see [3]); a sequence of measures is defined by the processes ζn. On this space
a rate function I is considered. By conditions (1) we can consider only the
subspace of absolutely continuous functions where I is defined by

I(x) =
 ∞

0

sup
θ<θ+

{θẋ(t)− λ[ϕ(θ)− 1]}dt, x ∈ Xa,

here ẋ is a derivative on t. For x(t) that is a trajectory of fAj
we call ẋ the flow

speed.
In our problem as n → ∞ the components of optimal trajectories ζ, where

rate function reaches its conditional minimum, converge to the functions of form

ẋT,a(t) =


a as t ∈ [0, T ),
λϕ(0) = a∗ as t > T,

xT,a(0) = 0 (2)

Below we always presume that as n → ∞ the trajectories converge to such
functions. The asymptotics of large delay probability is estimated for the limit
trajectories of form (2). For a set of trajectories Z(t), that converge to xT,a

I(Z) = inf
z∈Z
I(z) = T sup

θ
{θa− λ[ϕ(θ)− 1]}.

Introduce an event
Γj(n) = (ωj ≥ nd),

it indicates that a virtual message that arrived with fAj
, has a delay ≥ nd.

T h e o r e m 1 . For any k, k ≥ 3, and any d > 0 there exist λ(k), λ
(k),

0 < λ(k) ≤ λ(k) < λ, that depend on ξAj distribution such that

 If λ < λ(k), then J = limn→∞
−1
n ln Pr (Γ1(n)) = mθmd, where θm is a

positive root to equation mθ = λ[ϕ(θ)− 1].

The limit dynamic of conditional process ζn under the condition Γ1(n) is

ζn = (xT,a1 , xT,a∗ , ..., xT,a∗), a1 = λϕ(θm). (3)

 If λ > λ(k), then J = limn→∞
−1
n ln Pr (Γ1(n)) = kθkd, where θk is a

positive root to equation kθ = λ
�

k
m


[ϕ(θ)− 1].

The limit dynamic of conditional process ζn under the condition Γ1(n) is

ζn = (xT,ak
, , ..., xT,ak

), ak = λϕ(θk). (4)

Remark that the event Γ1 in case λ < λ(k) is mainly defined by fA1 , only this
flow is overheated, and in case λ > λ(k) all flows are overheated.

Below we consider several scenarios that bring the events Γ1(n) and estimate
there probability.

3
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2 Comparison of two protocols of routing
In addition to system S with dynamic routing introduce an auxiliary system
S(0) with similar k servers and l flows. The realization of flows in both systems
are identical. At S(0) the routing is random: a message of flow fAj with given
probability α(j, r) is directed to the server sr, sr ∈ SAj

. Naturally, 0 ≤ α(j, r) ≤
1,

m
r=1 α(j, r) = 1. Remark that in auxiliary system the flows upon the

servers are independent and Poisson. We say that fAj
is served by servers

sr1 , ...srq
, q ≤ m if α(j, r1) > 0, ..., α(j, rq) > 0.

Suppose that during some time interval T the flows F have the speeds
aA1 , ..., aAl

. We call these flows balanced with respect to servers S if for any
j, r there exist such α(j, r) and such b > 0 that


j

α(j, r)aAj
=

l
j=1 aAj

k
= b.

Note that α(j, r) may be defined not uniquely.
Now compare the performance of systems S and balanced system S(0).
In case of system S(0) consider the random processes v and v that are similar

to processes w and w for system S.
In space Rk denote by Wb(t) and Wb(t) the projections of w(t) and w(t)

upon the bisectrix w1 = ... = wk and denote by Wp(t) andWp(t) the projections
of the same vectors upon a hyperplane orthogonal to the bisectrix. Similarly
denote by Vb(t), Vb(t) and Vp(t), Vp(t) the projections of v(t) and v(t) upon the
bisectrix v1 = ... = vk and upon a hyperplane orthogonal to the bisectrix.

Remark that |Wb(t)| = |Vb(t)|. (Here and below |a| is the length of vector
a.)

We call both systems overloaded if
l

j=1 aj > k (and b > 1).
Below we present without proofs several statements.

L e m m a 1 . If S and S(0) are overloaded and flows F are balanced then

E
|vi(t)| − |vj(t)| < O

�
tβ

, E

|vi(t)| − |vj(t)| < O
�
tβ

,

1
2
< β < 1, (5)

E
| wi(t)| − | wj(t)| < O

�
tβ

, E

|wi(t)| − |wj(t)| < O
�
tβ

,

1
2
< β < 1. (6)

E|Wb(t)| −E|Vb(t)|
 <const uniformly in t.

Lemma 1 states that both in S and S(0) the load vectors are concentrated in
the neighborhood of bisectrix. The following example shows that in fact in a
system with dynamic routing the load vectors are more concentrated.

Example. Consider a system with 2 servers and 1 flow ( k = 2, l = 1,m = 2).
In auxiliary system set α(1, 1) = α(1, 2) = 1

2 . At the moment tn of message
arrival vector Vp(tn + 0)− Vp(tn − 0) is directed with equal probability towards
the bisectrix or towards the opposite direction, E|Vp(t)| = O

�
n1/2


for ∀ t. If

4
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|Wp(t+0)| = |Wp(t− 0)| then vector Wp(t+0)−Wp(t− 0) is directed towards
the bisectrix and E|Wp(t)| = O(1).

If the flows are not balanced then F and S can be divided into r groups of
flows F (p) and servers S(p), F =

r
p=1 F (p), S =

r
p=1 S(p), so that the flows

of F (p) are served by the servers S(p) and F (p) are balanced with respect to
S(p). Denote by b(p) the mean sum of speeds of flows upon a server si ∈ S(p),
let b(p) < b(p− 1).

The dividing can be performed in correspondence with dynamic routing:
C o n d i t i o n 1. If some flow is assigned to servers of different groups it
is served by the servers of the group with the smallest possible b(p).

The dividing for which Condition 1 is fulfilled is called a proper dividing. It
can be shown that a proper dividing is unique.

Example of proper dividing: k = l = 3, m = 2, A1 = (1, 2), aA1 = 5,
A2 = (2, 3), aA2 = 1, A3 = (1, 3), aA3 = 1, α(1, 1) = α(1, 2) = 1/2, α(2, 2) =
0, α(2, 3) = 1, α(3, 3) = 1, α(3, 1) = 0, b(1) = 2.5, b(2) = 2.

Below we use the same notation S(p), F (p) for groups of S(0) and S.
After a proper dividing is chosen the space Rk of v is divided into r subspaces

Rkp where kp is the number of si ∈ S(p). If b(p) > 1 the load vectors vp(t) =
(vp1(t), ..., vpkp (t)) are "mainly" concentrated in neighborhood of sub-bisectrix
vp1 = ... = vpkp and increase with speed b(p)− 1 (compare with (5)). .

L e m m a 2 . If proper dividing is chosen and b(p) > 1 then for load
vectors wp(t) = (wp1(t), ..., wpkp (t)) the inequalities of type (6) take place, the
components of wp(t) increase with speed b(p)− 1.

Consider an event Γ(0)
j (n) =


[minsi∈SAj

vi] ≥ nd


that is similar to event
Γj(n).

C o r o l l a r y 1 . As n→∞ asymptotics of Pr(Γj(n)) coincide with
asymptotics of Pr(Γ(0)

j (n)).

Let the evens Γ1(n) and Γ(0)
1 (n) take place under the condition:

C) during time interval T the flows F have the speeds aA1 , ..., aAl and are
divided properly. Let sr be a server where r = argminm

q=1 v
q(T ) and sr ∈ S(p).

That means that in the limit n → ∞ the speed of increase of vq
n (and of wq

n),
1 ≤ q ≤ m, is not less then b(p)− 1.

Set F  =
p

q=1 F (q), |F | = l and S =
p

q=1 S(q), |S| = k, here l =
�
k

m


.

P r o p o s i t i o n 1 . The rate function of events Γ1(n) and Γ(0)
1 (n)

under the conditions C) is not less then the rate function of similar events for
a properly divided flows where speeds of flows fAj ∈ F (q) ⊂ F  are equal to

aAq =
aAq b(p)

b(q) , the speeds of fAj ∈ F \ F  are equal to a∗, |vj(t)| and |wj(t)|,
sj ∈ S, increase with speed b(p)− 1.

From large deviation theory and from above statements follows

5
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L e m m a 3 . The rate function J(k,m) of events Γ(0)1 (n) and Γ1(n) un-
der the condition that l flows assigned to k servers have equal speeds and are
overheated, l =

�
k

m


, while l − l flows have speed a∗, is equal to

J(k,m) = kθd, (7)

where θ is the root to equation

kθ = ϑ(λ, k) = lλ (ϕ(θ)− 1) . (8)

The speed of overheated flows is a = λϕ(θ).

We see now that the rate function of events Γ1(n) and Γ(0)1 (n) caused by some
configuration of flows is bounded from below by rate function of similar events
caused by configuration of flows where l, 1 ≤ l ≤ l flows have equal speeds
a > a∗ and l − l flows are of speed a∗.

To prove the theorem me have to investigate the dependance of J(k,m)
on λ and k. Remind that λ = kΛ

(k
m)

, Λ < (ϕ(0))−1. It follows from (7),(8)

that as Λ → Λ = (ϕ(0))−1 (and λ → λ) then limk=k,Λ→Λ ϑ(λ, k
) = 0, and

limk<k,Λ→Λ ϑ(λ, k
) > 0. Therefore if λ is sufficiently large then J(k,m) takes

its minimum at k = k, the event ω1 > nd is most probable as all flows are
equally overheated, see (4).

Further, as limλ→0 θ
 = θ+ the function ϑ(λ, k) increases the faster the less

is k. Therefore for sufficiently small λ J(k,m) takes its minimum as k = m.
The event ω1 > nd is most probable as only one flow fA1 is overheated, see (3).

Remark that for not symmetrical system the statement of Theorem 1 may
be wrong.

We thank V.M. Blinovskii, E.A. Pecherskii and Y.M. Suhov for useful dis-
cussions.
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Abstract. Using the game-theoretic framework for probability, Vovk
and Shafer [7] have shown that it is always possible, using randomiza-
tion, to make sequential probability forecasts that pass any well-behaved
statistical test. We show that Vovk and Shafer’s result is valid only when
the forecasts are computed with unrestrictedly increasing degree of ac-
curacy. We present a test failing any given method of randomized fore-
casting which uses a fixed level of discreteness.

Using the game-theoretic framework for probability [6], Vovk and Shafer have
shown in [7] that it is always possible, using randomization, to make sequential
probability forecasts that pass any well-behaved statistical test. This result gen-
eralizes work by other authors, among them are Foster and Vohra [2], Kakade
and Foster [3], Lehrer [4], Sandrony et al. [5], who consider only tests of calibra-
tion.

We complement this result with a lower bound. We show that Vovk and
Shafer’s result is valid only when the forecasts are computed with unrestrictedly
increasing degree of accuracy. We present a test failing any given method of dis-
crete randomized forecasting. To formulate this example, we use the forecasting
game presented by Vovk and Shafer [7], namely Binary Forecasting Game II.

Let P{0, 1} be the set of all measures on the two-element set {0, 1}. Any
measure from P{0, 1} is represented by a number p ∈ [0, 1] - the probability of
{1}. Let P[0, 1] be the set of all probability measures on the unit interval [0, 1]
supplied with the standard Borel σ-field F .

Randomizing forecasting is defined as follows. For each n, a forecaster given
a binary sequence of past outcomes ω1 . . . ωn−1 (and a sequence of past forecasts
p1, . . . , pn−1) outputs a probability distribution Pn ∈ P[0, 1]. The forecasts pn

of the the future event ωn = 1 are distributed according to this probability
distribution.

Vovk and Shafer’s [7] Binary Forecasting Game II between three players -
Forecaster, Skeptic, Reality, Random Number Generator is described by the
following protocol:

 This research was partially supported by Russian foundation for fundamental re-
search: 09-07-00180a
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Let K0 = 1 and F0 = 1.
FOR n = 1, 2, . . .
Skeptic announces Sn : [0, 1]→ R.
Forecaster announces a probability distribution Pn ∈ P[0, 1].
Reality announces ωn ∈ {0, 1}.
Forecaster announces fn : [0, 1]→ R such that


fn(p)Pn(dp) ≤ 0.

Random Number Generator announces pn ∈ [0, 1].
Skeptic updates his capital Kn = Kn−1 + Sn(pn)(ωn − pn).
Forecaster updates his capital Fn = Fn−1 + fn(pn).
ENDFOR

Restriction on Skeptic: Skeptic must choose the Sn so that his capital Kn is
nonnegative for all n no matter how the other players move.

Restriction on Forecaster: Forecaster must choose the Pn and fn so that his
capital Fn is nonnegative for all n no matter how the other players move.

Vovk and Shafer [7] showed that Forecaster has a winning strategy in the
Forecasting Game II, where Forecaster wins if either (i) his capital Fn is un-
bounded or (ii) Skeptic’s capital Kn stays bounded; otherwise the other players
win.

Using some specific forms of Sn(p), Shafer and Vovk [6] have shown that
Forecaster has strategies forcing the strong law of large numbers and the law of
iterated logarithm.

Theorem 1. Forecaster has a winning strategy in Binary Forecasting Game II.

For completeness of the presentation, we give a sketch of the proof from [7].
At first, at any round n of Binary Forecasting Game II, a simple auxiliary

game between Realty and Forecaster is considered: Forecaster chooses pn ∈ [0, 1],
Realty chooses ωn ∈ {0, 1}. Forecaster losses (and Realty gains) S(pn)(ωn−pn).

For any mixed strategy of Realty Qn ∈ P{0, 1}, let Forecaster’s strategy be
pn = Q{1}. So, the Realty’s expected gain is S(pn)(1−Q{1})Q{1}+S(pn)(0−
Q{1})Q{0} = 0, where Q{0} = 1−Q{1}.

In order to apply von Neumann’s minimax theorem, which requires that move
space be finite, we replace Forecaster move space [0, 1] with a finite subset of
[0, 1] dense enough that the value of the game is smaller than some arbitrary
small positive number ∆ (depending on n). This is possible, since |Sn(p)| ≤
Kn−1 ≤ 2n−1. 2 The minimax theorem asserts that Forecaster has a mixed
strategy P ∈ P[0, 1] such that


Sn(p)(ωn − p)P (dp) ≤ ∆ (1)

for both ωn = 0 and ωn = 1.
Let E∆ be the subset of P[0, 1] consisting all probability measures P satis-

fying (1) for ωn = 0 and ωn = 1. Endowed with the weak topology, P[0, 1] is
2 Skeptic must choose Sn(p) such that Kn ≥ 0 for all n no matter the other players

move.
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compact. Since each E∆ is closed, ∩E∆i
= ∅, where ∆i, i = 1, 2, . . ., is some

decreasing to 0 sequence of real numbers. So there exists Pn ∈ P[0, 1] such that

Sn(p)(ωn − p)Pn(dp) ≤ 0

for both ωn = 0 and ωn = 1.
In Binary Forecasting Game II, consider the strategy for Forecaster that

uses at any round n the probability distribution Pn just defined and uses as his
second move the function fn defined fn(p) = Sn(p)(ωn − p). Then Fn = Kn for
all n. So either Skeptic’s capital will stay bounded or Forecaster’s capital will be
unbounded. 

In that follows we consider some modification of Binary Forecasting Game
II in which Skeptic (but not Forecaster) announces fn : [0, 1]→ R. This means
that Skeptic defines the test of randomness he needs.

Also, at each step n, Skeptic divide his capital into two accounts: Kn =
Qn+Fn; he uses the capital Fn to force Random Number Generator to generate
random numbers which pass the test fn.

Let K0 = 2.
FOR n = 1, 2, . . .
Skeptic announces Sn : [0, 1]→ R.
Forecaster announces a probability distribution Pn ∈ P[0, 1].
Reality announces ωn ∈ {0, 1}.
Skeptic announces fn : [0, 1]→ R such that


fn(p)Pn(dp) ≤ 0.

Random Number Generator announces pn ∈ [0, 1].
Skeptic updates his capital Kn = Kn−1 + Sn(pn)(ωn − pn) + fn(pn).
ENDFOR

We divide the Skeptic’s capital into two parts:
Kn = Qn + Fn for all n, where
Q0 = 1 and F0 = 1.
Qn = Qn−1 + Sn(pn)(ωn − pn) and
Fn = Fn−1 + fn(pn) for all n > 0.

Restriction on Skeptic: Skeptic must choose the Sn and fn so that his capital
Kn is nonnegative for all n no matter how the other players move.

Actually, Skeptic will choose the Sn and fn so that both of his capitals Qn
and Fn are nonnegative for all n no matter how the other players move.

Assume for each n, the probability distribution Pn is concentrated on a finite
subset Dn of [0, 1], say, Dn = {pn,1, . . . , pn,mn

}. The number ∆ = lim inf
n→∞

∆n,
where

∆n = inf{|pn,i − pn,j | : i = j},

is called the level of discreteness of the corresponding forecasting scheme on the
sequence ω1ω2 . . .. In general case Dn is measurable with respect to the σ-field
Fn−1, depending on ω1 . . . ωn−1.

A typical example is the uniform rounding: for each n, rational points pn,i
divide the unit interval into equal parts of size 0 < ∆ < 1 and Pn is concentrated
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on these points. In this case the level of discreteness equals ∆ for an arbitrary
sequence ω1ω2 . . ..

We prove that when Forecaster uses finite subsets of [0, 1] for randomization
Realty and Skeptic can defeat Forecaster (and Random Number Generator) in
this forecasting game, where Realty and Skeptic win if Skeptic’s capital Kn is
unbounded; otherwise Forecaster and Random Number Generator win.

Theorem 2. Assume Forecaster’s uses a randomized strategy with a positive
level of discreteness on each infinite sequence ω. Then Realty and Skeptic win in
the modified Binary Forecasting Game II.

Proof. Define a strategy for Realty: at any step n Realty announces an outcome

ωn =

0 if Pn((0.5, 1]) > 0.5
1 otherwise.

We follow Shafer and Vovk’s [6] method of defining the defensive strategy for
Skeptic.

Let k = 2−k, k = 1, 2, . . .. We define recursively by n: Qs,k
0 = 1, Ss,k

0 (p) = 0,
s = 1, 2, and for n ≥ 1

S1,k
n (p) = −kQ1,k

n−1ξ(p > 0.5), (2)

S2,k
n (p) = kQ2,k

n−1ξ(p ≤ 0.5), (3)

where ξ(true) = 1, ξ(false) = 0, and for n ≥ 1

Q1,k
n = Q1,k

n−1 + S
1,k
n (pn)(ωn − pn)), (4)

Q2,k
n = Q2,k

n−1 + S
2,k
n (pn)(ωn − pn)). (5)

We combine S1,k
n (p) and S2,k

n (p) in the Skeptic’s strategy Sn(p) = 1
2 (S

1
n(p) +

S2
n(p)), where S

1
n(p) =

∞
k=1

kS
1,k
n (p) and S2

n(p) =
∞

k=1

kS
2,k
n (p). It can be proved

by the mathematical induction on n that 0 ≤ Qi,k
n ≤ 2n and |Si,k

n (p)| ≤ 2n−1 for
i = 1, 2 and for all k, p and n. Then these sums are finite for each n and p.

By (4)-(5) the Skeptic’s capital Qn at step n, when he follows the strategy

Sn(p), equals Qn = 1
2

∞
k=1

k(Q1,k
n +Q2,k

n ).

Define for each n the function gn(p) = (2ξ(p ≤ 0.5) − 1)(ωn − p). Let
EPn(gn) =


gn(p)Pn(dp).

Let Forecaster be used some randomized strategy Pn, n = 1, 2, . . ..
We define recursively by n: Fk

0 = 1, g
k
0 (p) = 0, and for n ≥ 1

gk
n(p) = −kFk

n−1(gn(p)− EPn
(gn)), (6)

where k = 2−k, and Fk
n = Fk

n−1 + g
k
n(pn) for n ≥ 1.

By definition for any k and n,

Fk
n =

n
j=1

(1− k(gj(pj)− EPj
(gj))). (7)
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By (7) 0 ≤ Fk
n ≤ 2n for all n and k. Finally, Skeptic defines at step n, fn(p) =

∞
k=1

kg
k
n(p). By definition


fn(p)Pn(dp) ≤ 0.

By (7) the Skeptic’s capital Fn at step n, when he follows the strategy fn(p),

equals Fn =
∞

k=1

kFk
n . Also, Fn ≥ 0 for all n.

Suppose that sup
n
Fn = C <∞, where C > 0. Then sup

n
Fk

n <
C
k
for each k.

We have for each k,

lnFk
n ≥ −k

n
j=1

(gj(pj)− EPj (gj))− n2k.

Here we use the inequality ln(1 + r) ≥ r − r2 for all |r| ≤ 1
2 .

Since Fn is bounded by C > 0, we have for any k

1
n

n
j=1

(gj(pj)− EPj (gj)) ≥
− lnC + ln(k)

nk
− k ≥ −2k (8)

for all sufficiently large n.

Define two variables ϑn,1 =
n

j=1

ξ(pj > 0.5)(ωj − pj) and ϑn,2 =
n

j=1

ξ(pj ≤

0.5)(ωj−pj). By definition of gj , ϑn,2−ϑn,1 =
n

j=1

gj(pj). Define g1,j(p) = ξ(p >

0.5)(ωj − p) and g2,j(p) = ξ(p ≤ 0.5)(ωj − p). Then gj(p) = g2,j(p)− g1,j(p).
Assume for any n the probability distribution Pn is concentrated on a finite

set {pn,1, . . . , pn,mn}.
For technical reason, if necessary, we add 0 and 1 to the support set of Pn

and set their probabilities to be 0. Denote p−n = max{pn,t : pn,t ≤ 0.5} and
p+n = min{pn,t : pn,t > 0.5}.

By definition ωn, p+n and p
−
n are predictable and p

+
n −p−n ≥ ∆ for all n, where

∆ > 0. We have

n
j=1

EPj
(g1,j) ≤


ωj=0

Pj{p > 0.5}(−p+j ) +

ωj=1

Pj{p > 0.5}(1− p+j ) ≤

−0.5
n

j=1

ξ(ωj = 0)p+j + 0.5
n

j=1

ξ(ωj = 1)(1− p+j ). (9)

n
j=1

EPj (g2,j) ≥

ωj=0

Pj{p ≤ 0.5}(−p−j ) +

ωj=1

Pj{p ≤ 0.5}(1− p−j ) ≥

−0.5
n

j=1

ξ(ωj = 0)p−j + 0.5
n

j=1

ξ(ωj = 1)(1− p−j ). (10)
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Subtracting (9) from (10), we obtain
n

j=1

EPj
(gj) =

n
j=1

EPj
(g2,j)−

n
j=1

EPj
(g1,j) ≥ 0.5∆n.

Using (8), we obtain for all sufficiently large n

1
n
(ϑn,2 − ϑn,1) =

1
n

n
j=1

gj(pj) ≥
1
n

n
j=1

EPj
(gj)− 2k ≥ 0.5∆− 2k. (11)

Now we compute a lower bound of Skeptic’s capital. We have from the defini-

tion (2)-(3) Q1,k
n =

n
j=1

(1− kξ(pj > 0.5)(ωj − pj)), and Q2.k
n =

n
j=1

(1+ kξ(pj ≤

0.5)(ωj − pj)). By these inequalities, 0 ≤ Qi,k
n ≤ 2n for all n and for i = 1, 2, no

matter how the other players move. Also at step n, lnQ1,k
n ≥ −kϑn,1− 2kn and

lnQ2,k
n ≥ kϑn,2 − 2kn. These inequalities and (11) imply

lim sup
n→∞

lnQ1
n + lnQ2

n

n
≥ 0.5k∆− 22k ≥ 22k (12)

for all sufficiently large n, where k ≤ 1
8∆. From this, we obtain

lim sup
n→∞

lnQi,k
n

n
≥ 2k

for i = 1 or for i = 2, and for all sufficiently large n.
Hence, we obtain for the total capital of Skeptic Kn = Qn + Fn

lim sup
n→∞

Kn =∞

no matter how Forecaster moves if Realty uses her strategy defined above.
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The M/D/1—EPS QUEUE REVISITED

S.F.Yashkov∗

Abstract

Starting from previous results of studying the M/G/1 queue with egalitarian processor sharing
(EPS), we consider a special case: the M/D/1—EPS, and show how to obtain the (conditional)
sojourn time distribution for this special case from more general results. Some new properties of such
queues are discovered. We also establish some connections between the M/D/1—EPS queue and some
known results from geometrical probability and uniform spacings.

Keywords: processor sharing, queues, Laplace transforms, sojourn time distribution, branching
processes, covering a circle

1 Introduction

One of the most interesting service disciplines in queueing theory is that of egalitarian processor sharing
(EPS): when n > 0 jobs are present in the system, then every job is being served with rate 1/n. In
other words, all these jobs simultaneously receive 1/n times the rate of service which a solitary job in
the processor (server) would receive. Jumps of the service rate occur at the instants of arrivals and
departures from the system. Therefore, the rate of service received by a specific job fluctuates with time
and, importantly, its sojourn time depends not only on the jobs in the server at its time of arrival there,
but also on subsequent arrivals shorter of which can overtake a specific job. This makes the EPS queue
intrinsically harder to analyse than, say, the classical First Come—First Served (FCFS) queue or many
other classical disciplines. The system works in steady state.

EPS queue was introduced by Kleinrock [1] in 1964 and has been the subject of much research over
the past 40+ years. In this model one of the main measures of performance is a (tagged) job’s sojourn
time distribution, conditioned on that job’s service time (job’s size). The (stationary) sojourn time is
the time the tagged job leaves the system after being served, assuming the job arrives at time zero.

We denote by V (u) the conditional sojourn time, with u being the service time. If the tagged job
arrived to an empty system and no further arrivals occurred in the time interval [0, u], then V (u) = u.
But in general V (u) > u as the tagged job must share the capacity of the server. We denote by β(u)
the service time density, by v(x|u) the conditional sojourn time density, and by v(x) =

 x
0 v(x|u)β(u) du

the unconditional sojourn time density. In general, v(x|u) has a probability mass along x = u, but v(x)
is generally continuous function.

The M/M/1—EPS queue assumes Poisson arrivals and i.i.d. service times with density β(u) = µe−µu.
An expression for E[e−sV (u)] (that is, for the Laplace transform (LT) of v(x|u)) is known since 1970 (see,
e.g., Kleinrock’s book [2, Eq. (4.19)] (1976)).

∗Institute for Information Transmission Problems of RAS (Kharkevich Institute), 19, Bol’shoi Karetny, GSP-4, Moscow,
127994, Russia.
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A more difficult model is the M/G/1—EPS queue, where the service density is general. This was
independently analysed by the author in [3] (1981), [4] (1983) and by Schassberger [5] (1984) by means
of completely different new analytical methods (in particular, the papers [3, 4] use the view of the EPS
queue as a branching process.) These authors obtained an explicit, albeit complicated, expression for
E[e−sV (u)]. Inverting the LT leads to an expression for v(x|u) as a contour integral (see Theorem 1), but
the integrand is a nonlinear function of another contour integral, which is in turn defined in terms of the
LT of the service density.

In this paper we will give a brief derivation of the Laplace–Stieltjes transform (LST) of the conditional
sojourn time distribution in the M/D/1—EPS queue with deterministic service density. This was derived
by the author (see [6, p. 73]) and more recently in [7, 8]. However, in most cases authors use arguments
that are specific to the case G = D. But these results also follow easily from the general M/G/1—EPS
model. This note shows how such special results can be obtained from the general results. We also give
some insight to the properties of the main ingredient of sojourn time in the M/D/1—EPS queue, which
are related to well–known problems from geometrical probability and uniform spacings.

2 Preliminaries

In this section we give a short representation about the main results of the determination of the stationary
sojourn time distribution (in terms of double Laplace transforms) for the M/G/1—EPS queue.

Let jobs arrive to the single server according to a Poisson process N = {N(t) : t ≥ 0} with the rate
λ > 0. Their sizes are i.i.d. random variables with a general distribution function B(u) = P(B ≤ u),

(B(0) = 0, B(∞) = 1) with the mean β1 < ∞ and the LST β(s)

=

 +∞
0− e−su dB(u). 1 We assume

that ρ = λβ1 < 1.
We recall that V (u) denotes the conditional sojourn time of a job of the size u upon its arrival. The

LST of V (u) is defined by v(s, u)

= E[e−sV (u)] for Re s ≥ 0 and u ≥ 0.

Let π(s) be the LST of the busy period distribution. In other words, it is the positive root of the
well–known Kendall–Takács functional equation

π(s) = β(s+ λ− λπ(s)) (2.1)

with the smallest absolutely value.

To obtain the LST v(s, u) ∆=
∞
0 e−sx dP(V (u) ≤ x) the following (non–trivial) decomposition of the

random variable V (u) was carried out. We tagged some (virtual) job of the length u and examined the
process of the accumulation of its attained service time. We assume that this tagged job enters into
the EPS system at time t = 0 under the condition that it meets at its arrival time n ≥ 0 other jobs
(the ancestors) in the system with the remaining sizes which lie in infinitesimal neighbourhood of the
points x1, . . . , xn (that is, the EPS system is in the state (n;x1, . . . , xn) if n > 0 or the system is empty
if n = 0). Then the sojourn time of the tagged virtual job is decomposed as:

Vn(u|(n;x1, . . . , xn))
d=

n
i=1

Φ(xi, u) +D(u). (2.2)

1We assumed that B(·) has no atom in the origin. For otherwise, the pattern of busy and idle periods is essentially the
same as in a queueing process for which arrival rate is reduced to λ[1− P(B = 0)], and service time has the distribution of
B given that B > 0.

2
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Here Φ(x, u) is the sum of increments of attained service time (an age) of a job–ancestor of the
initial size x and its direct jobs–descendants for the time interval during which the remaining size of
other ancestor (say, the tagged job) is reduced by u. This random variable may be also considered as
some (Markovian) functional of the corresponding branching process which describes its total lifetime.
However, it is more simple to interpret the random variable Φ(x, u) as a duration of some terminating
(sub)busy period initiated by ancestor with the size x. It is terminated at time when the increment of the
attained service time of the tagged job reaches the level u. The probabilistic structure of the ingredients
of such a busy period is reminiscent of the structure of the components of a standard busy period, but
with the important difference that each subsequent component depends on the termination time of a
branching process and the size of a descendant. Therefore a subsequent component is stochastically

smaller than a preceding component (in the sense of some stochastic order relation of type
1≤ for the

distribution functions.)
As u→∞, then the random variable Φ(x, u) is reduced to the standard busy period with the fixed

size x of the job which opens it. The random variable Φ(x, u) does not depend on x as x ≥ u. For
convenience, the special notation for this case was introduced in Eq. (2.2):

D(u) d= Φ(x, u) for x ≥ u. (2.3)

The components of the stochastic equality (2.2) (which were called delay elements in [4]) are inde-
pendent of each other. The independence of these random variables is an another non–trivial fact which
was elegantly proved by means of two ways: using an equiprobable random selection mechanism for a
distinction of jobs–descendants [4, pp.138–139], and using the random time change [6, §2.8].

To find the distributions of the components of the decomposition (2.2), we need to derive and solve
some system of differential equations (with initial–boundary conditions). Let ϕ(s, x, u) ∆= E[e−sΦ(x,u)]
and δ(s, u) ∆= E[e−sD(u)]. Then

∂ϕ(s, x, u)
∂x

+
∂ϕ(s, x, u)

∂u
+


s+ λ− λ

 ∞

0
ϕ(s, y, u) dB(y)


ϕ(s, x, u) = 0, (2.4)

∂δ(s, u)
∂u

+

s+ λ− λ

 ∞

0
ϕ(s, y, u) dB(y)


δ(s, u) = 0, (2.5)

δ(s, 0) = ϕ(s, 0, u) = ϕ(s, x, 0) = 1. (2.6)

Thus

E[e−sV (u)|(n;x1, . . . , xn)] = δ(s, u)
n

i=1

ϕ(s, xi, u), Re s > 0. (2.7)

From here we obtain after removing the condition on (n;x1, . . . , xn) (that is, after averaging on the
stationary distribution density of the Markov process of the number of jobs with the remaining sizes
which lie in infinitesimal neighbourhood of the points x1, . . . , xn) the following statement.

Theorem 1 When ρ < 1, then

v(s, u) ∆= E[e−sV (u)] = (1− ρ)δ(s, u)

1− ρ

 ∞

0
ϕ(s, x, u)

(1−B(x))
β1

dx

−1
, (2.8)

where

ϕ(s, x, u) =


δ(s, u) for x ≥ u,
δ(s, u)/δ(s, u− x) for x < u,

(2.9)

3
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and
δ(s, u) = e−u(s+λ)/ψ(s, u), u ≥ 0 (2.10)

are the solutions of the system of equations (2.4) and (2.5) (together with (2.6)). Here ψ(s, u) is the
LST (with respect to x) of some function Ψ(x, u) of two variables (possessing the probability density on
variable x), which, in turn, has a LT with respect to u (argument q)

ψ̃(s, q) =
q + s+ λβ(q + s+ λ)

(q + s+ λ)(q + λβ(q + s+ λ))
(s ≥ 0, q > −λπ(s)). (2.11)

Eq. (2.8) is a representation of the random variable V (u) in the form of some geometric random sum.
Here we do not consider various subtleties of the proof (all this was described in the works cited). It is
worth noting that the function ψ̃(s, q) in (2.11) is given in the form of the two–dimensional transform
of a function Ψ(x, u))

ψ̃(s, q) =
 ∞

0

 ∞

0
e−sx−qudxΨ(x, u)du. (2.12)

In other words, ψ(s, u) is the Laplace transform inversion operator, namely, ψ(s, u) = L−1(ψ̃(s, q))(s, u),
that is, the contour Bromvich integral

ψ(s, u) =
1
2πi

 +i∞+0

−i∞+0
ψ̃(s, q)equ dq.

Remark 1 Briefly, we have derived the expression for E[e−sV (u)] by writing the sojourn time as some
functional on a branching process (like the processes by Crump–Mode–Jagers, see, for example [9]).Using
the structure of the branching process, we found and solved a system of partial differential equations (of
the first order) determining the components of a decomposition of V (u). It leads to E[e−sV (u)]. Many
important details can be found in [6, 10] where the stationary solutions are further extended to the
time–dependent cases.

In some cases, it can be useful the equivalent forms of (2.9). For example,

ϕ(s, x, u) = e−(x∧u)(s+λ)+λ
 x∧u
0 ϕB(s,u−y) dy, x ∈ [0,∞), (2.13)

where

ϕB(s, t)

=

 ∞

0
ϕ(s, x, t) dB(x) =

 t

0
e−

 t
t−x(s+λ−λϕB(s,y)) dy dB(x) + (1−B(t))e−

 t
0 (s+λ−λϕB(s,y)) dy.

(2.14)
The equality (2.14) represents the functional equation that must be satisfied by the function ϕB(s, ·).
The function ϕB(s, t) is the LST of the distribution of some non–trivial terminating busy period (it
terminates at time t) for the M/G/1—EPS queue. The solution of the equation (2.14) was obtained in

terms of the function ψ (ψ(s, t)

= exp(−λ  t

0 ϕB(s, y) dy)) (more precisely, in terms of the LT for this
function, see (2.11)). This also shows that the study of the sojourn time in the M/G/1 queue requires
deeper analysis in comparison with an analysis that is expected at first sight.

Remark 2 It is worth mentioning that the random variable D(u) in (2.2) constitutes a “main” ingredient
of the sojourn time: it has the distribution of the sojourn time of a job with the size u that enters into
an empty system. When the system is not empty, the ith job (among the jobs which are sharing the
capacity of the processor), having remaining length xi, “adds” a delay Φ(xi, u) = Φ(xi ∧ u, u) to the new
job’s sojourn times.
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Next we consider a special case of the M/G/1—EPS queue in equilibrium: the M/D/1 system with
egalitarian processor sharing.

3 The M/D/1—EPS queue

Let us begin from the form of deterministic distribution

B(x) =

0, 0 ≤ x < u,
1, x ≥ u.

Hence the LST of this distribution has the form β(s) = exp(−su) with the moments βi = ui, i =
1, 2, . . .. The offered load is equal to ρ = λu < 1. In this special case, the distributions of conditioned and
unconditioned sojourn times coincide, hence we may use V = V (u) to denote the steady–state sojourn
time of a job in the queue M/D/1—EPS.

Corollary 1 The LST of the stationary distribution of V (u) in the special case M/D/1—EPS has
simpler form in comparison with (2.8).

v(s) = v(s, u) =
(1− ρ)(s+ λ)2e−u(s+λ)

s2 + λ[s+ (s+ λ)(1− ρ)]e−u(s+λ)
. (3.1)

In the case considered, the formula (2.10) takes the form

δ(s, u) =
s+ λ

λ+ seu(s+λ)
. (3.2)

Proof. The solution for v(s, u) for the case M/D/1—EPS can be found from Theorem 1 in explicit
form. In our case, the equation (2.8) is reduced to the form

v(s) = v(s, u) =
(1− ρ)δ(s, u)

1− λδ(s, u)
 u
0

dx
δ(s,u−x)

(3.3)

where δ(s, u) is given by (3.2). To obtain (3.2), it is easier to use the equation (3.15) from [4] for the
unknown function δ(s, u) (reflected as (2.29) in [6] or (2.20) in [10]) instead of inverting the function
ψ̃(s, q) that is given by (2.11). (However, such inversion is also possible, see [11, pp. 42–43]. Similar
inversion for the case M/M/1—EPS was also executed in [6, p. 74]). Then above equation reduces to
the form

∂δ(s, x)
∂x

+ (s+ λ)δ(s, x)− λδ(s, x)2 = 0 (3.4)

with the additional condition δ(s, 0) = 1. This is a Bernoulli equation. It is reduced to linear one after
division of each term by δ(s, x)2 and the change of variable 1/δ(s, x) = u. The solution of (3.4) is given
by (3.2). The final result (3.1) follows after the substitution (3.2) into (3.3).

Remark 3 The general expression for the variance of V (u) in the M/G/1—EPS queue (see Eq. (3.20)
in [4] or (2.33) in [10]) reduces for the M/D/1—EPS system to the form

Var[V (u)] =
u2

(1− ρ)2
− 2u

2(eρ − 1− ρ)
ρ2(1− ρ)

.

5
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Another way of obtaining Var[V (u)] in the M/D/1—EPS queue is described in [8]. That approach
is also based on the results of [4].

Remark 4 In addition to [4], we can give the two new interpretation of a random variable D(u) whose
LST is given by δ(s, u) (for the case M/D/1—EPS queue). (See [3], [4] concerning previous interpreta-
tion via lifetime of some branching process.) First, it is the sojourn time of the first job that arrives to
the empty M/D/1—EPS queue. The explanation of this fact is as follows: until the service requirement
of the first job is completed, a number of other jobs may arrive but none leave the system before that
time, since under EPS discipline with deterministic service time jobs depart from the system without
overtaking, that is, in order of their arrival. Second, the random variable D(u) may be interpreted in
terms of the maximal length of the pieces of a stick with length u broken randomly (see, for example, the
books [12, 13] for detail).

Let L(t) be the number of jobs at time t. Then D∗(t) = N(t)−L(t) be the number of departures by
time t (N(t) was introduced in the begin of §2), and D∗1 = inf{t : D∗(t) = 1} be the time until the first
departure from the EPS queue. The following theorems comment Remark 4.

Theorem 2 Let the M/G/1—EPS queue starts from the state L(0) = 1. Then the distribution of D∗1
is given by the LST (3.2) for u = t in the case G = D, and by

E[e−sD∗
1 ] =

(s+ λ)β(s+ λ)
s+ λβ(s+ λ)

(3.5)

in general case.

Proof. Omitted. (We means the proof of (3.5) because the assertion for G = D follows from Remark
4 and definition of D(u) in (2.3).)

Consider a stick of length u that is randomly broken into n pieces with lengths S1, S2, . . .. It is known
that the distribution of the largest piece (maximal uniform spacing) P(maxi=1,...,n Si ≤ x) is given by
Whitworth’s formula2 [12, p. 31], [13, p. 29]:

P( max
i=1,...,n

Si ≤ x) =
n

k=0

(−1)k

n

k


1− k

x

u

n−1

+
, (3.6)

where x+ = max(0, x).
It can be shown [14] that

max
i=1,...,n

Si
d=

n

i=1

Si

i
.

Then it holds

Theorem 3 For the M/D/1—EPS queue as t ≥ 0,

P(D(u) ≤ t) = 1− e−λt1{t≤u} + e−λt
∞

n=1

n+1

k=0

(λt)n

n!


n+ 1
k


(−1)k


1− k

x

t

n

+
. (3.7)

Proof. Omitted.
2Another interpretation of Whitworth’s formula is connected with the determination of a probability that the circle is

completely covered by the arcs of lengths x that are attached to each random point on a circle of length u (these n points
are randomly located on a circumference). It is the so-called Steven’s formula [12] in such interpretation.

6



185

References

[1] Kleinrock, L., Analysis of a time–shared processor, Naval Res. Logistics Quart., 1964, vol. 11, pp.
59–73.

[2] Kleinrock, L., Queueing Systems. New-York: Wiley, 1976, vol. 2. Russian edition: Kleinrock, L.
Computer systems with Queues. Moscow: Mir, 1979.

[3] Yashkov, S.F., Some results of analyzing a probabilistic model of remote processing systems, Autom.
Contr. Comput. Sci., 1981, vol. 15, No. 4, pp. 1–8 (English translation of the Russian journal
Avtomatika i Vychislit. Tekhnika by Allerton Press).

[4] Yashkov, S.F., A derivation of response time distribution for an M/G/1 processor–sharing queue.
Probl. of Control and Information Theory, 1983, vol. 12, No. 2, pp. 133–148.

[5] Schassberger, R., A new approach to the M/G/1 processor–sharing queue. Adv. Appl. Prob., 1984,
vol. 16, No. 1, pp. 202–213.

[6] Yashkov, S.F., Analysis of Queues in Computers, Moscow: Radio i Svyaz’, 1989 (in Russian).

[7] Egorova, R., Zwart, B., and Boxma, O., Sojourn time tails in the M/D/1 processor sharing queue,
Probab. Eng. Inf. Sci., 2006, vol. 20, No. 3, pp. 429–446.

[8] Shalmon, M., Explicit formulas for the variance of conditioned sojourn times in M/D/1–PS, Oper.
Res. Lett., 2007, vol. 35, No. 4, pp. 463–466.

[9] Haccou, P., Jagers, P., and Vatutin, V.A., Branching Processes: Variation, Growth, and Extinction
of Populations, Cambridge: Cambridge Univ. Press, 2005.

[10] Yashkov, S.F. and Yashkova, A.S., Processor sharing: A survey of the mathematical theory. Autom.
Remote Control, 2007, vol. 68, No. 9, pp. 1662–1731.

[11] Zhen, Q. and Knessl, C., Asymptotic expansions for the sojourn time distribution in the PS queue,
Math. Methods of Oper. Res., to appear.

[12] Kendall, M.G. and Moran, P.A.P., Geometrical Probability, London: Griffin, 1963.

[13] Feller, W., Introduction to Probability Theory and its Applications, New York: Wiley, 1971, vol. 2
(2nd edition).

[14] Holst, L., On multiple covering of a circle with random arcs, J. Appl. Prob., 1980, vol. 17, pp.
284–290.

7


