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1 Introduction and formulation of the main result

In several mathematical models of population dynamics evolution is described by the set of stochas-
tically switching hamiltonian systems. See for instance [2] and references therein. Problems studied
in such models usually are related to the description of asymptotical properties of trajectories of such
systems. Ya.G. Sinai proposed to study similar question for deterministic switching of two planar
transformations.

Setting of the problem. Let R1,ℓ1 and R2,ℓ2 denote two rotations around points Fj = ((−1)j, 0)
for the length ℓj, j = 1, 2. Consider following transformation: Tℓ1,ℓ2 : z 7→ R2(R1(z)) where z =
x + iy. The question posed by Sinai is to describe asymptotics |T nℓ1,ℓ2(z)|−−−→n→∞

of the trajectories of
transformation Tℓ1,ℓ2.

Rotations Rj can be considered as a section mappings of corresponding hamiltonian systems Hj

with unit metric speed of rotation. In more details, let H1 and H2 denote two completely integrable
planar Hamiltonian systems with simply connected closed invariant curves. In case of two rotations
Hj = |z − Fj |, j = 1, 2. We shall say that transformation Tℓ1,ℓ2

Tℓ1,ℓ2 : (x, y) 7→ H2(H1(x, y, ℓ1), ℓ2) (1)

is an (ℓ1, ℓ2)-mixture of H1 and H2. Here Hj(·, t) corresponds to the transformation along trajectories
of the system Hj for the time t. In particular (ℓ1, ℓ2)-mixture of two rotations moves each point (x, y)
by ℓ1 units of length around first center F1 and then moves its image by ℓ2 units of length around
second center F2 (see Fig. 1). Negative sign of ℓj corresponds to the action in opposite time direction
and in that particular case corresponds to the counterclockwise rotation while ℓj > 0 corresponds to
clockwise rotation.
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Figure 1: Mixture of two rotations with ℓ1, ℓ2 > 0

Main result of this paper consists in the following proposition:

Theorem 1 1. For ℓ1 6= −ℓ2 trajectory {T nℓ1,ℓ2(x, y)}∞n=1 of any point (x, y) under the mixture (1)
of two rotations remains bounded.

2. If ℓ1 = −ℓ2 there exists trajectory going to infinity.

Proof of Theorem 1 is based of the following result from Kolmogorov-Arnold-Moser’s theory:

Theorem 2 (see [1, §34]) Let T be an real-analytical (or sufficiently smooth) diffeomorphism
defined in some ”polar” coordinates (ϕ, r), r > 0 as

{

ϕ1 = ϕ+ ω0 + ωr2l +O(r2l+2)

r1 = r +O(r2l+2)
(2)

for some l ∈ 1

2
N. Suppose T satisfies intersection property: the image of any closed curve surrounding

point r = 0 intersects this curve. Then T has infinitely many closed invariant curves surrounding
stable point r = 0.

Aknowlegements Authors are deeply obliged to Ya. G. Sinai for an inspiration while posing the
problem and fruitful discussions afterward. Authors appreciate very much useful remarks made by
M. Balnk especially for letting us know [4] ..
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2 Proof of main result.

Remind the notion of the composition of two hamiltonian systems with hamiltonians H1 and H2 as a
system corresponding to vector field which is equal to linear combination of vector fields given by Hj ,
j = 1, 2. Such system also can be written in hamiltonian form with hamiltonian (see [3, Appendix
32] for details)

H = ℓ1H1 + ℓ2H2 (3)

For ℓ1 6= −ℓ2 invariant curves of hamiltonian H are closed and are called ”ovale de Des Cartes” –
algebraic curves which are defined by parametric equation

ℓ1|z − F1|+ ℓ2|z − F2| = const (4)

For particular case ℓ1 = ℓ2 hamiltonian H corresponds to elliptic rotation with family of confocal
ellipses with foci F1, F2 as level-curves. If ℓ1 = −ℓ2 relation (4) define the family of confocal
hyperbolas with the same foci.

Idea of the proof. We shall treat mixture Tℓ1,ℓ2 = R1,ℓ1R2,ℓ2 as a perturbation of section-mapping
of composition of hamiltonian systems H1 and H2. For such perturbation of system (3) we apply
Theorem 2.

Roughly speaking first statement of Theorem 1 can be formulated in such a way that trajectories
of the transformation Tℓ1,ℓ2 cannot differ too much from the trajectories of Hamiltonian system (3).
On the other hand, second statement says that even in unstable case ℓ1+ ℓ2 = 0 trajectories T nℓ1,ℓ2(z)
follow unstable directions of the system (3).

Begining of the proof of Theorem 1. Planar topology has the following imortant property.

Lemma 1 (Topological Lemma) Let T be R2 – homeomorphism and γ0 = ∂Γ0, γ1 = ∂Γ1 are its
closed invariant curves such that γ0 ⊂ Γ1 for some open sets Γ0, Γ1. Then T (Γ1 \ Γ0) ⊆ Γ1 \ Γ0.

Thanks to lemma 1 trajectory of any planar smooth dynamical system cannot cross invariant
curve (see also [3, chapter 4, §22]). Thus for the proof of Theorem 1 it is sufficient to show that for
any bounded set Ω ⊂ R2 there exists closed invariant curve of transformation Tℓ1,ℓ2 which contain Ω
in the interior. Thus first statement of Theorem 1 follows from Theorem 2 and following proposition:

Theorem 3 Mixture (1) of two rotations with ℓ1 + ℓ2 6= 0 for any point z = x + iy, |z| > 2 is a
O(|z|−3) perturbation of system (3).

Then if one consider a transformation T coresponding to the movement according to the system

(3) by time 1, i.e ℓ1 + ℓ2 time of movement by the system
ℓ1

ℓ1 + ℓ2
H1 +

ℓ2

ℓ1 + ℓ2
H2 as a non-perturbed

transformation in coordinates (r−1, ϕ) from the formulation of Theorem 2, then by Theorem 3 Tℓ1,ℓ2 is
a perturbation of T satisfying conditions of Theorem 2 and thus Tℓ1,ℓ2 have infinitely many invariant
curves in any neighbourhood of the fixed point r−1 = 0 of T .
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Proof of Theorem 3 goes by the next steps:

1. First consider the case ℓ1 = ℓ2 = ℓ.

Introduce new variables










ξ =
H1 +H2

2

η =
H2 −H1

2

(5)

Then
{

H1 = ξ − η

H2 = ξ + η
(6)

Lemma 2 In new variables systems Hj, j = 1, 2 have a form

Hj :

{

ξ̇ = (−1)j+1{ξ, η}
η̇ = {ξ, η}

(7)

while system H has the form

H :

{

ξ̇ = 0

η̇ = {ξ, η}
(8)

Canonical 2-form for hamiltonians Hj is dx ∧ dy. Corresponding Poisson bracket has the form
of Jacobian:

{f, g} =
∂f

∂x

∂g

∂y
− ∂g

∂x

∂f

∂y
=

∣

∣

∣

∣

∣

∣

∂f

∂x

∂g

∂x

∂f

∂y

∂g

∂y

∣

∣

∣

∣

∣

∣

(9)

In particular {x, y} = 1.

The only difficulty in the proof of lemma 2 is to check, that expressions (5) indeed correspond
to some variables. In the case of two rotations it is obviously so since variables (ξ, η) are in
fact elliptic and hyperbolic coordinates of the point z ∈ C+ and thus C can be considered as
2–folded covering of (ξ, η)–plane. More general case will be discussed in section ??. Once this
fact is checked proof of the lemma follows from the next computation:

{H1, ξ} =
1

2
{H1, H2}

{H2, η} = −1

2
{H2, H1}

{H, η} = {ξ, η} =
2

4
{H2, H1}

�
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2. Variables x = Re(z) and y = Im(z) has the following expressions in variables (ξ, η)

{

x = ξη

y = ±
√

(ξ2 − 1)(1− η2)
(10)

The latter expression is well-defined since for |z| > 2 it follows |ξ| > 1 and |η| < 1 since
Fj = (−1)j + 0i and thus |F1 − F2| = 2.

Since Hj =
√

(x+ (−1)j)2 + y2 all terms in Jacobians (9) can be easily computed

∂Hj

∂x
=

1

2Hj

(2(x+ (−1)j)) =
x+ (−1)j

Hj

∂Hj

∂y
=

y

Hj

(j = 1, 2)

Finally from (10) it follows

{ξ, η} = {H1, H2} = − 2y

H1H2

= −2
√

(ξ2 − 1)(1− η2)

ξ2 − η2
(11)

3. On the level-curve ξ = const variable η is a bounded function having same number of zeros
for any level-curve. Thus η can be interpreted as a cosine of some function of arc-length
parameter ψ corresponding to the level-curve and so pair (ξ, ψ) has a form of polar coordinates.
Fortunately, in particular case of two rotations cosψ = η and thus

ψ̇ = − 1

sinψ
η̇ (12)

Since sinψ =
y

√

ξ2 − 1
in variables (ξ, ψ) systems (7), (8) are non-degenerate.

4. Introduce new variable ρ =
1

ξ
. Then

ρ̇ = −ρ2ξ̇ (13)

and proof of Theorem 3 follows from the lemma

Lemma 3 In variables (ρ, ψ) Poisson bracket {H1, H2} for ρ <
1

2
(i.e. ξ > 2) is O(ρ).

Proof of Lemma 3 consists in the computation −2
√

(ξ2 − 1)(1− η2)

ξ2 − η2
= ρ

√

1− ρ2

1 − ρ2cos2ψ

�
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From Lemma 3 and relation (13) it follows that in (ρ, ψ)– variables systems H1 and H2 corre-
spond to O(ρ3) movement in ρ. Equations (7)–(8) get a form

Hj :







ρ̇ = ρ3 · (−1)j+1
√

1−ρ2 sinψ

1−ρ2cos2ψ

ψ̇ = ρ ·
√

1−ρ2

1−ρ2cos2ψ

j = 1, 2

H :

{

ρ̇ = 0

ψ̇ = ρ ·
√

1−ρ2

1−ρ2cos2ψ

(14)

Notice that equations for ψ̇ coincide for three Hamiltonians. Thus movement for time ℓ under
the action H1 and then for time ℓ under the action of H2 deviate from the movement for time
2ℓ under the action H by the quantity of order O(ρ3) in variable ρ. Since rhs of equations (14)
for ψ̇ are of order O(ρ) then angular deviation of the mixture (1) from composition (3) is also
of order O(ρ3). For ℓ1 = ℓ2 Theorem 3 is proven.

5. Certainly composition of H1-action for the time ℓ and H2-action for the time (−ℓ) (i.e. move-
ment for time ℓ with Hamiltonian (−H2)) deviate from initial point (ρ, ψ) of order O(ρ3). For
variable ρ proof is the same as in step 4, and for variable ψ one should notice that for H1

action ψ grows with the law H1 for time ℓ and then decreases for the same time ℓ with the law
which differs from −H1 by the value of order O(ρ3). So mixture (1) in that particular case is a
perturbation of identical transformation. Thus no KAM-theory results can be applied for this
case.

6. Case |ℓ1| 6= |ℓ2| can be deduced from the case ℓ1 = ℓ2 by lemma

Lemma 4 Mixture (1) of two rotations with |ℓ1| 6= |ℓ2| is also a O(ρ−3) perturbation of the
system (3).

Proof. Decompose

ℓ1 =
ℓ1 + ℓ2

2
+
ℓ1 − ℓ2

2

ℓ2 =
ℓ2 − ℓ1

2
+
ℓ1 + ℓ2

2

Then composition of H1-action for the time ℓ1 and H2-action for the time ℓ2 equals composition
of H1-action for the time ℓ1+ℓ2

2
, H1-action for the time ℓ1−ℓ2

2
, H2-action for the time − ℓ1−ℓ2

2
and

H2-action for the time ℓ1+ℓ2
2

. Composition of second and third actions thanks to step 5 is
Id + O(ρ3). Identical transformation commute with H2 and thus up to order O(ρ3) one gets
composition of actions by H1 and H2 for the same time ℓ1+ℓ2

2
. Then from step 4 it follows that

trajectories of this composition differ from the trajectories of H-action for the time (ℓ1 + ℓ2)
by O(ρ3) for both coordinates ρ and ψ.
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Since ρ = ξ−1 and ξ = O(|z|) for |z| > 1 Theorem 3 is proven.
From Theorems 3 and 2 it follows that the mixture (1) has infinitely many nested invariant curves

expanding to infinity. Thanks to Lemma 1 trajectory of any point cannot cross an invariant curve
and thus remains bounded for all time. This ends the proof of the first statement of Theorem 1

�

Proof of second statement of Theorem 1. Let us remind that for the case ℓ1 = −ℓ2 mixture
(1) is an O(|z|−3) perturbation of identical transformation and thus KAM – theory methods are not
applicable to that case.

Consider an arc ẑ0, z1 of length |ℓ1| with center at F1 = −1 + 0i from some point z0 = x0 + iy0,
x0 > 0 which intesects straight line x = 0 in its middle point. Distance from z1 to the line x = 0
equals −Re(z1) = −x1 = x0. After rotation H2 distance from z2 = H2(z1) to the axis wil be greater
then x1 since |z1 − F2| > |z1 − F2|. Thus Re(z2) > Re(z0). Similarly, for z3 = H1(z2) we get
Re(z3) < Re(z1). At each step distance from the image of the point z0 to the axis will be greater
then those on previous step. Incidentally, arc obtained on each iteration should intersect an axis since
|xj| < ℓ. Thus because of convexity of the circle, sequence {yj} — coordinates of the intersection
of the axis and arc ẑj , zj+1 is increasing. Suppose, that this sequence has some finite limitting point
y∞. Then for y∞ one gets Tℓ1,ℓ2(0 + iy∞) = 0 + iy∞ which is definitely impossible.

Similar considerations can be done for any point z ∈ C. Role of the axis x = 0 in this case will
play some hyperbola with foci Fj . Statement 2 of Theorem 1 is proven.

�
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