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I. INTRODUCTION: RIP AND SPARSE RECOVERY As proved by Candes et al. [6], [8], if the sampling matrix

. L . _ ® has the(2k, /2 — 1)-RIP property, the signal recovered as
Compressive sampling is a technique of recovering spagge. ¢ tion to the linear programming problem
N-dimensional signals from low-dimensional projections,,i

their linear images inR™,m < N. In formal terms the max ||x||,, Subjectto ®x =17 (3)
problem can be stated as follows. l&t R™ — RNV, m <« N zERN

be a linear operator used to crefﬁe a “sketch” of a signgltisfies the(p; = 2,p, = 1) error guarantee (1). Moreover,
represented by a real vectar € R™. In other words, We the recovery is robust in the following sense: Even in thecas

observe a compressed version of the signal, i.e., a vec¥oisy observations = ®x + z, where z is an unknown
r = &z, where® is anm x N sampling matrix. Recovering npjse vector, the solution to

x from r is generally impossible because the system of

equations is under-determined, and the solutions formfareaf max |lx|le, subjectto |Px — 7|, <€ 4)
subspace iRYN. The problem becomes tractable if we seek 2ERY
an approximation ofec by a vectorz that satisfies provides a recovery guarantee of the form (1) with a further
additive error term that is proportional to
|z —&lp, <C  min |-, (1) In this formulation, the study of the compressed sensing

x’ is k-sparse . .
problem has been focused on the design of good sampling

for somep,,p2 > 1, where a vector is called-sparse if it matrices® in conjunction with low-complexity recovery al-
containsk or fewer nonzero coordinates. Note thatcifitself gorithms that provide an error guarantee of the form (1)
is k-sparse, then (1) implies that= x. Moreover it implies based on as few samples as possible. It is known that random
that the recovery is stable: i is approximatelyk-sparse ¢ Gaussian matrices and random Bernoulli matrices provide a
contains onlyk “significant” entries) then the recovery error(p; = 2,p, = 1) error guarantee withn = O(klog(N/k))
is small. sketch length under the linear programming recovery algo-
A useful tool for the construction of sampling matrices isithm [6]. It is also known that at leash = Q(klog(N/k))
provided in the works of Candés et al. [6], [7] who showed thgaamples are required for any recovery algorithm with anrerro
recovery is possible if the matrik has the Restricted Isometryguarantee of the form (1) (see, for example, [12], [1]).
Property (RIP), i.e., it acts as near-isometry onfallparse  If we restrict matrices® to have entries:1, then the
vectors. Letl C [N] := {1,..., N}. Denote by®d; € R™*!/l  RIP property can be guaranteed by relying on binary error-
the matrix formed by the columns df with indices in/. correcting codes and utilizing information about theirtaiee
Definition 1 (The Restricted Isometry Property (RIPY: distribution. This link has been used in a number of publica-
matrix ® € R™*" is said to satisfy theestricted isometry tions on explicit constructions of sampling matrices [&], [
property (k,9), or (k,6)-RIP,k <m, 0 <é <1, if forall [17]Atthe same time, classic bounds on codes [13] preclude
I C [N] such thatI| = k and for allu € R¥, these constructions from attaining the optimal sketchtleng

(1=8)|lull3 < [|Prull3 < (1+6)|ul3. (2 Il. STATISTICAL RIP OF SAMPLING MATRICES

This property is known to hold if the columns @b are There is another aspect of compressed sensing where ran-
near-orthogonal, i.ej¢7¢;| < o for all i # j and some domization is built into the signal and recovery model [&], [
LR N ) ! —=

a. Such collections of vectors are also knowniasoherent [11]; [18]. In this paper we analyze sparse recovery under th
dictionaries(e.g., [18]). assumption tha®# acts as near-isqmetry for almost all rathgr
than all sparse vectors. Analyzing the recovery properties
under this relaxation is not immediate; however, a number of
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A statistical counterpart of the RIP property (SRIP) was Theorem 1:Let  be a generick-sparse signal, where
introduced in [4], [11]. Roughly speaking, the matdxhas & < coN/(||®||*log N) for some positive constan, where
a statistical RIP if the near-isometry condition (2) holds f ||®|| is the operator 2-norm. Assume that= ®x + z where
almost all choices of the suppoft The definition that we the coordinates of are i.i.d.N(0,0?) Gaussian random vari-
give is slightly stronger than the one in [4] and is close t® thables. Then the Lasso estimate computed with 2,/2Tog N
definition in [11]. obeys

Definition 2 (SRIP):An m x N sampling matrix® is said [z — 2|7, < 16(1 + V2)?klog No?
to satisfy the(k,d,¢)-SRIP propertyk < m, 0 < 6§ < 1, . .
0<e <fy1 (is((k, 5, e))-smp)r,) ifp(2) holds for at leasi — . With probability at least — 6 ~21%2 - N! (2rlog )~/
proportion of all subsetg  [N] such thatll| = k. If the signal = is approximatelyk-sparse, then t_he error
The statistical unique recovery property (SURP) is anoth Pthe_ Il_asso estimator can be. bounded above in tgrms of
useful property for sparse signal recovery. Consider aympd 1€ MiNimum mean square errofin; c (v [|®x — P[I]x||7,,
measureP, x P, whereP;, is the uniform distribution on the where P[I] is the prOJec_tlo_n on the subspace spanned by
k-subsets of N] and whereP, is some probability measure!ne columnsg;, i € I. This is the contents of Theorem 1.4

on R In the following definitionPr(-) refers toP;, x P. in [9] which proves that the error estimate holds with high
Definition 3 (SURP):.Letk <m,0<e < 1. An m x N

probability over the choice of supports @fsparse linear
sampling matrix® is said to satisfy thék, ¢)-SURP if approximations ofc. Proofs of these theorems make essential

use of the results about norms of random submatrices of a
Pr({k-sparsey e R",y Z x : Py = dzx}) < e. matrix obtained by Tropp [19].

This definition is close to the concepts discussed in [4],  |V. STATISTICAL RIP MATRICES FROMCODES
[18], but not equivalent to them in terms of the underlying In this section, we address the task of constructing ma-
probabilistic model. trices with statistical recovery properties using binarsoe

The RIP property of® with respect to a particulak- correcting codes.
subset] C [N] allows a vectorz supported on/ to be Let C € {0,1}™ be a subset of cardinalityv. Below we
recovered from its sketckbx using, for instance, the basiscall C an(m, N) code. To construct am x N sampling matrix
pursuit algorithm of Candés et al. [7], with complexif N*).  from it, we use the mapping — 1//m,1 — —1//m.
The SRIP and SURP are used by Calderbank et al. [4]we rely on the concepts of the distance distribution and
to show recovery guarantee férsparse signals under theirdual distance of codes. To remind ourselves, the distance
reconstruction algorithm. These properties are also useddistribution of an (m, N) code C is the set of numbers

[18] to show that exact recovery of signals under some randgm, = 1, Ay, ..., A,,) such that
models is possible. As shown in [14], some specific sampling 1
matrices with statistical recovery properties supportifit Ay = Nl{(wl’ x2) € C%:dy (1, T) = w)
recovery of sparse signals. ) _ )
wheredy is the Hamming distance.
[1l. L ASSO ESTIMATOR The MacWilliams transform of the distance distribution is
the set(Ag, Af,..., AL), where for allw

The SURP property is useful if instead of recovering the
signal & we are interested in finding the locations of its L1
largest coordiantes. In statistics, this task is known asleho Ay = N ZAiKi(w)’
selection and is handled by procedures such as Lasso. The =0
Lasso estimator seeks a solution to the optimization problewhere K;(t) is a Krawtchouk polynomial of degree It is
1 known that Az = 1,A% > 0 for all w [15, p. 139]. The
min = ||r — ®z|s, + Ao||Z|e, numberd: such thatd{ = --- = A7, | =0,A7 > 0is
eRN 2 called the dual distance of the codelf C is a linear code
whereo? is the variance of the coordinates of the random noigken (4,,) is the weight distribution of® and (A47) is the
z = r—®x (see (4)) and\ is a regularization parameter. In arweight distribution of the dual codé*.
important contribution, Candés and Plan [9] establisresslv =~ We are now ready to state one of the main theorems of this
results about the error guarantee of the Lasso estimate if ffaper.
columns of® form a sufficiently incoherent dictionary. The Theorem 2:Let C be an(m, N) code withd*(C) > I, I
results in [9] and a number of related papers are establisten, and let® be the sampling matrix constructed from it.

for generick-sparsesignals, defined as follows: Suppose that
1. The supportl C [N] of the k nonzero coordinates is a . 202+2/1
uniformly randomk-subset of [N]; — 02ee?/l
2. Conditional onl, the signs of the nonzero entries of holds form sufficiently large. Therb is (k, 4, €)-SRIP.
are independent and uniformly random. We say that the codé has widthw if its distance distri-

The following result is proved as Theorem 1.2 in [9]. bution {A,,} satisfiesA,, = 0 for |w — (m/2)| > w/2. If we



have control of the width of the codg then the number of ®. (A matrix ® is said to satisfy the coherence condition

samplesm can be made proportional tog !/e rather than to
e 2/,

Theorem 3:Let k satisfiesk < 2In Nlog(k/e) andm >
8(k/562) log(k/e) In N. Suppose that is a linear(m, N) code

: md 1
of width B los(t and d—-(C) > 2, and let® be the

sampling matrix constructed from it. Thanis (k, J, €)-SRIP.

if its columns are sufficiently uncorrelated, for instande i
max;; |(¢i, #;)] < O(1/logN).) Our contribution is to
replace the coherence condition in the error estimateseof th
recovery algorithms considered with properties of binarges
controlled by their dual distance.

We include a small example with simulated performance of
the matrix® constructed from thé63,4096) dual BCH code

We remark that the matrix> of the above theorem can bewith | = 4 vs random Gaussia®. The recovery procedure

constructed deterministically with complexity polynomia

used to generate it is the linear programming decoder.

N andk [16].
In regards to the SURP property, we prove the following.
Theorem 4:Let C be an(m, N) code and led-(C) > [
for some everl. Suppose that fom sufficiently large

61k212/1 2kl )
§2ee2/l 7 €2/1(1 - §)

Then the sampling matri® constructed frong is (k, €)-SURP
and (k, d,¢/3)-SRIP.

V. ALGORITHMIC IMPLICATIONS

mZmax(

Algorithmic consequences of SURP and SRIP properties for
signal recovery and model selection have been studied][#], [
for special choices of the matrik (such matrices constructed
from Delsarte-Goethals codes or from pairs of orthogonal
bases inR™). We study a general relation between statistical
properties of the sampling matrieé and the probability of
signal recovery under Lasso arg minimization, assuming
the signal model defined in the end of Sect. 2.

We prove that if® is constructed from a binarym, N)
code that forms an orthogonal array of strengtthas dual
distance> [ + 1) and satisfies

I*TT 1k /2Ny 2/ 2N
seamac o) e ()}
then the sufficient conditions for Theorem 1 [9] are satisfied!
with probability 1 — e. These conditions are as follows:

(@72~ <2,

2) The vectorz obeys|®”z||, < V2,

3) The following inequality holds:

(1]

(2]

(3]

mzmax{

[5]
[6]
@7 @ (PF B7) "' @F 2|0,

[7]
+ 2\ 0] @ (2T @;) T sgn(@)||e. < (2 — V2)A.

In our context, condition 1) follows from thek, 1/2, ¢)-SRIP
property of the matrix®. The other two properties are proved
by estimating norms of submatrices ®frelying on properties
of the underlying code.

A modification of these calculations also enables us I‘t?l]
show that the Lasso estimate is stable, in similarity to the
modification of Theorem 1 discussed in the end of Secti?nZ]
Il 1

Similar considerations also enable us to find conditions fgp
recovery with high probability using the linear programmin
decoder (3).

Conditions 1)-3) are used in [9], [19] where they are shoer114]
to hold because of the coherence property of the matrix

El
[20]
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