
Statistical RIP sampling matrices and robust
recovery

Arya Mazumdar∗ Alexander Barg∗,§

I. I NTRODUCTION: RIP AND SPARSE RECOVERY

Compressive sampling is a technique of recovering sparse
N -dimensional signals from low-dimensional projections, i.e.,
their linear images inRm, m ≪ N. In formal terms the
problem can be stated as follows. LetΦ : R

m → R
N , m ≪ N

be a linear operator used to create a “sketch” of a signal
represented by a real vectorx ∈ R

N . In other words, we
observe a compressed version of the signal, i.e., a vector
r = Φx, whereΦ is anm × N sampling matrix. Recovering
x from r is generally impossible because the system of
equations is under-determined, and the solutions form an affine
subspace inRN . The problem becomes tractable if we seek
an approximation ofx by a vectorx̂ that satisfies

‖x − x̂‖p1
≤ C min

x
′ is k-sparse

‖x − x
′‖p2

(1)

for somep1, p2 ≥ 1, where a vector is calledk-sparse if it
containsk or fewer nonzero coordinates. Note that ifx itself
is k-sparse, then (1) implies that̂x = x. Moreover it implies
that the recovery is stable: ifx is approximatelyk-sparse (x
contains onlyk “significant” entries) then the recovery error
is small.

A useful tool for the construction of sampling matrices is
provided in the works of Candès et al. [6], [7] who showed that
recovery is possible if the matrixΦ has the Restricted Isometry
Property (RIP), i.e., it acts as near-isometry on allk-sparse
vectors. LetI ⊆ [N ] := {1, . . . , N}. Denote byΦI ∈ R

m×|I|

the matrix formed by the columns ofΦ with indices inI.

Definition 1 (The Restricted Isometry Property (RIP)):A
matrix Φ ∈ R

m×N is said to satisfy therestricted isometry
property (k, δ), or (k, δ)-RIP, k ≤ m, 0 ≤ δ ≤ 1 , if for all
I ⊂ [N ] such that|I| = k and for allu ∈ R

k,

(1 − δ)‖u‖2
2 ≤ ‖ΦIu‖2

2 ≤ (1 + δ)‖u‖2
2. (2)

This property is known to hold if the columns ofΦ are
near-orthogonal, i.e.,|φT

i φj | ≤ α for all i 6= j and some
α. Such collections of vectors are also known asincoherent
dictionaries(e.g., [18]).
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As proved by Candès et al. [6], [8], if the sampling matrix
Φ has the(2k,

√
2 − 1)-RIP property, the signal recovered as

the solution to the linear programming problem

max
x∈RN

‖x‖ℓ1 subject to Φx = r (3)

satisfies the(p1 = 2, p2 = 1) error guarantee (1). Moreover,
the recovery is robust in the following sense: Even in the case
of noisy observationsr = Φx + z, wherez is an unknown
noise vector, the solution to

max
x∈RN

‖x‖ℓ1 subject to ‖Φx − r‖ℓ2 ≤ ǫ (4)

provides a recovery guarantee of the form (1) with a further
additive error term that is proportional toǫ.

In this formulation, the study of the compressed sensing
problem has been focused on the design of good sampling
matricesΦ in conjunction with low-complexity recovery al-
gorithms that provide an error guarantee of the form (1)
based on as few samples as possible. It is known that random
Gaussian matrices and random Bernoulli matrices provide a
(p1 = 2, p2 = 1) error guarantee withm = O(k log(N/k))
sketch length under the linear programming recovery algo-
rithm [6]. It is also known that at leastm = Ω(k log(N/k))
samples are required for any recovery algorithm with an error
guarantee of the form (1) (see, for example, [12], [1]).

If we restrict matricesΦ to have entries±1, then the
RIP property can be guaranteed by relying on binary error-
correcting codes and utilizing information about their distance
distribution. This link has been used in a number of publica-
tions on explicit constructions of sampling matrices [2], [3],
[17] At the same time, classic bounds on codes [13] preclude
these constructions from attaining the optimal sketch length.

II. STATISTICAL RIP OF SAMPLING MATRICES

There is another aspect of compressed sensing where ran-
domization is built into the signal and recovery model [4], [5],
[11], [18]. In this paper we analyze sparse recovery under the
assumption thatΦ acts as near-isometry for almost all rather
than all sparse vectors. Analyzing the recovery properties
under this relaxation is not immediate; however, a number of
useful ideas in this direction have been suggested in earlier
works [4], [11], [18]. The two properties desired from a
sampling matrix that had been put forward by these works
are the Statistical RIP (SRIP) and Statistical Unique Recovery
Property (SURP).



A statistical counterpart of the RIP property (SRIP) was
introduced in [4], [11]. Roughly speaking, the matrixΦ has
a statistical RIP if the near-isometry condition (2) holds for
almost all choices of the supportI. The definition that we
give is slightly stronger than the one in [4] and is close to the
definition in [11].

Definition 2 (SRIP):An m×N sampling matrixΦ is said
to satisfy the(k, δ, ǫ)-SRIP propertyk ≤ m, 0 ≤ δ ≤ 1,
0 ≤ ǫ < 1 (is (k, δ, ǫ)-SRIP), if (2) holds for at least1 − ǫ
proportion of all subsetsI ⊂ [N ] such that|I| = k.
The statistical unique recovery property (SURP) is another
useful property for sparse signal recovery. Consider a product
measurePk ×Pz wherePk is the uniform distribution on the
k-subsets of[N ] and wherePz is some probability measure
on R

k. In the following definitionPr(·) refers toPk × Pz.
Definition 3 (SURP):Let k ≤ m, 0 ≤ ǫ < 1. An m × N

sampling matrixΦ is said to satisfy the(k, ǫ)-SURP if

Pr({k-sparsey ∈ R
n, y 6= x : Φy = Φx}) < ǫ.

This definition is close to the concepts discussed in [4],
[18], but not equivalent to them in terms of the underlying
probabilistic model.

The RIP property ofΦ with respect to a particulark-
subsetI ⊂ [N ] allows a vectorx supported onI to be
recovered from its sketchΦx using, for instance, the basis
pursuit algorithm of Candès et al. [7], with complexityO(N3).
The SRIP and SURP are used by Calderbank et al. [4]
to show recovery guarantee fork-sparse signals under their
reconstruction algorithm. These properties are also used in
[18] to show that exact recovery of signals under some random
models is possible. As shown in [14], some specific sampling
matrices with statistical recovery properties support efficient
recovery of sparse signals.

III. L ASSO ESTIMATOR

The SURP property is useful if instead of recovering the
signal x̂ we are interested in finding the locations of its
largest coordiantes. In statistics, this task is known as model
selection and is handled by procedures such as Lasso. The
Lasso estimator seeks a solution to the optimization problem

min
x̂∈RN

1

2
‖r − Φx̂‖ℓ2 + λσ‖x̂‖ℓ1

whereσ2 is the variance of the coordinates of the random noise
z = r−Φx (see (4)) andλ is a regularization parameter. In an
important contribution, Candès and Plan [9] establish several
results about the error guarantee of the Lasso estimate if the
columns ofΦ form a sufficiently incoherent dictionary. The
results in [9] and a number of related papers are established
for generick-sparsesignals, defined as follows:

1. The supportI ⊂ [N ] of the k nonzero coordinates is a
uniformly randomk-subset of [N];

2. Conditional onI, the signs of the nonzero entries ofz

are independent and uniformly random.
The following result is proved as Theorem 1.2 in [9].

Theorem 1:Let x be a generick-sparse signal, where
k ≤ c0N/(‖Φ‖2 log N) for some positive constantc0, where
‖Φ‖ is the operator 2-norm. Assume thatr = Φx + z where
the coordinates ofz are i.i.d.N (0, σ2) Gaussian random vari-
ables. Then the Lasso estimate computed withλ = 2

√
2 logN

obeys
‖Φx − Φx̂‖2

ℓ2 ≤ 16(1 +
√

2)2k log Nσ2

with probability at least1−6N−2 log 2−N−1(2π log N)−1/2.
If the signal x is approximatelyk-sparse, then the error

of the Lasso estimator can be bounded above in terms of
the minimum mean square errorminI⊂[N ] ‖Φx−P [I]Φx‖2

ℓ2
,

where P [I] is the projection on the subspace spanned by
the columnsφi, i ∈ I. This is the contents of Theorem 1.4
in [9] which proves that the error estimate holds with high
probability over the choice of supports ofk-sparse linear
approximations ofx. Proofs of these theorems make essential
use of the results about norms of random submatrices of a
matrix obtained by Tropp [19].

IV. STATISTICAL RIP MATRICES FROM CODES

In this section, we address the task of constructing ma-
trices with statistical recovery properties using binary error-
correcting codes.

Let C ⊂ {0, 1}m be a subset of cardinalityN . Below we
call C an(m, N) code. To construct anm×N sampling matrix
from it, we use the mapping0 → 1/

√
m, 1 → −1/

√
m.

We rely on the concepts of the distance distribution and
dual distance of codes. To remind ourselves, the distance
distribution of an (m, N) code C is the set of numbers
(A0 = 1, A1, . . . , Am) such that

Aw =
1

N
|{(x1, x2) ∈ C2 : dH(x1, x2) = w}|

wheredH is the Hamming distance.
The MacWilliams transform of the distance distribution is

the set(A⊥
0 , A⊥

1 , . . . , A⊥
m), where for allw

A⊥
w =

1

N

m
∑

i=0

AiKi(w),

where Ki(t) is a Krawtchouk polynomial of degreei. It is
known thatA⊥

0 = 1, A⊥
w ≥ 0 for all w [15, p. 139]. The

numberd⊥ such thatA⊥
1 = · · · = A⊥

d⊥−1 = 0, A⊥
d⊥ > 0 is

called the dual distance of the codeC. If C is a linear code
then (Aw) is the weight distribution ofC and (A⊥

w) is the
weight distribution of the dual codeC⊥.

We are now ready to state one of the main theorems of this
paper.

Theorem 2:Let C be an(m, N) code with d⊥(C) > l, l
even, and letΦ be the sampling matrix constructed from it.
Suppose that

m ≥ 2lk2+2/l

δ2eǫ2/l
.

holds form sufficiently large. ThenΦ is (k, δ, ǫ)-SRIP.
We say that the codeC has widthw̄ if its distance distri-

bution {Aw} satisfiesAw = 0 for |w − (m/2)| ≥ w̄/2. If we



have control of the width of the codeC then the number of
samplesm can be made proportional tolog 1/ǫ rather than to
ǫ−2/l.

Theorem 3:Let k satisfiesk < 2 lnN log(k/ǫ) and m ≥
8(k/δ2) log(k/ǫ) lnN . Suppose thatC is a linear(m, N) code
of width mδ

2
√

2k log(k/ǫ)
and d⊥(C) > 2, and let Φ be the

sampling matrix constructed from it. ThenΦ is (k, δ, ǫ)-SRIP.

We remark that the matrixΦ of the above theorem can be
constructed deterministically with complexity polynomial in
N andk [16].

In regards to the SURP property, we prove the following.
Theorem 4:Let C be an(m, N) code and letd⊥(C) > l

for some evenl. Suppose that form sufficiently large

m ≥ max
(6lk2+2/l

δ2eǫ2/l
,

2kl

ǫ2/l(1 − δ)

)

.

Then the sampling matrixΦ constructed fromC is (k, ǫ)-SURP
and (k, δ, ǫ/3)-SRIP.

V. A LGORITHMIC IMPLICATIONS

Algorithmic consequences of SURP and SRIP properties for
signal recovery and model selection have been studied [4], [11]
for special choices of the matrixΦ (such matrices constructed
from Delsarte-Goethals codes or from pairs of orthogonal
bases inRm). We study a general relation between statistical
properties of the sampling matrixΦ and the probability of
signal recovery under Lasso andℓ1 minimization, assuming
the signal model defined in the end of Sect. 2.

We prove that ifΦ is constructed from a binary(m, N)
code that forms an orthogonal array of strengthl (has dual
distance≥ l + 1) and satisfies

m ≥ max
{ lk2+ 2

l

2eǫ2/l
,
lk

2e

(

√
2N

e

)2/l

log
(2N

e

)}

then the sufficient conditions for Theorem 1 [9] are satisfied
with probability1 − ǫ. These conditions are as follows:

1) ‖(ΦT
I ΦI)

−1‖ ≤ 2,
2) The vectorz obeys‖ΦT

z‖ℓ∞ ≤
√

2λ,
3) The following inequality holds:

‖ΦT
IcΦI(Φ

T
I ΦI)

−1ΦT
I z‖ℓ∞

+ 2λ‖ΦT
IcΦI(Φ

T
I ΦI)

−1ΦT
I sgn(xI)‖ℓ∞ ≤ (2 −

√
2)λ.

In our context, condition 1) follows from the(k, 1/2, ǫ)-SRIP
property of the matrixΦ. The other two properties are proved
by estimating norms of submatrices ofΦ relying on properties
of the underlying code.

A modification of these calculations also enables us to
show that the Lasso estimate is stable, in similarity to the
modification of Theorem 1 discussed in the end of Section
III.

Similar considerations also enable us to find conditions for
recovery with high probability using the linear programming
decoder (3).

Conditions 1)-3) are used in [9], [19] where they are shown
to hold because of the coherence property of the matrix

Φ. (A matrix Φ is said to satisfy the coherence condition
if its columns are sufficiently uncorrelated, for instance if
maxi6=j |(φi, φj)| ≤ O(1/ log N).) Our contribution is to
replace the coherence condition in the error estimates of the
recovery algorithms considered with properties of binary codes
controlled by their dual distance.

We include a small example with simulated performance of
the matrixΦ constructed from the(63, 4096) dual BCH code
with l = 4 vs random GaussianΦ. The recovery procedure
used to generate it is the linear programming decoder.
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