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In this work we deal with two seemingly very different problems. The first of them
is to analyze collective dynamics of an infinite system of chaotically wandering particles
under weak local interactions. In other terms systems of this type may be represented
by the so called Coupled Map Lattices with a dynamical structure of interactions. We
show that depending on fine properties of the interaction one may observe both conden-
sation/synchronization phenomenon and independent motions of individual particles in
the weak interaction limit.

Another problem is to study stochastic stability of an individual system (say describ-
ing a chaotic dynamics of a single particle) with respect to perturbations depending not
only on the particle’s coordinates but also on the current particle’s distribution. Therefore
in distinction to a conventional setting when the perturbation is described by a Markov
chain (and the entire perturbed system remains Markovian as well) in our case the per-
turbed process is no longer Markovian. The dependence of the particle’s motion on the
particle’s distribution is emphasized in the name “self-consistent” of the processes under
consideration.

Let (X,B, ρ) be a compact metric space and let letM = M(X) be the set of probabilis-
tic Borel measures on X. A (discrete time) process on M is defined by a transfer-operator
T ∗ : M→M satisfying the following properties:
(a) (T ∗µ)(A) · µ(A) ≥ 0 ∀µ ∈M, A ∈ B ( positivity),
(b) (T ∗µ)(X) ≡ µ(X) (total measure preservation).

If additionally one assumes the linearity of the operator T ∗ then it becomes the stan-
dard Markov operator, which describes the dynamics of measures under the action of a
Markov process. Therefore the processes defined above are often called nonlinear Markov
processes.

Denote by Mδ ⊂M the set of δ-measures on X. It is natural to say that the process
T ∗ is deterministic if T ∗ : Mδ → Mδ. Obviously a deterministic process T ∗ defines
uniquely a deterministic map T : X → X according to the formula Tx := y, where
T ∗1x = 1y for each x ∈ X. Here 1x a the δ-measure supported by the point x.

We shall study a two-parameter collection of deterministic nonlinear Markov processes
defined by the following nonlinear transfer-operators:
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T ∗ := T ∗ε,γµ := Q∗
ε,γ,T ∗µT

∗µ, Qε,γ,µx := (1− γ)x +
γ

µ(Bε(x))

∫
Bε(x)

ydµ(y).

Here 0 < ε, γ � 1 are numeric parameters, and Bε(x) is the ε-neighborhood of the point
x ∈ X.

Processes defined by the transfer-operators T ∗ε,γ we shall call self-consistent. Observe
that the quantity 1

µ(Bε(x))

∫
Bε(x)

ydµ(y) is the barycenter of the distribution of mass corre-

sponding to the restriction of the measure µ to the ε-neighborhood of the point x ∈ X.
Therefore the transition from x to Qε,γ,µx may be interpreted as the motion of a point-
mass located at x under the attraction of the total mass in this neighborhood.

Consider now the measure µ as a distribution of a collection of particles, whose local
dynamics is governed by the map T and the interaction is local in space and is defined by
the map Qε,γ,µ. A special case when the measure µ is equal to a finite sum of δ-measures
explicitly corresponds to the dynamics of a finite Couple Map Lattice and was studied in
very different terms and using different methods in [1, 2].

Theorem 1 (Condensation) Let the map T satisfy Lipschitz condition with the constant
Λ < ∞. Then ∃c = c(Λ) > 0 such that ∀0 < ε, 1−γ < c the condensation takes place: for
each initial measure µ ∈M with the support of diameter not exceeding ε, the diameter of
the support of its image (T ∗)tµ vanishes with time t →∞.

Assuming certain expanding type conditions on the map T with the constant λ and
the uniqueness of the corresponding Sinai-Bowen-Ruelle (SBR) measure µT and that it is
absolutely continuous with respect to the reference measure m (say Lebesgue measure)
we may formulate the following opposite statement.

Theorem 2 (Independence) There exists an open set of absolutely continuous measures
M0 ⊂M and c = c(λ) such that ∀0 < ε, γ < c, µ ∈M0 we have

(T ∗)tµ
t→∞−→ µε,γ

ε,γ→0−→ µT .

Observe that this result does not imply that the measure µε,γ is the SBR measure for
the process T , but only its Lyapunov stability. Namely, we are able to show that measures
close enough to the measure µT converge weakly under dynamics to a certain measure µε,γ

which in turn converges to µT as ε, γ → 0. To give an exact definition of the Lyapunov
stability of measures one needs to specify the topology in the space of measures M and
the type of convergence, in particular, whether one assumes the direct convergence or
the convergence in Cezaro means. It turns out that different assumptions here lead to
very different results. Even the existence of Lyapunov stable measures of simplest chaotic
dynamical systems sensitively depends on the choice of metrics and convergence. We shall
discuss these matters in detail and obtain connections between Lyapunov stable measures
and SBR measures as well as ergodic properties of the corresponding dynamical systems.

Let ρ∗(·, ·) be a metric in the space M of probabilistic measures on X and let a map
T : X → X be given. We say that a measure µ ∈ M is attractive if ∃σ > 0 such that
1
n

∑n−1
k=0(T

∗)kν
n→∞−→ µ weakly whenever ρ∗(µ, ν) < σ.
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Figure 1: Example of a uniquely ergodic dynamical system having no attractive measures.
α /∈ Q, Leb|[0,1/2] – SBR measure.

Theorem 3 Unique ergodicity implies the existence of an SBR measure, but does not
imply the existence of an attractive measure.

The second result can be illustrated by a one-dimensional map

Tαx :=


x + α if x ∈ [0, 1/2− α]
x + α− 1/2 if x ∈ (1/2− α, 1/2]
x/2 + 1/4 otherwise

.

shown in Fig. 1.
As a corollary we are getting a negative answer to an old question whether unique

ergodicity implies the convergence of ergodic averages along all trajectories to the same
limit. Indeed, in the example in Fig. 1 for ∀x ≤ 1/2 ergodic averages converge to the
restriction of the Lebesgue measure to the segment [0, 1/2], while for ∀x > 1/2 they
converge to the delta-measure at point 1/2 (which is not Tα-invariant).
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