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Abstract—In 1995, Best et al. published a formula for the exact
bit error probability for Viterbi decoding of the rate R = 1/2,
memory m = 1 (2-state) convolutional encoder with generator
matrix G(D) = (1 1 +D) when used to communicate over the
binary symmetric channel. Their method was later extended to
the rate R = 1/2, memory m = 2 (4-state) generator matrix
G(D) = (1 +D2 1 +D +D2) by Lentmaier et al.

In this paper, we shall use a different approach to derive the
exact bit error probability. We derive and solve a general matrix
recurrent equation connecting the average information weights at
the current and previous steps of the Viterbi decoding. A closed
form expression for the exact bit error probability is given. Our
general solution yields the expressions for the exact bit error
probability obtained by Best et al. (m = 1) and Lentmaier et
al. (m = 2) as special cases. The exact bit error probability
for the binary symmetric channel is determined for various 8
and 16 states encoders including both polynomial and rational
generator matrices for rates R = 1/2 and R = 2/3. Finally, the
exact bit error probability is calculated for communication over
the quantized additive white Gaussian noise channel.

I. INTRODUCTION

The challenging problem of deriving an expression for the
exact bit error probability for communication over the binary
symmetric channel (BSC) was first addressed by Morrissey
in 1970 [1] for a suboptimum feedback decoding technique.
For the memory m = 1 convolutional encoder with generator
matrix G(D) = (1 1 + D), he got an expression which
coincides with the Viterbi decoding bit error probability pub-
lished in 1995 by Best et al. [2], who used a more general
approach based on considering a Markov chain of the so-called
metric states of the Viterbi decoder which is due to Burnashev
and Cohn [3]. The Best et al. method was extended to the
memory m = 2 convolutional encoder with generator matrix
G(D) = (1 +D2 1 +D +D2) by Lentmaier et al. [4].

We use a different approach to derive the exact bit error
probability for Viterbi decoding of minimal convolutional
encoders. A matrix recurrent equation is obtained and solved
for the average information weights at the current and previous
states that are connected by the branches decided by the Viterbi
decoder during the current step [5].

To illustrate our method we use the R = 1/2 minimal,
memory m = 1 (2-state) convolutional feed-forward encoder
with generator matrix G(D) = (1 1+D) realized in controller
canonical form to communicate over the BSC. (However, our

derivation holds for any memory m.) The extension to rate
R = 1/c is trivial while in the presentation we give nontrivial
extensions to rate R = b/c as well as feedback encoders.
Finally, we consider the quantized additive white Gaussian
noise channel. Examples of encoders with 2, 4, 8, and 16
states are given. For 32 states the computational complexity
becomes prohibitively large. Before proceeding we would
like to emphasize that the bit error probability is an encoder
property, not a code property.

II. A RECURRENT EQUATION FOR THE INFORMATION
WEIGHTS

Assume that the all-zero sequence is transmitted over the
BSC. Let Wt(σ) denote the weight of the information se-
quence corresponding to the code sequence decided by the
Viterbi decoder at state σ and time t. If the initial values
W0(σ) are known then the random process Wt(σ) is a
function of the random process of the received c-tuples ri,
i = 0, 1, . . . , t−1. Thus, the ensemble {ri, i = 0, 1, . . . , t−1}
determines the ensemble {Wi(σ), i = 1, 2, . . . , t}.

Our goal is to determine the mathematical expectation of
the random variable Wt(σ) over this ensemble, since for
minimal convolutional encoders the bit error probability can
be computed as the limit

Pb = lim
t→∞

E [Wt(σ = 0)]

t
(1)

assuming that this limit exists.
Since we have chosen realizations in controller canoni-

cal form the encoder states can be represented by the m-
tuples of the inputs of the shift register, that is, σt =
ut−1ut−2 . . . ut−m. In the sequel we usually denote these
encoder states σ, σ ∈ {0, 1, . . . , 2m − 1}. During the de-
coding step at time t + 1 the Viterbi algorithm com-
putes the cumulative Viterbi branch metric vector µt+1 =
(µt+1(0) µt+1(1) . . . µt+1(2m − 1)) at time t + 1 using the
vector µt at time t and the received c-tuple rt. In our
analysis it is convenient to normalize the metrics such that the
cumulative metrics at every all-zero state will be zero, that is,
we subtract the value µt(0) from µt(1), µt(2), . . . , µt(2

m−1)
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Fig. 1. The 20 different trellis sections for the G(D) = (1 1 +D) generator matrix.

and introduce the normalized cumulative branch metric vector

φt =
(
φt(1) φt(2) . . . φt(2

m − 1)
)

(2)

=
(
µt(1)−µt(0) µt(2)−µt(0) . . . µt(2

m − 1)−µt(0)
)

For a memory m = 1 (2-state) encoder we obtain the scalar

φt = φt(1) (3)

while for a memory m = 2 (4-state) encoder we have the
vector

φt =
(
φt(1) φt(2) φt(3)

)
(4)

First we consider the rate R = 1/2, memory m = 1
minimal encoder with generator matrix G(D) = (1 1 + D).
In Fig. 1 we show the 20 different trellis sections correspond-
ing to the M = 5 different normalized cumulative metrics
φt ∈ {−2,−1, 0, 1, 2} and the four different received tuples
rt = 00, 01, 10, 11. The bold branches correspond to the
branches decided by the Viterbi decoder at time t+ 1. When
we have two branches entering the same state with the same
state metric we have a tie which we, in our analysis, will
resolve by fair coin-flipping.

The normalized cumulative metric Φt is a 5-state Markov



chain with transition probability matrix Φ = (φjk), where

φjk = Pr
(
φt+1 = φ(k)

∣∣∣ φt = φ(j)
)

(5)

From the trellis sections in Fig. 1 we obtain the following
transition probability matrix

Φ =

-2 -1 0 1 2 φ(k)

-2 q2 0 2pq 0 p2

-1 q2 0 2pq 0 p2

0 0 q 0 p 0
1 pq 0 p2 + q2 0 pq
2 pq 0 p2 + q2 0 pq
φ(j)


 (6)

Let pt denote the probability of the M different metric
values of Φt, that is, φt ∈

{
φ(1), φ(2), . . . , φ(M)

}
. The

stationary distribution of the normalized cumulative metrics
Φt is denoted p∞ =

(
p
(1)
∞ p

(2)
∞ . . . p

(M)
∞

)
and is determined

as the solution of, for example, the first M − 1 equations of

p∞Φ = p∞ (7)

and
M∑
i=1

p(i)∞ = 1 (8)

For our m = 1 convolutional encoder we obtain

pT∞ =
1

1 + 3p2 − 2p3


1− 4p+ 8p2 − 7p3 + 2p4

2p− 5p2 + 5p3 − 2p4

2p− 3p2 + 3p3

2p2 − 3p3 + 2p4

p2 + p3 − 2p4

 (9)

Now we return to the information weight Wt(σ). From the
trellis sections in Fig. 1 it is easily seen how the information
weights are transformed during one step of the Viterbi de-
coding. Transitions from state 0 or state 1 to state 0 decided
by the Viterbi decoder without tiebreaking do not cause an
increment of the information weights; we simply copy the
information weight from the state at the root of the branch to
the state at the termini of the branch since such a transmission
corresponds to ût = 0. Having a transition from state 0 to
state 1 decided by the Viterbi decoder without tiebreaking,
we obtain the information weight at state 1 and time t + 1
by incrementing the information weight at state 0 and time
t since such a transition corresponds to ût = 1. Similarly,
coming from state 1 we obtain the information weight at state
1 and time t + 1 by incrementing the information weight at
state 1 and time t. If we have tiebreaking, we use the arithmetic
average of the information weights at the two states 0 and 1
at time t in our updating procedure.

Now we introduce some notations for rate R = 1/c,
memory m encoders. The values of the random variable Wt(σ)
are distributed over the cumulative metrics φt according to the
vector pt. Let wt be the vector of the information weights at
time t split both on the 2m states σt and the M metric values

φt; that is, we can write wt as the following vector of M2m

entries:

wt =
(

wt(φ
(1), σ = 0) . . . wt(φ

(M), σ = 0)

wt(φ
(1), σ = 1) . . . wt(φ

(M), σ = 1)

...
...

wt(φ
(1), σ = 2m−1) . . . wt(φ

(M), σ = 2m−1)
)

(10)

The vector wt describes the dynamics of the information
weights when we proceed along the trellis. It satisfies the
following recurrent equation{

wt+1 = wtA+ btB

bt+1 = btΠ
(11)

where A and B are M2m×M2m nonnegative matrices and Π
is an M2m×M2m stochastic matrix. The matrix A is the lin-
ear part of the affine transformation of the information weights
and it can be determined from the trellis sections in Fig. 1. The
matrix B describes the increments of the information weights.
The vector bt of length M2m is the concatenation of 2m

stochastic vectors pt. Hence, the M2m ×M2m matrix Π is
given by

Π =


Φ 0 . . . 0
0 Φ . . . 0
...

...
. . .

...
0 0 . . . Φ

 (12)

For simplicity, we choose the initial value of the vector of
information weights to be

w0 = 0 (13)

From (1) follows that we are interested in the asymptotic
values. Thus we can exploit the steady-state probabilities p∞
and use

b∞ = (p∞ p∞ . . .p∞) (14)

as starting value in (11). Since

b∞ = b∞Π (15)

(11) can be simplified to

wt+1 = wtA+ b∞B (16)

The following two examples illustrate how A can be ob-
tained from the trellis sections in Fig. 1.

Consider first a situation without tiebreaking; for example,
the trellis section in the upper left corner, where we have φt =
−2, φt+1 = −2, and rt = 00. Following the bold branches, we
first copy with probability Pr(rt = 00) = q2 the information
weight from state σt = 0 to state σt+1 = 0, and obtain the
information weight at σt+1 = 1 as the information weight at
σt = 0 plus 1 (since ût = 1 for this branch). We have now
determined four of the entries in A, namely, the two entries
for σt = 0, φt = −2, and φt+1 = −2, which both are q2,
and the two entries for σt = 1, φt = −2, and φt+1 = −2,



which both are 0. Notice that, when we determine the entry
for φt+1 = 0, we have to add the probabilities for the two
trellis sections with φt+1 = 0.

Next we include tiebreaking and choose the trellis section
with φt = −1, φt+1 = −2, and rt = 00. Here we have to
resolve ties at σt+1 = 1. By following the bold branch from
σt = 0 to σt+1 = 0 we conclude that the information weight
at state σt+1 = 0 is a copy of the information weight at state
σt = 0. Then we follow the two bold branches to state σt+1 =
1 where the information weight is the arithmetic average of the
information weights at states σt = 0 and σt = 1 plus 1. We
have now determined another four entries of A, namely, the
entry for σt = 0, φt = −1, φt+1 = −2, and σt+1 = 0 which
is q2, the two entries for φt = −1, φt+1 = −2, and σt+1 = 1
which are both q2/2 (the tie is resolved by coin-flipping),
and, finally, the entry for σt = 1, φt = −2, φt+1 = −2, and
σt+1 = 0 which is 0 since there is no bold branch between
σt = 1 and σt+1 = 0 in this trellis section.

Proceeding in this manner yields the matrix A (17) for the
memory m = 1 convolutional encoder with generator matrix
G(D) = (1 1 +D). This matrix A is specified at the bottom
of this page.

Let akl and bkl, 0 ≤ k, l ≤ M2m − 1, denote the entries
of the matrices A and B, respectively. Then, in general, the
entries

bkl = βklakl (18)

where βkl is the increment of the path information weight
corresponding to the transition (σt, φt)→ (σt+1, φt+1).

For feed-forward and feedback convolutional encoders real-
ized in controller canonical form the increments are identical
for all entries bkl within a given submatrix Bij , 0 ≤ i, j ≤
2m − 1. Then we use the notation

Bij = β (σt+1 = j | σt = i)Aij (19)

However, for rate R = b/c, b > 1, convolutional encoders
we could have parallel branches. Then the increments βkl for
the entries bkl within a given submatrix Bij might assume
different values.

For rate R = 1/c convolutional feed-forward encoders
realized in controller canonical form we only have increments
when entering the states σt+1 whose, when written as an m-
tuple, first digit is a 1. Thus it follows that for our 2-state
encoder we have

B =

(
05,5 A01

05,5 A11

)
(20)

Finally, we notice that every encoder state is reachable with
probability 1, thus we have

2m−1∑
i=0

Aij = Φ, j = 0, 1, . . . , 2m − 1 (21)

In the next section we shall solve the recurrent matrix
equation (16).

III. SOLVING THE RECURRENT EQUATION

By iterating the recurrent equation (16) and using the initial
value (13) we obtain

wt+1 = b∞BA
t + b∞ΠBAt−1 + · · ·+ b∞ΠtB

= b∞BA
t + b∞BA

t−1 + · · ·+ b∞B (22)

where the second equality follows from (15). From (22) it
follows that

lim
t→∞

wt

t
= lim
t→∞

wt+1

t
= lim
t→∞

1

t

t∑
j=0

b∞BA
t−j

= lim
t→∞

2

t

t/2∑
j=0

b∞
BAt−j +BAj

2
− lim
t→∞

b∞BA
t/2

t

= lim
t→∞

b∞BA
t/2 = b∞BA

∞ (23)

where A∞ denotes the limit of the sequence At when t tends
to infinity and we used that, if a sequence is convergent to a
finite limit, then it is Cesàro-summable to the same limit.

We summarize the following important properties of the
matrix A = (akl):
• Nonnegativity, that is, akl ≥ 0, 0 ≤ k, l ≤M2m − 1.

A =

(
A00 A01

A10 A11

)
=

σt+1 = 0 σt+1 = 1
-2 -1 0 1 2 -2 -1 0 1 2 φt+1

σt = 0

-2 q2 0 2pq 0 p2 q2 0 2pq 0 p2

-1 q2 0 3pq/2 0 p2/2 q2/2 0 3pq/2 0 p2

0 0 q2 0 pq 0 0 pq 0 p2 0
1 0 0 q2/2 0 qp/2 pq/2 0 p2/2 0 0
2 0 0 0 0 0 0 0 0 0 0

σt = 1

-2 0 0 0 0 0 0 0 0 0 0
-1 0 0 pq/2 0 p2/2 q2/2 0 pq/2 0 0
0 0 pq 0 p2 0 0 q2 0 pq 0
1 pq 0 q2/2 + p2 0 pq/2 pq/2 0 q2 + p2/2 0 pq
2 pq 0 q2 + p2 0 pq pq 0 q2 + p2 0 pq
φt





(17)



• For any convolutional encoder with memory m, A has
a block structure, A = (Aij), i, j = 0, 1, . . . , 2m − 1,
where the block Aij corresponds to the transitions from
σt = i to σt+1 = j.

• Summing over the blocks columnwise yields

2m−1∑
i=0

Aij = Φ, j = 0, 1, . . . , 2m − 1 (24)

From (24) follows that

eL = (p∞ p∞ . . .p∞) (25)

satisfies

eLA = eL (26)

and, hence, eL is a left eigenvector with eigenvalue λ = 1.
From the nonnegativity follows (Corollary 8.1.30 [6]) that

λ = 1 is a maximal eigenvalue of A. Let eR be the right
eigenvector corresponding to the eigenvalue λ = 1 and let
eR be normalized such that eLeR = 1. If eL is unique (up to
normalization) then it follows (Lemma 8.2.7, statement (i) [6])
that

A∞ = eReL (27)

Combining (23), (25), and (27) yields

lim
t→∞

wt

t
= b∞BeR(p∞ p∞ . . .p∞) (28)

From (1) it follows that the expression for the exact bit error
probability can be written as

Pb = lim
t→∞

E[Wt(σ = 0)]

t
= lim
t→∞

∑M
i=1wt(φ

(i), σ = 0)

t

= lim
t→∞

wt(σ = 0)1T1,M
t

(29)

where 11,M is the all-one row vector of length M . In other
words, to get the expression for Pb we sum up the first M com-
ponents of the vector on the right side of (28), or, equivalently,
we multiply this vector by the vector (11,M 01,M . . .01,M )T .
Then we obtain the following closed-form expression for the
exact bit error probability

Pb = b∞BeR (30)

In summary, for rate R = b/c minimal convolutional
encoders we can determine the exact bit error probability Pb
for Viterbi decoding, when communicating over the BSC, as
follows:
• Construct the set of metric states and find the stationary

probability distribution p∞
• Construct the matrices A and B analogously to the

memory m = 1 example given above and com-
pute its right eigenvector eR normalized according to
(p∞ p∞ . . .p∞)eR = 1.

• Compute Pb using (30).

IV. SOME EXAMPLES

First we consider the rate R = 1/2, memory m = 1 (2-state)
convolutional code with generator matrix G(D) = (1 1+D).
Its set of metric states is {−2,−1, 0, 1, 2} and the stationary
probability distribution p∞ is given by (9).

From the trellis sections in Fig. 1 we obtain the matrix A
(17) with normalized right eigenvector

eR =



0
0
0
0
0
0
pq

2
4pq

2− p+ 4p2 − 4p3

(2 + 7p− 12p2 + 13p3 − 12p4 + 4p5)

2(2− p+ 4p2 − 4p3)
1



(31)

Finally, inserting (9) and (31) into (30) yields the exact bit
error probability

Pb =
14p2 − 23p3 + 16p4 + 2p5 − 16p6 + 8p7

(1 + 3p2 − 2p3)(2− p+ 4p2 − 4p3)
(32)

which coincides with the bit error probability formula in [2].
Next we consider the rate R = 1/2, memory m = 2 (4-

state) convolutional encoder with generator matrix G(D) =
(1 + D2 1 + D + D2). In Fig. 2 we show the four trellis
sections for φt = (0 0 0). The corresponding metric states at
time t+ 1 are φt+1 = (−1 0 −1) and (1 0 1). Completing
the set of trellis sections yields 31 different normalized metric
states.

Following the method of calculating the exact bit error
probability in Section III we obtain

Pb = 44p3 +
3519

8
p4 − 14351

32
p5 − 1267079

64
p6

−31646405

512
p7 +

978265739

2048
p8

+
3931764263

1024
p9 − 48978857681

32768
p10 + · · · (33)

which coincides with the previously obtained result by Lent-
maier et al. [4].

The rate R = 1/2, memory m = 3 (8-state) convolutional
encoder with generator matrix G(D) = (1 + D2 + D3 1 +
D + D2 + D3) has 433 normalized metric states. The rate
R = 1/2, memory m = 4 (16-state) convolutional matrix
G(D) = (1 + D + D4 1 + D2 + D3 + D4) has 188686
normalized metric states.

Since these two latter examples are essentially more com-
plex we computed the exact bit error probability (following the
method in Section III) only numerically. The results are shown
in Fig. 3 and compared with the curves for the previously
discussed memory m = 1 and m = 2 encoders.
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Fig. 2. Four different trellis sections of the in total 124 for the G(D) = (1 +D2 1 +D +D2) generator matrix.
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Fig. 3. Exact bit error probability for rate R = 1/2, memory m = 1
(
G(D) = (1 1 + D)

)
, memory m = 2

(
G(D) = (1 + D2 1 + D + D2)

)
, and

memory m = 3
(
G(D) = (1 +D2 +D3 1 +D +D2 +D3)

)
.

The rate R = 1/2, memory m = 5 (32-state) convolutional
encoder with generator matrix G(D) = (1 +D+D2 +D3 +
D4 +D5 1 +D3 +D5) has more than 4130000 normalized
metric states and we find it not feasible to calculate the exact
bit error probability for this encoder.

V. COMMENTS

During the presentation, in addition to the examples in
Section IV we shall also consider two rate R = 1/2 4-
state systematic convolutional encoders with feedback, rate
R = 2/3 convolutional feed-forward encoders with up to
16 states, all realized in controller canonical form, as well
as a rate R = 2/3 8-state convolutional encoder realized in
observer canonical form. Finally, examples of rate R = 1/2
convolutional encoders used to communicate over the quan-
tized additive white Gaussian noise channel are given.
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