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1 Ornstein-Zernike Asymptotics

In statistical physics and probability theory we often find problems of the following type:
we have an operator T acting on the Hilbert space `2(Zd), d = 1, 2, . . ., as

(T f)(x) =
∑
y∈Zd

(a(y − x) + c(x; y))) f(y), f ∈ `2(Zd) (1.1)

and we are interested in the correlations induced by T , i.e, of the scalar products(
T tf (1), f (2)

)
`2(Zd)

, t = 1, 2, . . . (1.2)

for f (1), f (2) in some suitable class of functions, when t is large.

A general example is that of a stationary Markov chain {ξt : t ∈ Z}, describing a
random field on Zd, with state space Ω, and invariant measure ν. Quantities of the type

〈Φ(ξ0),Φ(ξt)〉 := 〈Φ(ξ0)Φ(ξt)〉 − 〈Φ(ξ0)〉2 , (1.3)

where Φ ∈ L2(Ω, ν) and 〈·〉 denotes averaging with respect to the probability distribution
of the chain, may represent the time correlation for a random walk in a Markov environ-
ment, the space correlation for a Gibbs state, or other quantities of physical interest.

If S is the stochastic operator of the Markov chain and (·, ·) is the scalar product in
L2(Ω, ν), the correlation (1.3) can be written as(

(St(Φ− 〈Φ〉)),Φ− 〈Φ〉
)
. (1.4)

In many models (see, e.g. [1]) we can represent L2(Ω, ν) as a direct (in general non-
orthogonal) sum of invariant (under S) subspaces

L2(Ω, ν) = H0 +H1 +H2 +H3, (1.5)

where H0 is the subspace of the constants, and H1,H2 are the so-called ”one-particle”
and ”two-particle” subspaces. Moreover the restrictions Si := S/Hi, i = 0, . . . , 3, are such
that the maximal absolute values of the spectra κi := maxλ∈σ(Si) |λ| are decreasing

1 = κ0 > κ1 > κ2 > κ3. (1.6)
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In such cases if we expand element Φ according to (1.5)

Φ = 〈Φ〉+ Φ1 + Φ2 + Φ3, Φi ∈ Hi, i = 1, 2, 3, (1.7)

we see, by a heuristic argument, that the leading term of the asymptotics (1.4), as t→∞,
behaves roughly as κt1 if Φ1 6= 0 (”one-particle case”) and as κt2 if Φ1 = 0, and Φ2 6= 0
(”two-particle case”). The exact asymptotics is exponential with power-law factors, and
is usually called ”Ornstein-Zernike” (O.Z.), after the pioneering work of those authors [2].

For many models the operator S1 is reduced to the standard form (1.1) by choosing
an appropriate basis {vx : x ∈ Zd} in H1, and, similarly, by choosing a basis {vx1,x2 :
x1, x2 ∈ Zd} in H2 the operator S2 is reduced to the form

(T f)(x1, x2) =
∑

y1,y2∈Zd
(a(y1 − x1, y2 − x2) + c(x1, x2; y1, y2)) f(y1, y2). (1.8)

The function c is usually translation invariant, i.e.,

c(x1, x2; y1, y2) = c(x1 + u, x2 + u; y1 + u, y2 + u), ∀u ∈ Zd (1.9)

and the operator defined by (1.8) differs from the general case of the problem (1.1) in Z2d.
The correlations are then given by the scalar product (1.2).

The O.Z. asymptotics was studied for concrete models in many mathematical and
physical papers [2-12]. Rigorous results, based on the spectral analysis as above, were
obtained in the papers [3-8]. All such results rely on the particular features of the models.

Quite recently [12] we were able to give a general answer for the decay of the correla-
tions (1.2) in the two-particle case, under the condition that the ”interaction” term c in
(1.8) is small. Our analysis is based on techniques of analytic functions and requires an
exponential decay of the quantities in (1.8). If the decay is only power-law, the problem
looks much more difficult. To be precise we assume that the functions a and c in (1.8)
are real and satisfy, for some constants C1, C2 and q ∈ (0, 1), the inequalities

|a(x1, x2)| ≤ C1 q
|x1|+|x2|, |c(x1, x2; y1, y2)| ≤ C2 q

minτ d(τ). (1.10)

Here τ is a connected graph with vertices at x1, x2, y1, y2, d(τ) is its length, and the
minimum is taken over all such graphs. We also assume exponential decay for the functions
f (1), f (2) ∈ H := `2(Zd ×Zd) as for a in (1.10), exchange symmetry for a, i.e., a(x1, x2) =
a(x2, x1), and that a and c are even (so that the Fourier transforms are real):

a(x1, x2) = a(−x1,−x2), c(x1, x2; y1, y2) = c(−x1,−x2;−y1,−y2). (1.11)

The crucial assumption on the spectrum is that the Fourier transform

ã(λ1, λ2) =
∑
y1,y2

ei(λ1,y1)+i(λ2,y2)a(y1, y2) (1.12)

has a unique absolute positive maximum at some point (λ̄1, λ̄2), with a negative-definite
hessian matrix. We take for definiteness λ̄1 = λ̄2 = 0, so that

max
(λ1,λ2)∈T d×T d

ã(λ1, λ2) = ã(0, 0) := κ > 0. (1.13)
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As c is supposed to be small, we write αc instead of c, and we understand that c is fixed
and α is a positive parameter which is as small as required.

It turns out that the power-law prefactor of the correlation, which is t−d for d ≥ 3, for
d = 1, 2 may be ”anomalous”, as first discovered by Polyakov [11], due to the fact that
the correlations are dominated by the interaction c.

The main results of [12]) are the following.

Theorem 1.1 For d ≥ 3 there is a constant Md, depending on f (1), f (2) such that the
following asymptotics holds, as t→∞:

(
T tf (1), f (2)

)
=Md

κt

td
(1 + rd(t))) , (1.14)

where rd(t) = O( ln t
t

) for d = 4 and rd(t) = O(1
t
) for d > 4.

For d = 1, 2 we have different behaviors, depending, for small α on the quantity

C =
∑
x1y1,y2

c(x1, 0; y1, y2).

Using a physical terminology, we can say that the interaction is “repulsive”, for C > 0,
“attractive”, for C < 0, and “neutral”, for C = 0.

Theorem 1.2 For d = 1, 2, the following asymptotics hold, as t→∞.
i) If C > 0 (”repulsive case”), there are constants M(+)

d such that

(
T tf (1), f (2)

)
=
M(+)

1 κt

t2

(
1 +O(

1

t
)

)
, d = 1 ; (1.15)

(
T tf (1), f (2)

)
=
M(+)

2 κt

t2 ln2 t

(
1 +O(

1

ln t
)

)
, d = 2 ; (1.16)

ii) If C < 0 (”attractive case”), there are constants κ̄d > κ and M(−)
d , such that

(
T tf (1), f (2)

)
=
M(−)

1 κ̄t1√
t

(
1 +O(

1

t
)

)
, d = 1 ; (1.17)

(
T tf (1), f (2)

)
=
M(−)

2 κ̄t2
t

(
1 +O(

1

t
)

)
, d = 2 ; (1.18)

iii) If C = 0 (”neutral case”), there are constants M(0)
d such that

(
T tf (1), f (2)

)
=
M(0)

1 κt

t

(
1 +O(

1√
t
)

)
, d = 1 ; (1.19)

(
T tf (1), f (2)

)
=
M(0)

2 κt

t2

(
1 +O(

ln t

t
)

)
, d = 2 . (1.20)
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For the constants M(0)
d ,M(±)

d , if f̃ (1)(0, 0)f̃ (2)(0, 0) 6= 0 we have

Md = cd(α) f̃ (1)(0, 0)f̃ (2)(0, 0) [1 +O(α)] , d ≥ 3, (1.21)

M(Θ)
d (f (1), f (2)) = c

(Θ)
d (α)f̃ (1)(0, 0)f̃ (2)(0, 0) [1 +O(α)] , d = 1, 2, Θ = +,−, 0.

(1.22)

Remark 1.3 The constants cd, c
(Θ)
d , are non-vanishing for α > 0. As α → 0, cd(α) has

a finite limit for d ≥ 3, and for d = 1, 2 c
(Θ)
d (α) diverges for Θ = +, vanishes for Θ = −,

and tends to a finite limit for Θ = 0.

Here is a brief outline of the proof. By translation invariance the Hilbert space H
is decomposed as a direct integral H =

∮
T d
HΛdΛ of Hilbert spaces HΛ, Λ ∈ T d, which

reduce T : T =
∮
T d
TΛdΛ, and TΛ is unitarily equivalent to an operator T̃Λ acting on

L2(T d, dm)(dm(Λ) = ddΛ
(2π)d

is the Haar measure on T d) as

(TΛφ) (λ) = ãΛ(λ)φ(λ) + α

∫
T d
KΛ(λ, µ)φ(µ)dm(µ), (1.23)

where ãΛ(λ) = ã(λ,Λ− λ) and KΛ(λ, µ) = c̃(λ;µ,Λ− µ). If now γ is a clockwise contour
in the complex z-plane going around the spectrum of TΛ, the resolvent formula gives

T̃ tΛ =
1

2πi

∫
γ

(
T̃Λ − zE

)−1

ztdz, (1.24)

where E is the unit operator. By the Fredholm theory, the resolvent has a kernel(
T̃Λ − zE

)−1

(λ, µ) =
δλ,µ

ãΛ(λ)− z
− 1

∆Λ(z)

DΛ(λ, µ; z)

(ãΛ(λ)− z)(ãΛ(µ)− z)
, (1.25)

where the functions ∆Λ(z), DΛ(λ, µ; z) are expressed by converging power series in α the
terms of which are multiple integrals of functions of the type

det{KΛ(λi, λj)}i,j=1,...,n∏n
i=1(ãΛ(λi)− z)

.

It is not hard to see that the spectrum of T̃Λ is made of the cut IΛ = [κ1(Λ), κ0(Λ)],
where κ1(Λ) = minλ ãΛ(λ), κ0(Λ) = maxλ ãΛ(λ), and of possible zeroes of ∆Λ(z) which,
for small α, lie near IΛ. The leading contribution to the asymptotics comes from the
region of z near κ0(Λ), for Λ near the origin, as the maximum of ã is κ = κ0(0).

Our main technical tool is a representation for the basic integrals which appear in the
resolvent (1.24). If Λ near the origin and f(λ) can be extended to a complex neighborhood
of the torus T d then for z ∈ U \ IΛ, where U is a complex neighborhood of κ, we have∫

T d

f(λ) dm(λ)

ãΛ(λ)− z
=

{
hf (z; Λ) ζ

s− 1
2

Λ +Hf (z; Λ) d = 2s+ 1,
hf (z; Λ)ζsΛ log 1

ζΛ
+Hf (z; Λ) d = 2s+ 2,

(1.26)

where ζΛ = z−κ0(Λ), s = 0, 1, . . ., and hf (z; Λ), Hf (z; Λ) are analytic functions for z ∈ U .
Such representation can be iterated to multiple integrals and leads to a manageable

representation for the resolvent (1.24).
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2 Local Limit Theorems for locally inhomogeneous

random Walks

The local limit theorem for a locally inhomogeneus random walk appears at first glance
as a particular case of O.Z. asymptotics.

In fact, if in (1.1) we set a(x) = P0(x), where P0 is the transition probability of
a homogeneous random walk, and c(x; y) is such that P0(y − x) + c(x; y) ∈ [0, 1) with∑

y c(x; y) = 0 for all x ∈ Zd, then T is the stochastic operator of a locally inhomogeneous

random walk. By Fourier transform T goes over into T̃ which acts on L2(T d, dm) as(
T̃ f
)

(λ) = p̃0(λ)f̃(λ) +

∫
T d
c̃(λ;µ)f̃(µ)dm(µ), λ ∈ T d (2.1)

where p̃0(λ) =
∑

x P0(x)ei(λ,x), and c̃(λ;µ) =
∑

x,y c(x; y)ei(λ,x)−i(λ,y).
The two-particle operator (1.8) can also describe, under suitable assumptions, the

random walk of two particles with local interaction.
In actual fact, we are interested in the asymptotics of P (Xt = y|X0 = x), where Xt is

the position of the random walk at time t, which reduces to a usual a O.Z. asymptotics
(in the ”neutral” case, as

∑
y c(x; y) = 0) only if y is fixed. But in the local limit theorem

asymptotics y can grow with t, and the previous approach runs into difficulties.
In fact, in terms of the operator (2.1) we have

P (Xt = y|X0 = x) =
(
T tδy

)
(x) =

∫
T d

(T̃ tδ̃y)(λ) e−i(λ,x)dm(λ), δy(u) = δy,u,

where δ̃y(λ) = ei(λ,y) is the Fourier transform of δy. When we express T̃ t in terms of the
resolvent we run into integrals of the form∫

T d

g(λ) ei(λ,y)

p̃0(λ)− z
dm(λ), (2.2)

where g is an analytic function, which have a representation of the type (1.26) with ζΛ

replaced by z − 1, but if y grows the bounds for the analogues of hf , Hf diverge.
Such difficulties were overcome in the papers by Minlos and Zhizhina [13] [14] , which,

to my knowledge, are the only results of a general kind for the local limit theorem of locally
inhomogenous random walks. We briefly present here a refinement of the representation
(1.26), for d = 1, which allows a better control of the dependence on y and can lead to
an improvement of the results in [MZh].

The integral (2.2) defines an analytic function of z except for the cut on the real
interval I = [κ1, 1], where κ1 = minλ p̃0(λ). We are interested in the values of z near the
edge of the cut z = 1, which give the leading contribution to the asymptotics.

Suppose that β = 1− z = |β|eiθ is small enough, with θ 6= 0, π, and let
√
β = |β| 12 ei θ2 .

Then, by simple Cauchy integrals in the complex λ-plane one sees that the integral (2.2),
for y 6= 0 and Im(β) > 0 can be represented as

−
∫
T

g(λ)eiλy

1− p̃0(λ)− β
dm(λ) = e−κ|y|

∫
T

−eiλyg(λ± iκ)

1− p̃0(λ± iκ)− β
dm(λ)+ (2.3)
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−iJ (β)√
β
g(±λ(β)) exp{±iλ(β)y},

where λ(β) =
√

2βu(β), J and u are analytic functions which are real for real β, κ is a
positive constant depending only on P0, and we take ± according to the sign of y.

If Im(β) < 0 the second term on the right of (2.3) changes sign.

By(2.3) we can improve a result of [13] in the simple case when the perturbation is
located at the origin, i.e., P (Xt+1 = y|Xt = x) = P0(y − x) + δx,0c(y), where P0(y) +
c(y), y ∈ Z is the transition probability of a nondegenerate random walk. More precisely,
if P0 is even and c is odd, with P0(y) + |c(y)| ≤ Cq|y|, for some C > 0, q ∈ (0, 1), and∑

y P0(y)y2 = 1,
∑

y c(y)y = b, the following result holds:

Theorem 2.1 There are a positive constant κ, and a function Φ, bounded with its deriva-
tives, such that the following asymptotics holds as t→∞, uniformly in y = o(t3/4)

P (Xt = y|X0 = 0) =
1√
2πt

[
(1 + b sign(y)) e−

y2

2t + e−κ|y|Φ(y)

]
(1 + o(1)) .
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