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1 Ornstein-Zernike Asymptotics

In statistical physics and probability theory we often find problems of the following type:
we have an operator 7 acting on the Hilbert space (5(Z%), d = 1,2,..., as

(Th)) =) (aly =) +clz:9) fly), | € (29 (1.1)

and we are interested in the correlations induced by 7, i.e, of the scalar products
t (1) (2 _
(T, f >)Wd), t=1,2,... (1.2)

for fM, f? in some suitable class of functions, when t is large.

A general example is that of a stationary Markov chain {& : ¢t € Z}, describing a
random field on Z¢, with state space 2, and invariant measure v. Quantities of the type

(®(&), D(&)) = (B(£)D(&)) — (@(&))°, (1.3)

where ® € Ly(€2,v) and (-) denotes averaging with respect to the probability distribution
of the chain, may represent the time correlation for a random walk in a Markov environ-
ment, the space correlation for a Gibbs state, or other quantities of physical interest.

If S is the stochastic operator of the Markov chain and (-, ) is the scalar product in
Ly(Q2, v), the correlation (1.3) can be written as

((S"(@ — (@))), @ — (2)). (1.4)

In many models (see, e.g. [1]) we can represent Ls(2,v) as a direct (in general non-
orthogonal) sum of invariant (under S) subspaces

Lo(%v) = Ho + Hy + Hy + Hs, (1.5)

where Hj is the subspace of the constants, and H;, Hs are the so-called ”one-particle”
and " two-particle” subspaces. Moreover the restrictions S; := S/H;, 1 =0,..., 3, are such
that the maximal absolute values of the spectra x; := maxycq(s,) |A| are decreasing

1 =Ko > K1 > Ko > Ks. (16)

*Based on joint work with R. A. Minlos and A. Pellegrinotti
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In such cases if we expand element ® according to (1.5)
¢ = <CI)>—|—Q)1—|—Q)2—|—CI)37 P, eH;,, 1=1,2,3, (17)

we see, by a heuristic argument, that the leading term of the asymptotics (1.4), as t — oo,
behaves roughly as x! if ®; # 0 ("one-particle case”) and as kb if ®; = 0, and Py # 0
("two-particle case”). The exact asymptotics is exponential with power-law factors, and
is usually called ” Ornstein-Zernike” (O.Z.), after the pioneering work of those authors [2].

For many models the operator S; is reduced to the standard form (1.1) by choosing
an appropriate basis {v, : ¥ € Z%} in H;, and, similarly, by choosing a basis {vy, 4, :
11, Ty € Z%} in Hy the operator Sy is reduced to the form

(T f)(x1,22) = Z (a(yr — 21,92 — 22) + (21, 225 Y1, 92)) f(Y1,Y2)- (1.8)

y1,y2€2%

The function c is usually translation invariant, i.e.,
(1, 02591, y2) = (w1 +u, 2o + u; Y1 + U, Y2 + ), Vu € Z° (1.9)

and the operator defined by (1.8) differs from the general case of the problem (1.1) in Z*?.
The correlations are then given by the scalar product (1.2).

The O.Z. asymptotics was studied for concrete models in many mathematical and
physical papers [2-12]. Rigorous results, based on the spectral analysis as above, were
obtained in the papers [3-8]. All such results rely on the particular features of the models.

Quite recently [12] we were able to give a general answer for the decay of the correla-
tions (1.2) in the two-particle case, under the condition that the ”interaction” term ¢ in
(1.8) is small. Our analysis is based on techniques of analytic functions and requires an
exponential decay of the quantities in (1.8). If the decay is only power-law, the problem
looks much more difficult. To be precise we assume that the functions a and ¢ in (1.8)
are real and satisfy, for some constants Cy, Cy and ¢ € (0, 1), the inequalities

|a(z1, 22)| < Cy g™ FI=]) lc(21, a3 Y1, y2)| < Oy g™ 4, (1.10)

Here 7 is a connected graph with vertices at xy,22,y1,¥y2, d(7) is its length, and the
minimum is taken over all such graphs. We also assume exponential decay for the functions
fO @ € H = 0,(Z¢ x Z9) as for a in (1.10), exchange symmetry for a, i.e., a(zy, z5) =
a(xqe, 1), and that a and ¢ are even (so that the Fourier transforms are real):

a(ry, r2) = a(—x1, —T2), c(x1, T2 Y1, Y2) = c(—x1, =25 —Y1, —Y2). (1.11)
The crucial assumption on the spectrum is that the Fourier transform

(A, ) = Y e FiQemlg gy, yy0) (1.12)

Y1,Y2

has a unique absolute positive maximum at some point (A1, X2), with a negative-definite
hessian matrix. We take for definiteness \; = Ay = 0, so that

max  a(A, A2) = a(0,0) :=x > 0. (1.13)

(/\1 ,)\Q)er xTd



As c is supposed to be small, we write ac instead of ¢, and we understand that c is fixed
and « is a positive parameter which is as small as required.

It turns out that the power-law prefactor of the correlation, which is ¢t~ for d > 3, for
d = 1,2 may be "anomalous”, as first discovered by Polyakov [11], due to the fact that
the correlations are dominated by the interaction c.

The main results of [12]) are the following.

Theorem 1.1 For d > 3 there is a constant My, depending on fU, f®) such that the
following asymptotics holds, as t — oo:

t

(TH 0, y@) = Mdtid (1+74(t))), (1.14)
where rq(t) = O(2) for d =4 and rq(t) = O(2) for d > 4.

For d = 1,2 we have different behaviors, depending, for small o on the quantity

C = Z C(x17053/17y2)-

T1Y1,Y2
Using a physical terminology, we can say that the interaction is “repulsive”, for C' > 0,

“attractive”, for C' < 0, and “neutral”, for C' = 0.

Theorem 1.2 For d = 1,2, the following asymptotics hold, as t — oo.
i) If C' >0 ("repulsive case”), there are constants Mﬁﬁ such that

(+) .t
(Tt F2) = MZ—?K (1 4 @(%)) . d=1; (1.15)
M(+) kit 1
(770 19) = =, (1 + O(E)> . d=2; (1.16)

ii) If C < 0 ("attractive case”), there are constants kq > k and ./\/l(([), such that

M R 1
7L @) = 2 1(1+@_)7 d=1: 1.17
(T 7%) = =7 () (L.17)
(=) =t
(th(l)’f(z)) _ ./\/lzt ) (1 I (’)(%)) : d=2: (1.18)
iii) If C =0 ("neutral case”), there are constants Méo) such that
M(O) e 1
THFD @) = 1 (1+(9—), d=1: 1.19
©0) .t
T4 = 2 (10 a2, 0.2
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For the constants M&O),Mﬁf), if f(0,0)f®(0,0) # 0 we have

Ma = ca(a) FV(0,00f@(0,0) [1+O0(a)],  d>3, (1.21)
MPFW | F@y = O (0) FD(0,0)f@(0,0) [1+O(e)], d=1,2, © =+, —,0.
(1.22)
(©)

Remark 1.3 The constants cq, ¢y, are non-vanishing for o > 0. As a — 0, cq(a) has
a finite limit for d > 3, and ford =1,2 cfl@)(a) diverges for © = +, vanishes for © = —,
and tends to a finite limit for © = 0.

Here is a brief outline of the proof. By translation invariance the Hilbert space H
is decomposed as a direct integral H = fﬁTd HadA of Hilbert spaces Ha, A € T?, which

reduce 7: T = §Td TrdA, and 7T is unitarily equivalent to an operator 7, acting on

L3(T?, dm)(dm(A\) = (ng/)\d is the Haar measure on T¢) as

(Tag) () = an(Ne(V) + o | Ka(A, w)d(u)dm(u), (1.23)
T
where ap(A) = a(A\, A — X) and Ka(\, p) = ¢(A\; py A — ). If now ~ is a clockwise contour
in the complex z-plane going around the spectrum of 7, the resolvent formula gives
~ 1 - —1
Ti= o | (Ti-2E) 2d 1.24
where F is the unit operator. By the Fredholm theory, the resolvent has a kernel

~ _ -1 _ 5/\,,u - 1 DA(AMU’;Z)
(B=:E) Ol = e S B BT - W=

where the functions Ay (z), Da(A, p; z) are expressed by converging power series in « the
terms of which are multiple integrals of functions of the type

det{ Kx(N\i, \j) Fijet,m
[T (aa(N) = 2)

It is not hard to see that the spectrum of 7, is made of the cut Iy = [r1(A), ko(A)],
where x1(A) = miny ax(A), ko(A) = maxy ar(A), and of possible zeroes of Ax(z) which,
for small «, lie near I,. The leading contribution to the asymptotics comes from the
region of z near ko(A), for A near the origin, as the maximum of @ is kK = ko(0).

Our main technical tool is a representation for the basic integrals which appear in the
resolvent (1.24). If A near the origin and f(\) can be extended to a complex neighborhood
of the torus T then for z € U \ I, where U is a complex neighborhood of #, we have

(1.25)

F(N) dm() {hf<z;A> G HN)  d=2+1 (g0
o an(N) — 2 '

- hy(z A)CR logCiA—i—Hf(z;A) d=2s+2,

where (y = z2—ko(A), s =0,1,..., and h¢(z;A), Hs(2; A) are analytic functions for z € U.
Such representation can be iterated to multiple integrals and leads to a manageable
representation for the resolvent (1.24).



2 Local Limit Theorems for locally inhomogeneous
random Walks

The local limit theorem for a locally inhomogeneus random walk appears at first glance
as a particular case of O.Z. asymptotics.

In fact, if in (1.1) we set a(z) = Py(x), where Fy is the transition probability of
a homogeneous random walk, and c(x;y) is such that Py(y — =) + ¢(x;y) € [0,1) with
Zy c(z;y) = 0 for all x € Z%, then T is the stochastic operator of a locally inhomogeneous

random walk. By Fourier transform 7 goes over into 7 which acts on Ly(T%, dm) as

(T£) ) =m0 + [ dmFdm,  AeT (21)
where po(A) = Y, Po(x)e'™™, and é(A; p) = 2, c(z;y)e' @071 0w),

The two-particle operator (1.8) can also describe, under suitable assumptions, the
random walk of two particles with local interaction.

In actual fact, we are interested in the asymptotics of P(X; = y| Xy = z), where X; is
the position of the random walk at time ¢, which reduces to a usual a O.Z. asymptotics
(in the "neutral” case, as ), c(z;y) = 0) only if y is fixed. But in the local limit theorem
asymptotics y can grow with ¢, and the previous approach runs into difficulties.

In fact, in terms of the operator (2.1) we have

P(Xy = ylXo =) = (T'0,) (z) = / (T'0,)(\) e ODdm(N),  6,(w) = by,

Td

where 0,(\) = /™) is the Fourier transform of d,. When we express 7* in terms of the
resolvent we run into integrals of the form

etAy)
/Td ‘(;(O)E))\Tdm(/\), (2.2)

where ¢ is an analytic function, which have a representation of the type (1.26) with (s
replaced by z — 1, but if y grows the bounds for the analogues of hs, H; diverge.

Such difficulties were overcome in the papers by Minlos and Zhizhina [13] [14] , which,
to my knowledge, are the only results of a general kind for the local limit theorem of locally
inhomogenous random walks. We briefly present here a refinement of the representation
(1.26), for d = 1, which allows a better control of the dependence on y and can lead to
an improvement of the results in [MZh].

The integral (2.2) defines an analytic function of z except for the cut on the real
interval [ = [k1, 1], where k1 = miny po(A). We are interested in the values of z near the
edge of the cut z = 1, which give the leading contribution to the asymptotics.

Suppose that 8 =1 — z = |3]e is small enough, with 6 # 0, 7, and let /3 = |ﬁ|%eig.
Then, by simple Cauchy integrals in the complex A-plane one sees that the integral (2.2),
for y # 0 and Im() > 0 can be represented as

- M m(\) = e "Wl —eMg(A £ ir) "
/Tl—ﬁo()\) _ﬁd (A) = /Tl—ﬁo(A:I:m) —ﬂd (AN)+ (2.3)
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where \(() = v20u(f), J and u are analytic functions which are real for real 3, k is a

positive constant depending only on F,, and we take + according to the sign of .
If Im(B) < 0 the second term on the right of (2.3) changes sign.

By(2.3) we can improve a result of [13] in the simple case when the perturbation is
located at the origin, i.e., P(Xy1 = y| Xy = x) = Po(y — ) + 6,0c(y), where Py(y) +
c(y),y € Z is the transition probability of a nondegenerate random walk. More precisely,
if Py is even and c is odd, with Py(y) + |e(y)| < Cql¥!, for some C > 0, ¢ € (0,1), and
>, Pow)y* =1, 37, c(y)y = b, the following result holds:

Theorem 2.1 There are a positive constant &, and a function ®, bounded with its deriva-
tives, such that the following asymptotics holds as t — oo, uniformly in y = 0(t3/4)

P(X, =yl Xo = 0) = (1+b sign(y) e~ % + e WD (y) | (1+o(1)).
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