ORNSTEIN-ZERNIKE ASYMPTOTICS AND THE LOCAL LIMIT THEOREM

C. Boldrighini *

1 Ornstein-Zernike Asymptotics

In statistical physics and probability theory we often find problems of the following type: we have an operator \mathcal{T} acting on the Hilbert space $\ell_{2}\left(\mathbb{Z}^{d}\right), d=1,2, \ldots$, as

$$
\begin{equation*}
\left.(\mathcal{T} f)(x)=\sum_{y \in \mathbb{Z}^{d}}(a(y-x)+c(x ; y))\right) f(y), \quad f \in \ell_{2}\left(\mathbb{Z}^{d}\right) \tag{1.1}
\end{equation*}
$$

and we are interested in the correlations induced by \mathcal{T}, i.e, of the scalar products

$$
\begin{equation*}
\left(\mathcal{T}^{t} f^{(1)}, f^{(2)}\right)_{\ell_{2}\left(\mathbb{Z}^{d}\right)}, \quad t=1,2, \ldots \tag{1.2}
\end{equation*}
$$

for $f^{(1)}, f^{(2)}$ in some suitable class of functions, when t is large.
A general example is that of a stationary Markov chain $\left\{\xi_{t}: t \in \mathbb{Z}\right\}$, describing a random field on \mathbb{Z}^{d}, with state space Ω, and invariant measure ν. Quantities of the type

$$
\begin{equation*}
\left\langle\Phi\left(\xi_{0}\right), \Phi\left(\xi_{t}\right)\right\rangle:=\left\langle\Phi\left(\xi_{0}\right) \Phi\left(\xi_{t}\right)\right\rangle-\left\langle\Phi\left(\xi_{0}\right)\right\rangle^{2}, \tag{1.3}
\end{equation*}
$$

where $\Phi \in L_{2}(\Omega, \nu)$ and $\langle\cdot\rangle$ denotes averaging with respect to the probability distribution of the chain, may represent the time correlation for a random walk in a Markov environment, the space correlation for a Gibbs state, or other quantities of physical interest.

If S is the stochastic operator of the Markov chain and (\cdot, \cdot) is the scalar product in $L_{2}(\Omega, \nu)$, the correlation (1.3) can be written as

$$
\begin{equation*}
\left(\left(S^{t}(\Phi-\langle\Phi\rangle)\right), \Phi-\langle\Phi\rangle\right) . \tag{1.4}
\end{equation*}
$$

In many models (see, e.g. [1]) we can represent $L_{2}(\Omega, \nu)$ as a direct (in general nonorthogonal) sum of invariant (under S) subspaces

$$
\begin{equation*}
L_{2}(\Omega, \nu)=\mathcal{H}_{0}+\mathcal{H}_{1}+\mathcal{H}_{2}+\mathcal{H}_{3} \tag{1.5}
\end{equation*}
$$

where \mathcal{H}_{0} is the subspace of the constants, and $\mathcal{H}_{1}, \mathcal{H}_{2}$ are the so-called "one-particle" and "two-particle" subspaces. Moreover the restrictions $S_{i}:=S / \mathcal{H}_{i}, i=0, \ldots, 3$, are such that the maximal absolute values of the spectra $\kappa_{i}:=\max _{\lambda \in \sigma\left(S_{i}\right)}|\lambda|$ are decreasing

$$
\begin{equation*}
1=\kappa_{0}>\kappa_{1}>\kappa_{2}>\kappa_{3} . \tag{1.6}
\end{equation*}
$$

[^0]In such cases if we expand element Φ according to (1.5)

$$
\begin{equation*}
\Phi=\langle\Phi\rangle+\Phi_{1}+\Phi_{2}+\Phi_{3}, \quad \Phi_{i} \in \mathcal{H}_{i}, \quad i=1,2,3 \tag{1.7}
\end{equation*}
$$

we see, by a heuristic argument, that the leading term of the asymptotics (1.4), as $t \rightarrow \infty$, behaves roughly as κ_{1}^{t} if $\Phi_{1} \neq 0$ ("one-particle case") and as κ_{2}^{t} if $\Phi_{1}=0$, and $\Phi_{2} \neq 0$ ("two-particle case"). The exact asymptotics is exponential with power-law factors, and is usually called "Ornstein-Zernike" (O.Z.), after the pioneering work of those authors [2].

For many models the operator S_{1} is reduced to the standard form (1.1) by choosing an appropriate basis $\left\{v_{x}: x \in \mathbb{Z}^{d}\right\}$ in \mathcal{H}_{1}, and, similarly, by choosing a basis $\left\{v_{x_{1}, x_{2}}\right.$: $\left.x_{1}, x_{2} \in \mathbb{Z}^{d}\right\}$ in \mathcal{H}_{2} the operator S_{2} is reduced to the form

$$
\begin{equation*}
(\mathcal{T} f)\left(x_{1}, x_{2}\right)=\sum_{y_{1}, y_{2} \in \mathbb{Z}^{d}}\left(a\left(y_{1}-x_{1}, y_{2}-x_{2}\right)+c\left(x_{1}, x_{2} ; y_{1}, y_{2}\right)\right) f\left(y_{1}, y_{2}\right) . \tag{1.8}
\end{equation*}
$$

The function c is usually translation invariant, i.e.,

$$
\begin{equation*}
c\left(x_{1}, x_{2} ; y_{1}, y_{2}\right)=c\left(x_{1}+u, x_{2}+u ; y_{1}+u, y_{2}+u\right), \quad \forall u \in \mathbb{Z}^{d} \tag{1.9}
\end{equation*}
$$

and the operator defined by (1.8) differs from the general case of the problem (1.1) in $\mathbb{Z}^{2 d}$. The correlations are then given by the scalar product (1.2).

The O.Z. asymptotics was studied for concrete models in many mathematical and physical papers [2-12]. Rigorous results, based on the spectral analysis as above, were obtained in the papers [3-8]. All such results rely on the particular features of the models.

Quite recently [12] we were able to give a general answer for the decay of the correlations (1.2) in the two-particle case, under the condition that the "interaction" term c in (1.8) is small. Our analysis is based on techniques of analytic functions and requires an exponential decay of the quantities in (1.8). If the decay is only power-law, the problem looks much more difficult. To be precise we assume that the functions a and c in (1.8) are real and satisfy, for some constants C_{1}, C_{2} and $q \in(0,1)$, the inequalities

$$
\begin{equation*}
\left|a\left(x_{1}, x_{2}\right)\right| \leq C_{1} q^{\left|x_{1}\right|+\left|x_{2}\right|}, \quad\left|c\left(x_{1}, x_{2} ; y_{1}, y_{2}\right)\right| \leq C_{2} q^{\min _{\tau} d(\tau)} \tag{1.10}
\end{equation*}
$$

Here τ is a connected graph with vertices at $x_{1}, x_{2}, y_{1}, y_{2}, d(\tau)$ is its length, and the minimum is taken over all such graphs. We also assume exponential decay for the functions $f^{(1)}, f^{(2)} \in \mathcal{H}:=\ell_{2}\left(\mathbb{Z}^{d} \times \mathbb{Z}^{d}\right)$ as for a in (1.10), exchange symmetry for a, i.e., $a\left(x_{1}, x_{2}\right)=$ $a\left(x_{2}, x_{1}\right)$, and that a and c are even (so that the Fourier transforms are real):

$$
\begin{equation*}
a\left(x_{1}, x_{2}\right)=a\left(-x_{1},-x_{2}\right), \quad c\left(x_{1}, x_{2} ; y_{1}, y_{2}\right)=c\left(-x_{1},-x_{2} ;-y_{1},-y_{2}\right) . \tag{1.11}
\end{equation*}
$$

The crucial assumption on the spectrum is that the Fourier transform

$$
\begin{equation*}
\tilde{a}\left(\lambda_{1}, \lambda_{2}\right)=\sum_{y_{1}, y_{2}} e^{i\left(\lambda_{1}, y_{1}\right)+i\left(\lambda_{2}, y_{2}\right)} a\left(y_{1}, y_{2}\right) \tag{1.12}
\end{equation*}
$$

has a unique absolute positive maximum at some point $\left(\bar{\lambda}_{1}, \bar{\lambda}_{2}\right)$, with a negative-definite hessian matrix. We take for definiteness $\bar{\lambda}_{1}=\bar{\lambda}_{2}=0$, so that

$$
\begin{equation*}
\max _{\left(\lambda_{1}, \lambda_{2}\right) \in T^{d} \times T^{d}} \tilde{a}\left(\lambda_{1}, \lambda_{2}\right)=\tilde{a}(0,0):=\kappa>0 . \tag{1.13}
\end{equation*}
$$

As c is supposed to be small, we write αc instead of c, and we understand that c is fixed and α is a positive parameter which is as small as required.

It turns out that the power-law prefactor of the correlation, which is t^{-d} for $d \geq 3$, for $d=1,2$ may be "anomalous", as first discovered by Polyakov [11], due to the fact that the correlations are dominated by the interaction c.

The main results of [12]) are the following.
Theorem 1.1 For $d \geq 3$ there is a constant \mathcal{M}_{d}, depending on $f^{(1)}$, $f^{(2)}$ such that the following asymptotics holds, as $t \rightarrow \infty$:

$$
\begin{equation*}
\left.\left(\mathcal{T}^{t} f^{(1)}, f^{(2)}\right)=\mathcal{M}_{d} \frac{\kappa^{t}}{t^{d}}\left(1+r_{d}(t)\right)\right) \tag{1.14}
\end{equation*}
$$

where $r_{d}(t)=\mathcal{O}\left(\frac{\ln t}{t}\right)$ for $d=4$ and $r_{d}(t)=\mathcal{O}\left(\frac{1}{t}\right)$ for $d>4$.
For $d=1,2$ we have different behaviors, depending, for small α on the quantity

$$
C=\sum_{x_{1} y_{1}, y_{2}} c\left(x_{1}, 0 ; y_{1}, y_{2}\right) .
$$

Using a physical terminology, we can say that the interaction is "repulsive", for $C>0$, "attractive", for $C<0$, and "neutral", for $C=0$.

Theorem 1.2 For $d=1,2$, the following asymptotics hold, as $t \rightarrow \infty$.
i) If $C>0$ ("repulsive case"), there are constants $\mathcal{M}_{d}^{(+)}$such that

$$
\begin{align*}
\left(\mathcal{T}^{t} f^{(1)}, f^{(2)}\right)=\frac{\mathcal{M}_{1}^{(+)} \kappa^{t}}{t^{2}}\left(1+\mathcal{O}\left(\frac{1}{t}\right)\right), & d=1 \tag{1.15}\\
\left(\mathcal{T}^{t} f^{(1)}, f^{(2)}\right)=\frac{\mathcal{M}_{2}^{(+)} \kappa^{t}}{t^{2} \ln ^{2} t}\left(1+\mathcal{O}\left(\frac{1}{\ln t}\right)\right), & d=2 \tag{1.16}
\end{align*}
$$

ii) If $C<0$ ("attractive case"), there are constants $\bar{\kappa}_{d}>\kappa$ and $\mathcal{M}_{d}^{(-)}$, such that

$$
\begin{array}{ll}
\left(\mathcal{T}^{t} f^{(1)}, f^{(2)}\right)=\frac{\mathcal{M}_{1}^{(-)} \bar{\kappa}_{1}^{t}}{\sqrt{t}}\left(1+\mathcal{O}\left(\frac{1}{t}\right)\right), & d=1 ; \\
\left(\mathcal{T}^{t} f^{(1)}, f^{(2)}\right)=\frac{\mathcal{M}_{2}^{(-)} \bar{\kappa}_{2}^{t}}{t}\left(1+\mathcal{O}\left(\frac{1}{t}\right)\right), & d=2 ; \tag{1.18}
\end{array}
$$

iii) If $C=0$ ("neutral case"), there are constants $\mathcal{M}_{d}^{(0)}$ such that

$$
\begin{array}{ll}
\left(\mathcal{T}^{t} f^{(1)}, f^{(2)}\right)=\frac{\mathcal{M}_{1}^{(0)} \kappa^{t}}{t}\left(1+\mathcal{O}\left(\frac{1}{\sqrt{t}}\right)\right), & d=1 \\
\left(\mathcal{T}^{t} f^{(1)}, f^{(2)}\right)=\frac{\mathcal{M}_{2}^{(0)} \kappa^{t}}{t^{2}}\left(1+\mathcal{O}\left(\frac{\ln t}{t}\right)\right), & d=2 \tag{1.20}
\end{array}
$$

For the constants $\mathcal{M}_{d}^{(0)}, \mathcal{M}_{d}^{(\pm)}$, if $\tilde{f}^{(1)}(0,0) \tilde{f}^{(2)}(0,0) \neq 0$ we have

$$
\begin{align*}
& \mathcal{M}_{d}=c_{d}(\alpha) \tilde{f}^{(1)}(0,0) \overline{\tilde{f}^{(2)}(0,0)}[1+\mathcal{O}(\alpha)], \quad d \geq 3, \tag{1.21}\\
& \mathcal{M}_{d}^{(\Theta)}\left(f^{(1)}, f^{(2)}\right)=c_{d}^{(\Theta)}(\alpha) \tilde{f}^{(1)}(0,0) \overline{\tilde{f}^{(2)}(0,0)}[1+\mathcal{O}(\alpha)], \quad d=1,2, \Theta=+,-, 0 . \tag{1.22}
\end{align*}
$$

Remark 1.3 The constants $c_{d}, c_{d}^{(\Theta)}$, are non-vanishing for $\alpha>0$. As $\alpha \rightarrow 0, c_{d}(\alpha)$ has a finite limit for $d \geq 3$, and for $d=1,2 c_{d}^{(\Theta)}(\alpha)$ diverges for $\Theta=+$, vanishes for $\Theta=-$, and tends to a finite limit for $\Theta=0$.

Here is a brief outline of the proof. By translation invariance the Hilbert space \mathcal{H} is decomposed as a direct integral $\mathcal{H}=\oint_{T^{d}} \mathcal{H}_{\Lambda} d \Lambda$ of Hilbert spaces $\mathcal{H}_{\Lambda}, \Lambda \in T^{d}$, which reduce $\mathcal{T}: \mathcal{T}=\oint_{T^{d}} \mathcal{T}_{\Lambda} d \Lambda$, and \mathcal{T}_{Λ} is unitarily equivalent to an operator $\tilde{\mathcal{T}}_{\Lambda}$ acting on $L^{2}\left(T^{d}, d m\right)\left(d m(\Lambda)=\frac{d^{d} \Lambda}{(2 \pi)^{d}}\right.$ is the Haar measure on $\left.T^{d}\right)$ as

$$
\begin{equation*}
\left(\mathcal{T}_{\Lambda} \phi\right)(\lambda)=\tilde{a}_{\Lambda}(\lambda) \phi(\lambda)+\alpha \int_{T^{d}} K_{\Lambda}(\lambda, \mu) \phi(\mu) d m(\mu) \tag{1.23}
\end{equation*}
$$

where $\tilde{a}_{\Lambda}(\lambda)=\tilde{a}(\lambda, \Lambda-\lambda)$ and $K_{\Lambda}(\lambda, \mu)=\tilde{c}(\lambda ; \mu, \Lambda-\mu)$. If now γ is a clockwise contour in the complex z-plane going around the spectrum of \mathcal{T}_{Λ}, the resolvent formula gives

$$
\begin{equation*}
\tilde{\mathcal{T}}_{\Lambda}^{t}=\frac{1}{2 \pi i} \int_{\gamma}\left(\tilde{\mathcal{T}}_{\Lambda}-z E\right)^{-1} z^{t} d z \tag{1.24}
\end{equation*}
$$

where E is the unit operator. By the Fredholm theory, the resolvent has a kernel

$$
\begin{equation*}
\left(\tilde{\mathcal{T}}_{\Lambda}-z E\right)^{-1}(\lambda, \mu)=\frac{\delta_{\lambda, \mu}}{\tilde{a}_{\Lambda}(\lambda)-z}-\frac{1}{\Delta_{\Lambda}(z)} \frac{D_{\Lambda}(\lambda, \mu ; z)}{\left(\tilde{a}_{\Lambda}(\lambda)-z\right)\left(\tilde{a}_{\Lambda}(\mu)-z\right)} \tag{1.25}
\end{equation*}
$$

where the functions $\Delta_{\Lambda}(z), D_{\Lambda}(\lambda, \mu ; z)$ are expressed by converging power series in α the terms of which are multiple integrals of functions of the type

$$
\frac{\operatorname{det}\left\{K_{\Lambda}\left(\lambda_{i}, \lambda_{j}\right)\right\}_{i, j=1, \ldots, n}}{\prod_{i=1}^{n}\left(\tilde{a}_{\Lambda}\left(\lambda_{i}\right)-z\right)}
$$

It is not hard to see that the spectrum of $\tilde{\mathcal{T}}_{\Lambda}$ is made of the cut $I_{\Lambda}=\left[\kappa_{1}(\Lambda), \kappa_{0}(\Lambda)\right]$, where $\kappa_{1}(\Lambda)=\min _{\lambda} \tilde{a}_{\Lambda}(\lambda), \kappa_{0}(\Lambda)=\max _{\lambda} \tilde{a}_{\Lambda}(\lambda)$, and of possible zeroes of $\Delta_{\Lambda}(z)$ which, for small α, lie near I_{Λ}. The leading contribution to the asymptotics comes from the region of z near $\kappa_{0}(\Lambda)$, for Λ near the origin, as the maximum of \tilde{a} is $\kappa=\kappa_{0}(0)$.

Our main technical tool is a representation for the basic integrals which appear in the resolvent (1.24). If Λ near the origin and $f(\lambda)$ can be extended to a complex neighborhood of the torus T^{d} then for $z \in U \backslash I_{\Lambda}$, where U is a complex neighborhood of κ, we have

$$
\int_{T^{d}} \frac{f(\lambda) d m(\lambda)}{\tilde{a}_{\Lambda}(\lambda)-z}= \begin{cases}h_{f}(z ; \Lambda) \zeta_{\Lambda}^{s-\frac{1}{2}}+H_{f}(z ; \Lambda) & d=2 s+1 \tag{1.26}\\ h_{f}(z ; \Lambda) \zeta_{\Lambda}^{s} \log \frac{1}{\zeta_{\Lambda}}+H_{f}(z ; \Lambda) & d=2 s+2\end{cases}
$$

where $\zeta_{\Lambda}=z-\kappa_{0}(\Lambda), s=0,1, \ldots$, and $h_{f}(z ; \Lambda), H_{f}(z ; \Lambda)$ are analytic functions for $z \in U$.
Such representation can be iterated to multiple integrals and leads to a manageable representation for the resolvent (1.24).

2 Local Limit Theorems for locally inhomogeneous random Walks

The local limit theorem for a locally inhomogeneus random walk appears at first glance as a particular case of O.Z. asymptotics.

In fact, if in (1.1) we set $a(x)=P_{0}(x)$, where P_{0} is the transition probability of a homogeneous random walk, and $c(x ; y)$ is such that $P_{0}(y-x)+c(x ; y) \in[0,1)$ with $\sum_{y} c(x ; y)=0$ for all $x \in \mathbb{Z}^{d}$, then \mathcal{T} is the stochastic operator of a locally inhomogeneous random walk. By Fourier transform \mathcal{T} goes over into $\tilde{\mathcal{T}}$ which acts on $L_{2}\left(T^{d}, d m\right)$ as

$$
\begin{equation*}
(\tilde{\mathcal{T}} f)(\lambda)=\tilde{p}_{0}(\lambda) \tilde{f}(\lambda)+\int_{T^{d}} \tilde{c}(\lambda ; \mu) \tilde{f}(\mu) d m(\mu), \quad \lambda \in T^{d} \tag{2.1}
\end{equation*}
$$

where $\tilde{p}_{0}(\lambda)=\sum_{x} P_{0}(x) e^{i(\lambda, x)}$, and $\tilde{c}(\lambda ; \mu)=\sum_{x, y} c(x ; y) e^{i(\lambda, x)-i(\lambda, y)}$.
The two-particle operator (1.8) can also describe, under suitable assumptions, the random walk of two particles with local interaction.

In actual fact, we are interested in the asymptotics of $P\left(X_{t}=y \mid X_{0}=x\right)$, where X_{t} is the position of the random walk at time t, which reduces to a usual a O.Z. asymptotics (in the "neutral" case, as $\sum_{y} c(x ; y)=0$) only if y is fixed. But in the local limit theorem asymptotics y can grow with t, and the previous approach runs into difficulties.

In fact, in terms of the operator (2.1) we have

$$
P\left(X_{t}=y \mid X_{0}=x\right)=\left(\mathcal{T}^{t} \delta_{y}\right)(x)=\int_{T^{d}}\left(\tilde{\mathcal{T}}^{t} \tilde{\delta}_{y}\right)(\lambda) e^{-i(\lambda, x)} d m(\lambda), \quad \delta_{y}(u)=\delta_{y, u}
$$

where $\tilde{\delta}_{y}(\lambda)=e^{i(\lambda, y)}$ is the Fourier transform of δ_{y}. When we express $\tilde{\mathcal{T}}^{t}$ in terms of the resolvent we run into integrals of the form

$$
\begin{equation*}
\int_{T^{d}} \frac{g(\lambda) e^{i(\lambda, y)}}{\tilde{p}_{0}(\lambda)-z} d m(\lambda) \tag{2.2}
\end{equation*}
$$

where g is an analytic function, which have a representation of the type (1.26) with ζ_{Λ} replaced by $z-1$, but if y grows the bounds for the analogues of h_{f}, H_{f} diverge.

Such difficulties were overcome in the papers by Minlos and Zhizhina [13] [14] , which, to my knowledge, are the only results of a general kind for the local limit theorem of locally inhomogenous random walks. We briefly present here a refinement of the representation (1.26), for $d=1$, which allows a better control of the dependence on y and can lead to an improvement of the results in [MZh].

The integral (2.2) defines an analytic function of z except for the cut on the real interval $I=\left[\kappa_{1}, 1\right]$, where $\kappa_{1}=\min _{\lambda} \tilde{p}_{0}(\lambda)$. We are interested in the values of z near the edge of the cut $z=1$, which give the leading contribution to the asymptotics.

Suppose that $\beta=1-z=|\beta| e^{i \theta}$ is small enough, with $\theta \neq 0, \pi$, and let $\sqrt{\beta}=|\beta|^{\frac{1}{2}} e^{i \frac{\theta}{2}}$. Then, by simple Cauchy integrals in the complex λ-plane one sees that the integral (2.2), for $y \neq 0$ and $\operatorname{Im}(\beta)>0$ can be represented as

$$
\begin{equation*}
-\int_{T} \frac{g(\lambda) e^{i \lambda y}}{1-\tilde{p}_{0}(\lambda)-\beta} d m(\lambda)=e^{-\kappa|y|} \int_{T} \frac{-e^{i \lambda y} g(\lambda \pm i \kappa)}{1-\tilde{p}_{0}(\lambda \pm i \kappa)-\beta} d m(\lambda)+ \tag{2.3}
\end{equation*}
$$

$$
-i \frac{\mathcal{J}(\beta)}{\sqrt{\beta}} g(\pm \lambda(\beta)) \exp \{ \pm i \lambda(\beta) y\}
$$

where $\lambda(\beta)=\sqrt{2 \beta} u(\beta), \mathcal{J}$ and u are analytic functions which are real for real β, κ is a positive constant depending only on P_{0}, and we take \pm according to the sign of y.

If $\operatorname{Im}(\beta)<0$ the second term on the right of (2.3) changes sign.
$\mathrm{By}(2.3)$ we can improve a result of [13] in the simple case when the perturbation is located at the origin, i.e., $P\left(X_{t+1}=y \mid X_{t}=x\right)=P_{0}(y-x)+\delta_{x, 0} c(y)$, where $P_{0}(y)+$ $c(y), y \in \mathbb{Z}$ is the transition probability of a nondegenerate random walk. More precisely, if P_{0} is even and c is odd, with $P_{0}(y)+|c(y)| \leq C q^{|y|}$, for some $C>0, q \in(0,1)$, and $\sum_{y} P_{0}(y) y^{2}=1, \sum_{y} c(y) y=b$, the following result holds:

Theorem 2.1 There are a positive constant κ, and a function Φ, bounded with its derivatives, such that the following asymptotics holds as $t \rightarrow \infty$, uniformly in $y=o\left(t^{3 / 4}\right)$

$$
P\left(X_{t}=y \mid X_{0}=0\right)=\frac{1}{\sqrt{2 \pi t}}\left[(1+b \operatorname{sign}(y)) e^{-\frac{y^{2}}{2 t}}+e^{-\kappa|y|} \Phi(y)\right](1+o(1)) .
$$

References

[1] Malyshev, V. A.; Minlos, R. A.: 'Linear infinite-particle operators". Translations of Mathematical Monographs, 143. Am. Math. Society, Providence, RI, 1995.
[2] Ornstein, L.S.; Zernike, F.: Proceedings of the Academy of Sciences (Amsterdam), 17 (1914), p. 793-806 .
[3] Minlos, R. A.; Zhizhina, E. A.: J. Statist. Phys. 84 (1996), 85-118.
[4] Kondratiev, Yu. G.; Minlos, R. A.: J. Statist. Phys. 87 (1997), no. 3-4, 613-642.
[5] Minlos, R. A.: Algebra i Analiz 8 (1996), no. 2, 142-156; translation in St. Petersburg Math. J. 8 (1997), no. 2, 291-301 (in Russian).
[6] Boldrighini, C.; Minlos, R. A.; Pellegrinotti, A.: Ann. Inst. H. Poincaré Probab. Statist. 30 (1994), no. 4, 559-605.
[7] Boldrighini, C.; Minlos, R. A.; Nardi, F.R.; Pellegrinotti, A.: Mosc. Math. J. 8 (2008), no. 3, 419-431,
[8] Bricmont, J., Frohlich, J.: Nuclear Phys. B 251 (1985), 517-552.
[9] Campanino, M.; Yoffe, D.; Velenik, I.: Probability Theory Rel. Fields, 125, 305-349 (2003)
[10] Paes-Leme, P.J.: Ann. Phys. (NY) 115, 367387 (1978)
[11] Polyakov, A.M.: Soviet Phys. JETP 28, 533 (1969)
[12] Boldrighini, C.; Minlos, R. A.; Pellegrinotti, A.: To be published on Communications in Mathematical Physics, 2011.
[13] Minlos, R. A.; Zhizhina, E. A.: Theory Probab. Appl. 39 (1991), 490-503.
[14] Minlos, R. A.; Zhizhina, E. A.: Potential Analysis 5 (1996), 139-172.

[^0]: *Based on joint work with R. A. Minlos and A. Pellegrinotti

