ORNSTEIN-ZERNIKE ASYMPTOTICS AND THE LOCAL LIMIT THEOREM

C. Boldrighini *

1 Ornstein-Zernike Asymptotics

In statistical physics and probability theory we often find problems of the following type: we have an operator \mathcal{T} acting on the Hilbert space $\ell_2(\mathbb{Z}^d)$, $d = 1, 2, \ldots$, as

$$(\mathcal{T}f)(x) = \sum_{y \in \mathbb{Z}^d} \left(a(y-x) + c(x;y) \right) f(y), \quad f \in \ell_2(\mathbb{Z}^d)$$
(1.1)

and we are interested in the correlations induced by \mathcal{T} , i.e., of the scalar products

$$\left(\mathcal{T}^t f^{(1)}, f^{(2)}\right)_{\ell_2(\mathbb{Z}^d)}, \qquad t = 1, 2, \dots$$
 (1.2)

for $f^{(1)}, f^{(2)}$ in some suitable class of functions, when t is large.

A general example is that of a stationary Markov chain $\{\xi_t : t \in \mathbb{Z}\}$, describing a random field on \mathbb{Z}^d , with state space Ω , and invariant measure ν . Quantities of the type

$$\langle \Phi(\xi_0), \Phi(\xi_t) \rangle := \langle \Phi(\xi_0) \Phi(\xi_t) \rangle - \langle \Phi(\xi_0) \rangle^2, \qquad (1.3)$$

where $\Phi \in L_2(\Omega, \nu)$ and $\langle \cdot \rangle$ denotes averaging with respect to the probability distribution of the chain, may represent the time correlation for a random walk in a Markov environment, the space correlation for a Gibbs state, or other quantities of physical interest.

If S is the stochastic operator of the Markov chain and (\cdot, \cdot) is the scalar product in $L_2(\Omega, \nu)$, the correlation (1.3) can be written as

$$\left((S^t(\Phi - \langle \Phi \rangle)), \Phi - \langle \Phi \rangle \right). \tag{1.4}$$

In many models (see, e.g. [1]) we can represent $L_2(\Omega, \nu)$ as a direct (in general nonorthogonal) sum of invariant (under S) subspaces

$$L_2(\Omega,\nu) = \mathcal{H}_0 + \mathcal{H}_1 + \mathcal{H}_2 + \mathcal{H}_3, \qquad (1.5)$$

where \mathcal{H}_0 is the subspace of the constants, and $\mathcal{H}_1, \mathcal{H}_2$ are the so-called "one-particle" and "two-particle" subspaces. Moreover the restrictions $S_i := S/\mathcal{H}_i, i = 0, \ldots, 3$, are such that the maximal absolute values of the spectra $\kappa_i := \max_{\lambda \in \sigma(S_i)} |\lambda|$ are decreasing

$$1 = \kappa_0 > \kappa_1 > \kappa_2 > \kappa_3. \tag{1.6}$$

^{*}Based on joint work with R. A. Minlos and A. Pellegrinotti

In such cases if we expand element Φ according to (1.5)

$$\Phi = \langle \Phi \rangle + \Phi_1 + \Phi_2 + \Phi_3, \qquad \Phi_i \in \mathcal{H}_i, \quad i = 1, 2, 3, \tag{1.7}$$

we see, by a heuristic argument, that the leading term of the asymptotics (1.4), as $t \to \infty$, behaves roughly as κ_1^t if $\Phi_1 \neq 0$ ("one-particle case") and as κ_2^t if $\Phi_1 = 0$, and $\Phi_2 \neq 0$ ("two-particle case"). The exact asymptotics is exponential with power-law factors, and is usually called "Ornstein-Zernike" (O.Z.), after the pioneering work of those authors [2].

For many models the operator S_1 is reduced to the standard form (1.1) by choosing an appropriate basis $\{v_x : x \in \mathbb{Z}^d\}$ in \mathcal{H}_1 , and, similarly, by choosing a basis $\{v_{x_1,x_2} : x_1, x_2 \in \mathbb{Z}^d\}$ in \mathcal{H}_2 the operator S_2 is reduced to the form

$$(\mathcal{T}f)(x_1, x_2) = \sum_{y_1, y_2 \in \mathbb{Z}^d} \left(a(y_1 - x_1, y_2 - x_2) + c(x_1, x_2; y_1, y_2) \right) f(y_1, y_2).$$
(1.8)

The function c is usually translation invariant, i.e.,

$$c(x_1, x_2; y_1, y_2) = c(x_1 + u, x_2 + u; y_1 + u, y_2 + u), \qquad \forall u \in \mathbb{Z}^d$$
(1.9)

and the operator defined by (1.8) differs from the general case of the problem (1.1) in \mathbb{Z}^{2d} . The correlations are then given by the scalar product (1.2).

The O.Z. asymptotics was studied for concrete models in many mathematical and physical papers [2-12]. Rigorous results, based on the spectral analysis as above, were obtained in the papers [3-8]. All such results rely on the particular features of the models.

Quite recently [12] we were able to give a general answer for the decay of the correlations (1.2) in the two-particle case, under the condition that the "interaction" term c in (1.8) is small. Our analysis is based on techniques of analytic functions and requires an exponential decay of the quantities in (1.8). If the decay is only power-law, the problem looks much more difficult. To be precise we assume that the functions a and c in (1.8) are real and satisfy, for some constants C_1, C_2 and $q \in (0, 1)$, the inequalities

$$|a(x_1, x_2)| \le C_1 q^{|x_1| + |x_2|}, \qquad |c(x_1, x_2; y_1, y_2)| \le C_2 q^{\min_{\tau} d(\tau)}.$$
(1.10)

Here τ is a connected graph with vertices at $x_1, x_2, y_1, y_2, d(\tau)$ is its length, and the minimum is taken over all such graphs. We also assume exponential decay for the functions $f^{(1)}, f^{(2)} \in \mathcal{H} := \ell_2(\mathbb{Z}^d \times \mathbb{Z}^d)$ as for a in (1.10), exchange symmetry for a, i.e., $a(x_1, x_2) = a(x_2, x_1)$, and that a and c are even (so that the Fourier transforms are real):

$$a(x_1, x_2) = a(-x_1, -x_2), \qquad c(x_1, x_2; y_1, y_2) = c(-x_1, -x_2; -y_1, -y_2).$$
 (1.11)

The crucial assumption on the spectrum is that the Fourier transform

$$\tilde{a}(\lambda_1, \lambda_2) = \sum_{y_1, y_2} e^{i(\lambda_1, y_1) + i(\lambda_2, y_2)} a(y_1, y_2)$$
(1.12)

has a unique absolute positive maximum at some point $(\bar{\lambda}_1, \bar{\lambda}_2)$, with a negative-definite hessian matrix. We take for definiteness $\bar{\lambda}_1 = \bar{\lambda}_2 = 0$, so that

$$\max_{(\lambda_1,\lambda_2)\in T^d\times T^d}\tilde{a}(\lambda_1,\lambda_2) = \tilde{a}(0,0) := \kappa > 0.$$
(1.13)

As c is supposed to be small, we write αc instead of c, and we understand that c is fixed and α is a positive parameter which is as small as required.

It turns out that the power-law prefactor of the correlation, which is t^{-d} for $d \ge 3$, for d = 1, 2 may be "anomalous", as first discovered by Polyakov [11], due to the fact that the correlations are dominated by the interaction c.

The main results of [12]) are the following.

Theorem 1.1 For $d \geq 3$ there is a constant \mathcal{M}_d , depending on $f^{(1)}, f^{(2)}$ such that the following asymptotics holds, as $t \to \infty$:

$$\left(\mathcal{T}^{t}f^{(1)}, f^{(2)}\right) = \mathcal{M}_{d} \frac{\kappa^{t}}{t^{d}} \left(1 + r_{d}(t)\right),$$
 (1.14)

where $r_d(t) = \mathcal{O}(\frac{\ln t}{t})$ for d = 4 and $r_d(t) = \mathcal{O}(\frac{1}{t})$ for d > 4.

For d = 1, 2 we have different behaviors, depending, for small α on the quantity

$$C = \sum_{x_1y_1, y_2} c(x_1, 0; y_1, y_2).$$

Using a physical terminology, we can say that the interaction is "repulsive", for C > 0, "attractive", for C < 0, and "neutral", for C = 0.

Theorem 1.2 For d = 1, 2, the following asymptotics hold, as $t \to \infty$. i) If C > 0 ("repulsive case"), there are constants $\mathcal{M}_d^{(+)}$ such that

$$\left(\mathcal{T}^{t}f^{(1)}, f^{(2)}\right) = \frac{\mathcal{M}_{1}^{(+)}\kappa^{t}}{t^{2}}\left(1 + \mathcal{O}(\frac{1}{t})\right), \qquad d = 1;$$
 (1.15)

$$\left(\mathcal{T}^{t}f^{(1)}, f^{(2)}\right) = \frac{\mathcal{M}_{2}^{(+)} \kappa^{t}}{t^{2} \ln^{2} t} \left(1 + \mathcal{O}(\frac{1}{\ln t})\right), \qquad d = 2 ; \qquad (1.16)$$

ii) If C < 0 ("attractive case"), there are constants $\bar{\kappa}_d > \kappa$ and $\mathcal{M}_d^{(-)}$, such that

$$\left(\mathcal{T}^{t}f^{(1)}, f^{(2)}\right) = \frac{\mathcal{M}_{1}^{(-)}\bar{\kappa}_{1}^{t}}{\sqrt{t}}\left(1 + \mathcal{O}(\frac{1}{t})\right), \qquad d = 1;$$
 (1.17)

$$\left(\mathcal{T}^{t}f^{(1)}, f^{(2)}\right) = \frac{\mathcal{M}_{2}^{(-)} \bar{\kappa}_{2}^{t}}{t} \left(1 + \mathcal{O}(\frac{1}{t})\right), \qquad d = 2;$$
 (1.18)

iii) If C = 0 ("neutral case"), there are constants $\mathcal{M}_d^{(0)}$ such that

$$\left(\mathcal{T}^{t}f^{(1)}, f^{(2)}\right) = \frac{\mathcal{M}_{1}^{(0)} \kappa^{t}}{t} \left(1 + \mathcal{O}(\frac{1}{\sqrt{t}})\right), \qquad d = 1;$$
 (1.19)

$$\left(\mathcal{T}^{t}f^{(1)}, f^{(2)}\right) = \frac{\mathcal{M}_{2}^{(0)} \kappa^{t}}{t^{2}} \left(1 + \mathcal{O}(\frac{\ln t}{t})\right), \qquad d = 2.$$
(1.20)

For the constants $\mathcal{M}_d^{(0)}, \mathcal{M}_d^{(\pm)}$, if $\tilde{f}^{(1)}(0,0)\tilde{f}^{(2)}(0,0) \neq 0$ we have

$$\mathcal{M}_d = c_d(\alpha) \ \tilde{f}^{(1)}(0,0) \overline{\tilde{f}^{(2)}(0,0)} \ [1 + \mathcal{O}(\alpha)], \qquad d \ge 3,$$
(1.21)

$$\mathcal{M}_{d}^{(\Theta)}(f^{(1)}, f^{(2)}) = c_{d}^{(\Theta)}(\alpha)\tilde{f}^{(1)}(0, 0)\tilde{f}^{(2)}(0, 0) \ [1 + \mathcal{O}(\alpha)], \qquad d = 1, 2, \ \Theta = +, -, 0.$$
(1.22)

Remark 1.3 The constants c_d , $c_d^{(\Theta)}$, are non-vanishing for $\alpha > 0$. As $\alpha \to 0$, $c_d(\alpha)$ has a finite limit for $d \ge 3$, and for d = 1, 2 $c_d^{(\Theta)}(\alpha)$ diverges for $\Theta = +$, vanishes for $\Theta = -$, and tends to a finite limit for $\Theta = 0$.

Here is a brief outline of the proof. By translation invariance the Hilbert space \mathcal{H} is decomposed as a direct integral $\mathcal{H} = \oint_{T^d} \mathcal{H}_{\Lambda} d\Lambda$ of Hilbert spaces \mathcal{H}_{Λ} , $\Lambda \in T^d$, which reduce $\mathcal{T}: \mathcal{T} = \oint_{T^d} \mathcal{T}_{\Lambda} d\Lambda$, and \mathcal{T}_{Λ} is unitarily equivalent to an operator $\tilde{\mathcal{T}}_{\Lambda}$ acting on $L^2(T^d, dm)(dm(\Lambda) = \frac{d^d\Lambda}{(2\pi)^d}$ is the Haar measure on T^d) as

$$(\mathcal{T}_{\Lambda}\phi)(\lambda) = \tilde{a}_{\Lambda}(\lambda)\phi(\lambda) + \alpha \int_{T^d} K_{\Lambda}(\lambda,\mu)\phi(\mu)dm(\mu), \qquad (1.23)$$

where $\tilde{a}_{\Lambda}(\lambda) = \tilde{a}(\lambda, \Lambda - \lambda)$ and $K_{\Lambda}(\lambda, \mu) = \tilde{c}(\lambda; \mu, \Lambda - \mu)$. If now γ is a clockwise contour in the complex z-plane going around the spectrum of \mathcal{T}_{Λ} , the resolvent formula gives

$$\tilde{\mathcal{T}}_{\Lambda}^{t} = \frac{1}{2\pi i} \int_{\gamma} \left(\tilde{\mathcal{T}}_{\Lambda} - zE \right)^{-1} z^{t} dz, \qquad (1.24)$$

where E is the unit operator. By the Fredholm theory, the resolvent has a kernel

$$\left(\tilde{\mathcal{T}}_{\Lambda} - zE\right)^{-1}(\lambda,\mu) = \frac{\delta_{\lambda,\mu}}{\tilde{a}_{\Lambda}(\lambda) - z} - \frac{1}{\Delta_{\Lambda}(z)} \frac{D_{\Lambda}(\lambda,\mu;z)}{(\tilde{a}_{\Lambda}(\lambda) - z)(\tilde{a}_{\Lambda}(\mu) - z)},$$
(1.25)

where the functions $\Delta_{\Lambda}(z)$, $D_{\Lambda}(\lambda, \mu; z)$ are expressed by converging power series in α the terms of which are multiple integrals of functions of the type

$$\frac{\det\{K_{\Lambda}(\lambda_i,\lambda_j)\}_{i,j=1,\dots,n}}{\prod_{i=1}^n (\tilde{a}_{\Lambda}(\lambda_i) - z)}$$

It is not hard to see that the spectrum of $\tilde{\mathcal{T}}_{\Lambda}$ is made of the cut $I_{\Lambda} = [\kappa_1(\Lambda), \kappa_0(\Lambda)]$, where $\kappa_1(\Lambda) = \min_{\lambda} \tilde{a}_{\Lambda}(\lambda), \kappa_0(\Lambda) = \max_{\lambda} \tilde{a}_{\Lambda}(\lambda)$, and of possible zeroes of $\Delta_{\Lambda}(z)$ which, for small α , lie near I_{Λ} . The leading contribution to the asymptotics comes from the region of z near $\kappa_0(\Lambda)$, for Λ near the origin, as the maximum of \tilde{a} is $\kappa = \kappa_0(0)$.

Our main technical tool is a representation for the basic integrals which appear in the resolvent (1.24). If Λ near the origin and $f(\lambda)$ can be extended to a complex neighborhood of the torus T^d then for $z \in U \setminus I_{\Lambda}$, where U is a complex neighborhood of κ , we have

$$\int_{T^d} \frac{f(\lambda) \ dm(\lambda)}{\tilde{a}_{\Lambda}(\lambda) - z} = \begin{cases} h_f(z;\Lambda) \ \zeta_{\Lambda}^{s-\frac{1}{2}} + H_f(z;\Lambda) & d = 2s+1, \\ h_f(z;\Lambda)\zeta_{\Lambda}^s \log \frac{1}{\zeta_{\Lambda}} + H_f(z;\Lambda) & d = 2s+2, \end{cases}$$
(1.26)

where $\zeta_{\Lambda} = z - \kappa_0(\Lambda)$, $s = 0, 1, ..., \text{ and } h_f(z; \Lambda)$, $H_f(z; \Lambda)$ are analytic functions for $z \in U$.

Such representation can be iterated to multiple integrals and leads to a manageable representation for the resolvent (1.24).

2 Local Limit Theorems for locally inhomogeneous random Walks

The local limit theorem for a locally inhomogeneous random walk appears at first glance as a particular case of O.Z. asymptotics.

In fact, if in (1.1) we set $a(x) = P_0(x)$, where P_0 is the transition probability of a homogeneous random walk, and c(x;y) is such that $P_0(y-x) + c(x;y) \in [0,1)$ with $\sum_y c(x;y) = 0$ for all $x \in \mathbb{Z}^d$, then \mathcal{T} is the stochastic operator of a locally inhomogeneous random walk. By Fourier transform \mathcal{T} goes over into $\tilde{\mathcal{T}}$ which acts on $L_2(T^d, dm)$ as

$$\left(\tilde{\mathcal{T}}f\right)(\lambda) = \tilde{p}_0(\lambda)\tilde{f}(\lambda) + \int_{T^d} \tilde{c}(\lambda;\mu)\tilde{f}(\mu)dm(\mu), \qquad \lambda \in T^d$$
(2.1)

where $\tilde{p}_0(\lambda) = \sum_x P_0(x) e^{i(\lambda,x)}$, and $\tilde{c}(\lambda;\mu) = \sum_{x,y} c(x;y) e^{i(\lambda,x)-i(\lambda,y)}$.

The two-particle operator (1.8) can also describe, under suitable assumptions, the random walk of two particles with local interaction.

In actual fact, we are interested in the asymptotics of $P(X_t = y | X_0 = x)$, where X_t is the position of the random walk at time t, which reduces to a usual a O.Z. asymptotics (in the "neutral" case, as $\sum_y c(x; y) = 0$) only if y is fixed. But in the local limit theorem asymptotics y can grow with t, and the previous approach runs into difficulties.

In fact, in terms of the operator (2.1) we have

$$P(X_t = y | X_0 = x) = (\mathcal{T}^t \delta_y)(x) = \int_{T^d} (\tilde{\mathcal{T}}^t \tilde{\delta}_y)(\lambda) \ e^{-i(\lambda, x)} dm(\lambda), \qquad \delta_y(u) = \delta_{y, u},$$

where $\tilde{\delta}_y(\lambda) = e^{i(\lambda,y)}$ is the Fourier transform of δ_y . When we express $\tilde{\mathcal{T}}^t$ in terms of the resolvent we run into integrals of the form

$$\int_{T^d} \frac{g(\lambda) e^{i(\lambda,y)}}{\tilde{p}_0(\lambda) - z} dm(\lambda),$$
(2.2)

where g is an analytic function, which have a representation of the type (1.26) with ζ_{Λ} replaced by z - 1, but if y grows the bounds for the analogues of h_f, H_f diverge.

Such difficulties were overcome in the papers by Minlos and Zhizhina [13] [14], which, to my knowledge, are the only results of a general kind for the local limit theorem of locally inhomogenous random walks. We briefly present here a refinement of the representation (1.26), for d = 1, which allows a better control of the dependence on y and can lead to an improvement of the results in [MZh].

The integral (2.2) defines an analytic function of z except for the cut on the real interval $I = [\kappa_1, 1]$, where $\kappa_1 = \min_{\lambda} \tilde{p}_0(\lambda)$. We are interested in the values of z near the edge of the cut z = 1, which give the leading contribution to the asymptotics.

Suppose that $\beta = 1 - z = |\beta|e^{i\theta}$ is small enough, with $\theta \neq 0, \pi$, and let $\sqrt{\beta} = |\beta|^{\frac{1}{2}}e^{i\frac{\theta}{2}}$. Then, by simple Cauchy integrals in the complex λ -plane one sees that the integral (2.2), for $y \neq 0$ and $\operatorname{Im}(\beta) > 0$ can be represented as

$$-\int_{T} \frac{g(\lambda)e^{i\lambda y}}{1-\tilde{p}_{0}(\lambda)-\beta} dm(\lambda) = e^{-\kappa|y|} \int_{T} \frac{-e^{i\lambda y}g(\lambda\pm i\kappa)}{1-\tilde{p}_{0}(\lambda\pm i\kappa)-\beta} dm(\lambda) +$$
(2.3)

$$-i\frac{\mathcal{J}(\beta)}{\sqrt{\beta}}g(\pm\lambda(\beta))\exp\{\pm i\lambda(\beta)y\},\$$

where $\lambda(\beta) = \sqrt{2\beta}u(\beta)$, \mathcal{J} and u are analytic functions which are real for real β , κ is a positive constant depending only on P_0 , and we take \pm according to the sign of y.

If $\text{Im}(\beta) < 0$ the second term on the right of (2.3) changes sign.

By(2.3) we can improve a result of [13] in the simple case when the perturbation is located at the origin, i.e., $P(X_{t+1} = y | X_t = x) = P_0(y - x) + \delta_{x,0}c(y)$, where $P_0(y) + c(y), y \in \mathbb{Z}$ is the transition probability of a nondegenerate random walk. More precisely, if P_0 is even and c is odd, with $P_0(y) + |c(y)| \leq Cq^{|y|}$, for some $C > 0, q \in (0, 1)$, and $\sum_y P_0(y)y^2 = 1, \sum_y c(y)y = b$, the following result holds:

Theorem 2.1 There are a positive constant κ , and a function Φ , bounded with its derivatives, such that the following asymptotics holds as $t \to \infty$, uniformly in $y = o(t^{3/4})$

$$P(X_t = y | X_0 = 0) = \frac{1}{\sqrt{2\pi t}} \left[(1 + b \, sign(y)) \, e^{-\frac{y^2}{2t}} + e^{-\kappa |y|} \Phi(y) \right] (1 + o(1)) \, .$$

References

- Malyshev, V. A.; Minlos, R. A.: 'Linear infinite-particle operators'. Translations of Mathematical Monographs, 143. Am. Math. Society, Providence, RI, 1995.
- [2] Ornstein, L.S.; Zernike, F.: Proceedings of the Academy of Sciences (Amsterdam), 17 (1914), p. 793-806.
- [3] Minlos, R. A.; Zhizhina, E. A.: J. Statist. Phys. 84 (1996), 85–118.
- [4] Kondratiev, Yu. G.; Minlos, R. A.: J. Statist. Phys. 87 (1997), no. 3-4, 613–642.
- [5] Minlos, R. A.: Algebra i Analiz 8 (1996), no. 2, 142–156; translation in St. Petersburg Math. J. 8 (1997), no. 2, 291–301 (in Russian).
- [6] Boldrighini, C.; Minlos, R. A.; Pellegrinotti, A.: Ann. Inst. H. Poincaré Probab. Statist. 30 (1994), no. 4, 559–605.
- [7] Boldrighini, C.; Minlos, R. A.; Nardi, F.R.; Pellegrinotti, A.: Mosc. Math. J. 8 (2008), no. 3, 419–431,
- [8] Bricmont, J., Frohlich, J.: Nuclear Phys. B 251 (1985), 517–552.
- [9] Campanino, M.; Yoffe, D.; Velenik, I.: Probability Theory Rel. Fields, 125, 305-349 (2003)
- [10] Paes-Leme, P.J.: Ann. Phys. (NY) 115, 367387 (1978)
- [11] Polyakov, A.M.: Soviet Phys. JETP 28, 533 (1969)

- [12] Boldrighini, C.; Minlos, R. A.; Pellegrinotti, A.: To be published on Communications in Mathematical Physics, 2011.
- [13] Minlos, R. A.; Zhizhina, E. A.: Theory Probab. Appl. 39 (1991), 490–503.
- [14] Minlos, R. A.; Zhizhina, E. A.: Potential Analysis 5 (1996), 139–172.