ON ESTIMATION OF A GAUSSIAN RANDOM WALK
FIRST-PASSAGE TIME FROM CORRELATED
OBSERVATIONS

Given a Gaussian random walk X with drift, we consider estimating its first-passage time τ, of a given level A, with a stopping time defined over an observation process Y that is either a noisy version of X, or a delayed by d version of X. For a given loss function $f(x)$, for both cases, we provide lower bounds on expectations $E f(\eta - \tau)$, for any stopping rule η, and exhibit simple stopping rules that achieve these bounds in the large threshold A regime and in the large threshold A large delay d regime, respectively. The results immediately extend to the corresponding continuous time settings where X and Y are Brownian motions with drift.

1. Problem statement. Consider the discrete-time process

$$ X : \quad X_0 = 0, \quad X_n = \sum_{i=1}^{n} V_i + sn, \quad n \geq 1, $$

where $s > 0$ is a given constant and where V_1, V_2, \ldots are independent $\mathcal{N}(0, 1)$-Gaussian random variables. For a given threshold level $A > 0$ consider the first-passage time

$$ \tau_A = \min\{n \geq 0 : X_n \geq A\}. $$

We assume that the loss function $f(x)$ satisfies the following conditions:

A_1) $f(x), x \in \mathbb{R}^1$ is a continuous nonnegative function such that $f(0) = 0$;

A_2) $f(x)$ monotone decreases for $x < 0$ and monotone increases for $x > 0$;

A_3) for some $\alpha \geq \beta > 0$ and some constant C the function $f(x)$ satisfies the bound

$$ f(x) \leq C \left(|x|^\alpha + |x|^\beta \right), \quad x \in \mathbb{R}^1; $$

A_4) for some $a_2 \geq 0$ and some constant C the function $f(x)$ satisfies the condition

$$ |f(x + \varepsilon) - f(x)| \leq C f(x)(|\varepsilon| + |\varepsilon|^{a_2}) + Cf(\varepsilon), \quad x, \varepsilon \in \mathbb{R}^1; $$

A_5) $f(x)$ satisfies the conditions

$$ \lim_{x \to -\infty} f(x) > 0 \quad \text{and} \quad \lim_{x \to -\infty} f(x) > 0. $$

1Institute for Information Transmission Problems, Russian Academy of Sciences, 19 Bolshoi Karetni, 101447 Moscow, Russia

2Communications and Electronics Department, Telecom ParisTech, 75634 Paris Cedex 13, France

3The research described in this publication was made possible in part by the Russian Fund for Fundamental Research (project number 09-01-00536).
The condition A_5 is not fulfilled if, for example, $f(x) = 0$ for all $x \leq 0$.

The function $f(x)$ may be nonsymmetric. In particular, the function $f(x) = (-x)^{p_1}$, $x \leq 0$, $f(x) = x^{p_2}$, $x \geq 0$ with $\min\{p_1, p_2\} > 0$ satisfies conditions $A_1 - A_5$.

Observing sequentially the process $Y = \{Y_n, n = 0, 1, \ldots\}$ correlated to X, it is desirable to estimate the moment τ_A in a best way with respect to the loss function $f(x)$.

Concerning the observation process $Y = \{Y_n, n = 0, 1, \ldots\}$, we consider two cases:

Noisy observations. In that case the observation process Y has the form

$$Y : \quad Y_0 = 0, \quad Y_n = X_n + \varepsilon \sum_{i=1}^{n} W_i, \quad n \geq 1,$$

where W_1, W_2, \ldots are independent $\mathcal{N}(0, 1)$–Gaussian random variables (independent of \{Vi\}), and where $\varepsilon > 0$ is known.

For given A and an estimate η for τ_A, introduce the function

$$q(A, \eta) = \mathbb{E} f \left(\frac{\eta - \tau_A}{r} \right), \quad r = \varepsilon \sqrt{\frac{A}{s^3(1 + \varepsilon^2)}}.$$

We are interested in the minimal possible function $q(A, \eta)$

$$q(A) = \inf_{\eta} q(A, \eta),$$

where the infimum is taken over all stopping times η with respect to the process Y from (1). We use the normalization by r in (2) because for good estimates η and large A the normalized difference $(\eta - \tau_A)/r$ will be approximately $\mathcal{N}(0, 1)$–Gaussian, and such normalization will allow us to avoid some bulky coefficients. For simplicity, we consider only the case when the positive values s, ε are fixed and $A \to \infty$.

Delayed observations. In that case we are given some fixed delay $d = d(A) > 0$ and the process Y has the form

$$Y : \quad Y_0 = Y_1 = \ldots = Y_d = 0; \quad Y_n = X_{n-d}, \quad n \geq d + 1.$$

Similarly to (2)–(3), for given d and an estimate η for τ_A, introduce the functions

$$q(d, \eta) = \mathbb{E} f \left(\frac{\eta - \tau_A}{r_d} \right), \quad r_d = \sqrt{\frac{d}{s^2}},$$

and

$$q(d) = \inf_{\eta} q(d, \eta),$$

where the infimum is taken over all stopping times η defined with respect to the process Y from (4).

2
2. Main results. Introduce the value

\[m(f) = \inf_a \mathbb{E} f(\xi + a), \quad \xi \sim \mathcal{N}(0, 1). \] (7)

Since \(f(x) \) satisfies the conditions \(A_1, A_3 \) and \(A_5 \), we have \(0 < m(f) < \infty \).

Theorem 1 (Noisy observations). If \(f(x) \) satisfies conditions \(A_1-A_5 \) then

\[q(A) = m(f) + o(1), \quad A \to \infty. \] (8)

Theorem 1 generalizes [1, Theorem 2.3] which considers the case \(f(x) = |x| \).

Theorem 2 (Delayed observations). If \(f(x) \) satisfies conditions \(A_1-A_5 \) then

\[q(d) = m(f) + o(1), \quad A, d \to \infty. \] (9)

Remark. Theorems 1 and 2 remain valid if we replace \(X \) and \(Y \) by their continuous time counterparts; i.e., \(X_t = st + B_t \) and \(Y_t = X_t + \varepsilon W_t \) for the noisy case, and \(Y_t = X_{t-d} \) for the delayed case, where \(\{B_t\}_{t \geq 0} \) and \(\{W_t\}_{t \geq 0} \) are independent standard Brownian motions.

REFERENCES

1. Burnashev M. V., Tchamkerten A. Tracking a threshold crossing time of a gaussian random walk through correlated observations. –