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ON ESTIMATION OF A GAUSSIAN RANDOM WALK
FIRST-PASSAGE TIME FROM CORRELATED

OBSERVATIONS 3

Given a Gaussian random walk X with drift, we consider estimating its first-
passage time τ , of a given level A, with a stopping time η defined over an obser-
vation process Y that is either a noisy version of X, or a delayed by d version
of X. For a given loss function f(x), for both cases, we provide lower bounds
on expectations Ef(η − τ), for any stopping rule η, and exhibit simple stopping
rules that achieve these bounds in the large threshold A regime and in the large
threshold A large delay d regime, respectively. The results immediately extend to
the corresponding continuous time settings where X and Y are Brownian motions
with drift.

1. Problem statement. Consider the discrete-time process

X : X0 = 0, Xn =
n

∑

i=1

Vi + sn, n ≥ 1,

where s > 0 is a given constant and where V1, V2, . . . are independent N (0, 1)–Gaussian
random variables. For a given threshold level A > 0 consider the first-passage time

τA = min{n ≥ 0 : Xn ≥ A}.

We assume that the loss function f(x) satisfies the following conditions:
A1) f(x), x ∈ R1 is a continuous nonnegative function such that f(0) = 0;
A2) f(x) monotone decreases for x < 0 and monotone increases for x > 0;
A3) for some α ≥ β > 0 and some constant C the function f(x) satisfies the bound

f(x) ≤ C
(

|x|α + |x|β
)

, x ∈ R1;

A4) for some a2 ≥ 0 and some constant C the function f(x) satisfies the condition

|f(x + ε) − f(x)| ≤ Cf(x)(|ε| + |ε|a2) + Cf(ε), x, ε ∈ R1;

A5) f(x) satisfies the conditions

lim
x→∞

f(x) > 0 and lim
x→−∞

f(x) > 0.
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The condition A5 is not fulfilled if, for example, f(x) = 0 for all x ≤ 0.
The function f(x) may be nonsymmetric. In particular, the function f(x) = (−x)p1 ,

x ≤ 0, f(x) = xp2 , x ≥ 0 with min{p1, p2} > 0 satisfies conditions A1 − A5.
Observing sequentially the process Y = {Yn, n = 0, 1, . . .} correlated to X, it is

desirable to estimate the moment τA in a best way with respect to the loss function
f(x).

Concerning the observation process Y = {Yn, n = 0, 1, . . .}, we consider two cases:
Noisy observations and Delayed observations.

Noisy observations. In that case the observation process Y has the form

Y : Y0 = 0, Yn = Xn + ε
n

∑

i=1

Wi, n ≥ 1, (1)

where W1, W2, . . . are independent N (0, 1)–Gaussian random variables (independent of
{Vi}), and where ε > 0 is known.

For given A and an estimate η for τA, introduce the function

q(A, η) = Ef

(

η − τA

r

)

, r = ε

√

A

s3(1 + ε2)
. (2)

We are interested in the minimal possible function q(A, η)

q(A) = inf
η

q(A, η), (3)

where the infimum is taken over all stopping times η with respect to the process Y from
(1). We use the normalization by r in (2) because for good estimates η and large A
the normalized difference (η − τA)/r will be approximately N (0, 1)–Gaussian, and such
normalization will allow us to avoid some bulky coefficients. For simplicity, we consider
only the case when the positive values s, ε are fixed and A → ∞.

Delayed observations. In that case we are given some fixed delay d = d(A) > 0
and the process Y has the form

Y : Y0 = Y1 = . . . = Yd = 0; Yn = Xn−d, n ≥ d + 1. (4)

Similarly to (2)–(3), for given d and an estimate η for τA, introduce the functions

q(d, η) = Ef

(

η − τA

rd

)

, rd =

√

d

s2
, (5)

and
q(d) = inf

η
q(d, η), (6)

where the infimum is taken over all stopping times η defined with respect to the process
Y from (4).
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2. Main results. Introduce the value

m(f) = inf
a

Ef(ξ + a), ξ ∼ N (0, 1). (7)

Since f(x) satisfies the conditions A1,A3 and A5, we have 0 < m(f) < ∞.
Theorem 1 (Noisy observations). If f(x) satisfies conditions A1-A5 then

q(A) = m(f) + o(1), A → ∞. (8)

Theorem 1 generalizes [1, Theorem 2.3] which considers the case f(x) = |x|.
Theorem 2 (Delayed observations). If f(x) satisfies conditions A1-A5 then

q(d) = m(f) + o(1), A, d → ∞. (9)

Remark. Theorems 1 and 2 remain valid if we replace X and Y by their continuous
time counterparts; i.e., Xt = st+Bt and Yt = Xt +εWt for the noisy case, and Yt = Xt−d

for the delayed case, where {Bt}t≥0 and {Wt}t≥0 are independent standard Brownian
motions.
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