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Abstract

In this paper rate of convergence to stationary regime for a homoge-
neous Markov chain is linked with a spectral radius (not a spectral gap) of
a certain “associated” Markov semigroup operator (not a “natural” one);
the latter is a new version of Vaserstein’s coupling.

1 Introduction

A general question about equilibrium distributions for homogeneous Markov
process may be posed as follows. If there is a convergence to the (unique)
stationary distribution, then how fast is convergence and how does it relate to
spectral characteristics of the process generator? There is a useful technical tool
to estimate convergence and mixing rate, which we call the Lemma about three
random variables and which relates to such names as Markov, Dobrushin and
Vaserstein. A new version of this lemma is proposed in this paper. With the
help of a “Markov extension” of this new version, some insight – even though
not a definite answer – to the questions above will be given in this paper. Notice
that all densities below are considered with respect to the Lebesgue measure,
however, this may be easily relaxed to any sigma-finite reference measure.

A global version of the coefficient 1 − κ in (5) was introduced in a non-
homogeneous situation by Dobrushin in [1] and, hence, is often called Do-
brushin’s ergdic coefficient. In a homogeneous case, Markov himself used a
similar contraction coefficient, which nowadays may be found practically in all
textbooks on Markov chains with a proof of Ergodic theorem; for original paper
see [5] or its reprint in [6, pp 339–361]. Localized versions of this coefficient
were used in several papers by the second author (see, e.g., [10]) under various
names. Neither Markov nor Dobrushin used localized versions; nevertheless,
to our mind it would be appropriate to use for them the name “local Markov–
Dobrushin’s coefficients”. In this paper such local coefficients are used implicitly
in the Theorem 3, where some local Markov–Dobrushin’s condition may provide
the inequality r(Ã) < 1 assumed in the Theorem for brevity.

This Markov–Dobrushin’s coefficient became rather popular in coupling tech-
niques; [10] is just one example. One of possible constructions based on this
coefficient is due to Vaserstein and, hence, is often called Vaserstein’s coupling
in the literature, see [9], [7](to check). This construction allows variations and
one of such variations is used in this paper. In the first papers on coupling
method by Doeblin [2], [3], Markov–Dobrushin’s idea was not used.
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Lemma about three random variables (see below) was communicated to the
second author by A.D.Solovyev in a private conversation. Who is the actual
author of this useful statement is unknown to us; in any case, Solovyev himself
never worked with coupling and most of papers on coupling uses some like-
wise technique. This Lemma itself also allows variations and we will show two
versions of it.

Finally, let us notice that there are other useful conditions frequently used in
coupling, such as “small set” condition. In its global form, it was used, in partic-
ular, in [4] as one of intermediate conditions under the name of “condition C”.
The use of Markov–Dobrushin’s coefficient always provides better convergence
rate estimates and serves a wider class of processes.

The paper is organized as follows. We state the Lemma and give a new
version of it in the section 2 and then apply the second Lemma to a Markov
chain in the section 3. The main results on convergence are formulated in the
section 4; for the sake of simplicity, the Theorems 2 and 3 are presented for
finite or countable state spaces. We provide a minimum of references due to the
restriction on the volume of this presentation.

2 Two Lemmae of three random variables

Lemma 1 Let ξ1, ξ2 be two random variables with values in Rd and densities
p1, p2, correspondingly, on some probability spaces (Ω1,F1, P 1), (Ω2,F2, P 2).
Let κ :=

∫
p1 ∧ p2dx > 0. Let ζ be uniformly distributed on [0, 1] independent

on ξ1, ξ2, η be another independent random variable with a density pη(x) :=
c
(
p1(x)− p1 ∧ p2(x)

)
, where c is a normalizing constant and

ξ3 := 1

(
p1(ξ2)

p1 ∨ p2(ξ2)
≥ ζ
)
ξ2 + 1

(
p1(ξ2)

p1 ∨ p2(ξ2)
< ζ

)
η.

Then ξ3 ∼ ξ1 (same distribution) and P (ξ3 = ξ2) ≥ (=)κ.

This Lemma practically suffices for evaluating mixing and convergence rate
bounds. However, some inconvenience is that it leads to a non-homogeneous
Markov chain. The next Lemma is free from this drawback.

Without loss of generality, we may and will assume that state space of our
random variables (and a Markov process in the sequel) is K = (0, 1)d. Topolog-
ically any open cube is equivalent to Rd, so, in fact, this is not a real restriction.

Lemma 2 Let ξ1, ξ2 be two random variables with values from K with densities
p1, p2, respectively. Let

κ :=

∫
p1 ∧ p2dx > 0.

Let ω = (ω1, ω2, ω3, ω4), with ω1, ω2, ω3 ∈ K and ω4 = 0, 1, and let

pη1(x) = c1
(
p1(x)− p1 ∧ p2(x)

)
, pζ(x) = c0

(
p1 ∧ p2(x)

)
,

and
pη2(x) = c2

(
p2(x)− p1 ∧ p2(x)

)
,

where c1, c2, c0 are normalizing constants. Further, let (Ω,F) be the space of all
possible ω with a Borel sigma-algebra on it. Probability measure on (Ω,F) is
defined as follows by its density p(ω),

p(ω1, ω2, ω3, 0) = (1− c−10 ) pη1(ω1)pη2(ω2) ≡ c−11 pη1(ω1)pη2(ω2),

and
p(ω1, ω2, ω3, 1) = c−10 pζ(ω

3).
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Further, let

η1(ω1) = ω1, η2(ω2) = ω2, ζ(ω3) = ω3, η4(ω4) = 1(ω4 = 0).

Then (clearly) ηi given ω4 = 0 has a density pηi . Finally, let

X1(ω) =

{
η1(ω1), ω4 = 0,
ζ(ω3), ω4 = 1,

X2(ω) =

{
η2(ω2), ω4 = 0,
ζ(ω3), ω4 = 1.

Then pXi(x) = pi(x) and

P (X1 = X2) ≥ (=)κ.

Proof. It may be easily seen that P (X1 = X2) > κ is impossible; however, we
are happy to show just P (X1 = X2) ≥ κ.
1. Let us check that p(ω) is a probability density. Notice that κ = c−12 and

P (Ω) =

∫
c−10 pζ(ω3) dω3 + (1− c−10 )

∫
pη

1

(ω1)pη
2

(ω2) dω

= κ+ 1− κ = 1, as required.

2. Let us verify that pX1(x) = p1(x) and pX2(x) = p2(x). Indeed,

Ef(X1) =

∫
f(y1)pη1(y1)(1− κ) dy1 +

∫
f(y3)pζ(y

3)κ dy3 =

∫
f(y)p1(y) dy.

Similarly,

Ef(X2) =

∫
f(y2)pη2(y2)(1− κ) dy2 +

∫
f(y3)pζ(y

3)κ dy3 =

∫
f(y)p2(y) dy.

3. Let us verify that P (X1 = X2) ≥ (=)κ. Indeed,

P (X1 = X2) ≥ P (ω4 = 1) = κ.

The Lemma 2 is proved.

3 Appying the Lemma 2 to Markov chains

We are going to construct a sequence of random variables
η1n, η

2
n, ζn, χn, X

1
n, X

2
n by induction, so that, in particular, (Xi

n) is a
Markov chain on state space S ⊂ Rd with given transition density for i = 1, 2
and that (X2

n) is a stationary version of a Markov chain (assuming that it
exists) and, moreover, Zn := (X1

n, X
2
n) is a homogeneous Markov chain such

that P (X1
n 6= X2

n)→ 0, n→∞. In principle, this construction may be applied
without a stationary component, too (and even to non-homogeneous Markov
chains; in the latter case, of course, we may not expect that (Zn) may be
homogeneous). Emphasize that the construction presented below is not unique
and that all notations are new, not related to those in the Lemma 1 above.
1. n = 0. We take as p1 the density of X1

0 (if it is a delta-measure, we may
start coupling construction from n = 1), p2 the stationary density and use
construction of the Lemma 2. Also, we have ω0 = (ω1

0 , ω
2
0 , ω

3
0 , ω

4
0). All further

coordinates will be similar, i.e., ωjn+1 ∈ K := (x : x ∈ Rd, 0 < mini x
i ≤

maxi x
i < 1) for j = 1, 2, 3, ω4

n+1 = 0, 1, ωn+1 = ω1
n+1, ω

2
n+1, ω

3
n+1, ω

4
n+1 and

ω = (ω0, ω1, . . .), with the convention that if ω4
k = 1, then ω4

n = 1 for all
n ≥ k. Remind – see the Lemma 2 – that as a result of this step, we will have
random variables η10 , η

2
0 , ζ0, X

1
0 , X

2
0 and χ0 := 1(ω4

0 = 0). If the measures that
correspond to the densities p1 and p2 are non-singular, then we also have

P (X1
0 6= X2

0 ) =

∫
p1 ∧ p2dx > 0.
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2. Case n > 0. Given η1n, η
2
n, ζn, χn, X

1
n, X

2
n, let us con-

struct η1n+1, η
2
n+1, ζn+1, χn+1, X

1
n+1, X

2
n+1 as follows. Let ωn+1 =

(ω1
n+1, ω

2
n+1, ω

3
n+1, ω

4
n+1). Firstly, if ω4

n = 1, then we just use transition density
p(x, x′) to construct X1

n+1 = X2
n+1. On ωn = 0, as well as and on ωn = 1, let

us define the densities

pη1
n+1

(η1n, η
2
n, x) := c1(η1n, η

2
n)
(
p1(η1n, x)− p1(η1n, x) ∧ p2(η2n, x)

)
,

pζn+1
(η1n, η

2
n, x) = c0(η1n, η

2
n)
(
p1(η1n, x) ∧ p2(η2n, x)

)
,

pη2
n+1

(η1n, η
2
n, x) = c2(η1n, η

2
n)
(
p2(η2n, x)− p1(η1n, x) ∧ p2(η2n, x)

)
,

where all c1(η1n, η
2
n), c0(η1n, η

2
n), c2(η1n, η

2
n) are normalizing constants.

As earlier, let (Ω{n+1},F{n+1}) be the space of all possible ωn+1 ∈ (0, 1)4

with a Borel sigma-algebra on it. Probability measure on (Ωn+1,Fn+1) is defined
as follows by the conditional density p(ωn+1 | ωn),

p(ω1
n+1, ω

2
n+1, ω

3
n+1, 0 | ωn = 0) = (1− c0(η1n, η

2
n)−1) pη1

n+1
(η1n, ω

1
n+1)pη2

n+1
(η2n, ω

2
n+1),

p(ω1
n+1, ω

2
n+1, ω

3
n+1, 1 | ωn = 0) = c0(η1n, η

2
n)−1 pζn+1(η1n+1, η

2
n+1, ω

3),

p(ω1
n+1, ω

2
n+1, ω

3
n+1, 0 | ωn = 1) = 0, p(ω1

n+1, ω
2
n+1, ω

3
n+1, 1 | ωn = 1) = p(ζn, ω

3
n+1).

The latter equation,

p(ω1
n+1, ω

2
n+1, ω

3
n+1, 1 | ωn = 1) = p(ζn, ω

3
n+1),

signifies that after hitting ω4
n = 1 the main component of the process ηn be-

comes ζn, which now (after hitting ω4
n = 1) follows the transition probabilities

of the original Markov chain, p(x, x′) (and both X1
n and X2

n will follow this
component); transition (ω4

n = 1) 7→ (ω4
n+1 = 0) is impossible; the coordinates

η1n and η2n become, a bit loosely speaking, uniformly distributed independent
random variables not important for our aim. Further, let us define

ηin+1(ωin+1) = ωin+1, i = 1, 2, ζn+1(ω3
n+1) = ω3

n+1, χn+1 = 1(ω4
n+1 = 0).

Clearly, ηin+1 given ω4
n = 0 has a density pηi

n+1
for any i = 1, 2; also, ζn+1 given

ω4
n = 0 has a density pζn+1

. Finally, let

X1
n+1(ω) =

{
η1n+1(ω1

n+1), ω4
n+1 = 0,

ζn+1(ω3
n+1), ω4

n+1 = 1,
(1)

and

X2
n+1(ω) =

{
η2n+1(ω2

n+1), ω4
n+1 = 0,

ζn+1(ω3
n+1), ω4

n+1 = 1.
(2)

The meaning of η1n and η2n is that they represent the processes X1
n and X2

n,
respectively, under the condition that coupling was not successful until time n
(inclusive). The latter is encoded by the information in the outcome ω, namely,
γ(ω) := inf(k : ω4

k = 1) > n, or, equivalently, ω4
n = 0.

On the outcomes with γ = n and γ < n – i.e. with ω4
n = 1 – the random

variables η1n and η2n may be constructed in the same way, however, they will not
be linked any more with X1 and X2.

The meaning of ζn is different, this random variable represents both X1
n and

X2
n under condition that γ(ω) = n, i.e. at the moment of successful coupling.

Denote

κ(η1n, η
2
n) :=

∫
p1(η1n, x) ∧ p2(η2n, x)dx. (3)
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The processes (ηn) := (η1n, η
2
n, ζn, χn) and (η1n, η

2
n) are homogeneous Markov

chains.
3. Now we have to check that

pXi
n+1
|Xi

n
(x) = p(Xi

n, x) (4)

and
P (X1

n+1 = X2
n+1 | Fn) |ω4

n=0 ≥ (=)κ(η1n, η
2
n). (5)

Moreover, most importantly,

1(X1
n 6= X2

n) =

n∏
k=0

1(ω4
k = 0) ≡

n∏
k=0

χk. (6)

Hence, let us introduce the following operator on functions from L∞((0, 1)4)

Ah(η0) := χ0Eη0h(η1). (7)

Then we have, by induction and due to the semigroup property, with h(η) ≡ 1,

Pη0(X1
n 6= X2

n) = Eη0

n∏
k=0

χk = Anh(η0). (8)

This is the key formula, which links probability of no coupling by time n with
a certain positive semigroup for a homogeneous Markov chain (ηn). Emphasize
that this process is more involved than (X1

n) or even (X1
n, X

2
n); in particular,

notice the dimension. Of course, the “hope” to have some rate of convergence to
zero is due to the fact that |χn| ≤ 1 and on some ω, in fact, |χn| < 1 (actually,
χn = 0, because χn only takes two possible values, 0 or 1); whence, it sounds
plausible that under a suitable recurrence, the right hand side in (8) should
tend to zero with a certain rate; moreover, in “simple cases” this rate directly
relates to a spectral radius of this semigroup. Emphasize that the operator A is
built upon the process ηn = (η1n, η

2
n, ζn, χn) rather than (X1

n, X
2
n), even though

it may be reduced to the triple (η1n, η
2
n, ζn) or even the couple (η1n, η

2
n), which

are also homogeneous Markov chains
4. Let us check (4) given ω4

n = 0. We have,

Ef(X1
n+1 | Fn) |ω4

xn=0=

∫
f(y1)pη1

n+1
(η1n, η

2
n, y

1)(1− κ(η1n, η
2
n)) dy1

+

∫
f(y3)pζn+1(η1n, η

2
n, y

3)κ(η1n, η
2
n) dy3 =

∫
f(y1)p(η1n, y

1) dy1,

as required. It remains to notice that given ω4
n = 1, the equation (4) holds

true by definition. This also shows that (X1
n) is a Markov chain with a given

transition density p(x, x′) and the same is true for (X2
n). Moreover, (X2

n) is a
stationary version of the same Markov chain, since it starts from a stationary
distribution.

4 Convergence results

Let r(A) denote the spectral radius of the operator A in L∞. Notice that

r(A) ≤ ‖A‖ = sup
x
A1(x) ≤ 1. (9)

Hence, under appropriate conditions there is a hope to show that r(A) < 1,
which would imply some exponential estimate for convergence rate. Given two
initial distributions µ0 and ν0, we construct random variables η10 , η

2
0 , ζ0, χ0 ac-

cording to the recipe of the Lemma 2.
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Theorem 1 The estimate holds true,

‖µn − νn‖TV ≤ EAn1(η10 , η
2
0 , ζ0, χ0) ≤ ‖An‖, (10)

and, hence,

lim sup
n

1

n
ln ‖µn − νn‖TV ≤ ln r(A). (11)

In particular, if r(A) < 1, then for any ε > 0 and n large enough,

‖µn − νn‖TV ≤ exp((ln rA + ε)n), (12)

Proof of (10) is straightforward, due to the construction in section 3. The
estimates (11) and (12) follow from (10). The Theorem 1 is proved.

Remind that in the rest of the paper state space S is finite or countable.

Theorem 2 If state space S is finite and the process (X1
n) irreducibile, then

r(A) < 1 & lim
n→∞

(EAn1(η10 , η
2
0 , ζ0, χ0))1/n = r(A). (13)

In particular, convergence rate due to (12) is exponential.

Remark. Exponential convergence rate for an irreducible finite state Markov
chain is well-known. What is apparently new here is the estimate of this con-
vergence rate via the value of r(A) by (12).

Proof. We only show the first inequality in (13). For finite state space irre-
ducibility is equivalent to positivity of the chain (X1

n). So, there exists k ≥ 1
such that the k-step transition matrix of the process (X1

n), say, Pk is positive.
Then, due to the construction,

sup
η0

Eη0

k∏
j=1

χj < 1.

Therefore, ‖Ak‖ ≤ q with this value of k and with some constant q < 1, which
implies that also

r(A) ≤ (‖Ak‖)1/k ≤ q1/k < 1.

The Theorem 2 is proved.

For countable S, spectral radius r(A) usually equals one. Nevertheless, conver-
gence may take place and even possibly be exponential. Let C ⊂ S2 be a finite
set, τC ≡ τC1 := inf(t > 0 : (η1t , η

2
t ) ∈ C), τCn+1 := inf(t > τCn : (η1t , η

2
t ) ∈ C),

Ãh(η0) := χ0Eη0h(ητC ).

Theorem 3 If there exist κ > 0, λ > 0 such that

P (τC[κn] > n) ≤ exp(−λn) ∀ n > 0 (14)

and if r(Ã) < 1, then

lim sup
n

1

n
ln ‖µn − νn‖TV < 0. (15)

Remark. The condition (14) may be provided by exponential recurrence of the
original process X1. The condition r(Ã) < 1 could be derived from irreducibility
of the “process on C”. We leave precise statements until a full presentation.
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Proof sketch. We have for any r(Ã) < p < 1 and m large enough,

sup
η0

Eη0

 m∏
j=0

χj

 1(τC[κm] ≤ m) ≤ sup
η0

Ã[κm]1(η0) ≤ ‖Ã[κm]‖ ≤ p[κm]. (16)

Now we estimate,

‖µn − νn‖TV ≤ sup
η0

Eη0

(
n∏
k=0

χk

)(
1(τC[κn] ≤ n) + 1(τC[κn] > n)

)
≤ ‖Ã[κn]‖+ sup

η0

Pη0(τC[κn] > n) ≤ ‖Ã[κn]‖+ exp(−λn).

For large n the desired assertion follows from (16). The Theorem 3 is proved.

Remark. The Lemma 1 was used in [10] and some other papers and the use of
the Lemma 2 is quite similar. Notice that the use of the “conditional processes”
(ηn) in the coupling constructions is more correct and precise. However, all
recurrence estimates clamied for non-conditional versions under corresponding
assumptions in terms of hitting time moments remain valid for (ηn).
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