Covering a sphere with caps: Rogers bound revisited

Ilya Dumer*

Abstract

We consider coverings of a sphere S_r^n of radius r with the balls of radius one in an n-dimensional Euclidean space \mathbb{R}^n . Our goal is to minimize the *covering density*, which defines the average number of the balls covering a point in S_r^n . For a growing dimension n, we obtain the covering density at most $(n \ln n)/2$ for any sphere S_r^n and the entire space \mathbb{R}^n . This new upper bound reduces two times the density $n \ln n$ established in the classical Rogers bound.

1 Introduction

Spherical coverings. Let $B_{\varepsilon}^{n}(\mathbf{x})$ be a ball (solid sphere) of radius ε centered at some point $\mathbf{x} = (x_1, \ldots, x_n)$ of an *n*-dimensional Euclidean space \mathbb{R}^n . For any subset $A \subseteq \mathbb{R}^n$, we consider any subset Set $Cov(A, \varepsilon)$ in \mathbb{R}^n that forms an ε -covering (an ε -net) of the set A:

$$\operatorname{Cov}(A,\varepsilon): A \subseteq \bigcup_{\mathbf{x}\in\operatorname{Cov}(A,\varepsilon)} B^n_{\varepsilon}(\mathbf{x}).$$

By changing the scale in \mathbb{R}^n , we can always consider the rescaled set $A' = A/\varepsilon$ and its covering Cov(A', 1) with unit balls. Without loss of generality, below we consider these (unit) coverings. We then define the *n*-dimensional volume vol(A) of the set A and consider the minimum *covering density*

$$\vartheta(A) = \min_{\operatorname{Cov}(A,1)} \sum_{\mathbf{x} \in \operatorname{Cov}(A,1)} \frac{\operatorname{vol}(B_1^n(\mathbf{x}) \cap A)}{\operatorname{vol}(A)}.$$

One of the classical problems is to derive the minimum covering density $\vartheta_{n,r}$ for an (n-1 dimensional)sphere of radius r

$$S_r^n \stackrel{\text{def}}{=} \left\{ \mathbf{z} \in \mathbb{R}^n : \sum_{i=1}^n z_i^2 = r^2 \right\}.$$

Equivalently, we can replace any ball $B_1^n(\mathbf{x})$ with its spherical cap

$$C_r^n(\rho, \mathbf{y}) = S_r^n \cap B_1^n(\mathbf{x}),$$

where $\mathbf{y} \in S_r^n$ is the center of the cap and $\rho \leq 1$ is its half-chord. Here we obtain the biggest caps with $\rho = 1$ if all centers \mathbf{x} have Euclidean weight $\sqrt{r^2 - 1}$.

We now proceed with the bounds for the minimum covering density $\vartheta_{n,r}$. The celebrated Coxeter-Few-Rogers lower bound [1] shows that for a sufficiently large radius r,

$$\vartheta_{n,r} \ge c_0 n.$$

^{*}The author is with the University of California, Riverside, USA (e-mail: dumer@ee.ucr.edu). Research was supported by NSF grant ECCS-11043129 and ARO grant W911NF-11-1-0027.

Here and below c_i denote some universal constants. Classical papers [2] and [3] also give the upper bounds on the minimum covering density. In particular, for a sufficiently large radius r, Rogers proved that

$$\vartheta_{n,r} \le \left(1 + \frac{\ln \ln n}{\ln n} + \frac{5}{\ln n}\right) n \ln n. \tag{1}$$

The sphere-covering problem has raised substantial interest since 1950s. Recently, the Rogers bound was improved in [4] for small $r < 1 + \frac{1}{\sqrt{n}}$. Another result of [4] extends the Rogers bound to any dimension $n \ge 3$ and any radius r > 1:

$$\vartheta_{n,r} \le \left(1 + \frac{2}{\ln n}\right) \left(1 + \frac{\ln \ln n}{\ln n} + \frac{\sqrt{e}}{n \ln n}\right) n \ln n.$$
⁽²⁾

The asymptotic Rogers bound $\vartheta_{n,r} \leq n \ln n$ also holds for solid spheres and entire Euclidean spaces \mathbb{R}^n of growing dimension n. Our result (see [7]) is presented below in Theorem 1, which reduces about two times the present upper bounds (1) and (2) for $n \to \infty$.

Theorem 1. [7] Unit balls can cover a sphere S_r^n of any radius r > 1 and any dimension $n \ge 3$ with density

$$\vartheta_{n,r} \le \left(\frac{1}{2} + \frac{2\ln\ln n}{\ln n} + \frac{5}{\ln n}\right) n \ln n.$$
(3)

For $n \to \infty$, there exists $o(1) \to 0$ such that

$$\vartheta_{n,r} \le \frac{1}{2}n\ln n + \left(\frac{3}{2} + o(1)\right)n\ln\ln n. \tag{4}$$

The following corollary to Theorem 1 shows that a similar reduction also holds for general Euclidean spaces \mathbb{R}^n .

Corollary 2. For $n \to \infty$, unit balls can cover the entire Euclidean space \mathbb{R}^n with density

$$\vartheta_n \le \left(\frac{1}{2} + o(1)\right) n \ln n. \tag{5}$$

2 Preliminaries: embedded coverings

The preliminary bounds obtained in this section are similar to (1) and (2). However, we employ a slightly different, two-step technique. First, we will cover some dense discrete subset on S_r^n and then proceed with the whole sphere. These embedded coverings will further be extended in Section 3 to improve the former bounds. Let $C(\rho, \mathbf{y})$ denote a cap $C_r^n(\rho, \mathbf{y})$ whenever parameters n and r are fixed and $C(\rho)$ denote such a cap when its center \mathbf{y} is of no importance. In this case, $Cov(\rho)$ will denote any covering of S_r^n with spherical caps $C(\rho)$. Let

$$\delta_{\rho} = \frac{\operatorname{vol}(C(\rho))}{\operatorname{vol}(S_r^n)}$$

be the fraction of the surface of the sphere S_r^n covered by a cap $C(\rho)$. For any $\tau < \rho \le 1$, we extensively use inequality [4]:

$$\delta_{\tau} \ge \delta_{\rho} \left(\frac{\tau}{\rho}\right)^n$$

and its particular version $\delta_{\tau} \geq \delta_1 \tau^n$ obtained for $\rho = 1$. We will also choose parameters

$$\varepsilon = \frac{1}{n \ln n}, \quad \lambda = 1 + \frac{\ln \ln n}{\ln n} + \frac{2}{n}$$

For any $n \ge 4$, we also use inequality

$$(1 - \varepsilon)^{-n} < 1 + \frac{1}{\ln n} + \frac{1}{\ln^2 n}.$$
(6)

An embedded algorithm. To design a covering Cov(1), we will perform 3 steps. 1. Consider any covering of S_r^n with small caps $C(\varepsilon, \mathbf{u})$:

$$\operatorname{Cov}(\varepsilon):\ S^n_r\subseteq\bigcup_{\mathbf{u}\in\operatorname{Cov}(\varepsilon)}C(\varepsilon,\mathbf{u})$$

2. Randomly choose N large caps $C(\rho, \mathbf{y})$ of radius $\rho = 1 - \varepsilon$. Specifically, the number N is chosen to obtain the covering density

$$N\delta_{\rho} \lesssim \lambda n \ln n.$$

This choice of N will leave a small average fraction $\exp\{-N\delta_{\rho}\}$ of non-covered centers u' of $Cov(\varepsilon)$.

3. Consider the extended set of points

$$\{\mathbf{x}\} = \{\mathbf{y}\} \cup \{\mathbf{u}'\}.$$

Then the extended set of caps $C(\rho, \mathbf{x})$ leaves only the holes of size ε or less on the sphere S_r^n . Thus, we can expand the caps $C(\rho, \mathbf{x})$ to be required radius 1 and obtain the unit covering

$$\operatorname{Cov}(1): S_r^n \subseteq \bigcup_{\mathbf{x} \in \{\mathbf{x}\}} C(1, \mathbf{x}).$$

Lemma 3. For any $n \ge 8$, covering $\{x\}$ has density

$$\vartheta_* \le \left(1 + \frac{\ln \ln n}{\ln n} + \frac{2}{\ln n}\right) n \ln n. \tag{7}$$

Sketch of the proof. According to inequality (6), the caps $C(1, \mathbf{x})$ and $C(\rho, \mathbf{y})$ have similar size

$$\delta_1/\delta_\rho \le (1-\varepsilon)^{-n} = 1 + o(1).$$

Thus, the expansion of Step 3 leaves almost the same covering density. Next, note that any $Cov(\varepsilon)$ with density ϑ_{ε} has huge size

$$|\mathsf{Cov}(\varepsilon)| = \vartheta_{\varepsilon}/\delta_{\varepsilon} \le (n\ln n)^n \, \vartheta_{\varepsilon}/\delta_{\rho}$$

that exceeds our N by an (approximate) factor of $(n \ln n)^n$. However, a random set of caps $C(\rho, \mathbf{y})$ with covering density $\vartheta = N\delta_\rho$ fails to cover only the small average fraction $\exp\{-\vartheta\}$ of any set $\{\mathbf{u}\}$. Namely, N random caps fail to cover an average number

$$N' = (1 - \delta_{\rho})^N \cdot |\mathsf{Cov}(\varepsilon)| \le e^{-N\delta_{\rho}} \, |\mathsf{Cov}(\varepsilon)| \le \vartheta_{\varepsilon}/n^2 \delta_{\rho}$$

of centers u'. Then a new covering $\{x\}$ with N + N' caps $C(\rho, x)$ has average density

$$\vartheta_{\rho} = \delta_{\rho}(N+N') \lesssim (\lambda n \ln n) + \vartheta_{\varepsilon}/n^2$$

Thus, the new density ϑ_{ρ} only fractionally (with coefficient n^{-2}) depends on ϑ_{ε} . If ϑ_{ε} is bounded away from $\lambda n \ln n$, our algorithm reduces ϑ_{ε} to ϑ_{ρ} . Thanks to rescaling of \mathbb{R}^n , we can then repeat the algorithm using the new ϑ_{ρ} in place of the former ϑ_{ε} . Namely, we take a new covering Cov(1) of a sphere $S_{r/\varepsilon}^n$ and convert it into the covering $\text{Cov}(\varepsilon)$ of the sphere S_r^n . This rescaling shows that ϑ_{ρ} will converge to $\lambda n \ln n$. More precise analysis gives estimate (7).

Remark. By reducing the density $N\delta_{\rho} \sim n \ln n$, we exponentially increase the number N' of noncapped centers u. In particular, N' reaches the huge order of $(n \ln n)^{n/2} N$ if $N\delta_{\rho} = (n \ln n)/2$.

3 New covering algorithm for a sphere S_r^n

Covering design. In this section, we obtain a covering of the sphere S_r^n with asymptotic density $(n \ln n)/2$. We use two different unrelated coverings of a sphere S_r^n :

$$\begin{split} \mathbf{Cov}(\varepsilon): \ S_r^n &\subseteq \bigcup_{\mathbf{u} \in \mathbf{Cov}(\varepsilon)} C(\varepsilon, \mathbf{u}) \\ \mathbf{Cov}(\mu): \ S_r^n &\subseteq \bigcup_{\mathbf{z} \in \mathbf{Cov}(\mu)} C(\mu, \mathbf{z}) \end{split}$$

that employ "small" caps of size ε and "medium-sized" caps of radius μ , where

$$\varepsilon = \frac{1}{2n\ln n}, \quad \mu \sim \frac{1}{2\sqrt{3n}\ln^2 n}$$

Here we assume that both coverings have the former density ϑ_* of (7) of order $n \ln n$. We will then randomly choose N large caps of size $\rho = 1 - \varepsilon$. Here N is chosen to obtain half the former density:

$$N\delta_{\rho} \sim \frac{n\ln n}{2}$$

Our large caps will fall short of covering the set $Cov(\varepsilon)$. Instead, they will achieve three other tasks:

A. The center of a typical μ -cap $C(\mu, \mathbf{z})$ belongs to about $\frac{n \ln n}{2} \rho$ -caps. For

$$s \sim n/(3\ln\ln n),$$

only $N' \ll N$ centers \mathbf{z}' (in $\sim n^{n/2}N$ caps) will have less than s intersections with ρ -caps.

B. We count only those ρ -caps that leave a small uncapped fraction exp $(-\ln^2 n)$ of a μ -cap.

C. All s-times covered μ -caps will typically have very few uncapped holes of size greater than ε . Namely, only $N'' \ll N$ centers \mathbf{u}'' (of $\sim n^n N$ centers \mathbf{u}) will be left uncapped.

We then form the joint set $\{\mathbf{x}\} = \{\mathbf{y}\} \cup \{\mathbf{z}'\} \cup \{\mathbf{u}''\}$, by adding all *s*-deficient centers \mathbf{z}' and uncapped centers \mathbf{u}'' . This set covers $\mathsf{Cov}(\varepsilon)$ with ρ -caps and can be expanded to the unit covering

$$\operatorname{Cov}(1): S_r^n \subseteq \bigcup_{\mathbf{x} \in \{\mathbf{x}\}} C(1, \mathbf{x}).$$

Remark. Note that we can still use the caps $C(\rho, \mathbf{y})$ to cover the centers of the caps $C(\mu, \mathbf{z})$. We can even reduce our covering density, thanks to a smaller size of $Cov(\mu)$ relative to $Cov(\varepsilon)$. However, we can no longer expand the caps $C(\rho, \mathbf{y})$ to cover the whole μ -caps without an exponential increase in the covering density. Indeed, straightforward calculations show that

$$\delta_1/\delta_{1-\varepsilon} \to 1, \quad \delta_1/\delta_{1-\mu} = \exp\{n^{1/2}\}, \quad n \to \infty.$$

To circumvent this problem, we change our design as follows.

1. Given any cap $C(\mu, \mathbf{z})$, we say that a cap $C(\rho, \mathbf{y})$ is *d*-close if $d(\mathbf{y}, \mathbf{z}) = d$. We will see that any ρ -close cap $C(\rho, \mathbf{y})$ covers only about a half of $C(\mu, \mathbf{z})$. For this reason, we will count only *d*-close caps $C(\rho, \mathbf{y})$ located at a slightly smaller distance

$$d = \rho - \varepsilon - \mu^2$$

The main idea of our design is the observation that a μ -cap is almost completely covered by a *d*-close cap $C(\rho, \mathbf{y})$ but is not by a ρ -close cap. This is illustrated in Fig. 1, where we show how substantially the covered fraction of a cap $C(\mu, \mathbf{z})$ depends on the distance $d(\mathbf{z}, \mathbf{y})$.

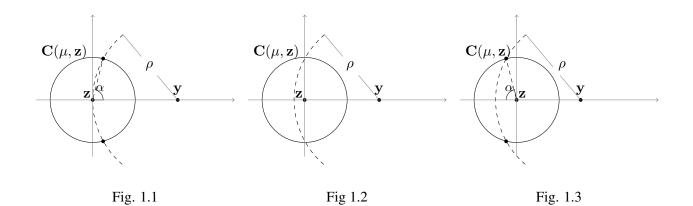


Fig. 1: Intersection of two caps $C(\mu, \mathbf{z})$ and $C(\rho, \mathbf{y})$ with a slight variation of the distances $d(\mathbf{z}, \mathbf{y})$. Parameters $\varepsilon = 1/(2n \ln n)$, $\mu = 1/(2\sqrt{3n} \ln^2 n)$, $\rho = 1 - \varepsilon$.

Fig. 1.1: $d(\mathbf{z}, \mathbf{y}) = \rho$. Then $\cos \alpha \simeq \mu/2$ and $\sin^n \alpha \sim 1$. Then the ρ -cap covers \sim half of the μ -cap. Fig. 1.2: $d(\mathbf{z}, \mathbf{y}) = (\rho^2 - \mu^2)^{1/2} \simeq \rho - \mu^2/2$. Then the ρ -cap covers half of the μ -cap. Fig. 1.3: $d(\mathbf{z}, \mathbf{y}) = \rho - \varepsilon - \mu^2$. Then $\cos \alpha > \varepsilon/\mu$ and $\sin^n \alpha \leq \exp(-\ln^2 n)$. Then the ρ -cap

covers all but the fraction $\exp\{-\ln^2 n\}$ of the μ -cap.

Formally, we have

Lemma 4. For any cap $C(\mu, \mathbf{Z})$, a randomly chosen d-close cap $C(\rho, \mathbf{Y})$ fails to cover any given point \mathbf{x} of $C(\mu, \mathbf{Z})$ with probability $p(\mathbf{x}) \leq \omega$, where

$$\omega \le \frac{1}{4\ln n} \exp\left(-\frac{3}{2}\ln^2 n\right)$$

Remark. The above choice of d is central to Lemma 4, and even a marginal increase in d will completely change our setting. Namely, it can be proven that about half the base of the μ -cap is uncovered if a ρ -cap is $(d + \varepsilon)$ -close.

2. It is also easy to verify that the above distance d is so close to $\rho = 1 - \varepsilon$ that

$$\delta_{\rho}/\delta_d \to 1, \quad n \to \infty.$$

For this reason, counting only *d*-close caps will carry no overhead to covering density.

3. The uncapped fraction ω is still too large given the huge order $n^{n/2}N$ of μ -caps. To reduce this fraction, we use the fact that a typical μ -cap is covered about $(n \ln n)/2$ times by *d*-close caps $C(\rho, \mathbf{y})$. We then consider the *s*-deficient caps $C(\mu, \mathbf{z}')$ covered by *s* or fewer *d*-close caps. We then prove that there exist only very few such caps even when compared to the number N:

Lemma 5. For large n, the expected number N' of s-deficient caps $C(\mu, \mathbf{z}')$ is

$$N' < 2^{-n/4} N.$$

4. Next, we proceed with the remaining, s-saturated μ -caps and count all centers $\mathbf{u}'' \in \mathsf{Cov}(\varepsilon)$ covered by none of s (or more) overlapping ρ -caps. For a given s, we then prove

Lemma 6. For large n, the total number of centers $\mathbf{u}'' \in Cov(\varepsilon)$ left uncovered in all s-saturated caps $C(\mu, \mathbf{z})$ has expectation

$$N'' < 2^{-n/2} N.$$

Lemma 6 shows that the set $\{\mathbf{u}''\}$ forms a very small portion of not only $\mathsf{Cov}(\varepsilon)$, but also of a much smaller set $\mathsf{Cov}(\rho)$.

5. Finally, we consider the set $\{\mathbf{x}\} = \{\mathbf{y}, \mathbf{z}', \mathbf{u}''\}$ that includes the centers \mathbf{z}' of *s*-deficient μ -caps and the centers \mathbf{u}'' of uncapped ε -caps in all *s*-saturated μ -caps. This set $\{\mathbf{x}\}$ completely covers the set $\mathsf{Cov}(\varepsilon)$ with the caps $C(\rho, \mathbf{x})$. Therefore, $\{\mathbf{x}\}$ also covers S_r^n with unit caps. Then the straightforward but lengthy calculations show that we obtain the required bounds (3) and (4).

Finally, Theorem 1 directly leads to Corollary 2. Indeed, here we can use the well known fact (see [5] or [6]) that

$$\vartheta_n = \lim_{r \to \infty} \vartheta_{n,r}$$

References

- H.S.M. Coxeter, L. Few, and C.A. Rogers, "Covering space with equal spheres," *Mathematika*, v. 6, pp. 147–157, 1959.
- [2] C.A. Rogers, "A note on coverings," Mathematika, v. 4, pp. 1-6, 1957.
- [3] C.A. Rogers, "Covering a sphere with spheres," Mathematika, v. 10, pp. 157-164, 1963.
- [4] K. Böröczky, Jr. and G. Wintsche, "Covering the sphere with equal spherical balls," In: Discrete Comput. Geometry - The Goldman-Pollack Festschrift, B. Aronov, S. Bazú, M. Sharir, J. Pach (eds.), Springer, 2003, 237-253.
- [5] J.H. Conway and N.J.A. Sloane, "Sphere packings, lattices and groups," New York: Springer-Verlag, 1988.
- [6] V.I. Levenstein, "Bounds on packings of metric spaces and some of their applications," *Voprosy Kiber-netiki*, v. 40, pp. 43–109, 1983 (in Russian).
- [7] I. Dumer, "Covering spheres with spheres," *Discrete and Computational Geometry*, vol. 38, no. 4, pp. 3-18, 2007.