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Abstract

We consider coverings of a sphere Sn

r
of radius r with the balls of radius one in an n-dimensional

Euclidean space R
n. Our goal is to minimize the covering density, which defines the average number

of the balls covering a point in Sn

r
. For a growing dimension n, we obtain the covering density at

most (n lnn)/2 for any sphere Sn

r
and the entire space R

n. This new upper bound reduces two times
the density n lnn established in the classical Rogers bound.

1 Introduction

Spherical coverings. Let Bn
ε (x) be a ball (solid sphere) of radius ε centered at some point x =

(x1, . . . , xn) of an n-dimensional Euclidean space R
n. For any subset A ⊆ R

n, we consider any sub-
set Cov(A, ε) in R

n that forms an ε-covering (an ε-net) of the set A :

Cov(A, ε) : A ⊆
⋃

x∈Cov(A,ε)

Bn
ε (x).

By changing the scale in R
n, we can always consider the rescaled set A′ = A/ε and its covering

Cov(A′, 1) with unit balls. Without loss of generality, below we consider these (unit) coverings. We
then define the n-dimensional volume vol(A) of the set A and consider the minimum covering density

ϑ(A) = min
Cov(A,1)

∑

x∈Cov(A,1)

vol(Bn
1 (x) ∩A)

vol(A)
.

One of the classical problems is to derive the minimum covering density ϑn,r for an (n− 1 dimensional)
sphere of radius r

Sn
r

def
=

{

z ∈ R
n :

n
∑

i=1

z2i = r2

}

.

Equivalently, we can replace any ball Bn
1 (x) with its spherical cap

Cn
r (ρ,y) = Sn

r ∩Bn
1 (x),

where y ∈ Sn
r is the center of the cap and ρ ≤ 1 is its half-chord. Here we obtain the biggest caps with

ρ = 1 if all centers x have Euclidean weight
√
r2 − 1.

We now proceed with the bounds for the minimum covering density ϑn,r. The celebrated Coxeter-
Few-Rogers lower bound [1] shows that for a sufficiently large radius r,

ϑn,r ≥ c
0
n.
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Here and below ci denote some universal constants. Classical papers [2] and [3] also give the upper
bounds on the minimum covering density . In particular, for a sufficiently large radius r, Rogers proved
that

ϑn,r ≤
(

1 + ln lnn
lnn + 5

lnn

)

n lnn. (1)

The sphere-covering problem has raised substantial interest since 1950s. Recently, the Rogers bound was
improved in [4] for small r < 1 + 1√

n
. Another result of [4] extends the Rogers bound to any dimension

n ≥ 3 and any radius r > 1 :

ϑn,r ≤
(

1 + 2
lnn

)

(

1 + ln lnn
lnn +

√
e

n lnn

)

n lnn. (2)

The asymptotic Rogers bound ϑn,r . n lnn also holds for solid spheres and entire Euclidean spaces Rn

of growing dimension n. Our result (see [7]) is presented below in Theorem 1, which reduces about two
times the present upper bounds (1) and (2) for n → ∞.

Theorem 1. [7] Unit balls can cover a sphere Sn
r of any radius r > 1 and any dimension n ≥ 3 with

density
ϑn,r ≤

(

1
2 + 2 ln lnn

lnn + 5
lnn

)

n lnn. (3)

For n → ∞, there exists o(1) → 0 such that

ϑn,r ≤ 1
2n lnn+

(

3
2 + o(1)

)

n ln lnn. (4)

The following corollary to Theorem 1 shows that a similar reduction also holds for general Euclidean
spaces Rn.

Corollary 2. For n → ∞, unit balls can cover the entire Euclidean space R
n with density

ϑn ≤ (12 + o(1))n lnn. (5)

2 Preliminaries: embedded coverings

The preliminary bounds obtained in this section are similar to (1) and (2). However, we employ a slightly
different, two-step technique. First, we will cover some dense discrete subset on Sn

r and then proceed
with the whole sphere. These embedded coverings will further be extended in Section 3 to improve the
former bounds. Let C(ρ,y) denote a cap Cn

r (ρ,y) whenever parameters n and r are fixed and C(ρ)
denote such a cap when its center y is of no importance. In this case, Cov(ρ) will denote any covering of
Sn
r with spherical caps C(ρ). Let

δρ =
vol(C (ρ))

vol(Sn
r )

be the fraction of the surface of the sphere Sn
r covered by a cap C (ρ) . For any τ < ρ ≤ 1, we extensively

use inequality [4]:
δτ ≥ δρ

(

τ
ρ

)n

and its particular version δτ ≥ δ1τ
n obtained for ρ = 1. We will also choose parameters

ε = 1
n lnn , λ = 1 + ln lnn

lnn + 2
n

For any n ≥ 4, we also use inequality

(1− ε)−n < 1 + 1/lnn + 1/ln2 n. (6)
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An embedded algorithm. To design a covering Cov(1), we will perform 3 steps.
1. Consider any covering of Sn

r with small caps C(ε,u) :

Cov(ε) : Sn
r ⊆

⋃

u∈Cov(ε)

C(ε,u)

2. Randomly choose N large caps C(ρ,y) of radius ρ = 1− ε. Specifically, the number N is chosen
to obtain the covering density

Nδρ . λn lnn.

This choice of N will leave a small average fraction exp{−Nδρ} of non-covered centers u′ of Cov(ε).
3. Consider the extended set of points

{x} = {y}∪{u′}.

Then the extended set of caps C(ρ,x) leaves only the holes of size ε or less on the sphere Sn
r . Thus, we

can expand the caps C(ρ,x) to he required radius 1 and obtain the unit covering

Cov(1) : Sn
r ⊆

⋃

x∈{x}
C(1,x).

Lemma 3. For any n ≥ 8, covering {x} has density

ϑ∗ ≤
(

1 + ln lnn
lnn + 2

lnn

)

n lnn. (7)

Sketch of the proof. According to inequality (6), the caps C(1,x) and C(ρ,y) have similar size

δ1/δρ ≤ (1− ε)−n = 1 + o(1).

Thus, the expansion of Step 3 leaves almost the same covering density. Next, note that any Cov(ε) with
density ϑε has huge size

|Cov(ε)| = ϑε/δε ≤ (n lnn)n ϑε/δρ

that exceeds our N by an (approximate) factor of (n lnn)n . However, a random set of caps C(ρ,y)
with covering density ϑ = Nδρ fails to cover only the small average fraction exp{−ϑ} of any set {u} .
Namely, N random caps fail to cover an average number

N ′ = (1− δρ)
N · |Cov(ε)| ≤ e−Nδρ |Cov(ε)| ≤ ϑε/n

2δρ

of centers u′. Then a new covering {x} with N +N ′ caps C(ρ,x) has average density

ϑρ = δρ(N +N ′) . (λn lnn) + ϑε/n
2

Thus, the new density ϑρ only fractionally (with coefficient n−2) depends on ϑε. If ϑε is bounded away
from λn lnn, our algorithm reduces ϑε to ϑρ. Thanks to rescaling of Rn, we can then repeat the algorithm
using the new ϑρ in place of the former ϑε. Namely, we take a new covering Cov(1) of a sphere S n

r/ε

and convert it into the covering Cov(ε) of the sphere S n
r . This rescaling shows that ϑρ will converge to

λn lnn. More precise analysis gives estimate (7).
Remark. By reducing the density Nδρ ∼ n lnn, we exponentially increase the number N ′ of non-

capped centers u. In particular, N ′ reaches the huge order of (n lnn)n/2N if Nδρ = (n lnn) /2.
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3 New covering algorithm for a sphere S
n
r

Covering design. In this section, we obtain a covering of the sphere Sn
r with asymptotic density (n lnn) /2.

We use two different unrelated coverings of a sphere Sn
r :

Cov(ε) : Sn
r ⊆

⋃

u∈Cov(ε)

C(ε,u)

Cov(µ) : Sn
r ⊆

⋃

z∈Cov(µ)

C(µ, z)

that employ “small" caps of size ε and “medium-sized" caps of radius µ, where

ε = 1
2n lnn , µ ∼ 1

2
√
3n ln2 n

Here we assume that both coverings have the former density ϑ∗ of (7) of order n lnn. We will then
randomly choose N large caps of size ρ = 1− ε. Here N is chosen to obtain half the former density:

Nδρ ∼ n lnn
2 .

Our large caps will fall short of covering the set Cov(ε). Instead, they will achieve three other tasks:
A. The center of a typical µ-cap C(µ, z) belongs to about n lnn

2 ρ-caps. For

s ∼ n/(3 ln lnn),

only N ′ � N centers z′ (in ∼ nn/2N caps) will have less than s intersections with ρ-caps.
B. We count only those ρ-caps that leave a small uncapped fraction exp

(

− ln2 n
)

of a µ-cap.
C. All s-times covered µ-caps will typically have very few uncapped holes of size greater than ε.

Namely, only N ′′ � N centers u′′ (of ∼ nnN centers u ) will be left uncapped.
We then form the joint set {x} = {y}∪{z′}∪{u′′}, by adding all s-deficient centers z′ and uncapped

centers u′′. This set covers Cov(ε) with ρ-caps and can be expanded to the unit covering

Cov(1) : Sn
r ⊆

⋃

x∈{x}
C(1,x).

Remark. Note that we can still use the caps C(ρ,y) to cover the centers of the caps C(µ, z). We can even
reduce our covering density, thanks to a smaller size of Cov(µ) relative to Cov(ε). However, we can no
longer expand the caps C(ρ,y) to cover the whole µ-caps without an exponential increase in the covering
density. Indeed, straightforward calculations show that

δ1/δ1−ε → 1, δ1/δ1−µ = exp{n1/2}, n → ∞.

To circumvent this problem, we change our design as follows.
1. Given any cap C(µ, z), we say that a cap C(ρ,y) is d-close if d(y, z) =d. We will see that any

ρ-close cap C(ρ,y) covers only about a half of C(µ, z). For this reason, we will count only d-close caps
C(ρ,y) located at a slightly smaller distance

d = ρ− ε− µ2

The main idea of our design is the observation that a µ-cap is almost completely covered by a d-close cap
C(ρ,y) but is not by a ρ-close cap. This is illustrated in Fig. 1, where we show how substantially the
covered fraction of a cap C(µ, z) depends on the distance d(z,y).
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Fig. 1.1 Fig 1.2 Fig. 1.3

Fig. 1: Intersection of two caps C(µ, z) and C(ρ,y) with a slight variation of the distances d(z,y).
Parameters ε = 1/(2n lnn), µ = 1/

(

2
√
3n ln2 n

)

, ρ = 1− ε.

Fig. 1.1: d(z,y) = ρ. Then cosα ' µ/2 and sinn α ∼ 1. Then the ρ-cap covers ∼ half of the µ-cap.

Fig. 1.2: d(z,y) = (ρ2 − µ2)1/2 ' ρ− µ2/2. Then the ρ-cap covers half of the µ-cap.

Fig. 1.3: d(z,y) = ρ− ε− µ2. Then cosα > ε/µ and sinn α ≤ exp
(

− ln2 n
)

. Then the ρ-cap
covers all but the fraction exp {− ln2 n} of the µ-cap.

Formally, we have

Lemma 4. For any cap C(µ,Z), a randomly chosen d-close cap C(ρ,Y) fails to cover any given point
x of C(µ,Z) with probability p(x) ≤ ω, where

ω ≤ 1
4 lnn exp

(

−3
2 ln

2 n
)

Remark. The above choice of d is central to Lemma 4, and even a marginal increase in d will
completely change our setting. Namely, it can be proven that about half the base of the µ-cap is uncovered
if a ρ-cap is (d+ ε)-close.

2. It is also easy to verify that the above distance d is so close to ρ = 1− ε that

δρ/δd → 1, n → ∞.

For this reason, counting only d-close caps will carry no overhead to covering density.
3. The uncapped fraction ω is still too large given the huge order nn/2N of µ-caps. To reduce this

fraction, we use the fact that a typical µ-cap is covered about (n lnn) /2 times by d-close caps C(ρ,y).
We then consider the s-deficient caps C(µ, z′) covered by s or fewer d-close caps. We then prove that
there exist only very few such caps even when compared to the number N :

Lemma 5. For large n, the expected number N ′ of s-deficient caps C(µ, z′) is

N ′ < 2−n/4N.

4. Next, we proceed with the remaining, s-saturated µ-caps and count all centers u′′ ∈ Cov(ε)
covered by none of s (or more) overlapping ρ-caps. For a given s, we then prove

Lemma 6. For large n, the total number of centers u′′ ∈Cov(ε) left uncovered in all s-saturated caps
C(µ, z) has expectation

N ′′ < 2−n/2N.
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Lemma 6 shows that the set {u′′} forms a very small portion of not only Cov(ε), but also of a much
smaller set Cov(ρ).

5. Finally, we consider the set {x} = {y, z′,u′′} that includes the centers z′ of s-deficient µ-caps
and the centers u′′ of uncapped ε-caps in all s-saturated µ-caps. This set {x} completely covers the set
Cov(ε) with the caps C(ρ,x). Therefore, {x} also covers Sn

r with unit caps. Then the straightforward
but lengthy calculations show that we obtain the required bounds (3) and (4).

Finally, Theorem 1 directly leads to Corollary 2. Indeed, here we can use the well known fact (see [5]
or [6]) that

ϑn = lim
r→∞

ϑn,r
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