Covering a sphere with caps: Rogers bound revisited
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Abstract

We consider coverings of a sphere .S of radius r with the balls of radius one in an n-dimensional
Euclidean space R™. Our goal is to minimize the covering density, which defines the average number
of the balls covering a point in .S]’. For a growing dimension n, we obtain the covering density at
most (nlnn)/2 for any sphere S7 and the entire space R™. This new upper bound reduces two times
the density n In n established in the classical Rogers bound.

1 Introduction

Spherical coverings.  Let B”(x) be a ball (solid sphere) of radius ¢ centered at some point x =
(z1,...,zy) of an n-dimensional Euclidean space R™. For any subset A C R", we consider any sub-
set Cov(A, ) in R™ that forms an e-covering (an e-net) of the set A :

Cov(d,e): AC |J Bx).
x€Cov(Ae)

By changing the scale in R™, we can always consider the rescaled set A” = A/e and its covering
Cov(A’,1) with unit balls. Without loss of generality, below we consider these (unit) coverings. We
then define the n-dimensional volume VOI(A) of the set A and consider the minimum covering density

. vol (BT (x)N A
I(A4) = Covrn(l%{ll) Z ( vél((/z) )'
77 xeCov(A,1)

One of the classical problems is to derive the minimum covering density 1J,, , for an (n — 1 dimensional)

sphere of radius r
n
def
sn = {zeR”:sz-rQ}.
i=1

Equivalently, we can replace any ball B} (x) with its spherical cap
Clp.y) = 57 N By (%),

where y € ST is the center of the cap and p < 1 is its half-chord. Here we obtain the biggest caps with
p = 1if all centers x have Euclidean weight /72 — 1.

We now proceed with the bounds for the minimum covering density ¥, .. The celebrated Coxeter-
Few-Rogers lower bound [1] shows that for a sufficiently large radius 7,

Unr > CoN.
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Here and below c; denote some universal constants. Classical papers [2] and [3] also give the upper
bounds on the minimum covering density . In particular, for a sufficiently large radius r, Rogers proved
that

Oy < (14222 4 50 np, (1)

Inn

The sphere-covering problem has raised substantial interest since 1950s. Recently, the Rogers bound was
improved in [4] for small » < 1 + ﬁ Another result of [4] extends the Rogers bound to any dimension
n > 3 and any radius r > 1 :

nlnn

O < (14 ) (1+%+i)nlnn. )

The asymptotic Rogers bound ¥, , < n1nn also holds for solid spheres and entire Euclidean spaces R
of growing dimension n. Our result (see [7]) is presented below in Theorem 1, which reduces about two
times the present upper bounds (1) and (2) for n — oo.

Theorem 1. [7] Unit balls can cover a sphere S} of any radius v > 1 and any dimension n > 3 with
density
Oy < (5 + 22122 4 5 ) pinn. 3)

Inn

For n — oo, there exists o(1) — 0 such that
U < %nlnn + (% + 0(1)) ninlnn. 4

The following corollary to Theorem 1 shows that a similar reduction also holds for general Euclidean
spaces R"™.

Corollary 2. For n — oo, unit balls can cover the entire Euclidean space R"™ with density

On < (3 +o(1))nlnn. (5)

2 Preliminaries: embedded coverings

The preliminary bounds obtained in this section are similar to (1) and (2). However, we employ a slightly
different, two-step technique. First, we will cover some dense discrete subset on S)' and then proceed
with the whole sphere. These embedded coverings will further be extended in Section 3 to improve the
former bounds. Let C(p,y) denote a cap C)'(p,y) whenever parameters n and r are fixed and C(p)
denote such a cap when its center y is of no importance. In this case, Cov(p) will denote any covering of
Sy with spherical caps C'(p). Let

~ wl(C ()

P vol(Sn)
be the fraction of the surface of the sphere S]* covered by a cap C' (p) . For any 7 < p < 1, we extensively
use inequality [4]:
n
T
Or 2 0p (P)

and its particular version 0, > ;7" obtained for p = 1. We will also choose parameters

e=—ft—, A=1+ln 2

nlnn’ Inn

For any n > 4, we also use inequality

(1*6)7n < 1+1/lnn+1/ln2n. (6)



An embedded algorithm. To design a covering Cov(1), we will perform 3 steps.
1. Consider any covering of S}* with small caps C'(g,u) :

Cov(e): Spc |J Cleu)

ucCov(e)

2. Randomly choose N large caps C'(p,y) of radius p = 1 — e. Specifically, the number N is chosen
to obtain the covering density
Né, S Anlnn.

This choice of N will leave a small average fraction exp{—NJ,} of non-covered centers u’ of Cov(e).
3. Consider the extended set of points

{x} = {y}u{u'}.

Then the extended set of caps C'(p, x) leaves only the holes of size € or less on the sphere S;*. Thus, we
can expand the caps C'(p, x) to he required radius 1 and obtain the unit covering

Cov(1): Spc |J C(1,x).

xe{x}
Lemma 3. For any n > 8, covering {x} has density

O, < (14lon g 29500y, (7)

Inn

Sketch of the proof. According to inequality (6), the caps C'(1,x) and C(p, y) have similar size
01/0, < (1—¢e) " =1+o0(1).

Thus, the expansion of Step 3 leaves almost the same covering density. Next, note that any Cov(e) with
density 9. has huge size
|Cov(e)| =V /0: < (nlnn)"v./d,

that exceeds our N by an (approximate) factor of (nInn)". However, a random set of caps C(p,y)
with covering density ¥ = N, fails to cover only the small average fraction exp{—v} of any set {u}.
Namely, /N random caps fail to cover an average number

N =(1- 5p)N -|Cov(e)| < e™N% |Cov(e)| < V. /n?s,
of centers u’. Then a new covering {x} with N + N’ caps C'(p, x) has average density
9, =08,(N+ N') < (Anlnn) + 9. /n?

Thus, the new density ¥, only fractionally (with coefficient n~2) depends on .. If ¥, is bounded away
from An Inn, our algorithm reduces 1. to ¥,. Thanks to rescaling of R™, we can then repeat the algorithm
using the new ¥, in place of the former .. Namely, we take a new covering Cov(1) of a sphere ST’}E
and convert it into the covering Cov(e) of the sphere S,”. This rescaling shows that ¥, will converge to
Anlnn. More precise analysis gives estimate (7).

Remark. By reducing the density N, ~ nlnn, we exponentially increase the number N’ of non-
capped centers u. In particular, N’ reaches the huge order of (n In n)n/ INif N 0p = (nlnn) /2.



3 New covering algorithm for a sphere S

Covering design. In this section, we obtain a covering of the sphere S} with asymptotic density (n1nn) /2.
We use two different unrelated coverings of a sphere S} :

Cove): St |J Clew

ueCov(e)

Cov(p): StC |J Clw2)

zcCov(u)

that employ “small” caps of size € and “medium-sized" caps of radius u, where

1

_ 1
€= Zalny B 2v3n1n’n

Here we assume that both coverings have the former density 9. of (7) of order nlnn. We will then
randomly choose N large caps of size p = 1 — €. Here NV is chosen to obtain half the former density:

nlnn
N6, ~ nlon.

Our large caps will fall short of covering the set Cov(e). Instead, they will achieve three other tasks:
A. The center of a typical p-cap C'(u,z) belongs to about ”1% p-caps. For

s~n/(3lnlnn),

only N’ < N centers z’ (in ~ n™/2N caps) will have less than s intersections with p-caps.
B. We count only those p-caps that leave a small uncapped fraction exp (— In? n) of a p-cap.

C. All s-times covered p-caps will typically have very few uncapped holes of size greater than €.
Namely, only N” < N centers u” (of ~ n™ N centers u ) will be left uncapped.

We then form the joint set {x} = {y}U{z'}U{u"}, by adding all s-deficient centers z’ and uncapped
centers u”. This set covers Cov(e) with p-caps and can be expanded to the unit covering

Cov(1): Syc |J c@,x).

xe{x}

Remark. Note that we can still use the caps C'(p, y) to cover the centers of the caps C'(u, z). We can even
reduce our covering density, thanks to a smaller size of Cov(u) relative to Cov(e). However, we can no
longer expand the caps C'(p, y) to cover the whole p-caps without an exponential increase in the covering
density. Indeed, straightforward calculations show that

01/01— = 1, 01/61—p = exp{n1/2}, n — 00.

To circumvent this problem, we change our design as follows.

1. Given any cap C(u,z), we say that a cap C(p,y) is d-close if d(y,z) =d. We will see that any
p-close cap C(p,y) covers only about a half of C'(u, z). For this reason, we will count only d-close caps
C(p,y) located at a slightly smaller distance

d=p—¢c—pu?

The main idea of our design is the observation that a u-cap is almost completely covered by a d-close cap
C(p,y) but is not by a p-close cap. This is illustrated in Fig. 1, where we show how substantially the
covered fraction of a cap C'(u, z) depends on the distance d(z,y).

4
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Fig. 1.1 Fig 1.2 Fig. 1.3

Fig. 1: Intersection of two caps C'(u, z) and C(p, y) with a slight variation of the distances d(z,y).
Parameters ¢ = 1/(2n1nn), p =1/ (2v/3nn’n), p=1—c.

Fig. 1.1: d(z,y) = p. Then cos =~ p1/2 and sin™ e ~ 1. Then the p-cap covers ~ half of the p-cap.
Fig. 1.2: d(z,y) = (p?> — u?)"/? ~ p — 1u%/2. Then the p-cap covers half of the y-cap.

Fig. 1.3: d(z,y) = p— & — p?. Then cos @ > ¢/p and sin” @ < exp (— In?n) . Then the p-cap
covers all but the fraction exp {— In? n} of the p-cap.

Formally, we have

Lemma 4. For any cap C(u,Z), a randomly chosen d-close cap C(p,Y) fails to cover any given point
x of C(u, Z) with probability p(x) < w, where

w < gy exp ( 3 1n? n)

Remark.  The above choice of d is central to Lemma 4, and even a marginal increase in d will
completely change our setting. Namely, it can be proven that about half the base of the u-cap is uncovered
if a p-cap is (d + ¢€)-close.

2. It is also easy to verify that the above distance d is so close to p = 1 — ¢ that
dp/06a — 1, n — oo.

For this reason, counting only d-close caps will carry no overhead to covering density.

3. The uncapped fraction w is still too large given the huge order n"2N of p-caps. To reduce this
fraction, we use the fact that a typical u-cap is covered about (nInn) /2 times by d-close caps C'(p,y).
We then consider the s-deficient caps C'(u,z") covered by s or fewer d-close caps. We then prove that
there exist only very few such caps even when compared to the number N :

Lemma 5. For large n, the expected number N' of s-deficient caps C(ju,z') is
N' < 274N,

4. Next, we proceed with the remaining, s-saturated u-caps and count all centers u” € Cov(e)
covered by none of s (or more) overlapping p-caps. For a given s, we then prove

Lemma 6. For large n, the total number of centers u” €Cov(e) left uncovered in all s-saturated caps

C(u, z) has expectation
N" < 272N,



Lemma 6 shows that the set {u”} forms a very small portion of not only Cov(e), but also of a much
smaller set Cov(p).

5. Finally, we consider the set {x} = {y,z’,u”} that includes the centers z’ of s-deficient u-caps
and the centers u” of uncapped e-caps in all s-saturated u-caps. This set {x} completely covers the set
Cov(e) with the caps C(p,x). Therefore, {x} also covers S]* with unit caps. Then the straightforward
but lengthy calculations show that we obtain the required bounds (3) and (4).

Finally, Theorem 1 directly leads to Corollary 2. Indeed, here we can use the well known fact (see [5]
or [6]) that
Uy = lim 9,

T—00
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