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Introduction. In this report we present the main ideas of a new approach
to the study of degenerate linear differential equations in Banach spaces. Interest
in these equations as an independent object of research, has been initiated in
mathematical periodicals observed since 1950�1960s. In particular, the problem
of constructing a general theory of differential equations Banach spaces with
Noetherian operator in the main part was formulated by L.A. Lyusternik during
his seminars in Moscow State University. Studies of solvability of the Cauchy
problem for these equations in the classes of finitely smooth functions have shown
that such problems have smooth (classical) solutions only for certain relations
between the input data of the problem, i.e., between initial conditions and right-
hand side (of free function) equation. The search for these sufficient conditions,
as well as formulas for the solution itself, usually is the goal of such studies. In
general case the absence of classic solution naturally leads (in linear case) to the
formulation of problems in the class of distributions (generalized functions), since
in this case there is no need to match the input data of the problem. Therefore,
for linear equations the three problems have been formulated. First we need to
allocate classes of generalized functions in Banach spaces in which solutions are
unique. Second, we need to develop the technology of the generalized solutions
construction. And finally we have to study the relationship between the classic
generalized solutions. Such triple problem we study in terms of fundamental
operator-functions of degenerate integral-differential operators. In order to find
the solutions of differential equations in distributions spaces we employ the fun-
damental operator function which appears to be the most natural tool.

In order to present the essence of this approach we use the following example
of the Cauchy problem for integral-differential equation of the second kind

Bu(2)(t) = Au(t) +

t∫

0

g(t− s)Au(s)ds + f(t), (1)

u(0) = u0, u′(0) = u1, (2)

where A,B are closed linear operators from E1 to E2, with dense ñ ïëîòíûìè
îáëàñòÿìè îïðåäåëåíèÿ, D(B) ⊂ D(A), E1 and E2 are banach spaces, g(t) is
continuous function, f(t) is sufficiently smooth function B is fredholm operator.
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Let us introduce the main terminology from [3], which use below.
Generalized functions in Banach spaces. Let E be banach space, let E∗ be

� conjugate Banach space. We call the set of finite infinitly differentiable functions
s(t) with çíà÷åíèÿìè â K(E∗) as the main space K(E∗). The convergence in
K(E∗) we introduce as follows. The sequence of functions sn(t) converge to s(t)
in K(E∗) if:

a) ∃R > 0 such that ∀n ∈ N suppsn(t) ⊂ [−R,R];
b) ∀α ∈ N for n → +∞ sup

[−R,R]
‖ s

(α)
n (t)− s(α)(t) ‖→ 0.

Generalized function (distribution) with values in Banach space E we call any
linear continuous functional defined on K(E∗). The set of all generalized functions
with values in E we note as K ′(E). Convergence in K ′(E) is defined as week
(point-wise). Here we follow the classic monograph of V.S.Vladimirov and define
the set of generalized functions as D′. The equality of two generalized functions,
support of generalized function, multiplication of generalized function on infinitly
differentiable function are defined as for classic generalized functions. Any locally
Bohner integrable function f(t) with values in E derive the following regular
generalized function

(
f(t), s(t)

)
=

+∞∫

−∞
〈f(t), s(t)〉dt, ∀s(t) ∈ K(E).

All the generalized functions, which operations can be defined using that rule are
called as regular generalized functions. The rest of the generalized functions are
called as singular. The classic example of singular generalized function is the Dirac
delta-function:(

aδ(t), s(t)
)

= 〈a, s(0)〉dt, ∀s(t) ∈ K(E), ∀a ∈ E.

The distribution set with left-bounded support (K ′
+(E) ⊂ K ′(E)) we denote as

K ′
+(E). This class is the most conventional in our studies.
Let E1, E2 are the Banach spaces, A(t) ∈ C∞ is operator-function with values

in L(E1, E2), h(t) ∈ D′ is classic generalized function [1]. Then the following
multiplication (formal expression) A(t)h(t) is called as generalized operator-func-
tion. The following generalized operator-function will correspond to integral-dif-
ferential operator (1)

L2(δ(t)) = Bδ′′(t)− A(δ(t) + g(t)θ(t)).

Let f(t) ∈ K ′
+(E1), h(t) ∈ D′

+, then the generalized function A(t)h(t)∗f(t) ∈
K ′

+(E2) defined as follows(
A(t)h(t) ∗ f(t), s(t)

)
=

(
h(t),

(
f(τ), A∗s(t + τ)

))
, ∀s(t) ∈ K(E2)
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is called as convolution of generalized operator-function A(t)h(t) and generalized
functionf(t).

This definition is correct since supports of the functions h(t) ∈ D′
+ è f(t) ∈

K ′
+(E1) are left bounded. It's proofed using the same scheme as proof of the

convolution existence in algebra D′
+ in classical theory of generalized functions

[1]. It is to be noted that convolution exists in the distributions space with left
bounded support and it has associativity property which we employ to proof the
principal statements here.

Let us introduce the key concept. The fundamental operator-function of integral-
differential operator L2(δ(t)) is called generalized operator-function E2(t), which
satisfies the following equalities:

E2(t) ∗ L2(δ(t)) ∗ u(t) = u(t), ∀u(t) ∈ K ′
+(E1),

L2(δ(t)) ∗ E2(t) ∗ v(t) = v(t), ∀v(t) ∈ K ′
+(E2).

The reason for such construction introduction is as follows. If the fundamental
operator-function E2(t) is known for integral-differential operator L2(δ(t)), then
in class K ′

+(E1) exists the unique generalized solution

u(t) = E2(t) ∗ f(t) ∈ K ′
+(E1)

of
L2(δ(t)) ∗ u(t) = f(t), f(t) ∈ K ′

+(E2).

Indeed, if v(t) 6= u(t) is other solution of convolution equation then

v(t) = E2(t) ∗ L2(δ(t)) ∗ v(t) = E2(t) ∗ f(t) = u(t).

Fundamental operator-functions of degenerative integral-differential
operators.
Theorem. If A,B are closed linear operators from E1 into E2, D(B) ⊂

D(A), D(A) = D(B) = E1, B is Fredholm operator, R(B) = R(B), B has
complete A-Jordan set {ϕ(j)

i , i = 1, n, j = 1, pi} [2], then
a) 2nd order differential operator

(
Bδ

′′
(t)− Aδ(t)

)
on the class K ′

+(E2) has
fundamental operator-function

E1(t) = Γ
sinh(

√
AΓt)√

AΓ

[
I −

n∑
i=1

pi∑
j=1

〈·, ψ(j)
i 〉Aϕ

(pi+1−j)
i

]
θ(t)−

−
n∑

i=1

[
pi−1∑

k=0

{
pi−k∑

j=1

〈·, ψ(j)
i 〉ϕ(pi−k+1−j)

i

}
δ(k)(t)

]
;
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b) 2nd order integral-differential operator(
Bδ

′′
(t)− A(δ(t) + g(t)θ(t))

)
in class K ′

+(E2) has the following fundamental
operator-function

E2(t) = Γ
∞∑

k=1

(
δ(t) + g(t)θ(t)

)k−1
∗ t2k−1

(2k − 1)!
θ(t)(AΓ)k−1×

×
[
I −

n∑

i=1

pi∑

j=1

〈·, ψ(j)
i 〉Aϕ

(pi+1−j)
i

]
−

−
n∑

i=1

[
pi−1∑

k=0

{
pi−k∑

j=1

〈·, ψ(j)
i 〉ϕ(pi−k+1−j)

i

}
δ(2k)(t) ∗

(
δ(t) +R(t)θ(t)

)k+1
]

,

where {ψ(j)
i , i = 1, n, j = 1, pi} − A∗-Jordan set of the operator B∗, Γ− is the

Trenogin-Schmidt [2] operator, R(t) is resolvent of the kernel (−g(t)θ(t)).
The Cauchy problem (1)-(2) in terms of generalized functions can be presented

as following convolution equation

L2(δ(t)) ∗ ũ(t) = f(t)θ(t) + Bu1δ(t) + Bu0δ
′(t),

which is class of distributions with left bounded support K ′
+(E1) has the following

unique solution

ũ(t) = E2(t) ∗
(
f(t)θ(t) + Bu1δ(t) + Bu0δ

′(t)
)
. (3)

Further analysis of the singular and regular components of the expression (3) for
generalized solution allows us to obtain the theorems on classic solutions of the
problem (1)-(2).

Let us demonstrate that based on the following examples.
Example 1. (Boussinesk-Love Equation) For equations which model (in

1D case) longitudinal oscillations in thin elastic bar with taking into account the
lateral inertia [4],

(λ−∆)vtt(t, x̄) = α2∆v(t, x̄) + f(x̄), λ, α 6= 0,

where x̄ ∈ Ω ⊂ Rm, Ω is bounded area with boundary ∂Ω of the class C∞, we
study the Cauchy-Dirichlet problem in the cylinder Ω×R+

v
∣∣∣
t=0

= v0(x̄),
∂v

∂t

∣∣∣
t=0

= v1(x̄) x ∈ Ω

v
∣∣∣
∂Ω
≡ 0 (x, t) ∈ ∂Ω×R+.
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We can reduce that problem to Cauchy problem (1)-(2) with g(t) ≡ 0, if the
spaces E1 and E2 can be selected as follows

E1 ≡
◦
H

k+2
[Ω] ≡

{
u ∈ W k+2

2 : u(x̄) = 0, x̄ ∈ ∂Ω
}

, E2 ≡ Hk ≡ W k
2

where W k
p ≡ W k

p (Ω) is Sobolev space 1 < p < ∞, and let

B = λ−∆, A = α2∆, λ ∈ σ(∆).

Here B is Fedholm operator and lengths of all the A-Jordan chains are 1s,
i.e. in the formula for fundamental operator-function E1(t) from the theorem
pi = 1. Which means that generalized solution (3) do not contains the singular
component. The remaining regular component will be classic solution of this
problem if the following conditions are fuilfilled

(f(x̄) + α2λv0(x̄), ϕk) = 0, (v1(x̄), ϕk) = 0 ∀ϕk : λ = λk,

here ϕk are eigen functions of the Laplace operator, which correspond eigen value
λ ∈ σ(∆).
Example 2. (Equation of viscoelastic plates with memory) Let us

address the following equation

(γ −∆)vtt(t, x̄) = −∆2v(t, x̄) +

t∫

0

g(t− s)∆2v(s, x̄)ds + f(t, x̄),

where x̄ ∈ Ω ⊂ Rm, Ω is bounded area with boundary ∂Ω of the class C∞, for
m = 2 è f(t, x̄) = 0 such equation describes the oscillation of viscoelastic plates
with memory [5]. We follow here the last example and study the Cauchy-Dirichlet
problem on cylibder Ω×R+

v
∣∣∣
t=0

= v0(x̄),
∂v

∂t

∣∣∣
t=0

= v1(x̄) x ∈ Ω

v
∣∣∣
∂Ω
≡ 0 (x, t) ∈ ∂Ω×R+.

Such problem we can reduce to the Cauchy problem (1)�(2), if we select spaces
and operators as follows

E1 ≡
◦
H

k+4
[Ω] ≡

{
u ∈ W k+4

2 : u(x̄) = 0, x̄ ∈ ∂Ω
}

, E2 ≡ Hk ≡ W k
2

B = γ −∆, A = −∆2, γ ∈ σ(∆).

Here (similar with example 1) B is Fredholm operator and lengths of all the A-
Jordan chains are equal to 1, i.e. in the formula for fundamental operator-function
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E2(t) from the theorem all pi = 1, i.e. generalized solution (3) does not contain
singular component. Hence the remaining component will be the classic solution
if the following conditions are fuilfilled

(
f(0, x̄)− γ2v0(x̄), ϕk

)
= 0,

(
∂f(0, x̄)

∂t
− γ2v1(x̄) + g(0)γ2v0(x̄), ϕk

)
= 0 ∀ϕk : λ = λk,

here ϕk are eigen functions of Laplace operator which correspond to eigen value
λ ∈ σ(∆).
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