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ABSTRACT

The problem of jointly estimating the number as well as the
parameters of two-dimensional sinusoidal signals, observed in
the presence of an additive colored noise field is considered. We
begin by establishing the strong consistency of the non-linear
least squares estimator of the parameters of two-dimensional
sinusoids, when the number of sinusoidal signals assumed in
the field is under-estimated, or over-estimated. Based on these
results, we prove the strong consistency of a new family of
model order selection rules.

1. INTRODUCTION

We consider the problem of jointly estimating the number as well
as the parameters of two-dimensional sinusoidal signals, observed
in the presence of an additive colored noise field.

This problem is, in fact, a special case of a much more general
problem, [8]: From the 2-D Wold-like decomposition we have that
any 2-D regular and homogeneous discrete random field (analo-
gous of the 1-D wide-sense stationary process) can be represented
as a sum of two mutually orthogonal components: a purely- in-
deterministic field and a deterministic one. In this paper we con-
sider the special case where the deterministic component consists
of a finite (unknown) number of sinusoidal components, while the

purely-indeterministic component is an infinite order non-symmetrical

half plane, (or a quarter-plane), moving average (MA) field (col-
ored noise field). This modeling and estimation problem has fun-
damental theoretical importance, as well as various applications
in texture estimation of images (see, e.g. [7] and the references
therein) and in space-time adaptive processing of airborne radar
data (see, e.g. [26] and the references therein).

Many algorithms have been devised to estimate the parameters
of two-dimensional sinusoids observed in the presence of an addi-
tive white noise field and only a small fraction of the derived meth-
ods has been extended to the case where the noise field is colored
(see, [6], [11], [14], [16], [23], and the references therein). More-
over, most of these algorithms assume the number of sinusoids
is a-priori known. However this assumption only rarely holds in
practice.

In the past several decades the problem of model order selec-
tion for 1-D signals has received considerable attention. In general,
model order selection rules are based (directly or indirectly) on
three popular criteria: Akaike Information Criterion (AIC), [2], the
Minimum Description Length (MDL), [21] and the Bayesian In-
formation Criterion (BIC) [22]. All these criteria have a common
form composed of two terms: a data term and a penalty term. The

data term monotonically decreases as the model order increases.
The data term is usually taken to be the negative log-likelihood
for an assumed model order, or the variance of the residual com-
ponent of the least-square regression for an assumed model or-
der. The penalty term is a function (usually linear or log-linear) of
the model order and the size of the a data sample. For example,
AIC penalty is a linear function of the model order only, while the
MDL/BIC penalties are linear functions of the model order and
log-linear functions of the size of the data sample. The penalties
of MDL and BIC are identical.

In [24] and [25] Zhao et. al. proposed the Efficient Detec-
tion Criterion (EDC) for detecting the number of signals observed
in white or colored noise. In contrast to the fixed penalties of
AIC/MDL/BIC model order selection rules, the penalty term of
EDC is not fixed, but rather a family of penalties. The strong con-
sistency of EDC has been proven for the case where the penalty
term increase slower than the size of data, but faster than loglog of
size of data. For example, MDL/BIC penalty which increases with
a rate of log of the size of the data is a member of EDC penalty
family.

Due to its theoretical and practical importance in many prob-
lems of statistics and signal processing, the question of how to
determine the number of 1-D sinusoids observed in the presence
of white or colored noises has been extensively investigated (see
[5], [15], [17], [19], and the references therein). Quinn, [19], has
proved that in the case of 1-D sinusoids observed in white noise
AIC/MDL/BIC type model order selection rules lead to consistent
order selection only if the penalty function increases with a rate
proportional to the log of the size of data and the proportionality
constant has a crucial role in the consistency of estimator [19].

The problem of model order selection for multidimensional
fields in general, and multidimensional harmonic fields in particu-
lar, has received much less attention. Usually one of the standard
penalties (MDL/BIC penalties are among the most popular) is ap-
plied to solve the model order selection problem for 2-D sinusoids
in noise (see, e.g. [18]) or other penalties which were derived for
the 1-D case are adopted for the 2-D case (see, e.g. [17]).

In [12], following ideas of [19], we proved the strong consis-
tency of a large family of model order selection rules specifically
designed for the case of 2-D sinusoids observed in white Gaus-
sian noise. In the present paper we derive a strongly consistent
model order selection rule, for jointly estimating the number of si-
nusoidal components and their parameters in the presence of col-
ored noise. This derivation extends the results of [12] to the case
where the additive noise is colored, modeled by an infinite order
non-symmetrical half-plane or quarter-plane moving average rep-
resentation. Moreover, in the case considered in this paper, the



noise field is not necessarily Gaussian.

The proposed criterion has the standard form of a data term
and a penalty term, where the data term is the variance of the resid-
ual of the least squares estimator evaluated for the assumed model
order (the loss function). It is well known that the non-linear least
square estimator of the parameters of 2-D sinusoids in noise is
strongly consistent, [14]. However, this result was proven only for
a case when the number of sinusoids is a-priori known and correct.
Since similarly to AIC/MDL/BIC framework, we evaluate the data
term for any assumed model order, including incorrect ones, we
should first address the meaning of consistency of least squares
estimation of the parameters of 2-D sinusoidal signals when the
assumed number of sinusoids is incorrect.

Let P denote the true number of 2-D sinusoidal signals in the
observed field and let k£ denote their assumed number by the least
squares estimator of the model parameters. In the case where the
number of sinusoidal signals is under-estimated, i.e., k < P, we
prove in the following the almost sure convergence of the least
squares estimates to the parameters of the k dominant sinusoids. In
the case where the number of sinusoidal signals is over-estimated,
i.e., k > P, we prove the almost sure convergence of the estimates
obtained by the least squares estimator to the parameters of the P
sinusoids in the observed field. The additional £ — P components
assumed to exist, are assigned by the least squares estimator to
the dominant components of the periodogram of the noise field.
These results extend our previous results on the consistency of the
least squares estimator of complex exponentials observed in the
presence of an additive white noise field [13].

The penalty term of the proposed model order selection rule is
proportional to the logarithm of the size of the data sample. Simi-
larly to [19] and [12], the coefficient of proportion has a crucial
role in the consistency of estimator. We will prove the strong
consistency of the new model order selection criterion and will
show how different assumptions regarding the noise field affect the
penalty term of the criterion. The proposed criterion completely
generalized the previous results [12], and provides a strongly con-
sistent estimator of the number as well as of the parameters of the
sinusoidal components.

2. NOTATIONS, DEFINITIONS AND ASSUMPTIONS

We begin by formulating the general framework. Let {y(n,m)}
be a real valued field,

P
y(n,m) =Y pf cos(win + vim + @) + w(n,m), (1)

i=1

where 0 < n < N-1,0<m< M—landforeachi,pgis
non-zero. Due to physical considerations it is further assumed that
for each 4, amplitude |p?| is bounded .

The noise field {w(n, m)} represents the purely-indeterministic
component of Wold decomposition and assumed to be an infinite
order non-symmetrical half plane moving average (MA) field.

Recall that the non-symmetrical half-plan total-order is de-
fined by

(i,j) >~ (s,t) iff
(i) € {(k, Dk = 5,1 = £} U{(k, Dk > 5,00 < I < 00} (2)

Let D be an infinite order non-symmetrical half-plane support,

defined by
D={(i,j)€Z*:i=0,0<j<oo}U
{(1,/)) €Z*: 0 < i< 00, —00 < j < o0} 3)

Hence the notations (7, s) € D and (r, s) > (0, 0) are equivalent.
We assume that {w(n, m)} is an infinite order non-symmetrical
half-plane MA noise field, i.e.,

w(n,m) = Z a(r, s)u(n —r,m — s), 4)

(r,s)eD

such that the following assumptions are satisfied:

Assumption 1: The field {u(n, m)} is an i.i.d. real valued
zero-mean random field with finite variance o2, such that E[ju(n, m)|*] <
oo for some o > 3.

Assumption 2: The sequence a(%, j) is an absolutely summable
deterministic sequence, i.e.,

Z la(r, )| < oo. 3)
(r,s)eD
Let fw(w, v) denote the spectral density function of the noise
field {w(n, m)}. Hence,

2
Z a(r, s)e?@rtvs)| (6)

(r,s)€D

fw(w,v) = o?

Assumption 3: The spatial frequencies (w{, v{) € (0, 27) x
(0,27), 1 < 4 < P are pairwise different. In other words, w{ #
w? or v) # v;v), when i # j.
Let {¥;} be a sequence of rectangles such that U; = {(n, m) €
ZP|0<n<N;,—1,0<m < M; —1}.
Definition 1: The sequence of subsets {¥;} is said to tend to
infinity (we adopt the notation ¥; — co) as ¢ — oo if
lim min(N;, M;) = oo,
1— 00

and
0< 11320(]\]’/]\4’) < 0.

To simplify notations, we shall omit in the following the subscript
i. Thus, the notation (N, M) — oo implies that both NV and M
tend to infinity as functions of 4, and at roughly the same rate.

Definition 2: Let O, be a bounded and closed subset of the 4k
dimensional space R* x ((0, 27) x (0, 27))* x [0, 27)* where for
any vector 0, = (p1,w1,V1, Q1. -, Pk, Wk, Uk, ) € Oy the
coordinate p; is non-zero and bounded for every 1 < i < k while
the pairs (w;, v;) are pairwise different, so that no two regressors
coincide. We shall refer to O, as the parameter space.

From the model definition (1) and the above assumptions it is
clear that

0 0o 0 _ 0 0 o 0, 0 O
gk = (Pl:WuUl:(le--kavaUm‘Pk) € ek

Define the loss function due to the error of the k-th order re-
gression model

1 N M-—1 k 2
L0 = 5 2 2 (vlmm)=3 o cos(ulmtetmg) )
m=0

1=1
. @)
A vector 0, € O, that minimizes Ly (0) is called the Least
Squares Estimate (LSE). In the case where k = P, the LSE is a
strongly consistent estimator of 0% (see, e.g., [14] and the refer-
ences therein).

-1
n=0



3. STRONG CONSISTENCY OF THE OVER- AND
UNDER-DETERMINED LSE

As mentioned in the Introduction, it is well known that the least
squares estimator of the parameters of 2-D sinusoids observed in
the presence of colored additive noise field is strongly consistent
(see [14]). However, this result relies on the assumption that the
correct number of sinusoids is a-priori known. In this section we
consider the asymptotic behavior of the LSE when the assumed
number of sinusoids is incorrect.

The first theorem establishes the strong consistency of the least
squares estimator in the case where the number of the sinusoidal
regressors is lower than the actual number of sinusoids. The sec-
ond theorem establishes the strong consistency of the least squares
estimator in the case where the number of the regressors is higher
than the actual number of sinusoids. These theorems extend the
results proved in [13] for the case where the additive noise field is
white and complex-valued.

Let k denote the assumed number of observed 2-D sinusoids,
where k < P, i.e. the number of regressors is lower than the actual
number of sinusoids.

In order to establish the next theorem we shall need an addi-
tional assumption:

Assumption 4: For convenience, and without loss of gen-
erality, we assume that the sinusoids are indexed according to a
descending order of their amplitudes, i.e.,

P> PS> ph > phgr- = PP >0, ®)

where we assume that for a given k, py > p2+1 to avoid trivial
ambiguities resulting from the case where the k-th dominant com-
ponent is not unique.

Theorem 1. Let Assumptions 1-4 be satisfied. Let k < P. Then,
the k-regressor parameter vector
O = (P1,01,01, P15 -, Pk, Wk, Uk, Pk ) that minimizes (7) is a
strongly consistent estimator of
Op = (o1, @i, v, 01, ., ok, Wi, Ui, k) as W(N, M) — oo
That is,

0p — 05 a.s. as W(N, M) — co. )

Proof: See [1].

Theorem 1 implies that even in the case where the sinusoidal
signals are observed in the presence of additive colored noise,
and the number of sinusoidal signals is under-estimated, the least
squares estimates converge to the parameters of the dominant si-
nusoids. This result can be intuitively explained using the basic
principles of least squares estimation: Since the least squares es-
timate is the set of model parameters that minimizes the ¢ norm
of the error between the observations and the assumed model (i.e.
the variance of the residual component), it follows that in the case
where the model order is under-estimated the minimum error norm
is achieved when the k£ most dominant sinusoids are correctly esti-
mated. In other words, the variance of the residual component will
be minimized if we will remove the £ most dominant sinusoids
from the data.

Remark: Actually, Theorem 1 remains valid even under less
restrictive assumptions regarding the noise field {w(n,m)}. If
the field {u(n,m)} is an i.i.d. real valued zero-mean random
field with finite variance o2, and the sequence a(i, j) is a square
summable deterministic sequence, i.e., 3, . cp a*(r,s) < oo,
Theorem 1 holds.

Next, we consider the case where the number of the regres-
sors is larger than the actual number of sinusoids. Let k£ denote
the assumed number of observed 2-D sinusoids, where k& > P.
Without loss of generality, we can assume that k = P + 1, (as the
proof for £ > P + 1 follows immediately by repeating the same
arguments). The parameter spaces © p, ©p4 1 are defined as in
Definition 2. Let the periodogram (scaled by a factor of 2) of the
field {w(n, m)} be given by

g |NzrMoy ' 2
],w(w7/U) = N Z Z w(n7m)efj(nw+mv) ) (10)

n=0 m=0

Let (wper, Uper) denote the pair of spatial frequencies that

maximizes the periodogram of the observed realization of {w(n,m)},

ie.,
(Wper, Uper) =  argmax Iy (w,v). (11)
(w,v)€(0,27)2
Also let

2
pier = ij (wPGTv UPET) ) (12)

denote the squared amplitude of the periodogram at its maximum
point. ¢, denotes the phase at this point.

Theorem 2. Let Assumptions 1-4 be satisfied. Then, the parame-
ter vector

Opt1 = (p1,01,01,P1,- ., pP+1,0P+1,0P+1, PpP+1) € Opt1
that minimizes (7) with k = P + 1 regressors is a strongly consis-
tent estimator of

(P?v w?: U?» ‘P(l): ) p%,w%, UOPH ‘P(I)?: Ppers Wper; Upers Pper) aS
W(N, M) — oc. That is:

éP+1 — (0?;,pper,wper,vper,goper) a.s. as Y(N,M) — oo

13)

Proof: See [1].

Thus, in the case where the number of sinusoidal signals is
over-estimated, the estimated parameter vector obtained by the
least squares estimator contains a 4 P-dimensional sub-vector that
converges almost surely to the correct parameters of the sinusoidal
components, while the remaining k — P components assumed to
exist, are assigned to the k— P most dominant spectral peaks of the
noise power to further minimize the norm of the estimation error.

4. STRONG CONSISTENCY OF A FAMILY OF MODEL
ORDER SELECTION RULES

In this section, using the theorems derived in the previous section,
we establish the strong consistency of a new model order selection
rule.

It is assumed that there are ) competing models, where Q
is finite, @ > P, and that each competing model k € Zg =
{0,1,2,...,Q — 1} is equiprobable. Following the MDL/BIC
framework, define the statistic

xe(k) = NMlog L.(0x) + &k log N M, (14)

where ¢ is some finite constant to be specified later, and Ly, () is
the minimal value of the error variance of the least squares estima-
tor.

The number of 2-D sinusoids is estimated by minimizing x¢ (k)
overk € Zq, i.e.,

P:argmin{xg(k)}. (15)
kEZg



Let

(Senlatr s>|)2

Z (r,s)eD a‘2 (T7 S)
The objective of the next theorem is to prove the asymptotic
consistency of the model order selection procedure in (15).

A=

16)

Theorem 3. Let Assumptions 1-4 be satisfied. Let P be given by
(15) with & > 14A. Then as V(N, M) — oo

PP as. a7
Proof. Fork < P,
xe(k —1) — xe(k)
= NMlog Lx_1(0k_1) + &k — 1) log NM
—~NMlog Ly, (0x) — Eklog NM

Li—1(0k—1)
L (01)

From Theorem 1 as ¥ (N, M) — oo

:NMlog< )fflogNM. (18)

0r — 0% as., (19)

and .
Or_1 — 0%_, as. (20)

From the definition of £, (6}), and (19)

£B) =y & £ (vlnm) = 3 prcostann -+ oum -+ )

i=1

2D
From Appendix C, in [1] we have that as W(N, M) — oo

| Noimo
N Z Z w(n, m) cos(wn + Um)‘ — 0 as. (22)
n=0 m=0

sup
w,v

Recall also that for w € (0,27) and ¢ € [0, 27)

(23)
Hence, from Assumption 3, (22), (23), and the Strong Law of
Large Numbers, we conclude that as ¥(N, M) — oo

L1(01) — o* Z a’(r,s) + Z (p?)° a.s. (24)

(r,s)eD i=k+1

and similarly

R P (02
Li-1(0k-1) — 0° Z a’(r,s) + Z (p;) as. (25)

(r,s)eD i=k

Since % tends to zero, as W(N, M) — oo, then as
(N, M) — 0o

(NM) ™ (xe(k = 1) = xe(k)) —

02
log (1 + - 2(pk) - —
20 Z(r,s)eD a(r,s) + Zi:kJrl(pi)

)a.s. (26)

042

2075 oep aé?fl.”z P02 ) is strictly
positive, then x¢(k —1) > x¢ (k). Hence, for k < P, the function
Xe (k) is monotonically decreasing with k.

We next consider the case where k = P + [ for any integer
1>1.

Employing Theorem 2 and by repeating the arguments made
for I = 1 for the case of [ > 1, it is not difficult to show that a.s. as
W(N, M) — oo (see the proof of Theorem 2 for the derivation)

U, +O<logNM)’ @7

Since log (1 +

Lpii(Opi1) = Lp(0p) — N NI

where
l
Ui =Y Lu(wi,vs), (28)
=1
is the sum of the [ largest elements of the periodogram of the noise
field {w(s,t)}. Clearly
U, < lsuply(w,v). (29)

w,v
From [14] (or using Theorem 1 in the previous section),
2 Op — 0% a.s. as W(N,M)— occ. (30)

Hence, the strong consistency (30) of the LSE under the correct
model order assumption implies that as ¥ (N, M) — oo

Lp(Op) — o Z a’(r,s) as. @31
(r,s)ED
Thus, almost surely as ¥(N, M) — oo,
Xe(P +1) = xe(P) (32)
=NMlog Lpyi(0py) +E(P+1)log NM
—~NMlog Lp(0p) — EPlog NM

U, (logNM)
=€llog NM + NM lo 1-— — 40
SHog g( NMLp(0p) NM

U
=¢&llogNM — ( =
Lr(0p)

+ o(log NM)> (14 0(1))

U
- <§l S R—
Lp(0p)log NM
Isup Iy(w, v)

0(1)) log NM >

l—————— +0o(1) | log NM
(5 Lp(Op)log NM ( )) &
sup I, (w, v) sup fuw(w,v)

.y _ w,v w,v A
(5 sup fuw(w,v)log NM Lp(0p)

—+ 0(1)) log NM,

where the second equality is obtained by substituting £p;(6p ;)
using the equality (27). The third equality is due to the prop-
erty that for z — 0, log(l + =) = z(1 + o(1)), where the



__u
NMZLp(dp)
ness of Lp(Ap) from (31) and Assumption 2. The observation
that U; = O(log N M) follows from [23] (Theorem 1) where it is
shown that

observation that — 0 a.s. is due to the bounded-

sup I (w, v)

w,v

lim sup
W(N,M)—oco SUP Jw(w,v)log(NM)

w,v

<14 as. (33)

Finally, using the triangle inequality it is easy to show that for
every pair (w, v)

> laln s)\) : (34)

(r,s)eD

fulw,v) < 02(
Substituting (31), (33) and (34) into (33) we conclude that
Xe(P+1)— xe(P) > l(.ﬁ —14A + 0(1)) log NM >0 (35)

for any integer ! > 1 and £ > 14.A. Therefore, a.s. as W(N, M) —
00, the function ¢ (k) has a global minimum for k = P. O

The last result generalizes the results of [12] and is similar
in its spirit to the result of [19]: On the one hand we preserve
the AIC/MDL/BIC form of the model order selection rule. On
the other hand, in contrast with the penalty function of AIC and
BIC model selection rules, the penalty in (15) is not fixed, but
represents a family of penalties, such that they all induce strongly
consistent model selection rules. Moreover, it is obvious that the
lower bound on ¢ depends on the properties of the distribution of
the noise field, linearly reflected through the quantity A. It is easy
to see that .4 > 1 and equality holds if and only if a(z, j) = 0 for
all (4,5) # (0,0), while a(0,0) = 1. In other words, the tightest
bound is obtained in the case where the noise field is white.

In general, the problem of finding a tight bound for the param-
eter £ remains open. Moreover, we can easily show that by intro-
ducing some additional restrictions on the structure of the noise
field, we can establish a tighter bound of £. We thus modify our
earlier Assumption 1, 2 regarding the noise field as follows:

Assumption 1’ The noise field {w(n, m)} is an infinite order
quarter-plane MA field, i.e.,

w(n,m) = Z a(r,s)u(n —r,m—s) (36)
r,s=0

where the field {u(n,m)} is an i.i.d. real valued zero-mean ran-

dom field with finite variance o, such that E[u(n, m)? log [u(n, m)|] <

0.
Assumption 2’ The sequence a(i,7) is a deterministic se-
quence which satisfied the condition
oo

Z (r+ 9)|a(r,s)| < co. 37)

r,s=0

In this case, based on [10], Theorem 3.2 and Assumption 1°,
2’ we have that

sup Iy (w, v)

w,v

lim sup <8 as. (38)

(N, M)— o0 SUP fu(w,v)log(N M)

The results of Theorem 1 and 2 are not affected by this as-
sumption. The only change is in Theorem 3. Therefore we can
formulate the next theorem:

Theorem 4. Let Assumptions 1°, 2°, 3 and 4 be satisfied. Let p
be given by (15) with § > 8 A. Then as V(N, M) — oo

P—Pas (39)

The proof of the Theorem 4 is identical to the proof of Theo-
rem 3, where instead of (33) we employ the inequality in (38).

As we have shown, the correct model order is the one for
which the global minimum of (15) is obtained and this minimum
is the only minimum of (15). Therefore in theory one can termi-
nate the model order selection procedure immediately after dis-
covering the first minimum. Nevertheless, since the LSE is highly
non-linear in the sinusoids’ parameters and is implemented by
non-convex optimization methods which cannot guarantee that the
global minimum of the LSE loss function is found, it is advised to
proceed with the model order selection procedure for a few more
steps after finding a first minimum to ensure that this minimum is
indeed the global one. The final result of the model order selection
procedure will be the number of sinusoids and their parameters.

5. CONCLUSIONS

We have considered the problem of jointly estimating the number
as well as the parameters of two-dimensional sinusoidal signals,
observed in the presence of an additive colored noise field. We
have established the strong consistency of the LSE when the num-
ber of sinusoidal signals is under-estimated, or over-estimated. In
the case where the number of sinusoidal signals is under-estimated
we have shown the almost sure convergence of the least squares
estimates to the parameters of the dominant sinusoids. In the case
where this number is over-estimated, the estimated parameter vec-
tor obtained by the least squares estimator contains a sub-vector
that converges almost surely to the correct parameters of the sinu-
soids. Based on these results, we proved the strong consistency
of a new family of model order selection rules for the number of
sinusoidal components and their parameters.
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