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Abstract

The State of Art for rank codes is represented. The theory and applications are
considered.

1 Rank Codes

1.1 Definition

There exist two representations of Rank codes: matrix representation and vector represen-
tation.
In matrix representation, rank codes are defined as subsets of a normed space {FN×n

q , Rk}
of N × n matrices over a finite (base) field Fq, where the norm of a matrix M ∈ FN×n

q

is defined to be the algebraic rank Rk(M) of this matrix over Fq. The rank distance be-
tween two matrices M1 and M2 is the rank of their difference Rk(M1 − M2). The rank
distance of a matrix rank code M ⊂ FN×n

q is defined as the minimal pairwise distance:
d(M) = d = min(Rk(Mi −Mj) : Mi, Mj ∈ M, i 6= j).
In vector representation, rank codes are defined as subsets of a normed n-dimensional space
{Fn

qN , Rk} of n-vectors over an extension field FqN , where the norm of a vector v ∈ Fn
qN is

defined to be the column rank Rk(v | Fq) of this vector over Fq, i.e., the maximal number
of coordinates of v which are linearly independent over the base field Fq. The rank distance
between two vectors v1, v2 is the column rank of their difference Rk(v1 − v2 | Fq). The
rank distance of a vector rank code V ⊂ Fn

qN is defined as the minimal pairwise distance:
d(V) = d = min(Rk(vi − vj) : vi,vj ∈ V, i 6= j).

1.2 Background

Algebraic coding theory may be considered as the theory of subsets of a certain normed
finite-dimensional space Γ over the finite field equipped with a norm function N. The most
known norm in coding theory is the Hamming weight of a vector. It turns out that the
rank function Rk(A) of matrices A over fields can be considered as the norm function. In
particular, the well-known inequalities for sums of matrices |Rk(A)−Rk(B)| ≤ Rk(A+B) ≤
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Rk(A) + Rk(B) define implicitly the rank distance relations on the space of all matrices of
identical size. Explicitly, the concept of the rank metric was introduced by Loo-Keng Hua
[1] as ”Arithmetic distance”. Philippe Delsarte [2] defined the rank distance (or, q-distance)
on the set of bilinear forms (equivalently, on the set of rectangular matrices) and proposed
the construction of optimal codes in bilinear form representation. Ernst M. Gabidulin [3]
introduced the rank distance for vector spaces over extension fields and found connections
between rank codes in the vector representation and in the matrix representation. Optimal
codes in vector representation were described. Fast coding and decoding algorithms were
proposed for optimal codes.

2 Theory

The normed spaces {FN×n
q , Rk} and {Fn

qN , Rk} are isomorphic isometrically. Let a basis

Ω = {ω1, ω2, . . . , ωN} of FqN over Fq be chosen. Then each vector v =
[
v1 v2 . . . vn

]
∈

Fn
qN can be mapped into the N ×n matrix M ∈ FN×n

q by replacing each coordinate vj with
the N -column consisting of coefficients in representing vj by the basis Ω. This mapping is
bijective and isometric.
Given a rank code M in matrix representation one can construct a rank code V in vector
representation with the same size, code distance and pairwise distances, and vice versa.
The size |M| = |V| of related codes with code distance d satisfy the Singleton bound
|M| = |V| ≤ min(qN(n−d+1), qn(N−d+1). Codes reaching this bound are called maximum
rank distance codes, or, MRD codes.
A rank code M in matrix representation is called Fq-linear if M is a subspace of FN×n

q .
A rank code V in vector representation is called FqN -linear if V is a subspace of Fn

qN .
Mapping a FqN -linear code V in vector representation into related code M in matrix rep-
resentation results in a Fq-linear code.
Mapping a Fq-linear code M in matrix representation into related code V in vector repre-
sentation results in not necessary a FqN -linear code.
Constructions of Fq-linear rank codes in the matrix representation and FqN -linear rank
codes in the vector representation will be considered.

2.1 Delsarte’s optimal rank codes in matrix representation

Delsarte’s construction of rank codes in bilinear form representation is presented here in
matrix representation.

Assume that n ≤ N . Let Tr(x) =
N−1∑
l=0

xql
, x ∈ FqN , be the Trace function from FqN

into Fq. Let d be an integer in {1, 2, . . . , n}. Let u =
[
u0 u1 . . . un−d

]
∈ Fn−d+1

qN . Let

µ1, µ2, . . . , µn be linearly independent elements of FqN . Let Ω = {ω1, ω2, . . . , ωN} be a basis
for FqN .

Define a code in matrix representation as the set of N×n matrices M =
{

M(u) = [Mij(u)] : u ∈ Fn−d+1
qN

}
,
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where

Mij(u) = Tr

(
n−d∑
s=0

usωiµ
qs

j

)
.

Then M is a rank code with code distance d reaching the Singleton bound |M| = qN(n−d+1).
Let Ai(n, d), i = 0, 1, . . . , n, be the number of code matrices with rank i. The weight
distribution is as follows:

A0(n, d) = 1, i = 0
Ai(n, d) = 0, i = 1, . . . , d− 1.

Ai(n, d) =
[
n
i

] i−d∑
s=0

(−1)s

[
i
s

]
q

s(s−1)
2 (qN(d−i+1−s) − 1),

if i = d, . . . , n, where

[
n
i

]
=

i−1∏
j=0

qn−qj

qi−qj is the Gaussian binomial coefficient.

2.2 Optimal rank codes in vector representation

A FqN -linear vector code V is a subspace of the normed space {Fn
qN , Rk}. Denote by

(n, k, d) a code V of dimension k ≤ n and rank distance d. Such a code can be described in
terms of a full rank generator matrix Gk over the extension field FqN of size k × n. Code
vectors {v} are all linear combinations of this matrix. Thus the size of a code is equal to
|V| = qNk.

Equivalently, a rank code V can be described in terms of a full rank parity-check matrix
Hn−k over FqN of size (n−k)×n. It satisfies the condition GkH

>
n−k = O, where O is the all

zero k× (n−k) matrix. Code vectors {v} are all solutions of the linear system of equation
vH>

n−k = 0.
For optimal (MRD) codes, it must be k = n− d + 1, or, n− k = d− 1.
General constructions of MRD codes in terms of parity-check matrices can be described

as follows. Let h1, h2, . . . , hn be a set of elements from the extension field Fqn linearly
independent over the base field F. Let s be a positive integer such that gcd(s, N) = 1.
Then a parity matrix of the form

Hd−1 =


h1 h2 . . . hn

hqs

1 hqs

2 . . . hqs

n

hq2s

1 hq2s

2 . . . hq2s

n

. . . . . . . . . . . .

hq(d−2)s

1 hq(d−2)s

2 . . . hq(d−2)s

n

 .

defines an MRD (n, k, d) code with code length n ≤ N , dimension k = n− d + 1 and rank
distance d = n− k + 1.

Equivalently, general constructions of MRD codes can be described in terms of gener-
ator matrices. Let g1, g2, . . . , gn be a set of elements from the extension field Fqn linearly

3



independent over the base field F. Then a generator matrix of the form

Gk =


g1 g2 . . . gn

gqs

1 gqs

2 . . . gqs

n

gq2s

1 gq2s

2 . . . gq2s

n

. . . . . . . . . . . .

gq(k−1)s

1 gq(k−1)s

2 . . . gq(k−1)s

n

 .

defines an MRD (n, k, d) code with code length n ≤ N , dimension k = n − d + 1 and
rank distance d = n− k + 1. The weight distribution of vector MRD codes coincides for a
given d with the weight distribution of Delsarte’s codes above.

The case s = 1 is used mostly.
No other constructions of MRD codes are known (2009).

2.3 Correcting rank errors and rank erasures

Let a MRD (n, k, d = n − k + 1) code V be given. Let a transmitted signal be v and
received signal be y = v+etotal, where etotal is an error. The code V can correct in general
vector errors of the form

etotal = e + erow + ecol

= e1u1 + e2u2 + · · ·+ etut+
+a1r1 + a2r2 + · · ·+ avrv+
+w1c1 + w2c2 + · · ·+ wlcl

provided that 2t + v + l ≤ d− 1.
The part e = e1u1 + e2u2 + · · · + etut is called a random rank error of rank t under
assumption that elements ei ∈ FqN are linearly independent over the base field Fq and
unknown to the decoder; n-vectors u1,u2, . . . ,ut have coordinates in the base field Fq, are
linearly independent over the base field Fq and also unknown to the decoder. The rank t
is unknown to the decoder.
The part erow = a1r1 + a2r2 + · · · + avrv is called a vector rank row erasure with side
information under assumption that elements ai ∈ FqN are linearly independent over the
base field F and known to the decoder; n-vectors r1, r2, . . . , rv have coordinates in the base
field Fq, are linearly independent over the base field Fq and unknown to the decoder.
The part ecol = w1c1 + w2c2 + · · ·+ wlcl is called a vector rank column erasure with side
information under assumption that elements wi ∈ FqN are linearly independent over the
base field Fq and are unknown to the decoder; n-vectors c1, c2, . . . , cl have coordinates in
the base field Fq, are linearly independent over the base field Fq and known to the decoder.

First fast correcting random rank errors only was proposed in [3]. The algorithm is
based on the extended Euclidean division algorithm for linearized polynomials. There
exist several further modifications.

Algorithms for correcting random rank errors and rank erasures simultaneously are
proposed in [4], [5], [7].
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3 Applications

3.1 Rank codes as space-time codes

Space-time codes are introduced by Tarokh, Jafarkhani, and Calderbank in 1998 [10].
Codes are designed to simultaneously take advantage of two dimensions, namely the spatial
diversity of antenna elements, and coding gain introduced by designed redundancy in the
time dimension.

It is assumed that the base station is equipped with T transmit antennas and the
terminal is equipped with m receiving antennas. A signal is transmitted in time slots
1, 2, . . . , n.

The received signal can be written as a m× n matrix

Y = AC + N.

C is a T × n signal code matrix with entries in some constellation.
A is a m×T is a matrix of complex transfer coefficients from the jth transmit antenna

to the ith receiving antenna.
N is an AWGN m× n matrix.
The Full rank criterion was proposed:
Choose a matrix code C = {Ci} in such a manner that the difference Ci,j =

{Ci −Cj} has full rank.
MRD codes over finite fields can not be used directly as space-time codes. However,

it is still possible to use MRD codes over finite fields as templates.
Non-constructive statement. There exist infinitely many of finite complex or real

constellations such that differential MRD codes (i.e. full rank of difference matrices) can
be constructed.

Constructive statement. MRD codes over the binary field can be transformed to
differential MRD codes over the complex or real constellations of size 2.

Constructive statement. For T = 2, 4, 8 and q = 2s, MRD codes over Fq can be
transformed to differential MRD codes over complex constellations of size q.

Constructive statement. MRD codes over Fp, p ≡ 1 mod 4, can be transformed to
differential MRD codes over the complex Gaussian field of size p.

Decoding differential MRD codes is reduced to decoding in finite field by hard-decision
algorithms.

Problem: For known matrix A, use Gauss elimination in A for getting rank erasures
instead of rank errors.

3.2 Rank codes in network coding

Consider a communication network, where a single source transmits information to a single
destination. The model of a network was proposed and investigated in [4]. The source
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formats the information to be transmitted into N packets X(1), . . . , X(N) of length N +n
over the finite field Fq and constructs a (N × (N + n)) matrix X with these packets as
rows. The source choose a code X consisting of matrices X which can be transmitted.

Each intermediate node calculates random linear combinations of ingoing packets,
where a packet is represented as an element of a finite field FqN+n . The node retrans-
mits randomly calculated packets. Therefore, the destination collects a random number
Nr of packets Y (1), . . . , Y (Nr) of length N + n and creates a Nr × (N + n) matrix Y .

The problem is to recover the original packets X(1), . . . , X(N), or the matrix X from
the received matrix Y .

Koetter and Kschischang [6] introduce the concept of subspace codes when an alphabet
of transmitted messages consists of subspaces, not symbols. They constructed a family
of subspace codes. Silva, Kschischang, Koetter, proposed a rank-metric approach to error
control in random network coding [7]. Silva and Kschischang proposed their algorithms of
fast encoding and decoding of Gabidulin codes [8].

The basic model of a channel induced by random network coding is described as follows.
The transmitted matrix X and the received matrix Y are connected by the relation Y =
AX +BZ, where A is an Nr×N matrix corresponding to the overall linear transformation
applied by intermediate nodes of the network; Z is an l × (N + n) matrix whose rows
are the error packets z1, · · · , zl; B is an Nr × l matrix corresponding to the overall linear
transformation applied to z1, . . . , zl on route to the destination. The number of nonzero
rows of Z gives the total number of corrupt packets injected in the network. Random
matrices A, B, Z are unknown to the destination.

It is proposed to apply so called lifting construction for constructing a code X. Each
matrix X ∈ X has the form X =

[
IN M

]
, where IN is the identity matrix of order

N while M ∈ M is a code matrix of some matrix code M consisting of N × n matrices
over the field Fq. A code M is assumed to be a MRD rank code with rank distance d,
if n ≤ N , or a transposed MRD rank code, if N < n. The corresponding code X were
analyzed in The basic model of a channel induced by random network coding is described
as follows. The transmitted matrix X and the received matrix Y are connected by the
relation Y = AX + BZ, where A is an Nr ×N matrix corresponding to the overall linear
transformation applied by intermediate nodes of the network; Z is an l × (N + n) matrix
whose rows are the error packets z1, · · · , zl; B is an Nr × l matrix corresponding to the
overall linear transformation applied to z1, . . . , zl on route to the destination. The number
of nonzero rows of Z gives the total number of corrupt packets injected in the network.
Random matrices A, B, Z are unknown to the destination.

It is proposed in [7] to apply so called lifting construction for constructing a code X.
Each matrix X ∈ X has the form X =

[
IN M

]
, where IN is the identity matrix of order

N while M ∈ M is a code matrix of some matrix code M consisting of N ×n matrices over
the field Fq. A code M is assumed to be a MRD rank code with rank distance d, if n ≤ N ,
or a transposed MRD rank code, if N < n. The corresponding code X were analyzed in
[7]. Decoding codes X can be reduced to decoding embedded rank codes M. If the matrix
X =

[
IN M

]
is transmitted, then the matrix Y = AX+BZ =

[
A + BZ1 AM + BZ2

]
is

received with unknown to the destination matrices A, B, Z1, Z2. By a linear transformation
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of rows and injecting all zero rows, the part
[
A + BZ1

]
can be reduced to the upper

triangular matrix of order N . Elements of the main diagonal are ”0”’s or ”1”’s. The
number of ”1”’s is equal to the rank of

[
A + BZ1

]
. The same operations over the matrix[

AM + BZ2

]
allows to extract the submatrix of the form R = M +LM +DC, where R, L

and C are known matrices. Thus, the result is a matrix M of the rank code M corrupted
by a row rank erasure LM and a column rank erasure DC. The unknown matrix M can
be uniquely recovered from R provided that Rk(L) + Rk(C) ≤ d− 1.
Other network codes are known generalizing constructions above (see,[9]).. Decoding codes
X can be reduced to decoding embedded rank codes M. If the matrix X =

[
IN M

]
is

transmitted, then the matrix Y = AX + BZ =
[
A + BZ1 AM + BZ2

]
is received with

unknown to the destination matrices A, B, Z1, Z2. By a linear transformation of rows and
injecting all zero rows, the part

[
A + BZ1

]
can be reduced to the upper triangular matrix

of order N . Elements of the main diagonal are ”0”’s or ”1”’s. The number of ”1”’s is equal
to the rank of

[
A + BZ1

]
. The same operations over the matrix

[
AM + BZ2

]
allows to

extract the submatrix of the form R = M + LM + DC, where R, L and C are known
matrices. Thus, the result is a matrix M of the rank code M corrupted by a row rank
erasure LM and a column rank erasure DC. The unknown matrix M can be uniquely
recovered from R provided that Rk(L) + Rk(C) ≤ d− 1.
Other network codes are known generalizing constructions above (see, GabBoss:2009).

It is shown that decoding this subspace code is equivalent to correcting random errors
and generalized erasures in the rank code [5].

3.3 Rank codes in cryptography

The McEliece like public key cryptosystem but based on rank error correcting codes was
proposed by Gabidulin, Paramonov, Tretjakov in 1991 [?]. The cryptosystem is described
as follows. The public key Gpub is a left and right scrambled generator matrix of a rank
code:

Gpub = SGkP.

The matrix Gk is used to correct rank errors of rank not greater than t =
⌊

n−k
2

⌋
.

A matrix S over the extension field Fqn is called the row scrambling matrix. It is used to
destroy any visible structure of the matrix Gk by mixing its rows.
A matrix P =

[
pij

]
is called the column scrambler. This matrix is a non singular square

matrix of order n. It is used to mix columns of Gk.
Another generator matrix has the form

Gpub = S
[
X Gk

]
P.

Plaintext is any k-vector

m = (m1, m2, . . . ,mk), ms ∈ Fqn , s = 1, 2, . . . , k.

The Private keys are matrices S,Gk,X,P separately and (explicitly) a fast decoding
algorithm of an MRD code.
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Encryption.The ciphertext is given by

c = mGpub + e = mS[X|Gk]P + e,

where e is an artificial vector of errors of rank t2.
Decryption The legitimate receiver upon receiving c calculates

c′ = cP−1 = mS[X|Gk] + eP−1.

Then he extracts from c′ the plaintext m using decoding algorithms and properties of
public keys.

Attacks and counter-attacks

Rank codes are well structured. It makes easier creation of attacks.
Subsequently in a series of works, Gibson [12], [13], [14] developed attacks that break

the system for practical instances.
Several variants of PKC were introduced to withstand Gibson’s attacks [15].
Recently, R. Overbeck [16], [17] proposed a new attack which is more effective than

Gibson’s attacks. His method is based on the fact that a column scrambler P is defined
over the base field.

It was found [18], [19] that a cryptographer can define a proper column
scrambler over the extension field without violation of the standard mode of
the PKC. Overbeck’s attack fails in this case.

Conclusion

• Theory of rank codes is of great interest for many researchers.

• Fast decoding algorithms are developed.

• Applications in many areas are possible and recommended. Space-time coding, ran-
dom network coding, public key cryptosystems are areas of such applications.
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