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We consider the space-periodic Korteweg�de Vries equation (KdV)
∂tu = u∂xu + ∂3

xu, u(0, x) = u0(x), (1)
where x ∈ S1 = [0, 2π] and u(t, 0) = u(t, 2π). The linear term with third-order derivative
generates rapid oscillations for higher Fourier modes. In this work we reveal connection
between the smoothness properties of the solutions and the algebraic structure of the
nonlinear resonances between the high-frequency oscillations.

Our main goal is to make the relations between time-averaging e�ects and smoothness
issues more explicit, rather than to obtain global regularity results under minimal restric-
tions (see, e.g., [2], [3], [4], [5] and the references therein). In particular, our approach and
aim are completely di�erent than the machinery and harmonic analysis tools that were
developed over the past decade and half for investigating dispersive partial di�erential
equations. Moreover, we also remark that our tools and ideas can be easily applied to
multi-dimensional equations and multi-component systems.

Our approach is as follows. First, we rewrite the problem as a system of ODE for time-
dependent Fourier coe�cients. Second, to make the e�ects of time averaging explicit we
single out oscillating factors and do several integration by parts, with respect to time, to
obtain several generations of equations for slowly varying coe�cients. Resonances reveal
themselves as obstacles to the integrations by parts and produce resonant terms in the
equations, integrated terms become more and more regular. Higher generations of equa-
tions allow solutions with less regularity. To show their regularity we use straightforward
estimates of multilinear operators, energy estimates and the contraction principle. To
use the contraction principle in low-order Sobolev spaces we use splitting to high and low
Fourier modes and exploit averaging-induced squeezing of higher modes. In order to justify
our estimates we use a Galerkin approximations procedure. We do not use in our anal-
ysis the speci�c properties of the KdV equation such as complete integrability or special
conserved quantities.

We now describe our method in greater detail. One can easily see that smooth solutions
conserve the L2-norm and, in addition,

∫ 2π
0 u(t, x)dx =

∫ 2π
0 u(0, x)dx. Therefore we assume

that the solution has mean value zero. Using the Fourier series in x

u(t, x) =
∑

k∈Z0

uk(t)eikx, uk ∈ C, uk(t) =
1
2π

∫ 2π

0
u(t, x)e−ikxdx, (2)

we de�ne the homogeneous Sobolev spaces

‖u‖2
Ḣs = ‖{|k|suk}‖2

l2 =
∑

k∈Z0

|k|2s|uk|2, s ∈ R,

and obtain for the coe�cients uk(t) the in�nite coupled system of ODE's

∂tuk =
1
2
ik

∑

k1+k2=k

uk1uk2 − ik3uk, uk(0) = u0
k, k ∈ Z0 = Z \ {0}. (3)
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Transformation of variables. Next, we use the following transformation of variables:

uk(t) = e−ik3tvk(t), k ∈ Z0. (4)

Substituting (4) into (3), multiplying by eik3t, and using the identity
(k1 + k2)3 − k3

1 − k3
2 = 3(k1 + k2)k1k2, (5)

we obtain the equivalent system

∂tvk =
1
2
ik

∑

k1+k2=k

ei3kk1k2tvk1vk2 , vk(0) = v0
k = u0

k, k ∈ Z0. (6)

In the �rst place, the substitution (4) eliminates the linear term ik3uk in (3) with highest
growth as |k| → ∞; secondly, (and most importantly) introduces oscillating exponentials
into the nonlinear term.
De�nition 1. A function v is called a solution of (6) on [0, T ], if v ∈ L∞([0, T ]; Ḣ0) and
the integrated equation (6)

vk (t)− vk (0) =
1
2
ik

∫ t

0

∑

k1+k2=k

ei3kk1k2τvk1(τ)vk2(τ)dτ, k ∈ Z0 (7)

is satis�ed for all k ∈ Z0. Accordingly, u(x, t) with uk(t) = e−ik3tvk(t) is then called a
weak solution of the KdV.
Averaging. Di�erentiation by parts in time I. We apply the elementary formula
eatw(t) = (eatw(t)/a)′ − (eat/a)w(t)′ to the right-hand side of (6):

∂tvk = ∂t


1

2
ik

∑

k1+k2=k

ei3kk1k2tvk1vk2

i3kk1k2


− 1

2
ik

∑

k1+k2=k

ei3kk1k2t

i3kk1k2
∂t(vk1vk2) =

1
6
∂t


 ∑

k1+k2=k

ei3kk1k2tvk1vk2

k1k2


− 1

6

∑

k1+k2=k

ei3kk1k2t

k1k2
(vk2∂tvk1 + vk1∂tvk2).

(8)

Expressing ∂tvk1 and ∂tvk2 from the original equation (6) and using the identity
(k1 + k2 + k3)3 − k3

1 − k3
2 − k3

3 = 3(k1 + k2)(k2 + k3)(k3 + k1), (9)
we obtain the KdV in the following �rst form:

∂t

(
vk − 1

6
B2(v, v)k

)
=

i

6
R3(v, v, v)k, k ∈ Z0, (10)

where
B2(u, v)k = B2(u, v, t)k =

∑

k1+k2=k

ei3kk1k2tuk1vk2

k1k2
, k ∈ Z0, (11)

and
R3(u, v, w)k =

∑

k1+k2+k3=k

ei3(k1+k2)(k2+k3)(k3+k1)t

k1
uk1vk2wk3 , k ∈ Z0. (12)

As a result, we obtain the equation (10) with bounded operators:

Lemma 1. The operator R3 is bounded: R3 : Ḣs × Ḣs × Ḣs → Ḣs for s > 1/2, and the
operator B2 is smoothing: B2 : Ḣs × Ḣs → Ḣs+1 for s > −1/2.
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Averaging. Di�erentiation by parts in time II. The trilinear operator R3 is bounded
only in su�ciently smooth Sobolev spaces Ḣs, s > 1/2, therefore we are unable to use (10)
to establish a priori estimates for all s ≥ 0. For this reason we again use the idea of
di�erentiation by parts and represent the exponential as a time derivative. But before
doing that we have to take care of the resonances that are the obstruction to this procedure.

We single out in (12)the terms for which
(k1 + k2)(k2 + k3)(k3 + k1) = 0, k1 + k2 + k3 = k ∈ Z0. (13)

Accordingly,
R3(v, v, v)k = R3res(v3)k + R3nres(v3)k,

R3res(v3)k =
res∑

k1+k2+k3=k

vk1vk2vk3

k1
,

R3nres(v3)k =
nonres∑

k1+k2+k3=k

ei3(k1+k2)(k2+k3)(k3+k1)t

k1
vk1vk2vk3 ,

(14)

where the �rst summation is carried out over k1, k2, k3, satisfying (13) (the resonance),
while in the second summation (k1 + k2)(k2 + k3)(k3 + k1) 6= 0 (the nonresonant terms).

For the resonant operator we obtain using (13) the expression

R3res(v3)k =
vk

k
(‖v‖2

L2
− |vk|2) =: Ares(v)k =

vk

k
(‖v0‖2

L2
− |vk|2), (15)

where the last equality holds if the energy is conserved. Equation (10) goes over into

∂t

(
vk − 1

6
B2(v, v)k

)
=

i

6
Ares(v)k +

i

6
R3nres(v3). (16)

We express the last term on the right-hand side as a time derivative:

R3nres(v3)k =
nonres∑

k1+k2+k3=k

ei3(k1+k2)(k2+k3)(k3+k1)t

k1
vk1vk2vk3 =

1
3i

∂tB3(v, v, v)k−

1
3i

nonres∑

k1+k2+k3=k

ei3(k1+k2)(k2+k3)(k3+k1)t

k1(k1 + k2)(k2 + k3)(k3 + k1)
(∂tvk1vk2vk3 + vk1∂tvk2vk3 + vk1vk2∂tvk3),

(17)
where

B3(u, v, w)k =
nonres∑

k1+k2+k3=k

ei3(k1+k2)(k2+k3)(k3+k1)t

k1(k1 + k2)(k2 + k3)(k3 + k1)
uk1vk2wk3 . (18)

As before, the ∂tvk1 , ∂tvk2 , ∂tvk3 in (17) are expressed from the equation (6), and after
straight forward calculations we obtain

nonres∑

k1+k2+k3=k

ei3(k1+k2)(k2+k3)(k3+k1)t

k1(k1 + k2)(k2 + k3)(k3 + k1)
(∂tvk1vk2vk3 + vk1∂tvk2vk3 + vk1vk2∂tvk3) =

=iB4(v, v, v, v)k,

where
B4(u, v, w, ϕ)k =

1
2
B1

4(u, v, w, ϕ)k + B2
4(u, v, w, ϕ)k

and

B1
4(u, v, w, ϕ)k =

nonres∑

k1+k2+k3+k4=k

eiΦ(k1,k2,k3,k4)t

(k1 + k2)(k1 + k3 + k4)(k2 + k3 + k4)
uk1vk2wk3ϕk4 ,
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B2
4(u, v, w, ϕ)k =

nonres∑

k1+k2+k3+k4=k

eiΦ(k1,k2,k3,k4)t (k3 + k4)
k1(k1 + k2)(k1 + k3 + k4)(k2 + k3 + k4)

uk1vk2wk3ϕk4 .

The phase function Φ here is
Φ(k1, k2, k3, k4) = (k1 + k2 + k3 + k4)3 − k3

1 − k3
2 − k3

3 − k3
4,

and, unlike (5), (9), does not have a nice factorization, however, its particular analytic
expression is not used below. As a result, we obtain the second form of the KdV.

∂t

(
vk − 1

6
B2(v, v)k − 1

18
B3(v, v, v)k

)
=

i

6
Ares(v)k +

i

18
B4(v, v, v, v)k, k ∈ Z0. (19)

Lemma 2. The operators B2,B3, B4 and Ares are smoothing in Ḣs for s ≥ 0:
B2 : Ḣs × Ḣs → Ḣs+1 for s > −1/2,

B3 : Ḣs × Ḣs × Ḣs → Ḣs+2 for s ≥ 0,

B4 : Ḣs × Ḣs × Ḣs × Ḣs → Ḣs+ε for s ≥ 0, ε < 1/2,

Ares : Ḣs → Ḣs+1 for s ≥ 0.

The conservation of the Ḣ0-norm, this lemma, and equation (19) make it possible to
obtain a priori estimates in the Sobolev spaces Ḣs for the solution v (more precisely,
uniform in m a priori estimates for the Galerkin approximations v(m)) for any s ≥ 0.
Based on this we have

Theorem 1. Let s0 > 0, v(0) ∈ Ḣs0 and T > 0 be �xed, and let 0 < σ < s0. Then
the exists a subsequence v(m)(t) of the Galerkin solutions, which converges strongly in
Lp([0, T ];Hσ), for any 1 < p < ∞ and ∗-weak in L∞([0, T ]; Ḣs0) to v∞(t), which is a
solution of the KdV equation in the sense of De�nition 1 and

‖v∞‖L∞([0,T ],Ḣs0) ≤ Ms0 = Ms0(T, s0, ‖v(0)‖Ḣs0 ).

In addition, v∞(t) conserves energy:
‖v∞(t)‖Ḣ0 = ‖v0‖Ḣ0 a. e. on [0, T ].

Uniqueness and Lipschitz continuity (regular case s > 1/2). The uniqueness and
Lipschitz continuity with respect to the initial data is proved in terms of the KdV equation
in the �rst form (10). We observe that the equation is not resolved with respect to the
time derivative, and the next lemma on the invertibility of the linearized operator on the
left-hand side in (10) plays the the key role.

Lemma 3. Let ϕ ∈ Ḣ0. Then the linear operator Lϕ, Lϕv = v −B2(ϕ, v) is bounded and
invertible in Ḣθ for θ > −1/2, for any �xed t. For f ∈ Ḣθ the equation Lϕv = f has a
unique solution v = L−1

ϕ f ∈ Ḣθ, and

‖v‖Ḣθ ≤ ‖L−1
ϕ ‖L(Ḣθ)‖f‖Ḣθ , ‖L−1

ϕ ‖L(Ḣθ) ≤ F (‖ϕ‖Ḣ0),

where F is monotone increasing and independent of t.

Theorem 2. Let s > 1/2, v(0) = v0 ∈ Ḣs, and T > 0 be �xed. Then the volution
v = v∞ of the KdV equation constructed in Theorem 1 is unique, is of class C([0, T ]; Ḣs),
is Lipschitz continuous with respect to the initial data, and conserves energy.
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Proof. The solution v = v∞, from Theorem 1 satis�es the integrated �rst form of the KdV

vk(t)− 1
6
B2(v(t), v(t))k = vk(0)− 1

6
B2(v0, v0)k +

i

6

∫ t

0
R3((v(τ))3)kdτ, vk(0) = v0

k,

for all t ∈ [0, T ]. Setting y(t) = v(t) − v0, y(0) = 0, we have y ∈ L∞([0, T ]; Ḣs). The
symmetry of B2, B2(u, v) = B2(v, u), gives

y(t)− 1
3
B2(v0, y(t)) =

1
6
B2(y(t), y(t)) +

i

6

∫ t

0
R3(

(
y(τ) + v0

)3)dτ.

Setting Lv0 y = y − 1
3B2(v0, y), by Lemma 3 we have

y(t) = L−1
v0 (t)

(
1
6
B2(y(t), y(t)) +

i

6

∫ t

0
R3(

(
y(τ) + v0

)3)dτ

)
=: F(y)(t).

Since y(0) = 0, B2(y, y) is �quadratically� small and the mapping F is a contraction in
C([0, T ∗]; Ḣs) for small T ∗. Therefore this equation has a unique small solution on a short
time interval. Step by step we reach T . This follows from the established a priori estimates
of the solution in Ḣs, s ≥ 0. ¤

Remark 1. R3 is bounded in Ḣs, s > 1/2, hence the restriction s > 1/2.
Uniqueness in the non-regular case ( 0 ≤ s ≤ 1/2). We �rst point out that for
the proof of uniqueness for 0 ≤ s ≤ 1/2 we cannot use the equation (10) because R3 is
unbounded for s ≤ 1/2. The equation (19) has all terms bounded, however, it is not clear
how to prove the invertibility of the linearized operator under the time derivative in (19).

Let v, w be two solutions in Ḣθ with v(0) = v0, w(0) = w0. Similarly to Theorem 2
we want to transform the problem to the equation in L∞([T1, T1 + τ ], Ḣθ) for y(t), where
v(t) = v0 + y(t), of the form

y = Fτ,n(y, v0). (20)
Here Fτ,n is a Lipschitz mapping in L∞([T1, T1 + τ ], Ḣθ) with Lipschitz constant < 1, so
that this equation has a unique small solution y in L∞([T1, T1 + τ ], Ḣθ). The parameter n
describes the construction of the operator Fτ,n, which involves the splitting of the Fourier
modes yk of the solution y into high modes (with |k| > n) and low modes (with |k| ≤ n).
The Lipschitz estimate for y(t) = v(t)− v0 and z(t) = w(t)− w0 will have the form

‖Fτ,n(y, v0)−Fτ,n(z, w0)‖L∞([T1,T1+τ ],Ḣθ) ≤
(F1(n) + τF2(n))‖y − z‖L∞([T1,T1+τ ],Ḣθ)+C‖v0 − w0‖Ḣθ ,

(21)

where F1 (n) → 0 as n → ∞. Once (21) is constructed, we �rst choose n large enough
and then τ small so that

‖Fτ,n(y)−Fτ,n(z)‖L∞([T1,T1+τ ],Ḣθ) ≤
1
2
‖y − z‖L∞([T1,T1+τ ],Ḣθ) + C‖v0 − w0‖Ḣθ .

Iterating then last estimate over short time intervals we obtain
‖v − w‖L∞([0,T ],Ḣθ) ≤ C ′′(2C + 1)T ‖v0 − w0‖Ḣθ .

Thus, we need to construct (20) with property (21). This is achieved by the following
representation of the nonresonant operator R3nres. We denote by Πn the spectral projection
onto the Fourier modes with wave numbers m with |m| ≤ n, and set Π−n = I −Πn. Using
this splitting we have

R3nres(u, v, w) = R
(n)
3nres0(u, v, w) + R

(n)
3nres1(u, v, w)
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where

R
(n)
3nres0(u, v, w)k =

nonres∑

k1+k2+k3=k

ei3(k1+k2)(k2+k3)(k3+k1)t

k1
uk1Π−nvk2Π−nwk3 .

The operator R
(n)
3nres1 has better continuity properties than R3nres, however, the correspond-

ing constant grows as n →∞ and plays the role of F2(n) in (21).

Lemma 4. Let 0 ≤ s ≤ 1. Then R
(n)
3nres1 is bounded in Ḣs and satis�es

‖R(n)
3nres1(u, v, w)‖Ḣs ≤ c4n

s+1‖u‖Ḣ0‖v‖Ḣ0‖w‖Ḣ0 + c4n‖u‖Ḣ0‖v‖Ḣ0‖w‖Ḣs .

We represent the remaining operator R
(n)
3nres0 as the time derivative as we did before for

the entire R3nres in (17). As a result we the third form of the KdV:

∂t

(
vk − 1

6
B2(v2)k − 1

18
B

(n)
30 (v3)k

)
=

i

6
R3res(v3)k +

i

6
R

(n)
3nres1(v

3)k +
i

18
B

(n)
40 (v4)k. (22)

It can be shown that B
(n)
30 has a small norm as n →∞; the corresponding constant is the

F1(n) in (21).
Lemma 5. If 0 < s ≤ 1, then

‖B(n)
30 (v, v, v)‖Ḣs ≤ C

ns
‖v‖2

Ḣ0‖v‖Ḣs .

For s ≤ 0

‖B(n)
30 (v, v, v)‖Ḣs ≤ C(p, α)

n2α
‖v‖3

Ḣs ,

where p = −s ≥ 0, α > 0 and p + α < 5/6.
This shows that (22) can be written in the form (20), (21), and we obtain the main

result:
Theorem 3. Let s ∈ [0, 1/2] and T > 0. For any v(0) = v0 ∈ Ḣs the solution v = v∞

of the KdV equation constructed in Theorem 1 is unique, belongs to C([0, T ], Ḣs) and
Lipschitz continuously depends on the initial data.

The results described above are obtained jointly with A.V.Babin and E.S.Titi [1]. The
work was supported by the RFBR grants 09-01-00288 and 11-01-00339.
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