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Abstract

We consider the Dirac equation in R3 with a potential, and study the distribution µt

of the random solution at time t ∈ R. The initial measure µ0 has zero mean, a translation-
invariant covariance, and a finite mean charge density. We also assume that µ0 satisfies
a mixing condition of Rosenblatt- or Ibragimov-Linnik-type mixing condition. The main
result is the convergence of µt to a Gaussian measure as t → ∞ which gives the Central
Limit Theorem for the Dirac equation.

1 Introduction

We consider the Dirac equation in R3:

{
iψ̇(x, t) = Hψ(x, t) := [−iα · ∇+ βm + V ]ψ(x, t)
ψ(x, 0) = ψ0(x)

∣∣∣∣ x ∈ R3 (1.1)

where m > 0, β and αk, k = 1, 2, 3 are hermitian matrices satisfying the following relations:

{
α∗k = αk, β∗ = β,
αkαl + αlαk = 2δklI, αkβ + βαk = 0.

The standard form of the Dirac matrices αk and β (in 2× 2 blocks) is

β =

(
I 0
0 −I

)
, αk =

(
0 σk

σk 0

)
(k = 1, 2, 3), (1.2)

where I denotes the unit matrix, and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.3)

We assume the following conditions:

E1. The potential V ∈ C∞(R3) is a hermitian 4× 4 matrix function such that for some ρ > 5.

|∂αV (x)| ≤ C(α)〈x〉−ρ−|α|, 〈x〉σ = (1 + |x|2)σ/2 (1.4)

E2. The operator H presents neither resonance nor eigenvalue at thresholds.

Denote by Pc the projection onto the continuous spectral space of H.
We fix an arbitrary δ > 0 such that 5 + δ < ρ and consider the solutions ψ(x, t) ∈ C4

with initial data ψ0(x) which are supposed a random element of the complex functional space
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H = PcL
2
−5/2−δ. The distribution of ψ0 is a Borel probability measure µ0 on H with zero mean

satisfying some additional assumptions, see Conditions S1-S3 below. Denote by µt, t ∈ R, a
Borel probability measure on H, giving the distribution of the random solution ψ(t) to problem
(1.1). The correlation functions of the initial measure are supposed to be translation-invariant:

Q0(x, y) := E
(
ψ0(x)⊗ ψ0(y)

)
= q0(x− y), x, y ∈ R3. (1.5)

We also assume that the initial mean charge density is finite:

e0 := E|ψ0(x)|2 = tr q0(0) < ∞, x ∈ R3. (1.6)

Finally, we assume that the measure µ0 satisfies a mixing condition of Ibragimov-Linnik type,
which means that

ψ0(x) and ψ0(y) are asymptotically independent as |x− y| → ∞. (1.7)

Our main result is the (weak) convergence of µt to a limiting measure µ∞,

µt ⇁ µ∞, t →∞, (1.8)

which is an equilibrium Gaussian measure on H. A similar convergence holds for t → −∞
since our system is time-reversible.

This paper can be considered as a continuation of papers [3]-[5], [7] which concerns the
analysis of the long time convergence to equilibrium distribution for partial differential equations
of hyperbolic type.

2 Well posedness

Definition 2.1. For s, γ ∈ R, let us denote by Hs
ν = Hs

ν(R3,C4) the weighted Sobolev with the
finite norms

‖ψ‖Hs
ν

= ‖〈x〉ν〈∇〉sψ‖L2 < ∞.

We set L2
ν = H0

ν . The finite speed of propagation for equation (1.1) implies

Lemma 2.2. i) For any ψ0 ∈ L2
−ν with 0 ≤ ν ≤ ρ there exists a unique solution ψ(·, t) ∈

C(R, L2
−ν) to the Cauchy problem ( 1.1).

ii) For any t ∈ R, the operator U(t) : ψ0 7→ ψ(·, t) is continuous in L2
−ν.

Proof. Fist, consider the solution χ(x, t) of the free Dirac equation with V (x) ≡ 0. In the
Fourier space we have: χ̂(k, t) = ei(α·k−βm)tψ̂0(k). Then

‖χ(·, t)‖L2
−ν

= C‖χ̂(·, t)‖H−ν ≤ C1(t)‖ψ̂0(·, t)‖H−ν ≤ C2(t)‖ψ0(·, t)‖L2
−ν

(2.1)

Now we represent the solution of the perturbed equation (1.1) as ψ(t) = χ(t) + φ(t), where

φ̇(t) = Hφ(t) + V χ(t), φ(0) = 0.
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Applying the Duhamel representation, we obtain

φ(x, t) =

t∫

0

U(t− τ)V χ(τ)dτ.

It remains to prove that φ(·, t) ∈ L2
−ν . By charge conservation for the Dirac equation we have

‖U(t− s)V χ(s)‖L2
−ν
≤ ‖U(t− s)V χ(s)‖L2 = ‖V χ(s)‖L2 ≤ C‖χ(s)‖L2

−ρ
≤ C‖χ(s)‖L2

−ν
< ∞

3 Random solution

Let (Ω, Σ, P ) be a probability space with expectation E and B(H) denote the Borel σ-algebra
in H. We assume that ψ0 = ψ0(ω, ·) in (1.1) is a measurable random function with values in
(H, B(H)). In other words, (ω, x) 7→ ψ0(ω, x) is a measurable map Ω× R3 → C4 with respect
to the (completed) σ-algebras Σ×B(R3) and B(C4). Then, owing to Lemma 2.2, ψ(t) = U(t)ψ0

is again a measurable random function with values in (H,B(H)). We denote by µ0(dψ0) a Borel
probability measure in H giving the distribution of the random function ψ0. Without loss of
generality, we assume (Ω, Σ, P ) = (H,B(H), µ′) and ψ0(ω, x) = ω(x) for µ0(dω)×dx-almost all
(ω, x) ∈ H × R3.

Definition 3.1. µt is a probability measure on H which gives the distribution of ψ(t):

µt(B) = µ0(U(−t)B), ∀B ∈ B(H), t ≥ 0. (3.1)

Our main goal is to derive the weak convergence of the measures µt in the Hilbert space
H−ε
−ν for any ε > 0, and ν > 5/2 + δ

µt

H−ε
−ν−⇁ µ∞ as t →∞, (3.2)

where µ∞ is a Borel probability measure in the space H−ε
−ν . By definition, this means the

convergence ∫
f(ψ)µt(dψ) →

∫
f(ψ)µ∞(dψ) as t →∞. (3.3)

for any bounded and continuous functional f(ψ) in H−ε
−ν .

Set Rψ ≡ (Re ψ, Im ψ) = {Re ψ1, . . . , Re ψ4, Im ψ1, . . . , Im ψ4} for ψ = (ψ1, . . . ψ4) ∈ C4 and
denote by Rjψ the j-th component of the vector Rψ, j = 1, ..., 8. The brackets (·, ·) mean the
inner product in the real Hilbert spaces L2 ≡ L2(R3), in L2 ⊗ RN , or in some their different
extensions. For ψ(x), φ(x) ∈ L2(R3,C4), write

〈ψ, φ〉 := (Rψ,Rφ) =
8∑

j=1

(Rjψ,Rjφ). (3.4)
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Definition 3.2. The correlation functions of the measure µ0 are defined by

Qij
0 (x, y) ≡ E

(
Riψ0(x)Rjψ0(y)

)
for almost all x, y ∈ R3, i, j = 1, ..., 8, (3.5)

Denote by D the space of complex- valued functions in C∞
0 (R3) and write D := [D]4. For

a Borel probability measure µ on H denote by µ̂ the characteristic functional (the Fourier
transform)

µ̂(φ) ≡
∫

exp(i〈ψ, φ〉) µ(dψ), φ ∈ D.

A measure µ is said to be Gaussian (with zero expectation) if its characteristic functional is of
the form

µ̂(φ) = exp{−1

2
Q(φ, φ)}, φ ∈ D,

where Q is a real nonnegative quadratic form on D. A measure µ is said to be translation-
invariant if

µ(ThB) = µ(B), B ∈ B(H), h ∈ R3,

where Thψ(x) = ψ(x− h), x ∈ R3.

4 Mixing condition

Let O(r) denote the set of all pairs of open bounded subsets A,B ⊂ R3 at distance dist(A, B) ≥
r and σ(A) the σ-algebra in H generated by the linear functionals ψ 7→ 〈ψ, φ〉, where φ ∈ D
with supp φ ⊂ A. Define the Ibragimov-Linnik mixing coefficient of a probability measure µ0

on H by (cf. [6, Def. 17.2.2])

ϕ(r) ≡ sup
(A,B)∈O(r)

sup
A ∈ σ(A), B ∈ σ(B)

µ0(B) > 0

|µ0(A ∩B)− µ0(A)µ0(B)|
µ0(B)

. (4.1)

Definition 4.1. The measure µ0 satisfies the strong, uniform Ibragimov-Linnik mixing condi-
tion if

ϕ(r) → 0 as r →∞. (4.2)

Below, we specify the rate of decay of ϕ (see Condition S3).

5 Main assumptions

We assume that measure µ0 has the following properties:

S0 µ0 has zero expectation value,

Eψ0(x) ≡ 0, x ∈ R3.

. S1 µ0 has translation invariant correlation functions,

Qij
0 (x, y) ≡ E

(
Riψ0(x)Rjψ0(y)

)
= qij

0 (x− y), i, j = 1, ..., 8 (5.1)
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for almost all x, y ∈ R3.
S2 µ0 has a finite mean charge density, i.e. Eqn (1.6) holds.
S3 µ0 satisfies the strong uniform Ibragimov-Linnik mixing condition, with

∫ ∞

0

r2ϕ1/2(r)dr < ∞. (5.2)

6 Convergence to equilibrium distribution

Introduce the following 8× 8 real valued matrices (in 4× 4 blocks)

Λ1 =

(
α1 0
0 α1

)
, Λ2 =

(
0 iα2

−iα2 0

)
, Λ3 =

(
α3 0
0 α3

)
, Λ0 =

(
0 −β
β 0

)
. (6.1)

Denote
Λ = (Λ1, Λ2, Λ3), P = Λ · ∇+ mΛ0. (6.2)

For almost all x, y ∈ R3, introduce the correlation matrix

Q∞(x, y) ≡
(
Qij
∞(x, y)

)
i,j=1,...,8

=
(
qij
∞(x− y)

)
i,j=1,...,8

. (6.3)

Here

q∞(z) =
1

2
q0(z) +

1

2
P ∗ Pq0(z)P, (6.4)

where P(z) = e−m|z|/(4π|z|) is the fundamental solution for the operator −∆ + m2, and ∗
stands for the convolution of distributions. Our main result is the following:

Theorem 6.1. Let m > 0, and E1–E2, S0–S3 hold. Then
i) the convergence in ( 3.2) holds for any ε > 0 and ν > 5/2 + δ.
ii) the limiting measure µ∞ is a Gaussian equilibrium measure on H.
iii) the limiting characteristic functional of µ∞ is of the form

µ̂∞(φ) = exp{−1

2
Q∞(Wφ, Wφ)}, φ ∈ D,

where W : D → L2 is a wave operator.

Theorem 6.1 can be derived from Propositions 6.2-6.3 below by using the same arguments
as in [10, Theorem XII.5.2].

Proposition 6.2. The family of the measures {µt, t ∈ R} is weakly compact in H−ε
−ν for any

ε > 0 and ν > 5/2 + δ.

Proposition 6.3. For any φ ∈ D

µ̂t(φ) ≡
∫

exp(i〈ψ, φ〉)µt(dψ) → exp{−1

2
Q∞(Wφ,Wφ)}, t →∞. (6.5)
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Proposition 6.2 provides the existence of the limiting measures of the family µt, and Propo-
sition 6.3 provides the uniqueness of the limiting measure, and hence the convergence (3.3).

The similar result for the free Dirac equation with V (x) ≡ 0 has been proved in [5]. The case
of the perturbed equation requires new constructions due to the absence an explicit formula for
the solution. To reduce the case of perturbed equation to the case of free equation we formally
need a scattering theory for the solutions of infinite global charge. We construct the dual scat-
tering theory for the finite energy solutions to avoid the infinite charge scattering theory. This
version of scattering theory is based on the weighted time - decay established in [1].
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