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Outline

Everyone has an experience of using universal compressors (UC) such as Zip for storing and
transmitting files. We develop the theory and their application for statistical analysis. Let
B = {0, 1}), xN ∈ BN = (x1, ..., xN) be a stationary ergodic random binary (training)
string (text, SET) distributed as P0 = P .

Arbitrary UC (see [15]) maps source strings xN ∈ BN into compressed binary strings xN
c of

approximate length |xN
c | = − logP (xN)) = LN thus generating the approximate Loglikelihood

of source xN – the main inference tool about P .
Consider a query binary SET yM distributed as P1 and test whether the homogeneity

hypothesis P0 = P1 contradicts the data or not. Let us partition yM into several slices
yi, i = 1, . . . , S, of identical length n divided by ’brakes’ - strings of relatively small-length δ
to provide approximate independence of slices (brakes of length 2k are sufficient for k-MC).
Introduce concatenated strings Ci = (xN ,yi). Define CCCi = |Ci| − |xN |. CCC-statistic is
CCC = average of all CCCi. We meet CCC in study of very small error probabilities when
finding few inhomogeneous among vast number of homogeneous inputs [10]. Homogeneity
of two texts is tested by the test statistic T = CCC/s, s is the standard deviation of
CCCi, i = 1, . . . , S . Extensive experimentation with real and simulated data [7, 8, 9, 13]
showed that T well discriminates between homogeneity and its absence in spite of the lack of
knowledge about P0, P1. Here we prove its consistency, asymptotic normality and CCC tail
optimality approximating that of the Likelihood Ratio Test (LRT) in full generality under
certain natural assumption about the sizes of the training string and query slices.

Validity of our assumption in applications depends both on the compressor used and the
source distribution. All results are new. All previous attempts [1, 14] of proving asymptotic
normality under the null hypothesis were extremely involved technically and applied to one
compressor and IID source of dubious importance in applications. The main advantages
of CCC-test are: i. its applicability for arbitrary UC and long memory sources, where the
likelihood is hard to evaluate and ii. its computational simplicity (as compared to statistics
from [15] and first part of [13]) enabling processing of multi-channel simultaneously on line
like change-point detection, see [10].

Preliminaries

Conditions on regular stationary ergodic distributions (SED) of strings are as in [15]. SET
are approximated by n-Markov Chains.

Continuing and correcting the von Mises study of a string randomness, Kolmogorov [6]
outlined a compressor adapting to an unknown IID distribution and gave a sketch of a version
of Theorem 1 below for IID sources, connecting for the first time the notions of complexity
and randomness. First practically implementable UC LZ-77/78 were invented in 12 years
and became everyday tools of computer work after ten more years.

Introduce Ln = − logP (xn) and the entropy hn = H(P ) = −
∑

P (xn) logP (xn).
Warning. Without mentioning, we actually consider conditional probabilities and ex-

pectations of functions of the query slice with regard to the training text.



A compressor is called UC (in a weak sense), if it adapts to an unknown SED distribution,
namely if for any P ∈ P and any ϵ > 0, it holds:

lim
n→∞

P (x ∈ Bn : |xn
c | − Ln ≤ nϵ) = 1.

Equivalently, UC attain for P ∈ P asymptotically the Shannon entropy lower bound:

lim
n→∞

P (||xn
c|/|xn| → h) = 1 as |x| → ∞

established in the works of C. Shannon in 1948-1949, where SED strings were first singled
out also as appropriate models of natural language.

J. Rissanen’s pioneering publication on the Minimum Description Length principle
[12] and [15], (goodness of fit and homogeneity testing) initiated applications of UC to sta-
tistical problems for SED sources continued in a series of recent papers of B. Ryabko with
coauthors.

Kraft inequality. Lengths of any uniquely decodable compressor satisfy the following
inequality : ΣBn2−|xn

c |) ≤ 1 .
Introduce diversion (cross entropy) D(P1||P0) = E1 log(P1/P0) and consider goodness of

fit tests of P0 vs. P1.
‘Stein lemma’ for SED [15](Proved first for IID case by H. Cramer in 1938). If

D(P1||P0) ≥ λ and any 0 < ε < 1, then the error probabilities of LRT satisfy simultane-
ously

P0(L0 − L1 > nλ) ≤ 2−nλ

and

limP1(L0 − L1 > nλ)) ≥ 1− ε > 0.

No other test has both error probabilities less in order of magnitude.
Theorem 1 [15]. Consider test statistic T = Ln

0 − |xn
c | − nλ. Then nonparametric

goodness of fit test T > 0 has the same asymptotics of the error probabilities as in the Stein
lemma.

Main results

‘Quasiclassical Approximation’ assumption (QAA). The sizes of the training string N
and query slices n grow in such a way that the joint distribution of CCCi, i = 1, . . . , S,
converges in Probability to P1(L

n
0 (y)): N → ∞ and n → ∞ is sufficiently smaller than N .

The intuitive meaning of this assumption is: given a very long training set, continuing
it with a comparatively small query slice with alternative distribution P1 does not affect
significantly the encoding rule. The typical theoretical relation between lengths as discussed
in [13, 11] is n ≤ const logN → ∞.

In practice, an appropriate slice size is determined by empirical optimization.

Define entropy rates hi = limhn
i , h

n
i = ELn

i , i = 0, 1.

Under QAA and h1 ≥ h0 the three following statements are true.
Theorem 2: Consistency.The mean CCC is strictly minimal as n → ∞, if P0 = P1.
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Generate an artificial (n)-sequence zn independent of yn, zn distributed as P0 and denote
by CCC0 its CCC.

In [9, 13] such test was obtained by training the slice on the remaining portion of the
same text. Also assume that the ’brakes’ negligible sizes are such that the joint distribution
of S slices of size n converge to their product distribution in Probability.

Theorem 3. Suppose P1, P0 are SED, D(P1||P0) > λ and we reject homogeneity, if the
‘conditional version of the Likelihood Ratio’ test T = CCC − CCC0 > nλ. Then the same
error probability asymptotics as for LRT is valid for this test.

Let us study the central range of CCC-distribution and now assume in addition to QAA
that P1 is contiguous w.r.t. P0, i.e. the sets of P0 measure 0 have also P1 measure 0. This
natural for LT in the same language assumption for k-MCmeans that transitions impossible in
P0 are equally impossible in P1. We assume also that P0 - distribution of Ln is asymptotically
Normal (AN).

Theorem 4. AN holds also for CCCi, i = 1, . . . , S, under P1 and all assumptions made
(Le Cam lemma [4]). Statistic T has asymptotically central/non-central Student distribution
respectively under P0 and P1 with S-1 degrees of freedom.

Sketch of AN justification

In IID cases AN is proved in [1, 14] on several dozen pages of hard reading. Our approach
for general UC and SED outlined below is shorter.

J. Ziv’s claim (personal communication): Since yn is almost incompressible, the com-
pressed file right hand tail with infinite/long memory is (respectively, converges to in Diver-
gence) IID(1/2). Thus lengths of compressed texts is an asymptotically sufficient statistic
containing all information in the training SET while compressed texts themselves is a white
noise!

We have UC: yn → Zn := (m(n), zm), The joint distribution of the random vector Zn is
Lm. Given the training text, Zn is a deterministic invertible function of yn. Thus entropy
H(Lm) = hn.

According to the Ziv’s claim, hn/m(n) → 1 in Probability. ‘In Probability’ will further
mean in Probability of xN ,yn, where for some g(·) :→ N, n < g(N).

Assumption A: ‘Second thermodynamics law’. UC is such that hn/m(n) growth is
monotone in Probability. The limiting joint distribution Lm(xn) maximizes entropy H(xn))
for fixed variance of hn in Probability.

Corollary. hn/m(n) is a non-decreasing submartingale under A bounded by 1, it is
AN in Probability for large n after removing fitted small parabolic drift, all random IID
parameters of the Bernoulli variables zi are AN due to the well-known entropy maximization
of a shrinking distributions on [0, 1].

Now, m(n) is the first exit time, when the AN sequence si =
∑i

1 h(zj) hits high level hn.
Its AN is well-known, see [3].

Preceding work

Kolmogorov’s complexity and randomness relation is the cornerstone in our constructions
(see theorem 1). On the eve of final grave illness, he made a sketch of complementing
this, in parallel to far from Mathematics Solomonov and Cheitin, by an Abstract Theory of
Kolmogorov Complexity (KC-AT). KC-AT inspired D. Khmelev to introduce the kernel of
our CCC method outside of statistical paradigm. For SED string xN and a fixed UC, |xN

c | is
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an approximation to conditional KC. However, if xN is a Genome part, |xN
c | is several times

more, than |xN | for UC zip and is in no way approximation to conditional KC. I am unaware
of nontrivial sufficiently rich cases in addition to statistical models, where incomputable KC
can be approximated from below and above by computable functions, at least theoretically.
Thus, replacement of KC with quantity evaluated with UC as in [2] needs justification. Far
from elementary statistical UC theory must be applied for strings approximated by statistical
model such as LT.

A survey of related developments (before my first working version of CCC was introduced
in [7]) is in [2]. All of them follow Khmelev adding artificial transformations as in [2] irrelevant
in statistical context and only worsening accuracy of analysis; their replacement of KC with
quantity evaluated with UC is not justified. Thus validity of their applications is doubtful.
Their classifier poorly discriminates between LT in same language (see [8]) and its output
depends on texts entropies not mentioned in [2]. Their claim that L. Tolstoy stands alone
among Russian writers is caused most likely by inadequate texts preparation for analysis:
they did not remove large portions of French in Tolstoy having different entropy rate.
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