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Bosonic hierarchical models were introduced in mathematical physics by F. Dyson
[8, 5]. In this talk it is convenient to present the formal d-dimensional hierarchical lattice as
the lattice of purely fractional d-dimensional p-adic vectors. Every p—adic number x € Qg
can be represented in the form z = c_,p™ + -+ +c_1p ' + ¢ + c1p + ..., where the
coefficients ¢ are integer numbers from 0 to (p — 1) and ¢, > 0, n is some integer number.
Then |z|, = p" and the fractional part of x is defined as {z} = c_,p™™+---+c_1p*. For
x = (21,...,7q) € Q2 we set |z[, = max |z, {z} = ({x1},...,{xq}). The discrete

set T = {x € Q}: == {x}} can be viewed as a hierarchical lattice with the elementary
cell size n = p? and with the hierarchical distance d(i,j) = |i — jlp, i,j € T (see[1]).

Let £ be a field on the lattice Tg. The hierarchical renormalization block-spin trans-
formation is given as

r()E@) =p™” Y &),
leTg:|pl—jlp<p

« is real-valued renormalization group parameter.

To stress a close similarity between Euclidean and hierarchical models we shall use
momentum space representation. We define field o(k) in the unit ball of d-dimensional
p-adic space {k : |k|, < 1} by Fourier series

o(k) = 3 exp{—2ri(j, k) }(),

:~rd
]ETp

where (7, k) = jiki1+. ..+ jaka. It is easy to find the action of RG - transformation r(«) in
terms of the field o: r(a)o (k) = p~*/20(kp)x (k). Here x(k) denotes characteristic function
of the unit d-dimensional p-adic ball.

From this point we shall describe the hierarchical and Euclidean models in the similar
way. Let Q = {k : |k| < 1} denotes the unit ball in the d-dimensional Euclidean or p-adic
space Qg (we’ll omit index p in the notation of p-adic norm).

Let o(k) be a field defined on this ball, which will denote in this paper bosonic
(complex-valued) field or 4-component fermionic field o(k) = (a1(k), 01(k), 72(k), 02(k)),
where the components are generators of the Grassmann algebra.The Wilson’s renormali-
zation group transformation (RG) in terms of realizations of the field o (k) is defined as
ra(a)o(k) = |A|7*2a(k/X)x(k), where ) is real or p-adic number, y (k) is the characteristic
function of the ball Q2. Then Gaussian fields with binary correlation function (o (k1)o(ks)) =
6 (k1 + ko) k1|72 x (k1) in the bosonic case and (o;(k;)7;(k2)) = 8(k1 + ka2)dij k1| *x (K1),
(Gi(k1)7;(k2)) = (0i(k1)oj(k2)) =0, 4,57 = 1,2 in the fermionic one are invariant under
transformation ry(«).

In the Gibbsian form these Gaussian fields are described by the Hamiltonians
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in the bosonic case and

Ho(o:a) = / 5(ky + ko) [k |5 (k1 )rs () + 73 (k) (k) ks

in the fermionic one, dk denotes the Haar measure in the p-adic case.
Let us consider non-Gaussian Hamiltonians Hy(o; ) + H (o), where

H(o)=>)_ / B (kv oo k)0 (ks + o+ k) o™ (k) - 0" (k) dy . . dEy,.
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Here o*(k) denotes o(k) in the bosonic case and any one of the components a7 (k), o1 (k),
03(k), o2(k) in the fermionic case. Then RG-transformation ry(«) induces RG-transforma-
tion in the space of the Hamiltonians , which transforms the Hamiltonian Hy(o; ) + H
to the Hamiltonian Hy(o; o) + Ry () H, where Ry)(a)H = Py(«)S)(a) H. Scaling operator
Si(a) transforms the coefficient functions of the Hamiltonian H:

hm(kla sy k’m) - |)\|%_md+dh‘m (k‘ll/)\v e 7km//\) :

Operator Py(«) is induced by the restriction of the field o(k) from the ball AQ onto the
ball : (Px(a)H)(0) = —In(exp{—H (0 + 1) }) u(an)- Here the averaging is taken over the
Gaussian field in the in the annulus AQ\ 2 with zero mean and binary correlation function
(n(k1)n(ke)) = 6(k1+k2)|k1|* (x(k1/A) — x(k1)) in the bosonic case and (n; (k1)7; (k2)) =
6 (k1 + ka)dij k1|4 (x(k1/A) — x(k1)) in the fermionic one.

Let us define the functional Fourier transformation:

fexp{(@, o) — H(o)}Do
[ exp{—H(0)} Do

Here 0(k) denotes the dual field on the ball 2, the integral is treated as the formal
functional integral over the field o, the form (6, o) denotes

(FH)(6) = —In (1)

0,0) = i/@(k)a(—k) dk,

in the bosonic case and

(6,0) = / (B (K)o (—k) + 01 (K)FT(—k) + Ba(k)oa(—k) + ba(R)o3(~k) dk. (2)

in the fermionic case.

Theorem 1 There is formal (in the terms of functional integrals) commutative relation
between the transformations R(a) and F':

R)\<O£)F == FRA(2d — O[). (3)

In the p-adic case this relation can be derived rigorously.

As was shown in [6, 7] for the Euclidean bosonic case the non-Gaussian branch of
fixed points can be constructed in the form of e-expansion in the neighborhood of the
Gaussian fixed point, where ¢ is a deviation of the parameter « from its bifurcation value



3d/2. In the p-adic bosonic case the same construction was realized in [11]. We seek this
fixed point as the Hamiltonian of the projection of the p*-theory in the whole space onto
the ball: P(a)(H(o;u,v)) = —In{exp{—H (o + n;u,v)})y(an), Where o is defined in the
ball €2, the averaging is taken over the Gaussian field n with binary correlation function
(n(ki)n(k2)) = (k1 + ko)|k1|**(1 — x(k1)) in the bosonic case and (n;(k1)7;(k2)) =
6 (k1 + k2)0ij|k1|4=*(1 — x(k1)) in the fermionic one. Here H(o;u,v) = uHs (o) + vHy(o),
where

Hy(o) = / 5(ky + ko) (kr )or (k) ey,

Hi(o) = /6(k1 b k)o(k) o) dEy - dk

in the bosonic case and

Hy(o) = / 5(ky + ko) (@ (k1 )1 (k) + 53 (k1 )ra (k) iy,

Hy(o) = / S(ky + ...+ ky)Tr (ko (ko) T3 (k) oo (o) dky . .. dy

in the fermionic case.

The scaling transformation Sy(«) acts linearly on the Hamiltonians H(o;u,v) in
the whole space:Sy(a)H (o;u,v) = H(o; |\ %, |[A?*3%). The linear transformation
(u, v) — (JA|*"%u, |A|?*~3%) in the coupling—constant plane (u, v) we also denote by Sy ().
It is easy to see that in the space of the Hamiltonians H (o;u,v) we have relation

Ry(a)P(a) = P()Sy(«). (4)

On expanding of projection HamiltonianP(«)H (o;u,v) in Feynman diagrams some
coefficient functions have a poles in ¢ = a — %d at zero |9, 11]. In that problem the
operation of analytic renormalization A.R. is most natural regularization procedure [11].
Let H(o;u,v) denotes bosonic(or fermionic) Euclidean (or p-adic) Hamiltonian.

Theorem 2 There are non-trivial formal series u(e) and v(e) such that the Hamiltonian
Hy(o;a) + A.R.P(H(o;u(e),v(e)) (5)
is tnvariant under RG-transformation.

Using this formalism, we have obtained [13|the following expansion for the critical exponent
v in the bosonic Euclidean and p-adic models: v™! = d/2+ (1/3)e + (8/9)A(d)e* + O(&3).
In the Euclidean case A(d) = —5 (—y — 2¢(d/4) + ¢(d/2)), (z) =T"(z)/T(x), where
I'(z) is Euler gamma-function,y is Euler constant. In the p-adic case A(d) = A,(d) =

—h% (Inp — 20,(d/4) + ,(d/2)), where ¥, (2) = fy(2)/ fylx),  fy(a) = (1—p~>)"". Using
that
(et s) e (RSGe )

we see an interesting similarity of Euclidean and p-adic e-expansions up to a second order.
Relation between I'(z) and p-adic analog of gamma-function f,(x) is well known in the
theory of Riemann Zeta-function.



[t turns out that in the fermionic hierarchical (p-adic) case all constructions can be
performed explicitly ( see[10, 2, 3, 12]).

One can snow that in the fermionic hierarchical case projection Hamiltonian has
the same structure: P(a)H (o;u,v) = H(o;r(u,v), g(u,v)), where coefficients r(u, v) and
g(u,v) are series of (u,v). We also denote the transformation (u,v) — (r(u,v), g(u,v)) by
P(«). The action of RG-transformation Ry(«) on the Hamiltonian H(o;r,g) reduces to
the transformation of the coupling constants. Particularly, for A = p~!

Ry-1(a)H(o;r,9) = H(o;1',4"),

r/:pad((““)Q_g (r+1)—1)

r+1)2 —g/p?

a— 704_12_9 ?
g/:p2 3d< ( ) >g‘

(r+1)? —g/p?

We denote the transformation (r, g) — (', ¢') by R(«). From (4) it follows R(a)P(«) =
P(a)S(a), where S(a) = S,-1(cw). The mapping S(«) is given by the diagonal matrix
whose eigenvalues are the eigenvalues of the differential of R(«) at the trivial(Gaussian)
fixed point r = 0,g = 0 . Hence we can treat the mapping P(«) as a normalizing
transformation to the mapping R(«) at the zero point an can find functional integral
P(«a) as a solution of the classical two-dimensional functional equation. Particularly,
ultrviolet poles of p-adic Feynman amplitudes are interpreted as resonance values of the
corresponding normal form. The renormalization procedure can be defined as the mapping
inverse to the normal mapping P(«). We can restore coupling constants of the continuum
theory from the coupling constants of the discrete model using inverse map P~!(«) for
non-resonance values of a. We can prove rigorously [4|that discrete model is well defined
for the whole plane of coupling constants and almost all values of o. But we can prove
rigorously that continuum model is well defined only in some small neighborhood of trivial
(zero) fixed point of renormalization group. In other words, continuum model is related
to discrete model as normal form is related to map.

More natural to use RG-transformation in the space of non-normalized Grassmann-
valued “densities” of single spin “distribution” f(v*; ¢, c1,c2) = co + c1(11) + Vaihs) +
cop1 1 aths. If ¢g # 0, we can write the density f in the regular (exponential) form
(™5 co,e1,¢2) = coexp{—L(¢*;7(c), g(c)) }, where ¢ = (co, c1, ¢2), 7(c) = —c1/co, g(c) =
(c] = coca) /e, L(¥*;1, ) = r(nhy + thaths) + g1th1hat)s. If o = 0, as, for example, in
the case of Grassmann J— function 0(¢*) = 11111919, the exponential representation is
impossible. RG-transformation in 2-dimensional projective c-space is given as R(«a)c = ¢,
where

where

= n(cy — 2c1 + o) (e — ¢o)® + 5(0002 —c),

_ 1
¢} = \n*(cy — 2¢1 + c)" 2 {(cl —co)(ea —cq) + E(cocg — cf)} :

1
cy = N2n?(cy — 2¢1 + co)" 2 {(02 —c1)? + E(COCQ - c%)} ,

A o= p* % n = pd If ¢y — 2¢1 + ¢g # 0, we can omit this factor. The mapping R(«) is
correctly defined as the mapping from two-dimensional projective space to itself everywhere



except the point (1,1,1) because R(«)(1,1,1) = (0,0,0). In the (r,g) plane this is the
point (—1,0), and we call this point the singular point of the RG mapping. Using projective
space representation we have described global picture of the renormalization group flow.
RG-transformation in c-space has trivial (Gaussian) fixed point (1,0,0), d-function fixed
point (0,0,1), two non-trivial branches of fixed points and cycles of any order. The value
«a = d is special value. Particularly, when o — d all non-trivial fixed points and cycles
tend to the singular point.

The branch, bifurcating from the trivial (gaussian) fixed point at o = 3d/2 is called
"plus™branch and in (r, g)-coordinates is given by the formula

d/2 _ a—d
o) =
l—p
a—3d a—d\ 2
o) =y (A2
1— pa—d/Q 1— pd/2

For d/2 < a < 3d/2 "plus”™branch belongs to the lower half-plane (r,g):¢g < 0. If
a — d/2, then "plus’-fixed point tends to infinity ( to the J-function). Note, that J-
function fixed point corresponds to the "zero"automodel field. When o < d/2 "plus™fixed
point belongs to the upper half-plane again. In physical papers usually « is fixed and is
equal to (d+2). In that case the Gaussian part of the Hamiltonian is given by the Laplace
operator. Physicists consider (4 — d) -expansion and try to extrapolate the results of the
expansion to the point d = 3 ( they have a few lower order members of the series with
zero convergence radius). If we do the same in the (r, g)-space of the coupling constants
of the fermionic hierarchical model, we will see that d = 4 is bifurcation value of the
parameter d and we can construct (4 — d)-expansion from the Gaussian fixed point at
the dimension d = 4. From the explicit formulas for the "plus”™fixed points it follows that
(v — 3/2d)-expansion and (4 — d)-expansion describe the same non-Gaussian fixed point
at the dimension d = 3. We have some arguments [14] that the same is true in the bosonic
hierarchical model.

Taking into consideration algebraic similarity of the Euclidean and hierarchical models
one can hope that some of the above-mentioned dynamical phenomena occur in the other
types of models. It is interesting to know, how to describe bosonic models for d/2 <
a < 3d/2. Or, how to verify physically interesting conjecture about the equivalence of
(v — 3/2d)- and (4 — d)-expansions in the Euclidean case?
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