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1 Introduction

The Feynman-Kac formula represents the statistical operator e−βH in terms
of Wiener integrals and reduces the quantum mechanical model to a classical
one where quantum particles become Brownian loops ( closed trajectories )
in one more dimension. Using this method in his pioneering work [3] Ginibre
studied the reduced density matrices of quantum gases. In recent years there
is an increased activity in studying different problems related to the model of
Brownian loop gas. The major questions concern the occurrence of infinite
loops which is motivated by its connection to the Bose-Einstein condensation.
(See for example [1],[2] and references therein)

Below we consider a gas of interacting Brownian loops at low fugacity
regime which corresponds to the phase without Bose-Einstein condensation.

We use cluster expansion method (see [9], [5],[6] and references therein)
to study the decay of correlations in the loop gas. One has to introduce a
new type of decay for functions of loops which compared with the classical
counterparts are no more monotonically decreasing functions of the distance
between the particles but have more sophisticated structure [7]. The decay of
correlations are given in terms of bounds on two-point truncated correlation
functions which are used to get the large volume asymptotic expansion of
the log-partition function of a gas of interacting Brownian loops confined to

∗suren.poghosyan@unicam.it

1



a bounded domain. In the two-dimensional case we obtain the volume, the
boundary and the constant term which is proportional to the Euler-Poincare
characteristics.

2 Loop model

We work in the grand-canonical ensemble formalism where the parameters
are the fugacity z > 0 and the inverse temperature β > 0. Let Xj = {x ∈
C([0, jβ],Rd) | x(0) = x(jβ), j = 1, 2 · · · } be the space of Brownian loops of
”length” j in d-dimensional Euclidean space Rd. The elements of Xj we call
simple loops if j = 1 and composite loops if j > 1. We set |X| = j if X ∈ Xj

and we use the same notation | · | for the number of elements in a finite set.
We will call x ∈ C([0, β],Rd) an elementary constituent of a composite loop
X, x ∈ X, if for all t ∈ [0, β], x(t) = X(t+ iβ) for some i, 0 ≤ i < |X|.

The underlying one particle space X is defined as a topological sum of
the Polish spaces Xj:

X =
∞∪
j=1

Xj.

Let X 0 ⊂ X be the set of loops which start and end at the origin 0 ∈ Rd.
The subset of loops from X 0 with a fixed length j we denote by X 0

j . In X 0
j

we consider the measure 1
j
P 0
j where P 0

j is a non-normalized Brownian bridge

measure with total mass P 0
j

(
X 0

j

)
= (πjβ)−d/2. Using a natural bijection

τj : X 0
j × Rd → Xj given by τj(X

0, u) = X0 + u we define on Xj a σ-

finite measure µj = (λ × 1
j
P 0
j ) ◦ τ−1

j . On X we will consider two measures

µ =
∑∞

j=1 µj and µ̄z =
∑∞

j=1 z
jµj. Hereafter we assume that z ≤ 1.

Let
M = M(X ) = {ω ⊂ X

∣∣ |ω| < ∞}

be the space of finite configurations of loops in Rd. There is a natural σ-
algebra in M(X ) (see [7]) which we denote by B(X ). Given any measure ν
on X which is diffuse, i.e. ν(x) = 0, ∀ x ∈ X , we define a measure Wν on
M(X ) by∫

M
Wν(dω)h(ω) =

∞∑
n=0

1

n!

∫
Xn

h (X1, . . . , Xn) ν(dX1) · · · ν(dXn) (2.1)

2



where h is any non-negative, measurable function on M.
The energy U(ω) of a configuration ω ∈ M is given by

U(ω) =
∑
X∈ω

U1(X) +
1

2

∑
X,Y ∈ω;X ̸=Y

U2(X,Y ) (2.2)

where the self interaction

U1(X) =
1

2

∑
x,y∈X,x ̸=y

∫ β

0

dtΦ(x(t)− y(t), if |X| > 1, U1(X) = 0 if |X| = 1

and the interaction between loops X and Y ,

U2(X, Y ) =
∑

x∈X,y∈Y

∫ β

0

dtΦ(x(t)− y(t)). (2.3)

We assume that
(a) Φ : Rd → R1 is an even function,continuous outside of the origin,
(b) Φ is stable with stability constant B ≥ 0,
(c) Φ has power decay at infinity:

||Φl||1 =
∫
Rd

du|Φl(u)| < ∞, Φl(u) = Φ(u)(1 + |u|)l, l ≥ 0.

For a given bounded domain Λ ⊂ Rd let

X (Λ) = {X ∈ X
∣∣ X(t) ∈ Λ, ∀t ∈ [0, β|X|]}

be the set of loops in Λ and M(X (Λ)) be the set of finite configurations of
loops in Λ. Let Wµ̄z,Λ

be the restriction of the measure Wµ̄z to the subspace
M(X (Λ)).

The triple (M(X (Λ)),B(X (Λ)),Wµ̄z,Λ
) we call a loop gas in Λ with Bose-

Einstein (BE) statistics, interaction Φ and parameters z and β, in the case of
Maxwell-Boltzmann (MB) statistics we have (M(X1(Λ)),B(X1(Λ)),Wzµ̄1,Λ

).

3 Decay of correlations

We recall that truncated correlation functions ρT (ω) at low fugacity z are
given by (see [9], [3])

ρT (ω) =
∏
X∈ω

z|X|e−U1(X)

∫
M

Wµ̄z(dω̄)φ(ω, ω̄)
∏
X̄∈ω̄

e−U1(X̄) (3.1)
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where (ω, ω̄) stands for (ω ∪ ω̄) and φ is the Ursell function given by

φ(ω) =
∑

G∈C|ω|

∏
{X,Y }∈G

(e−U2(X,Y ) − 1), if |ω| ≥ 2; φ(ω) = 1, if |ω| = 1. (3.2)

Here Cn is the set of connected graphs with n vertices and the product is over
all edges of G.

The theorems 1, 2, and 3 below hold true for the MB statistics. For
details see [8].

Theorem 1. If Φ satisfies the conditions (a) - (c) then for all z from the
interval

0 < z < [2le4βB+1β(πβ)−
d
2 ||Φl||1]−1

there exists a constant C = C(Φ, β, z, l) such that∫
X 0

1

P 0
1 (dX)

∫
Rd

dv

∫
X 0

1

P 0
1 (dY )1X c(BR(0))(Y + v)ρT (X, Y + v) ≤ C

(1 +R)l

Here Ac denotes the complement of a set A and BR(0) is a ball of radius R
centered at the origin.

In the case of BE statistics a similar bound holds true with natural mod-
ifications, for slightly different z-interval and for Φ ≥ 0.

For n-point truncated correlation functions, n ≥ 1, we have
Theorem 2. If Φ satisfies the (a) - (c) with l = 0 then for

z < [e4βB+1β(πβ)−
d
2 ||Φ||1]−1 (3.3)

the following bound holds true

|ρT (ω)| ≤ |ω|!
e(e2βB + 1)

[
ze2βB+1(e2βB + 1)

1− ze4βB+1β(2πβ)−
d
2 ||Φ||1

]|ω|

, ω ∈ M. (3.4)

4 Asymptotic Expansion of the Log-Partition

function

We define grand canonical partition function Ξ(Λ, z) for the loop gas in a
bounded domain Λ as usual by

Ξ(Λ, z) =

∫
M(X (Λ))

dWµ̄z(ω)e
−U(ω) (4.1)
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The bound for the two-point truncated correlation function from Theorem
1 allows to obtain the asymptotic expansion of the ln Ξ(ΛR, z) as R → ∞
where ΛR = {Ru |u ∈ Λ}.

Let Λ ⊂ Rd be an open convex bounded subset with finitely many convex
closed holes such that the connected parts of the boundary ∂Λ of Λ are d−1
dimensional closed C3 manifolds.

We assume that Φ satisfies the conditions (a) - (c) and in addition is rota-
tion invariant, differentiable, uniformly bounded together with its derivatives
so that

|Φ(u)| ≤ M, |∇Φ(u)| ≤ M ′ , ||∇Φ||1 =
∫
Rd

du, |∇Φ(u)| < ∞. (4.2)

Theorem 3. For all z from the interval

0 < z < [2lβeβB+1γ̄max(M, ||Φl||1, ||∇Φ||1)]−1

where γ̄ = max(γ1, γ2) with γk =
∫
X 0

1
P 0
1 (dX)(sup |X|)k, k = 1, 2, the follow-

ing asymptotic expansion is valid

ln Z(ΛR, z) = Rdβp(ϕ, z)|Λ|+Rd−1 b(ϕ, z)|∂ Λ|+Rd−2c1(Λ)c2(ϕ, z) + o(Rd−2).

Here |Λ| is the volume, |∂ Λ| the surface measure of the boundary of Λ and

c1(Λ) = (d− 1)

∫
∂ Λ

σ(dr)km(r)

where km(r) is the mean curvature of ∂Λ at the point r ∈ ∂Λ.
The coefficients p(ϕ, z), b(ϕ, z) and c2(ϕ, z) can be explicitly expressed as

functional integrals and are analytic functions of the activity z in a neigh-
borhood of the origin; p(ϕ, z) can be interpreted as the pressure and b(ϕ, z)
as the surface tension.

We note that in two dimensional case c1(Λ) is the Euler-Poincare charac-
teristic of the domain Λ.

One can recover the large volume asymptotic expansion of Brownian in-
tegrals [4] (asymptotic expansion of lnid Z(ΛR, z for the ideal loop gas) as a
special case of Theorem 3 by setting Φ ≡ 0.

At the same time, we are not able to get more terms of the expansion.
This is a familiar case also for the ideal gas and it is not clear whether the
reason is technical or not (cf. [4], section VII).
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