
Two applications of pseudo-random graphs

Andrei Romashchenko, IITP of RAS (Moscow)

Abstract

We discuss two constructions based on pseudo-random graphs: a bit-
probe scheme with one-sided error that provides a very compact encod-
ing for small sets from a large universe, and an asymptotically optimal
randomized communication protocol that synchronizes remote strings of
bits with a small Hamming distance. We show that in both cases rather
standard derandomization technique (e.g., Nisan’s generator of pseudo-
random bits) is enough to get surprisingly strong statements.

1 Introduction

A typical application of graphs in coding theory or computer science can be
roughly described by the following abstract scheme. First, we prove that a
random graph (from an explicitly defined family of graphs) with high proba-
bility enjoys some nice combinatorial property A (e.g., mixing, expansion, high
connectivity, etc). Second, based on a randomly chosen graph we build some
combinatorial gadget (e.g., a code, a Boolean circuit, a data structure, etc.).
Third, we prove that this gadget satisfies some nontrivial properties B (corrects
many errors, admits fast decoding procedure, etc.) if the graph used in the
constriction satisfies combinatorial property A. From this three-steps argument
it follows that there exists a gadget with property B; moreover, we obtain a ran-
domized construction of such gadgets (taking a random graph, we obtain with
high probability the required combinatorial gadget). In many applications we
need something stronger: we want to get an ‘explicit’ (in some sense) construc-
tion of a gadget. To this end we should derandomize the scheme and provide
an explicit construction of a graph that satisfies A.

A beautiful example of a success story of this general abstract scheme is
the famous construction of expander codes [3]. The simplest construction of
expanders graph exactly follows the scheme explained above. At the first step
we notice that a randomly chosen bipartite graph (with an appropriate number
of vertices and edges) is an expander. Then we use Tanner’s construction of a
linear code on a bipartite graph. At last, we prove that a code corresponding
to some expander (a) has rather large code distance, and (b) there exists a fast
error correcting algorithm. We obtain a family of asymptotically good codes
with a fast decoding algorithm. These codes are not explicit since they are
based on a random graph. To construct such a code effectively, we need an

1

explicit expander graph with appropriate parameters. This is the most difficult
step of all the plan: the know explicit constructions of expanders still do not
match the best bounds achievable for random graphs.

We want to stress the difference between two types of arguments involving
graphs: some arguments involve a random graph (the constructed object has
some nice properties with high probability), and some constructions involve an
explicit graph (e.g., see applications of expander graphs in an excellent sur-
vey [5]). In this paper we consider an intermediate approach. We use graphs
that are not explicitly constructed but are also not ‘random’ in the conventional
sense. It is natural to call them pseudo-random. More precisely, we define a
tiny family of graphs parameterized by a short parameter (a seed). A graph
must be effectively constructed when its seed is given. Intuitively these graphs
are outputs of a pseudo-random generator that maps a seed to a graph. The
idea is to show that for most seeds the corresponding graph enjoys the desired
property. Then we can fix a suitable value of the seed and make it a part of the
construction (the gadget) based on the corresponding pseudo-random graph.

Actually the difference between ‘truly random’ and ‘pseudo-random’ graphs
is vague and informal. We talk about ‘truly random’ family of graphs when we
fix only some basic parameters of a graph (e.g., when we consider all graphs
of fixed degree with n vertices). We talk about ‘pseudo-random’ graphs when
we make some special efforts to define a “sparse” family of graphs, and these
graphs are parameterized by some parameter with a rather small domain.

It is not surprising that in some cases a pseudo-random graph can achieve
better bounds than any known explicit construction of graphs. We want to
stress another advantage of pseudo-random constructions: in some sense pseudo-
random graphs are even better than ‘truly random’ graphs. Indeed, a pseudo-
random graph has a concise description. So, in some applications we can embed
a pseudo-random graph (its seed) into a combinatorial gadget, whereas we can-
not do the same with large ‘truly random’ graphs.

In this paper we consider two particular applications of pseudo-random
graphs. The first example is a construction of bit-probe scheme that stores
a small set S from a large universe, such that reading of a single bit from the
database is enough to reply queries “x ∈ S?”. We show that with pseudo-
random expander graphs we can achieve better results than with any explicit or
‘truly random’ graphs. In our second example we use pseudo-random bipartite
graphs to organize a protocol of synchronization of two remote bit strings with
bounded Hamming distance. For this problem we obtain a randomized commu-
nication protocol with asymptotically optimal communication complexity (our
protocol is a simplified version for the construction from [6]). Similarly to the
first example, in this construction a pseudo-random graphs works better than
any explicit or ‘truly random’ graphs.

2

2 Bit-probe schemes with a single bit query and
one-sided error.

In this section we consider the static version of the membership problem sug-
gested in [9]. We construct a data structure to store an n-elements subset S
from a universe of size m. We obtain a data structure of size O(n log2m) that
allows to query elements of the set with a small one-sided error. That is, for
every x ∈ S with probability 1 we return the answer ‘yes’, and for every x 6∈ S
with probability 0.99 we return the answer ‘no’. We assume that the number
of elements in the set n = |S| is much less than size m of the universe (e.g.,
n = m0.01).

We follow the ideas from [4]. We take a bipartite graph G = (L,R,E) such
that |L| = m and |R| = O(n log2m). To encode a subset S ⊂ L we assign to
each vertex of R a bit 0 or 1; to answer query “x ∈ S?” we take a random
neighbor of the vertex x ∈ L and return the mark assigned to this vertex. A
suitable distribution of marks on R (marks that guarantee small probability of
faulty answers) exists provided that the graph G satisfies the following property:

Let G = (L,R,E) be a bipartite graph, and A ⊂ L be a subset of vertices from
the left part. We say that the ε-reduction property holds for A in this graph if
|Γ(x) ∩ Γ(A)| ≤ εd for all x ∈ L \A.

This property is true for truly random graphs and even for “pseudo-random”
graphs generated by several standard pseudo-random bit generators. So, we can
take a suitable seed of a generator and make it a part of the data structure (it
becomes the “cache memory” of the bit-probe scheme).

The choice of the graph G in this construction depends on S. The size of the
seed (that specifies the choice of the graph) is poly(logm). This construction
is interesting only if the size of the seed (memory in cache) is much less than
the size of the main storage, which is O(n log2m). We notice that a bit-probe
scheme with one-sided error of size O(n log2m) cannot be obtained without
cached memory (see [4]), so, pseudo-random graphs work here better than any
explicit graph. On the other hand, schemes with a cached graph make no sense
for ‘truly random’ graphs (‘truly random’ graphs are too large); so, pseudo-
random graphs work better ‘truly random’ graphs.

It remains to explain how to choose a pseudo-random bits generator. Several
known pseudo-random bits generators are suitable for our construction:

• The desired property of a graph can be tested by a AC0-circuits. Hence,
the generator of Nisan–Wigderson [2] can be used.

• M. Braverman proves that all polylog-independent functions fool AC0-
circuits [7]. Hence, we can take as a generator any (logc n)-independent
function (for large enough constant c), e.g., a polynomial of degree logc n
(seeds of this ‘pseudo-random generator’ are coefficients of a polynomial).

• The property of strong ε-reduction can be tested by a Turing machine
with logarithmic space. Hence, we can use Nisan’s generator [1].

3

3 Synchronizing remote strings with bounded
Hamming distance

In this section we discuss another application of pseudo-random combinatorial
objects. We investigate the following communication complexity problem. Alice
and Bob hold n-bits strings x and y respectively; they know that Hamming dis-
tance between x and y is bounded by αn. The goal is to communicate x to Bob.
A simple information-theoretic bound implies that communication complexity
of this problem (for deterministic and randomized communication protocols)
is greater than h(α)n, where h(α) is the binary entropy function. A. Orlit-
sky proved that there exists a deterministic communication protocol for this
problem that asymptotically achieves this bound; however the known determin-
istic protocols require exponential calculations by Alice and Bob. A. Smith [6]
constructed for this problem an asymptotically optimal randomized protocol
with polynomial algorithms for both participants. The construction of Smith
is a sophisticated combination of two ideas: Forney’s codes and a complicated
construction of a pseudo-random permutation. A simplified version of this ar-
gument is discussed in [10].

Probability of an error in the construction of Smith is exponentially small.
Here we show that the problem can be solved by a much simpler protocol works
for this problem if we allow a small constant probability of an error. The
idea is to split all positions of strings of x and y into m = cn/ log n blocks
(x1, . . . , xm and y1, . . . , ym respectively). We can think of this spitting as a
bipartite graph with n vertices in one part and m vertices in another part;
each vertex in the first part should have degree one. For almost all random
splittings of {1, . . . , n} into m groups we have two properties: (a) each group
xi, yi is of size Θ(log n); and (b) each pair of blocks xi, yi differ from each
other in approximately α|xi| = α|yi| bits. If both these properties hold, we can
use the exponential-time (exponential in Θ(log n)) communication protocol and
communicate xi from Alice to Bob with the optimal communication complexity.
All computations in this protocol work in time poly(n).

If Alice and Bob have a joint source of randomness, we are done: Alice and
Bob randomly split all positions of x and y into m groups, and apply the known
exponential protocol for each of the these groups of logarithmic size. In the
model with private random bits the things are more complicated: Alice and
Bob must choose somehow a common random splitting of positions {1, . . . , n}
into m groups. The required property of a splitting is rather simple (it can be
tested by a Final State Machine with logarithmic memory). Hence, we can use a
pseudo-random splitting produced by Nisan’s generator (Alice choses a random
seed of the generator and communicates it to Bob).

Comparative to the construction in [6] we have (a) much simple algorithms
of Alice and Bob; (b) much easier pseudo-random object to generate, but (c) a
weaker bound for the probability of an error.

4

4 Conclusion

In this paper we discussed two applications of pseudo-random graphs. In both
cases pseudo-random graphs cannot be substituted by any deterministic con-
struction of graphs or by ‘truly random’ graphs. In both cases a naive applica-
tion of classic generators of pseudo-random bits (e.g., Nisan’s generator [1] and
Nissan–Wigderson’s [2] generators) work pretty well. Similar ideas of ‘naive
derandomization’ were recently applied by D. Musatov and M. Zimand in prob-
lems of resource bounded Kolmogorov complexity [8, 11]. In all these examples a
standard derandomization technique is enough to get rather strong statements.
We believe that this method (perhaps, with a more advanced pseudo-random
generators) can be applied in other problems of coding theory.

References

[1] N. Nisan. Pseudorandom generators for space-bounded computation. Com-
binatorica, 12(4), 1992, pp. 449–461.

[2] N. Nisan, A. Wigderson. Hardness vs Randomness. J. Comput. Syst. Sci.
49(2), 1994, pp. 149–167.

[3] D. Spielman and M. Sipser. Expander Codes. IEEE Transactions on Infor-
mation Theory, Vol 42, No 6, 1996, pp. 1710–1722.

[4] Harry Buhrman, Peter Bro Miltersen, Jaikumar Radhakrishnan, Venkatesh
Srinivasan. Are bitvectors optimal? Siam J. on Computing 31(6), 2002,
pp. 1723–1744.

[5] S. Hoory, N. Linial, A. Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4) 2006, pp. 439–561.

[6] A. D. Smith. Scrambling Adversarial Errors Using Few Random Bits.
SODA 2007.

[7] M. Braverman. Poly-logarithmic Independence Fools AC0 Circuits. IEEE
Conference on Computational Complexity 2009, pp. 3–8.

[8] D. Musatov. Theorems about space-bounded Kolmogorov complexity ob-
tained by “naive” derandomization. In Proc. Computer Science in Russia,
2011. Preliminary version: arXiv:1009.5108 (2010).

[9] A. Romashchenko. Pseudo-random graphs and bit probe schemes with one-
sided error. To appear in Proc. Computer Science in Russia, 2011.

[10] A. Chuklin. Effective protocols for low-distance file synchronization.
arXiv:1102.4712 (2011).

[11] M. Zimand. On the optimal compression of sets in PSPACE.
arXiv:1104.2816 (2011). To appear in IEEE Conference on Computational
Complexity 2011.

5

