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1 Introduction

A typical random growth model describes a Markov process whose state at time t, X(t),
is a subset either of lattice Zd or continuous space Rd. The models such as Eden model
([2]), Richardson model ([10], [1]), contact process ([5], [15]) are motivated by modeling
biological growth or spread of epidemics. Another example of a random growth model is
provided by cooperative sequential adsorption model (CSA) which is widely used in physics
and chemistry for modelling various adsorption processes ([3]). In this note we announce
new results (Section 2) and review some recent results (Sections 3 and 4) for several random
growth models.

2 Equilibrium distributions of reversible growth models

Consider a finite lattice box Λ ∈ Zd containing the origin and with a side length of L, where
L ≥ 1 is an integer. Denote ΩN,Λ = {0, 1, . . . , N}Λ and ΩN = {0, 1, . . . , N}Zd

, where N ≥ 1

is a positive integer; ΩΛ = {0, 1, . . . , }Λ and Ω = {0, 1, . . . , }Zd
. Let ∥y − x∥ be the usual

Euclidean distance between x, y ∈ Zd and write x ∼ y for x, y ∈ Zd, if ∥x− y∥ = 1. Given
configuration ξ ∈ ΩN,Λ denote

n(x, ξ) = ξx +
∑
y∼x

ξy. (1)

A quantity ξx(t) is called spin and interpreted as a number of particles located at site x ∈ Λ
at time t. Call two particles neighbors if the distance between their locations is either 0
(i.e., both of them are located at the same site) or 1. Given configuration ξ denote

s(ξ) =
1

2

∑
x∈Λ

ξx(ξx − 1) +
∑
x∼y

ξxξy (2)

the total number of neighboring particles in the configuration, and

h(ξ) =
∑
x∈Λ

ξx, (3)

the total number of particles in the configuration ξ.
Consider a continuous-time Markov chain ξ(t) = {ξx(t), x ∈ Λ} ∈ ΩN,Λ evolving as

follows. Given a state ξ(t) = ξ,
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1. at rate 1 a spin ξx > 0 decreases by 1;

2. at rate c(n(x, ξ)) a spin ξx < N increases by 1, where c(k) > 0, k = 0, . . . , (2d+1)N−1,
is a fixed set of positive coefficients.

The following statement is proved in [16] by applying the Kolmogorov’s reversibility criteria.

Theorem 1 The Markov chain ξ(t) is time-reversible if and only if

c(k) = aγk, k = 0, 1, . . . , (2d+ 1)N − 1, (4)

where γ and a are arbitrary positive numbers.
If c(k) = aγk, k = 0, 1, . . . , (2d + 1)N − 1, for some γ > 0 and a > 0, then probability

measure
µγ,N,Λ(ξ) = Z−1

γ,N,Λa
h(ξ)γs(ξ), ξ ∈ ΩN,Λ, (5)

where s(ξ) and h(ξ) are defined by equations (2) and (3) respectively, and where

Zγ,N,Λ =
∑

ξ∈ΩN,Λ

ah(ξ)γs(ξ),

is the stationary distribution of the Markov chain.

Without loss of generality we assume a = 1 in the rest of this section. It is clear that the
interaction between particles is repulsive, when 0 < γ < 1, and is attractive, when γ > 1.
Also, if γ = 1, then the corresponding measure µ1,N,Λ is the uniform distribution on ΩN,Λ.
We are interested in the asymptotic behavior of the equilibrium measure µγ,N,Λ in the case
of the attractive interaction.

Theorem 2 [16]. For any γ ≥ 1 there exists the limit measure

µγ,N = lim
Λ↑Zd

µγ,N,Λ,

where convergence is understood in a sense of the weak convergence of the finite-dimensional
distributions.

Percolation properties of the limit measure.

Definition 1 Given a configuration ξ ∈ ΩN

1. we call a site x ∈ Zd occupied, if ξx > 0, and call it empty otherwise;

2. a set of occupied sites U = {x, y, . . .} is called an occupied cluster, if for any x′, x′′ ∈
U , there exists a finite subset {y1, . . . , yn} ⊆ U , such that x′ = y1, yn = x′′ and
yi ∼ yi+1, i = 1, . . . , n− 1.

Theorem 3 [16]. 1) If d ≥ 2 and N ≥ 3, then

µγ,N (there exists a unique occupied cluster) = 1

for any γ ≥ 1.
2) If d ≥ 2 and N = 1 or 2, then there exists a critical value γc ≥ 1 such that

µγ,N (there exists a unique occupied cluster) =

{
0, if γ < γc,

1, if γ > γc.

The proofs of both Theorem 2 and Theorem 3 are based on the fact that the family of prob-
ability measures {µγ,N,Λ} posses certain stochastic monotonicity properties. For instance,
if 1 ≤ γ1 ≤ γ2, then probability measure µγ1,N,Λ is stochastically dominated by µγ2,N,Λ.
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3 Irreversible model for particle deposition

Let {1, 2, . . . ,M} be a lattice segment with periodic boundary conditions, i.e. a one di-
mensional lattice torus with M points. Assume that M ≥ 3. The growth process is a
discrete-time Markov chain ξ(t) = (ξ1(t), . . . , ξM (t)), t ∈ Z+ = {0, 1, 2, . . . } with values in
ZM
+ , specified by the following transition probabilities:

P{ξi(t+ 1) = ξi(t) + 1, ξj(t+ 1) = ξj(t) ∀j ̸= i|ξ(t)} =
βui(t)∑M
j=1 β

uj(t)
,

ui(t) =
∑
j∈Ui

ξj(t), i = 1, 2, . . . ,M,

where β > 0 and Ui is a certain neighbourhood of site i.

Definition 2 The quantity ui(t) is called a potential of site i at time t.

We consider the following three possibilities for neighbourhood Ui: Ui = {i} (no interaction);
Ui = {i, i+ 1} (asymmetric interaction); Ui = {i− 1, i, i+ 1} (symmetric interaction).

The question of interest is stability of the growth process. Loosely speaking, stability
means that the “profile” ξi(t), i = 1, . . . ,M , is “approximately flat”, i.e. there are no
extraordinary peaks. To describe this property in a formal way a process of differences
ζ(t) = (ζ1(t), . . . , ζM−1(t)) ∈ ZM−1, t ∈ Z+, is introduced ([13]), where

ζi(t) = ξi(t)− ξM (t), i = 1, . . . ,M − 1.

It is easy to see that (ζ(t), t ∈ Z+) is also a Markov chain.

Definition 3 Say that the growth process is stable if the process of differences is an ergodic
(positive recurrent) Markov chain. Otherwise the growth process is called unstable.

Theorem 4 [13].

(I) Suppose Ui = {i}, i = 1, . . . ,M .

(1) If 0 < β < 1, then Markov chain (ζ(t), t ∈ Z+) is ergodic.

(2) If β > 1, then Markov chain (ζ(t), t ∈ Z+) is transient.

(II) Suppose Ui = {i, i+ 1}, i = 1, . . . ,M .

(1) If M = 3 and 0 < β < 1, then Markov chain (ζ(t), t ∈ Z+) is ergodic. Con-
sequently, ξ1(t) = ξ2(t) = ξ3(t) for infinitely many t’s almost surely.

(2) If β > 1, then Markov chain (ζ(t), t ∈ Z+) is transient.

(III) Suppose Ui = {i − 1, i, i + 1}, i = 1, . . . ,M . Then Markov chain (ζ(t), t ∈ Z+) is
transient for any M ≥ 3 and for any β ∈ (0, 1) ∪ (1,∞). Moreover, if β > 1, then
with probability 1 there is a k ∈ {1, . . . ,M} such that

lim
t→∞

ξi(t) = ∞, if and only if i ∈ {k − 1, k}, and lim
t→∞

ξk(t)

ξk−1(t)
= βc,

where c = limt→∞[ξk+1(t)− ξk−2(t)] ∈ Z.

The proof of this theorem in [13] is a combination of constructive methods for studying
the asymptotic behaviour of Markov chains ([4]) with the methods typical for studying the
reinforced random processes ([17]).
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The model with β = 0. Consider the following deposition rule. Given a configuration of
sites potentials ui(t) at time t next particle is deposited at a site with the minimal potential.
If there are more than one minimum, then a site with the minimal potential is chosen at
random. This model can be regarded as the limit case of the previous model as β → 0.

Theorem 5 [14].

(I) Suppose Ui = {i, i+1}. Then, with probability 1, there is a t0 = t0(ω) (depending also
on the initial configuration) such that for all t ≥ t0

|ξi(t)− ξi+2(t)| ≤ 2

for i = 1, . . . ,M . Moreover,

ξi(t) =
t

M
+ ηi(t) +

{
0, M + 1 is odd,

(−1)i Z(t), M + 1 is even,

where |ηi(t)| ≤ 2M and for some σ > 0

lim
n→∞

Z(⌊sn⌋)
σ
√
n

= B(s),

where ⌊x⌋ denotes the integer part of x and B(s) is a standard Brownian motion.

(II) Suppose Ui = {i − 1, i, i + 1}. Then with probability 1 there exists the limit x =
limt→∞ ξ(t)/t, which takes a finite number of possible values with positive probabilities.
The set of limiting configurations consists of those x = (x1, . . . , xM ) ∈ RM which
simultaneously satisfy the following properties:

• there exists an α > 0 such that xi ∈ {0, α/2, α} for all i = 1, 2 . . . ,M ; also∑M
i=1 xi = 1;

• if xi = 0, then xi−1 > 0 or xi+1 > 0, or both;

• if xi = α/2, then (xj−3, xj−2, xj−1, xj , xj+1, xj+2) = (α, 0, α/2, α/2, 0, α), where
j ∈ {i, i+ 1};

• if xi = α, then xi−1 = xi+1 = 0;

• if M = 3K is divisible by 3, then min{xj , xj+3, xj+6, . . . , xj+3(K−1)} = 0, for
j = 1, 2, 3.

Moreover, the adsorption eventually stops at all i = 1, . . . ,M where xi = 0, that is
supt≥0 ξi(t) = ∞ if and only if xi > 0. Additionally, if the initial configuration is
empty, then for each xi = 0 we must have that both xi−1 > 0 and xi+1 > 0.

It should be noted that in contrast to [13] this statement is proved in [14] by the purely
combinatorial methods.

4 On modelling spatial time series by CSA

Originally motivated by adsorption processes in physics and chemistry [3], CSA dynamics
seem to be relevant to many applications. It was first noticed by physicists (e.g., see [3],
p.1285) that this type of model can be used for modelling the spatial-temporal processes
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similar to the irreversible spread of disease or epidemics, and biological growth was men-
tioned in [3] as another potential application. The main peculiarity of CSA is that the
likelihood for a point (particle) to appear at a given location in space depends on the num-
ber of previous particles of the series nearby; depending on the parameters, the new particle
may be attracted to, or repelled by, previous particles.

Mathematically CSA is formulated as a random finite sequential allocation of particles
in a bounded region of space (the observation window). A parametric family of CSA was
introduced in [12] as follows. Consider a sequence of pointsX1, X2, . . . , Xℓ located randomly
in a bounded convex region D of Euclidean spaceRd. Let parameters R > 0 (the interaction
radius) and c(i) ≥ 0 (i = 0, 1, 2, . . .) be fixed. Given the first k points X1, . . . , Xk, let the
conditional probability density of Xk+1 at x ∈ D be proportional to c(i), if x has i points
among X1, . . . , Xk within distance R of it. The special case of CSA with c(0) = 1 and
c(i) = 0 for i ≥ 1 is known as random sequential adsorption (RSA). RSA is the most
popular sequential adsorption model in physics and serves as a benchmark for modelling
various time irreversible processes.

It is argued in ([6], [7]) that CSA appear to be suitable for modeling sequential point
patterns in disciplines such as ecology, biology and geophysics in situations, where a data
set is presented by a sequential or ordered point pattern, i.e., a collection of spatial events
which appear sequentially. Fitting the model to real-life data necessarily requires developing
statistical inference for the model. Statistical inference of the model parameters is developed
in [6] and [7] for CSA parametrized by a finite number of parameters. Namely, it is assumed
in those papers that c(k) > 0, k = 0, . . . , N, and c(k) = 0 for k > N , where N ≥ 0 can
also be unknown. The interaction radius R is assumed to be known (or already estimated).
Statistical inference for the parameters c(k), k = 0, . . . , N and N is based on maximum
likelihood estimation.

Existence, uniqueness, consistency and asymptotic normality of MLE are proved in [6]
and [7] under assumption that the amount of the observed information increases in the
following natural sense. Namely, it is assumed that the observation window D expands
to the whole space and the number of observed points grows linearly in the volume of D.
This limit regime is known as the thermodynamic limit in statistical physics and as the
increasing domain asymptotic framework in spatial statistics.

It should be noted that analysis of asymptotic properties of MLEs in [6], [7] is based
on the observation that the MLE equations are determined by statistics of a special type,
namely, sums of locally determined functionals over a configuration of points ([8]). This
allows to combine classic Cramer’s technique (originally developed for i.i.d. observations)
with the modern limit theory for random sequential packing and deposition developed in
[8].
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