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In this paper we will discuss the following question: are there stochastic
dynamics with unique stationary state, which are not ergodic?
Without any further restrictions this question is easy and not very inter-

esting, with the answer being YES. For the discrete time case it is given by
the two-state Markov chain, �� = �1; with degenerate transition probabili-
ties,

p (��+1 = �1j�� = �1) = 1: (1)

For the continuous time case the corresponding (degenerate) process is the
rotation over a circle with a constant speed v,

�� 2 S1; ��+t = �� + vt mod 2�: (2)

One wonders whether one can construct non-degenerate random processes,
which exhibit the above prototypical behavior. Of course, in order to be
able to do this, one has to consider interacting in�nite-volume systems �
i.e. Probabilistic Cellular Automates (PCA) for the discrete time and In-
teracting Particle Systems (IPS) for the continuous time �since �nite state
non-degenerate Markov processes are always ergodic.
For the case of PCA-s such a construction, built upon (1), is presented in

a recent paper by [CM]. One must add, however, that the example of [CM]
still has some degeneracy. Namely, for any time T one can present two local
events, A and B; such that the transition probability pT (AjB) in T steps
vanishes. Thus, we feel that a truly non-degenerate example is still missing.
In what follows, we will discuss the nondegenerate realizations of the circle

rotation prototype, The Rotating States. The �rst example with that �avour
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is described in [RSV]. There it was considered an in�nite queuing network
with several types of clients and with exponential service times. In the high
load regime the system exhibits a coherent behavior. That means that if
the initial state of the network is close to the �coherent�one, characterized
by a given value of the �phase�observable (which takes values on the circle),
then in the process of evolution this phase evolves with a constant speed,
is never �forgotten�, and the initial synchronization is never broken. Yet
the system has unique stationary state, with the phase in that state being
uniformly distributed over the circle, which implies in particular that the
coherent states never approach the stationary state. (In the language of
the queuing networks we have thus an example of the Poisson hypothesis
violation.)
The [RSV] example of the IPS is not yet a completely satisfactory exam-

ple. First, it lives not on a lattice, but on a mean-�eld graph, which is, in
some sense, an in�nite complete graph. Next, this IPS has countably many
states, and not just �nitely many.
In the present paper we want to exhibit a non-degenerate �nite state IPS

on Z3 with nearest-neighbor interaction, which has unique stationary state,
and which is non-ergodic. The reason we have to go to 3D lies in the fact
that we will use the existence of magnetized phases in the XY -model at low
temperatures, and this breaking of continuous symmetry starts only from
dimension 3. The magnetized phases will play the role of the points of the
circle, as in (2) :

1 The N-Clock Models

The proposed IPS lives on Z3: At each site t 2 Z3 there is a spin �t 2 ZN ;
where ZN � S1 � C1 is the group of N -th roots of unity. Each spin �t has its
clock, and when the clock rings, the spin jumps to one of the two �nearest�
values:

�t ! ��t = exp

�
�2�i
N

�
�t:

The particles �t are interacting, with the energy given by

H (�) = �
X

s;t n.n.

cos (�s � �t) : (3)
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Now we de�ne the rates c (�; t;�) of the jumps �t ! ��t of the particle �t in
the environment � by

c (�; t;�) = p� exp

(
�
X

s n.n. t

�
cos
�
�s � ��t

�
� cos (�s � �t)

�)
; (4)

where the numbers p+ � p� are two extra non-negative parameters, with
p++ p� = 1:We will use the name �drift�for the di¤erence d = p+� p� � 0:
We will call the above model the �N -Clock model�with a drift. We �rst
describe the properties of the symmetric Clock model, when the drift d = 0:
(Note that in this case the evolution de�ned is detailed balance.) These
properties are given by the theorem of [FILS].

Theorem 1 (symmetric Clock model) There exists a value �0 of the
inverse temperature, such that for every � > �0; every N � 2; the symmetric
N-Clock model has N di¤erent stationary states, h�ik;� ; k = 1; :::; N: These
states are translation-invariant, exhibit long-range order and are magnetized:

h�tik;� = mN (�)
2�ik

N
; with mN (�) > 0 for � > �0:

(Here we interpret the spins �t as elements of C1:)

The proof of this theorem uses the re�ection-positivity and infrared bounds;
it goes via the Gaussian domination.
On a �rst glance this theorem does not seem to be so surprising, since the

N -Clock model has N ground state con�gurations, which satisfy the Peierls
condition, and so it surely hasN di¤erent low-temperature magnetized Gibbs
states. (The case N = 2 is the well known Ising model.) However, the
standard proof of this statement, via the Peierls argument or the Pirogov-
Sinai (PS) theory [PS, S] would establish this fact only for the range of
inverse temperatures � � �PSN ; where �PSN !1 as N !1: The reason for
this weakening of the result is not only technical, but lies in the heart of the
PS method: when applicable, it does not only prove the stated phase diagram
of the model in question, but also shows various properties of the pure phases,
among which is the exponential decay of the truncated correlation functions.
However, we believe that such exponential decay holds only for the inverse
temperatures � > �BKTN ; with �BKTN ! 1 as N ! 1: Moreover, we think
that the following is true:
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Conjecture 2 There exists a value �N; such that for each N � �N the 3D
N-clock model undergoes two phase transitions. Namely, for all � > �BKTN

it has N pure magnetized phases, with exponential decay of truncated cor-
relations, with �BKTN ! 1 as N ! 1: For smaller intermediate values of
� 2

�
�crN ; �

BKT
N

�
it also has at least N (and may be even in�nitely many)

pure phases with non-zero magnetization; however, the correlation decay in
these phases is only algebraic. Finally, for � < �crN the model has only one
Gibbs state, again with exponential decay of correlations.

Note that by the Theorem 1 we have �crN < �0 for all N large enough, and
so the interval of �; where the intermediate phases do exist, is non-empty.
Our conjecture does not hold for N = 2; indeed, it is known from the paper
[ABF] that there is no intermediate phases for the Ising model. The conjec-
tured behavior is somewhat similar to the one taking place for the 2D Clock
models; it was proven in [FS] that the 2D Clock models indeed undergo the
Berezinsky-Kosterlitz-Thouless phase transition (hence our notation �BKTN ).
Let us now discuss the situation with non-zero drift d; (then we do not

have the detailed balance). For this let us denote by �k the measure that
gives the weight 1 to the con�guration �t � e2�ki=N 2 C1; k = 1; :::; N: Let
us run our N -Clock model with a drift for the time duration T; starting in
one of the states �k: Let us denote the resulting state by h�ik;T�;d :

Conjecture 3 For every N � �N; � > �crN there exists a critical value
dcr (�;N) of the drift, 0 < dcr (�;N) < 1; such that the following holds:

1. if d � dcr (�;N) ; then the state h�ik;T�;d goes to the limiting state h�i
k
�;d ;

as T !1: The limiting state is magnetized: h�0ik�;d 6= 0;

2. if d > dcr (�;N) ; then the state h�ik;T�;d is a �rotating�state as T ! 1
(in particular, it has no limit as T !1). Namely, there exist the value
m = m (�;N; d) > 0; the periodic function � (T ) = � (T ; �;N; d) ; i.e.

� (T + !) = � (T ) ;

with period ! being the mean angular velocity, ! = ! (�;N; d) ; and the
phase shift 'k = 'k (�;N; d) ; such that���h�0ik;T�;d �m (�;N; d) ei(�(T )+'k)

���! 0 as T !1:

(Here we again are treating the spin �0 as belonging to C1:)
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The next conjecture deals with the behavior of the critical drift.

Conjecture 4 As the temperature increases, the critical drift decays. Let
�driftN = sup f� : dcr (�;N) > 0g : Then

�drift (N) = �BKTN :

The rationale behind this conjecture is that at the temperatures above�
�BKTN

��1
the N -Clock model enters into the spin-wave Kosterlitz-Thouless

phase and so qualitatively should behave like the XY -model, which is in the
rotating phase for any non-zero value of drift, see below. This similarity of the
intermediate phases with the XY -model is the basis of all our speculations.
For the XY -model the analogs of the above statements are easy.
In simpler words, we think that for every � large enough there exists

N = N (�) ; such that for any N � N (�) any d > 0 the N -Clock model with
a drift d has a continuum of di¤erent rotating states.
One might wonder whether there is a di¤erence between the structure of

the stationary states in the PS regime and BKT regime, when d > dcr (�;N) ;
i.e. when we are in the regime of rotating states. We expect the answer to
be positive:

Conjecture 5 1. Rotating BKT. In the regime � 2
�
�crN ; �

BKT
N

�
, d > 0

there is a unique stationary in time distribution, h�ist�;d. It is translation
invariant and has zero magnetization.

2. Rotating PS. In the regime � > �BKTN ; d > dcr (�;N), in addition
to the time-stationary translation invariant state there are also time-
stationary non-translation invariant states (the �Dobrushin�states).

The Dobrushin time-stationary non-translation invariant states have rigid
interface. In a typical con�guration drawn from such a state the spins on
di¤erent sides of the interface are pointing in (approximately) opposite di-
rections, though the direction itself can be arbitrary.

2 The 3D XY -rotators model

The dynamical XY -model with a drift � called dXY model below � can
be obtained from the model (3) ; (4) by taking the limit N ! 1; while
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rescaling the time by t! t
N2 : Alternatively, it can be thought as a 3D model

of Brownian motions 's on circles, s 2 Z3; 's 2 S1 � C1: The brownian
motions 's have a constant drift, d; and they are interacting via the n.n.
attraction (3) :
This driven XY -model can be studied due to the following simple state-

ment.

Theorem 6 There exists the angular speed $ = $ (�; d) ; such that the evo-
lution of the random variables  s (t) = 's (t) �$t is that of the XY -model
with zero drift.

Therefore the stationary translation-invariant states of the dXY model
with non-zero drift are translation-invariant Gibbs states of the XY -model,
which are S1-invariant.
At low temperatures ��1 the 3D XY -model has continuum translation-

invariant Gibbs states. They can be obtained as thermodynamic limits h�in;�
of the �nite-volume Gibbs states with coherent boundary conditions �'n �
n 2 S1 � C1: These translation invariant states have non-zero spontaneous
magnetization,

h'0in;� = m (�)n; with m (�) > 0;

see [FSS]. One can construct thus a Gibbs �eld h�i0;�, which is S1-invariant,
by putting

h�i0;� =
Z
S1
h�in;� dn:

We believe that the state h�i0;� is the only one translation-invariant Gibbs
state of the XY -model, which is S1-invariant.

Theorem 7 The stationary states of the XY -model correspond in an evident
way to the rotating states of the dXY model. The rotating states do not
converge to a stationary state of the dXY model.

Proof. The proof is evident, since a stationary state of the dXY model has
zero magnetization.
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