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Abstract

Many metrics used in coding theory are instances of a cortdriaametric introduced by Gabidulin. We define
aweightedcombinatorial quasimetric. Some relations between thesentetrics are established. Given an error and
erasure decoder for the combinatorial metric, we proposd-tirney-Kovalev soft-input-decoder for the weighted
combinatorial metric. The error correcting radius of thgoaithm is obtained for given number of decoding trials.

I. INTRODUCTION

Many metrics used in coding theory, including Hamming neethurst metric [1], array metric [2],
translational metrics [3], [4], and others, are particuidases of the wide class of combinatorial metrics
introduced in [1] by Gabidulin. Hence, results obtaineddombinatorial metrics are general and can find
many applications in coding theory. Combinatorial metfitsvell to describe channels with memory.

For some combinatorial metrics, error correcting codesweoposed. Thousands of publications can
be found about codes for the Hamming metric, the most popuédric in coding theory. There are codes
for the burst metric, for the array metric [2], [5], for trdatonal metrics [4], and others. In [2], [4], [5]
it was shown that codes having distanté the array metric or in translational metrics (which iradu
e.g. burst metrics) can be obtained by a special interlgawfrcodes having distaneéin the Hamming
metric. This allows to use for these combinatorial metriosv@rful algebraic decoders designed for the
Hamming metric correcting up td/2 and even more errors. We recall the definition of combinatori
metrics in Section II.

Frequently the communication channel gives us reliabdit{real numbers,,,) for positions in the
received word. We use these reliabilities as weights to defieighted combinatorial metrics. This should
be done in a way such that the weighted combinatorial metatches the communication channel. In this
case the maximum likelihood decoding coincides (exactlgmproximately) with the minimum distance
decoding in the weighted combinatorial metric. This apphoavas used for the Hamming metric by
Forney [6], and for the array metric in [5]. In this paper wéragluce weighted combinatorial metrics in
general.

A. Decoding in weighted Hamming metric.

For theh-weighted Hamming distancg, (-, -), whereh is a vector of reliabilities, Forney [6] suggested
generalized minimum distance (GMD) decoder based on am emd erasure decoder()\) for the
Hamming metric. The decodeF(\) correctse errors andd erasures ifAe +60 < d — 1, where A = 2
is the tradeoff rate between errors and erasures for theddecandd is the Hamming distance of the
code. Theidea of GMD decodings as follows. Forj = 1,...,s we make a trial to decode the received
vectory in which ther; least reliable symbols are erased. Performindecoding trials we obtain a list
L of codewords. If this list is empty, we declare a decodindufai otherwise we select from the list a
codewordc that minimizesd,(c,y). GMD decoders may differ by using different decodéxs\) or by
different numbers of decoding trials or by different selection of the erasueetorr = (ry,..., 7).
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In [6] Forney considered GMD decoder with= [d/2] decoding trials and show that its error correcting
radius in weighted Hamming metric js= d. In his algorithm, the erasing vecterdoes not depend on
the vector of reliabilitiesh. Hence, the vector is fixed for fixedd.

In [7] Kovalev considered GMD decoding algorithms for theses when the number of trialscan
be less thend/2], i.e., 1 < s < [d/2]. In addition, Kovalev considered two strategies: fixed ia@s
when the vector- does not depend oh, and adaptive erasing, whenis optimized using the vector of
reliabilities h.

Some refinements of Kovalev’s approaches were done by WeloeAbdel-Ghaffar in [8]. We should
also mention papers by Sorger [9], and Kotter [10] who ssetggkinteresting modifications of a BMD
decoder in such a way that multi—trial decoding can be doneotie step”. We do not consider other
interesting erasing strategies suggested by Blokh and|dydhbl] based on reliability thresholds. This
could be a topic for additional research. There are manyrast®g publications concerning GMD
decoding in Hamming metric using bounded minimum distaremders)\ = 2, see e.g. Dumer [12] and
Kabatyanskii [13]. For\ < 2 the Forney-Kovalev algorithm was extended in [14] and [1§hg decoders
®(\) from [16] and [17].

B. Our contribution

For the weightedrray metrics the Forney-Kovalev (FK) algorithm was extendedbin I[n this paper we
extend the FK algorithm to tharbitrary weighted combinatorial metric. In Section 11l we define weied
combinatorial metrics and obtain some useful propertiethefmetrics. In Section IV we describe the
FK algorithm and give an important Lemma 5 where error cdimgcradiusd(r, k) for fixed reliability
vector h and fixed erasing strategy is calculated. Afterd(r, h) is obtained we apply results from [14]
to estimate the error correction radius of the FK algorittmgéneral case. This was done in Section V,
where the simplified version of the FK decoder is shown by Atgm 1.

[I. COMBINATORIAL METRICS AND CODES
A. Combinatorial metrics

Consider an arbitrary alphab@tand words of lengtiV over this alphabet. Given two wordsb € Q"
denote by{a # b} the difference seti.e., the set of positions in whictrandb do not coincide:

{a#b}y = {ne€[l,N]:a, #b,}. (1)

Consider a sef’ = {13, ...,Ty} of M basis setsd,, C [1, N], m =1,..., M, such thatJ7,, = [1, N].
Given a setd C [1, N], denote byl 4, C [1, M] a set of indexes such that the basis sets with these indexes
cover the setd, i.e., A C Uer, Tn-

Definition 1 The combinatoriall-distanced(a, b) between two words, b € Q” is the minimum number
of basis setd, that cover the difference s¢t # b}, i.e.,

d(a,b) = Imin | Laze} |- 2
{ab}

The combinatorial distance was suggested in [1], where & sf@own that it satisfies the axioms of a
metric.

B. Error and erasure correcting codes

A codeC'is a subset 0&)", C' C Q. Given aT-combinatorial metric, theode distancel(C) in this
metric is the minimum distance between two different codelsolf a codeword: € C' was transmitted
and a wordy € QV was received, we say that it was amor of weighte = d(z, y) in the channel. Given
a received wordy, the minimum distance decodédinds a codeword: nearest tay, i.e., it findsc € C



such thatd(c, y) is minimal. The minimum distance decoder is able to corrgeryeerror of weight less
thand/2.

Erasures Assume that the channel informs us that some positionsimeiteived word, are absolutely
unreliable. This means that symbols at these positiong ame unknown (erased). More precisely, the
channel gives us the received wogdand a setX C [1, M] of the minimum cardinality such that the
positions iny that belong tdJ,,cx 7. are erased. We say that the weight of the erasufe=s X|. Let
us find a setl C [1, M] of the minimum cardinality such thdtc # y} C U,.cxur Tm- Then the error
weights on unerased positions is= |I|.

For many combinatorial metrics there are codes and erroresasure decoderd(\) correcting (for
sure or with very high probability) an error of weightand an erasure of weigiitas soon as

e+ 6 < d(C) -1, 3)

wherel < X\ < 2 is the tradeoff rate between errors and erasures for theplart decoder.

[1l. WEIGHTED COMBINATORIAL METRICS AND DECODING
A. Weighted combinatorial metrics
Given a vectoth = (hy, ..., hy), where0 < h,, < 1, we define weighted-distance as follows.

Definition 2 Given aT-metric and a vector, the weighted combinatoridl-distanced,(a,b) between
wordsa, b € QV is defined as follows

dn(a,b) = min ( > +hn)+ D (1—hm)). (4)
faze} melazpy m&I i,y

The weighth,,, can be seen as a reliability of positions in the received wotldat belong to the basis
setT,,. The moreh,, the more reliable these positions areh)f = 0 then these positions are erased.

Theorem 1 The h-distance in Definition 2 satisfies the axioms of a quasini.e., for every:, b, c € QV
1) dh(av b) >0,
2) dn(a,b) = du(b, a),
3) dh<a7 b) < dh<a7 C) + dh<cu b)

Notice that theh-distance does not satisfy the axiom of identity of indisd@es: dj,(a,b) = 0 if and
only if a = 0.

Denote byd,(C) the code distance of the codg in the weighted combinatoriak-distance. The
following theorems give us some relations between comoiretand a weighted combinatorial distances.

Lemma 2 For all weight vectorsh and for all a,b € QV hold
dp(a,b) > d(a,b), and m}}n dp(a,b) = d(a,b), 5)
dn(C) >d(C), and mhin dn(C) = d(C). (6)

For h = (1,1,...,1) holds
dp(a,b) = 2d(a,b). (7)

Lemma 3 For all weight vectorsh and for all y, ¢, ¢ € QY such thatd(¢, ¢) > d holds

dh(cv y) + dh(@ y) > 2d. (8)



B. Decoders in weighted combinatorial metric

Given a received word, and reliability vectorh, the goal of the h-distance decoder is to find the
codewordc at the minimumh-distancedy,(y, ¢) from y, i.e., to decode the cod€ in the h-metric.

The guaranteed error correcting radiusof a particular decoder is the infimum of real numbgy$or
which there exist two words € C, y € Q" and a vectorh € [0, 1], such thatd,(y,c) = p, and the
decoder fails to decodg, h, i.e., the decoder does not outputin other words, we guarantee correction
of every error ofh-weight less tham, where the error-weight is defined to bg(y, ¢).

It follows from Lemma 2 that the error-correcting radjusf any decoder irh-metric can not be greater
thand. From Lemma 3 we get the following

Theorem 4 For arbitrary received wordy and vectorh, at most one codewordsatisfiesiy, (y, c¢) < d(C).

IV. FORNEY-KOVALEV (FK) DECODING

To implement decoding in a combinatoriatmetric we use the FK algorithm. Given an error-and-
erasure decodep(\) of the codeC in the combinatorial metric, th&€K decodingis as follows. For
Jj=1,...,s we make a trial to decode the received wgrth which ther; least reliable sets of positions
are erased. Performingdecoding trials using decodér(\) we obtain a listC of codewords. If this list
is empty, we declare a decoding failure, otherwise we oupeadeword: having the minimumiy,(c, y).
This codeword is unique due to Theorem 4 if theveight of error in the channel is less thd().

FK decoders may differ by using different decodérs\) (having different\) or by different number
s of decoding trials or by different selection of the erasueetorr = (7y,...,7). If s = [d(C)/2]
and the erasure vector is fixed we get the Forney algorithm.<f [d(C)/2] or the erasure vector is
selected adaptive depending on the received vectof reliabilities, we obtain the Kovalev algorithm,
having better error correcting radius. Later we consideratiaptive approach only.

Let us estimate the guaranteed error correcting radiaéthe adaptive FK algorithm. Recall that we
consider a FK decoder based on an error-and-erasure éogettcoderd(\) which satisfies (3) with
tradeoff rateX. At the input of the FK decoder we have a received wgrdnd a vector of reliabilities
h. From now on, assume w.l.o.g. that the bases gt@re numbered according to their reliabilities as
follows

0<h <hy<---<hy<Ll ©)

So, we denote by, = (h4, ..., hy) the vector oforderedreliabilities, and byH the set of all possible
real-valued vector# satisfying 0).

Definition 3 Given the vector. of reliabilities, by d,(h) we denote the minimur-weight of the error
in the channel that causes a failure of the FK decoder withsieig strategy defined by the vectarIn
other words,d, (h) is error-correcting radius for fixedh and 7.

Lemma 5 Error-correcting radiusé, (h) is as follows

M s Tite(r)—e(Ti41)
m=1 ]:1 m:Tj—‘rl

and 7, is formally defined such that(r,.;) = 0.



Let 7 be the set of all integer-valued vectors= (7,...,75) such that0 < 4 < ... < 7, < d — 1.
To specify a particular FK decoder we are free to select aovectFor a givenh we will selectr to
maximize the error-correcting radius(h):

7(h) = argmax 6, (h). (11)
T€T
The algorithm with thisr(h) we call theadaptive algorithmand denote byd. The error correcting radius
pa(X) of algorithm A is
pa(A) = inf max o, (h). (12)

To find vectorr(h) from (11) one should considef | vectorst, thus the complexity of this step
is O(d*). Remark, that the decoder should computé) for every receivedh, thus the computation is
only feasible for one or two decoding trials, i.e., for= 1,2. This is a big disadvantage of the adaptive
approach using the erasing vector (11).

V. ERROR CORRECTION RADII

Fortunately Kovalev suggested a simplification of the agteptlecoding algorithm where vector of
erasuresr(h) should be selected from a set of two vectors only! In [14] gimsplified algorithm was
extended for all the range afand the final decoder is given by Algorithm 1. To computg), Algorithm 1
requiresO(d) operations only. Error-correcting radipg(\) of the initial algorithmA based orr (%) given
by (11) and radius of the simplified Algorithm 1 coincide!

Algorithm 1: Simplified s-trial adaptive decoding

Precomputations: Solve (14), get vectors® = (7, 73, ..., Tas—1)) and7®) = (71,73, ..., 7as_1);
Input: received wordy and (ordered) vectof;

Select vectorr’ = arg max d,(h);
TE{TayTb}
for eachj from 1 to s do
L decodey with erased first; setsT,, by the decodem()) of the codeC, add obtained codeword

(if any) to the listz;
Output:
if the list £ is emptythen
| declare a decoding failure;
else
| outputc € £ having minimumdy(c, y)

Theorem 6 ([14]) The guaranteed error correcting radius of Algorithm 1 is Evbounded by , ())

pa(X) = p,(A) = £(0) +&(n), (13)
whereT; is a solution of recurrent inequalities
7 >Ti+e(riig) —e(rp), i=1,...,2s—1, (14)
with boundary conditions
T0=0, Ts=]d—1+A]. (15)

The lower bound (13) is nearly tight [14] and can be approxédas follows.



Corollary 7 For 1 < X < 2 the s-trial guaranteed error correcting radius of Algorithm 1 iswer
bounded by

2-NA-1* 2
&&Uzd(k—Ml—Q—iyﬂ>zd@fﬂA—D ). (16)

To reachp,(\) = d it is sufficient to haves = 1 (logﬁ d+ 1) decoding trials.

Corollary 8 For A = 2 the s-trial guaranteed error correcting radius of Algorithm 1 Iswer bounded
by

(17)

d+1
4s |’

Bgm:d+1—{

which coincides with Kovalev's result in case of the Hammimgric. To reaclp ,(2) = d it is sufficient
to haves = [%1] decoding trials.

Notice, to reaclp ,(A) = d, the numbes of decoding trials grows linearly witt for the classical case
A = 2 and only logarithmically for\ < 2. As a result, for\ < 2 the error-correcting radius of Algorithm 1
quickly approached with increasing number of trials, and 2 or 3 trials are sudfitito reachps(\) = d
in many practical cases.

It is interesting to remark that we can reach the error ctimgaadiusp = d despitemin,(C) = d
according to Lemma 2.
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