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Abstract

Many metrics used in coding theory are instances of a combinatorial metric introduced by Gabidulin. We define
a weightedcombinatorial quasimetric. Some relations between these two metrics are established. Given an error and
erasure decoder for the combinatorial metric, we propose the Forney-Kovalev soft-input-decoder for the weighted
combinatorial metric. The error correcting radius of the algorithm is obtained for given number of decoding trials.

I. INTRODUCTION

Many metrics used in coding theory, including Hamming metric, burst metric [1], array metric [2],
translational metrics [3], [4], and others, are particularcases of the wide class of combinatorial metrics
introduced in [1] by Gabidulin. Hence, results obtained forcombinatorial metrics are general and can find
many applications in coding theory. Combinatorial metricsfit well to describe channels with memory.

For some combinatorial metrics, error correcting codes were proposed. Thousands of publications can
be found about codes for the Hamming metric, the most popularmetric in coding theory. There are codes
for the burst metric, for the array metric [2], [5], for translational metrics [4], and others. In [2], [4], [5]
it was shown that codes having distanced in the array metric or in translational metrics (which include
e.g. burst metrics) can be obtained by a special interleaving of codes having distanced in the Hamming
metric. This allows to use for these combinatorial metrics powerful algebraic decoders designed for the
Hamming metric correcting up tod/2 and even more errors. We recall the definition of combinatorial
metrics in Section II.

Frequently the communication channel gives us reliabilities (real numbershm) for positions in the
received word. We use these reliabilities as weights to define weighted combinatorial metrics. This should
be done in a way such that the weighted combinatorial metric matches the communication channel. In this
case the maximum likelihood decoding coincides (exactly orapproximately) with the minimum distance
decoding in the weighted combinatorial metric. This approach was used for the Hamming metric by
Forney [6], and for the array metric in [5]. In this paper we introduce weighted combinatorial metrics in
general.

A. Decoding in weighted Hamming metric.

For theh-weighted Hamming distancedh(·, ·), whereh is a vector of reliabilities, Forney [6] suggested
generalized minimum distance (GMD) decoder based on an error and erasure decoderΦ(λ) for the
Hamming metric. The decoderΦ(λ) correctsε errors andθ erasures ifλε + θ ≤ d − 1, whereλ = 2
is the tradeoff rate between errors and erasures for the decoder, andd is the Hamming distance of the
code. Theidea of GMD decodingis as follows. Forj = 1, . . . , s we make a trial to decode the received
vectory in which theτj least reliable symbols are erased. Performings decoding trials we obtain a list
L of codewords. If this list is empty, we declare a decoding failure, otherwise we select from the list a
codewordc that minimizesdh(c, y). GMD decoders may differ by using different decodersΦ(λ) or by
different numbers of decoding trials or by different selection of the erasure vectorτ = (τ1, . . . , τs).

This work of V.R. Sidorenko has been supported by DFG (GermanResearch Council) under grant BO 867/21. V.R. Sidorenko is on leave
from Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.



2

In [6] Forney considered GMD decoder withs = ⌈d/2⌉ decoding trials and show that its error correcting
radius in weighted Hamming metric isρ = d. In his algorithm, the erasing vectorτ does not depend on
the vector of reliabilitiesh. Hence, the vectorτ is fixed for fixedd.

In [7] Kovalev considered GMD decoding algorithms for the cases when the number of trialss can
be less then⌈d/2⌉, i.e., 1 ≤ s ≤ ⌈d/2⌉. In addition, Kovalev considered two strategies: fixed erasing,
when the vectorτ does not depend onh, and adaptive erasing, whenτ is optimized using the vector of
reliabilities h.

Some refinements of Kovalev’s approaches were done by Weber and Abdel-Ghaffar in [8]. We should
also mention papers by Sorger [9], and Kötter [10] who suggested interesting modifications of a BMD
decoder in such a way that multi–trial decoding can be done ”in one step”. We do not consider other
interesting erasing strategies suggested by Blokh and Zyablov [11] based on reliability thresholds. This
could be a topic for additional research. There are many interesting publications concerning GMD
decoding in Hamming metric using bounded minimum distance decoders,λ = 2, see e.g. Dumer [12] and
Kabatyanskii [13]. Forλ < 2 the Forney-Kovalev algorithm was extended in [14] and [15] using decoders
Φ(λ) from [16] and [17].

B. Our contribution

For the weightedarray metrics the Forney-Kovalev (FK) algorithm was extended in [5]. In this paper we
extend the FK algorithm to thearbitrary weighted combinatorial metric. In Section III we define weighted
combinatorial metrics and obtain some useful properties ofthe metrics. In Section IV we describe the
FK algorithm and give an important Lemma 5 where error correcting radiusδ(τ, h) for fixed reliability
vectorh and fixed erasing strategyτ is calculated. Afterδ(τ, h) is obtained we apply results from [14]
to estimate the error correction radius of the FK algorithm in general case. This was done in Section V,
where the simplified version of the FK decoder is shown by Algorithm 1.

II. COMBINATORIAL METRICS AND CODES

A. Combinatorial metrics

Consider an arbitrary alphabetQ and words of lengthN over this alphabet. Given two wordsa, b ∈ QN ,
denote by{a 6= b} the difference set, i.e., the set of positions in whicha and b do not coincide:

{a 6= b} , {n ∈ [1, N ] : an 6= bn}. (1)

Consider a setT = {T1, . . . , TM} of M basis setsTm ⊆ [1, N ], m = 1, . . . , M , such that
⋃

Tm = [1, N ].
Given a setA ⊆ [1, N ], denote byIA ⊆ [1, M ] a set of indexes such that the basis sets with these indexes
cover the setA, i.e., A ⊆

⋃

m∈IA
Tm.

Definition 1 The combinatorialT -distanced(a, b) between two wordsa, b ∈ QN is the minimum number
of basis setsTm that cover the difference set{a 6= b}, i.e.,

d(a, b) = min
I{a 6=b}

|I{a6=b}|. (2)

The combinatorial distance was suggested in [1], where it was shown that it satisfies the axioms of a
metric.

B. Error and erasure correcting codes

A codeC is a subset ofQN , C ⊆ QN . Given aT -combinatorial metric, thecode distanced(C) in this
metric is the minimum distance between two different codewords. If a codewordc ∈ C was transmitted
and a wordy ∈ QN was received, we say that it was anerror of weightε = d(x, y) in the channel. Given
a received wordy, the minimum distance decoderfinds a codewordc nearest toy, i.e., it findsc ∈ C
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such thatd(c, y) is minimal. The minimum distance decoder is able to correct every error of weight less
thand/2.

Erasures. Assume that the channel informs us that some positions in the received wordy are absolutely
unreliable. This means that symbols at these positions iny are unknown (erased). More precisely, the
channel gives us the received wordy and a setX ⊆ [1, M ] of the minimum cardinality such that the
positions iny that belong to

⋃

m∈X Tm are erased. We say that the weight of the erasure isθ = |X|. Let
us find a setI ⊆ [1, M ] of the minimum cardinality such that{c 6= y} ⊆

⋃

m∈X∪I Tm. Then the error
weight ε on unerased positions isε = |I|.

For many combinatorial metrics there are codes and error anderasure decodersΦ(λ) correcting (for
sure or with very high probability) an error of weightε and an erasure of weightθ as soon as

λε + θ ≤ d(C) − 1, (3)

where1 < λ ≤ 2 is the tradeoff rate between errors and erasures for the particular decoder.

III. W EIGHTED COMBINATORIAL METRICS AND DECODING

A. Weighted combinatorial metrics

Given a vectorh = (h1, . . . , hM), where0 ≤ hm ≤ 1, we define weightedT -distance as follows.

Definition 2 Given aT -metric and a vectorh, the weighted combinatorialh-distancedh(a, b) between
wordsa, b ∈ QN is defined as follows

dh(a, b) = min
I{a 6=b}





∑

m∈I{a 6=b}

(1 + hm) +
∑

m/∈I{a 6=b}

(1 − hm)



 . (4)

The weighthm can be seen as a reliability of positions in the received wordy that belong to the basis
setTm. The morehm the more reliable these positions are. Ifhm = 0 then these positions are erased.

Theorem 1 The h-distance in Definition 2 satisfies the axioms of a quasinorm, i.e., for everya, b, c ∈ QN

1) dh(a, b) ≥ 0,
2) dh(a, b) = dh(b, a),
3) dh(a, b) ≤ dh(a, c) + dh(c, b).

Notice that theh-distance does not satisfy the axiom of identity of indiscernibles: dh(a, b) = 0 if and
only if a = b.

Denote bydh(C) the code distance of the codeC in the weighted combinatorialh-distance. The
following theorems give us some relations between combinatorial and a weighted combinatorial distances.

Lemma 2 For all weight vectorsh and for all a, b ∈ QN hold

dh(a, b) ≥ d(a, b), and min
h

dh(a, b) = d(a, b), (5)

dh(C) ≥ d(C), and min
h

dh(C) = d(C). (6)

For h = (1, 1, . . . , 1) holds
dh(a, b) = 2d(a, b). (7)

Lemma 3 For all weight vectorsh and for all y, c, c̃ ∈ QN such thatd(c̃, c) ≥ d holds

dh(c, y) + dh(c̃, y) ≥ 2d. (8)
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B. Decoders in weighted combinatorial metric

Given a received wordy and reliability vectorh, the goal of the h-distance decoder is to find the
codewordc at the minimumh-distancedh(y, c) from y, i.e., to decode the codeC in the h-metric.

The guaranteed error correcting radiusρ of a particular decoder is the infimum of real numbersρ̃, for
which there exist two wordsc ∈ C, y ∈ QN and a vectorh ∈ [0, 1]M , such thatdh(y, c) = ρ̃, and the
decoder fails to decodey, h, i.e., the decoder does not outputc. In other words, we guarantee correction
of every error ofh-weight less thanρ, where the error-weight is defined to bedh(y, c).

It follows from Lemma 2 that the error-correcting radiusρ of any decoder inh-metric can not be greater
thand. From Lemma 3 we get the following

Theorem 4 For arbitrary received wordy and vectorh, at most one codewordc satisfiesdh(y, c) < d(C).

IV. FORNEY-KOVALEV (FK) DECODING

To implement decoding in a combinatorialh-metric we use the FK algorithm. Given an error-and-
erasure decoderΦ(λ) of the codeC in the combinatorial metric, theFK decodingis as follows. For
j = 1, . . . , s we make a trial to decode the received wordy in which theτj least reliable sets of positions
are erased. Performings decoding trials using decoderΦ(λ) we obtain a listL of codewords. If this list
is empty, we declare a decoding failure, otherwise we outputa codewordc having the minimumdh(c, y).
This codeword is unique due to Theorem 4 if theh-weight of error in the channel is less thand(C).

FK decoders may differ by using different decodersΦ(λ) (having differentλ) or by different number
s of decoding trials or by different selection of the erasure vector τ = (τ1, . . . , τs). If s = ⌈d(C)/2⌉
and the erasure vector is fixed we get the Forney algorithm. Ifs < ⌈d(C)/2⌉ or the erasure vector is
selected adaptive depending on the received vectorh of reliabilities, we obtain the Kovalev algorithm,
having better error correcting radius. Later we consider the adaptive approach only.

Let us estimate the guaranteed error correcting radiusρ of the adaptive FK algorithm. Recall that we
consider a FK decoder based on an error-and-erasure correcting decoderΦ(λ) which satisfies (3) with
tradeoff rateλ. At the input of the FK decoder we have a received wordy and a vector of reliabilities
h. From now on, assume w.l.o.g. that the bases setsTm are numbered according to their reliabilities as
follows

0 ≤ h1 ≤ h2 ≤ · · · ≤ hM ≤ 1. (9)

So, we denote byh = (h1, ..., hM) the vector ofordered reliabilities, and byH the set of all possible
real-valued vectorsh satisfying (9).

Definition 3 Given the vectorh of reliabilities, byδτ (h) we denote the minimumh-weight of the error
in the channel that causes a failure of the FK decoder with erasing strategy defined by the vectorτ . In
other words,δτ (h) is error-correcting radius for fixedh and τ .

Lemma 5 Error-correcting radiusδτ (h) is as follows

δτ (h) =
M
∑

m=1

(1 − hm) + 2
s
∑

j=1

τj+ε(τj)−ε(τj+1)
∑

m=τj+1

hm, (10)

where we denote the function

ε(θ) =

⌊

d − θ − 1

λ

⌋

+ 1,

and τs+1 is formally defined such thatε(τs+1) = 0.
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Let T be the set of all integer-valued vectorsτ = (τ1, ..., τs) such that0 ≤ τ1 ≤ · · · ≤ τs ≤ d − 1.
To specify a particular FK decoder we are free to select a vector τ . For a givenh we will selectτ to
maximize the error-correcting radiusδτ (h):

τ(h) = arg max
τ∈T

δτ (h). (11)

The algorithm with thisτ(h) we call theadaptive algorithmand denote byA. The error correcting radius
ρA(λ) of algorithmA is

ρA(λ) = inf
h∈H

max
τ∈T

δτ (h). (12)

To find vectorτ(h) from (11) one should consider|T | vectorsτ , thus the complexity of this step
is O(ds). Remark, that the decoder should computeτ(h) for every receivedh, thus the computation is
only feasible for one or two decoding trials, i.e., fors = 1, 2. This is a big disadvantage of the adaptive
approach using the erasing vector (11).

V. ERROR CORRECTION RADII

Fortunately Kovalev suggested a simplification of the adaptive decoding algorithm where vector of
erasuresτ(h) should be selected from a set of two vectors only! In [14] thissimplified algorithm was
extended for all the range ofλ and the final decoder is given by Algorithm 1. To computeτ(h), Algorithm 1
requiresO(d) operations only. Error-correcting radiusρA(λ) of the initial algorithmA based onτ(h) given
by (11) and radius of the simplified Algorithm 1 coincide!

Algorithm 1 : Simplified s-trial adaptive decoding

Precomputations: Solve (14), get vectorsτ (a) = (τ0, τ2, ..., τ2(s−1)) and τ (b) = (τ1, τ3, ..., τ2s−1);
Input : received wordy and (ordered) vectorh;
Select vectorτ ′ = arg max

τ∈{τa,τb}
δτ (h);

for eachj from 1 to s do
decodey with erased firstτ ′

j setsTm by the decoderΦ(λ) of the codeC, add obtained codeword
(if any) to the listL;

Output:
if the listL is emptythen

declare a decoding failure;

else
outputc ∈ L having minimumdh(c, y)

Theorem 6 ([14]) The guaranteed error correcting radius of Algorithm 1 is lower bounded byρ
A
(λ)

ρA(λ) ≥ ρ
A
(λ) = ε(0) + ε(τ1), (13)

whereτ1 is a solution of recurrent inequalities

τi ≥ τi−1 + ε(τi−1) − ε(τi+1), i = 1, . . . , 2s − 1, (14)

with boundary conditions
τ0 = 0, τ2s = ⌊d − 1 + λ⌋ . (15)

The lower bound (13) is nearly tight [14] and can be approximated as follows.
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Corollary 7 For 1 < λ < 2 the s-trial guaranteed error correcting radius of Algorithm 1 islower
bounded by

ρ
A
(λ) ≈ d

(

1 −
(2 − λ)(λ − 1)2s

λ(1 − (λ − 1)2s)

)

≈ d
(

1 − (λ − 1)2s
)

. (16)

To reachρA(λ) = d it is sufficient to haves = 1
2

(

log 1

λ−1

d + 1
)

decoding trials.

Corollary 8 For λ = 2 the s-trial guaranteed error correcting radius of Algorithm 1 islower bounded
by

ρ
A
(2) = d + 1 −

⌈

d + 1

4s

⌉

, (17)

which coincides with Kovalev’s result in case of the Hammingmetric. To reachρ
A
(2) = d it is sufficient

to haves =
⌈

d+1
4

⌉

decoding trials.

Notice, to reachρ
A
(λ) = d, the numbers of decoding trials grows linearly withd for the classical case

λ = 2 and only logarithmically forλ < 2. As a result, forλ < 2 the error-correcting radius of Algorithm 1
quickly approachesd with increasing number of trials, and 2 or 3 trials are sufficient to reachρA(λ) = d
in many practical cases.

It is interesting to remark that we can reach the error correcting radiusρ = d despiteminh(C) = d
according to Lemma 2.
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