Tiling by rectangles, discrete analytic functions, electrical net-
works
M. Skopenkov (IITP RAS, KAUST)

The talk is on the following interrelated subjects: tilings of polygons by
rectangles, discrete analytic functions, electrical networks. Celebrated physical
interpretations of tilings by rectangles (R.L. Brooks, C.A.B. Smith, A.H. Stone,
W.T. Tutte [2]) and discrete analytic functions on rhombic lattices (R.J. Duffin
[7]) use direct-current networks. Our new approach is application of alternating-
current networks and energy estimates for direct-current networks.

Previous work. Discrete analytic functions on a square lattice were in-
troduced by R. Ph. Isaacs [13] and J. Ferrand [9]; see Figure la. They were
studied further by R. J. Duffin [7] (cf. [141]) who also generalized the notion to
rhombic lattices, i.e., planar graphs with rhombic faces; see Figure 1b. His ver-
sion of the finite element method [(] is equivalent to discrete complex analysis
on special “kite lattices”. C. Mercat [16] studied discrete analytic functions in
a more general context of orthogonal lattices, i.e., planar graphs having convex
quadrilateral faces with orthogonal diagonals; see Figure 1lc. Other discretiza-
tions of complex analysis were introduced by I. A. Dynnikov-S. P. Novikov [3]
and A. I. Bobenko-C. Mercat-Y. B. Suris [1].

Figure 1: Examples of lattices Q: (a) a square lattice; (b) a rhombic lattice; (c)
an orthogonal lattice; (d) a generic quadrilateral lattice.

Motivation. We develop complex analysis on arbitrary quadrilateral lat-
tices, i.e., planar graphs whose bounded faces are convex quadrilaterals; see
Figure 1d. This generalization is motivated by the following reasons:

e it provides a new approximation algorithm for numerical solution of the
Dirichlet boundary value problem;

e it gives an approach to statistical physics models on more general lattices
than the ones studied earlier;

e it has an interesting physical interpretation (alternating-current networks)
degenerating (to direct-current networks) for the lattices studied earlier;

e it leads sometimes to easier proofs of known results, not relying on par-
ticular properties of the lattices.



Description of the results. We prove that the Dirichlet boundary value
problem for the real part of a discrete analytic function on a quadrilateral lattice
has a unique solution. Our main result is that in the case of orthogonal lattices
this solution converges to a harmonic function in the scaling limit (under certain
regularity assumptions); see Convergence Theorem below.

This was proved earlier for square lattices by R. Courant—K. Friedrichs—
H. Lewy [5, §4], for special kite lattices implicitly by P.G. Ciarlet—P.-A. Raviart
[1, Theorem 2], and for rhombic lattices by D. Chelkak—S. Smirnov [3, Proposi-
tion 3.3]. In concert we simplify the known proofs. Our result solves a problem
of S. Smirnov [19, Question 1] on convergence of discrete holomorphic functions
in a more general setup than rhombic lattices (although a less general result of
P.G. Ciarlet—P.-A. Raviart is already sufficient for a solution).

Our result provides a new approximation algorithm for numerical solution
of the Dirichlet boundary value problem; for other algorithms see [20, 12]. It
also has probabilistic corollaries.

Statements. A complex-valued function f on the vertices of a quadrilateral
lattice @ C C is discrete analytic, if
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for each quadrilateral face z1292324 with the vertices listed clockwise; see Fig-
ure 2. The real part of a discrete analytic function is called a discrete harmomnic
Sfunction.
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Figure 2: A quadrilateral lattice @) in a domain 2 and associated dual graphs
B and W.

The boundary 0Q of a quadrilateral lattice @ is the boundary of its outer
face. Hereafter assume for simplicity that 0Q is a closed curve without self-
intersections. Denote by QU the set of vertices of the graph Q.

Let u: C — R be a smooth function. The Dirichlet (boundary value) problem
on @ is to find a discrete harmonic function f = fg.: Q° — R such that
f(2) = u(z) for each vertex z € 9Q. The function fg,: Q° — R is called a
solution of the Dirichlet problem.



Uniqueness Theorem. The Dirichlet boundary value problem on any finite
quadrilateral lattice has a unique solution.

Let 2 C C be a domain. The Dirichlet (boundary value) problem on € is to
find a continuous function f = fq,: ClQ2 — R harmonic in 2 and such that
f(2) = u(z) for each point z € 9. The harmonic function fq,: Q — R is
called a solution of the Dirichlet problem.

Let Q1,Q2, -+ C CIQ be a sequence of quadrilateral lattices. The boundary
gap of @, is the maximal distance from a point of 9Q,, to the set 9. The
mazimal (minimal) size of the lattice @, is the maximal (minimal) length of
its edges. The eccentricity of a quadrilateral is the maximum of secants of
the angles between the sides and the diagonals. The eccentricity of the lattice
@, is the maximum of its face eccentricities and of pairwise ratios of the edge
lengths. A sequence of quadrilateral lattices Q1, Qo, .. . is nondegenerate, if their
eccentricities are bounded. A sequence of functions f™: Q% — C converges to
a function f: Q — C uniformly on compact sets, if for each compact set K C Q)
we have max.cxngo |f"(2) — f(2)] = 0 as n — oo.

Convergence Theorem. Let ) C C be a domain bounded by a smooth closed
curve 0S) without self-intersections and let u: C — R be a smooth function.
Take a nondegenerate sequence of finite orthogonal lattices @Q1,Q2,... C CIQ
of both mazximal size and boundary gap approaching zero. Then the solution
fonu: Q% — R of the Dirichlet boundary value problem on @, converges to the
solution fq,: Q — R of the Dirichlet boundary value problem on Q uniformly
on compact sets.

Physical interpretation. Joining the opposite vertices in each quadrilat-
eral face of ), we get two connected graphs B and W; see Figure 2. Conductance
(or admittance) of an edge z1z3 C B is the complex number

c(z123) = ;2
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where 21292324 is a quadrilateral face of @ with the vertices listed clockwise. A
graph B with prescribed edge conductances (having positive real parts) can be
considered as an alternating-current network; see [18, §2.4] for the details, [10]
for a survey, and [17] for an elementary introduction. The proof of main results
is based on energy estimates inspired by alternating-current networks theory.

Application to tiling by rectangles. In the talk we are also going to
discuss applications of alternating-current networks to tiling problems [18]. As
an example, we sketch a new short proof of the following theorem by C. Freiling—
M. Laczkovich-D. Rinne—-G. Szekeres.

Shape Tiling Theorem. [l1, 15] For ¢ > 0 the following 3 conditions are
equivalent:

e a square can be tiled by similar rectangles of side ratio c;

e the number c is algebraic and all its algebraic conjugates have positive real
parts;



e for certain positive rational numbers dy, ..., d,, we have
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Figure 3: Correspondence between tilings by similar rectangles and LC
alternating-current networks.

Idea of the proof. To prove the theorem, we give a one-to-one correspondence
between tilings of a square by similar rectangles and LC alternating-current
networks; see Figure 3. The Foster reactance theorem completely describes
possible admittances A(w) of such networks as functions in the frequency w.
This gives the required restriction on the side ratio c.
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