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Abstract—In this paper we discuss the problem of designing
a key predistribution scheme (KPS). We present a composite
deterministic KPS based on “multiple key spaces” construction
principle. As building blocks for it we take a KPS generated by
affine planes and the well-known Blom’s scheme. The analysis of
the resulting scheme shows its high global connectivity and re-
silience against nodes’ compromise. The KPS can be constructed
and flexibly tuned in a wide range of design parameters.

I. INTRODUCTION

To provide security services like confidentiality and authen-
ticity in a network in almost all cases it is sufficient to establish
a secret key for every pair of nodes. One of the well-known
solutions to the problem of key establishment for large-scale
networks, especially consisting of nodes with very limited
resources like sensor networks, is to use key predistribution
schemes (KPS). In a KPS a trusted authority at a setup stage
generates a set of secret keys (or other keying material) K
called a key space (or a key pool). Each node j is given
a subset of keys Sj ⊂ K — the node’s key ring (or key
block), which is stored in node’s memory. After that the trusted
authority quits. The distributed data allow predefined groups of
nodes to compute common keys. In what follows we only are
interested in the keys for pairs of nodes. The pairwise key kij

for nodes i and j is computed by kij = f(Si, j) = f(Sj , i),
where f is some publicly specified key derivation function.

There several somewhat contradictory characteristics (mea-
sures) describing the quality of a KPS and its applicability to a
particular environment. Let us discuss only the most important
characteristics.

a) Storage: Nodes’ memory is usually constrained so the
number of keys stored by each node (the size of the node’s
key ring) should be kept as small as possible.

b) Connectivity: This defines the ability of the KPS to
form secure path between nodes. We distinguish two types of
KPSs. If two nodes share a key with some probability less
than 1, such schemes are called probabilistic. Probabilistic
schemes were originally introduced in [1]. Otherwise, if it
is guaranteed by the KPS that any pair of nodes are able to
establish a common key, the KPS is called deterministic.

In a probabilistic scheme if two nodes, say jx and jy,
have have no common key, the pair attempts, through a path-
key establishment protocol, to find a sequence of intermediate
nodes ju, . . . , jv such that every pair of adjacent nodes in the

path jx, ju, . . . , jv, jy have a common key. In practice only
short paths, e. g. including 2 or 3 hops, are of interest.

This distinction between deterministic and probabilistic
schemes is a measure of global connectivity, which describes
the ability of the network to become globally connected as
a whole. In some environments, however, more appropriate
are measures of local connectivity, describing the ability of
a node to form secure paths within its close neighborhood.
Local connectivity is usually considered within some nodes’
deployment model and physical connection between nodes.

c) Resilience (security): A typical attack on a KPS
assumes that the adversary randomly captures a set of nodes,
and get access to all keys of those nodes. The captured
nodes are called compromised nodes, and their keys are called
compromised keys.

There is no single measure for resilience of KPSs. For
deterministic schemes a notion of w-security seems most
appropriate. A KPS is called w-secure, if given a specified
pair of nodes, any coalition of w or fewer other nodes, pooling
together their key blocks, can do no better at computing the
pairwise key of these two than guess the key without any
keying material whatsoever.

Remember, however, that when more than w nodes are
compromised, then two innocent nodes may still establish a
secure path through intermediate nodes. Thus, every determin-
istic KPS by nodes’ compromise will eventually turn into a
probabilistic one. For probabilistic schemes a more suitable
measure of resilience [2] is the probability that the direct link
between two innocent nodes is affected after c other nodes are
compromised.

d) Complexity (efficiency): There are several processes
involved in practical application of a KPS, including system
setup, shared key discovery, path-key establishment, common
key computation, etc. Some of them depend only on the
KPS, some others are affected by node deployment model
and application scenarios. It is desirable that all of them be as
efficient as possible.

The art of designing a good KPS is to efficiently balance all
those characteristics or to find a trade-off between them. There
are a huge amount of results is the area of key predistribution.
For survey of recent results see for example [3] and [4].

In this paper, we present a deterministic key predistribution
scheme which is a combination of two different KPSs: the
one based on a special class of combinatorial designs, called



affine planes, and the well-known Blom’s scheme. The type
of KPS construction called multi space KPS and is quite
popular [11]. Our main result is a full theoretical analysis of
global connectivity of the scheme.

II. AFFINE-PLANE-GENERATED KPS

Combinatorial objects are natural to consider when con-
structing a KPS. Since they are regular structures many
characteristics of the KPS can be computed or quite precisely
estimated.

The first use of combinatorial structures in key predistribu-
tion was proposed in works by Mitchell and Piper [5]. The next
wave of interest was raised by research of distributed sensor
networks, and the use of combinatorial designs was proposed
Camtepe and Yener [6]. Since that a lot of results have been
obtained, see further [7] and [8]. In this paper, we use a special
class of combinatorial designs called affine planes as a KPS.

A. Affine planes

We briefly remind the results on affine planes [9]. A t-
(v, k, λ) design is an arrangement of v distinct elements (called
points) into blocks, each comprising k points, such that every
t points occur in exactly λ different blocks. Every element
occurs in exactly r different blocks. The total number of blocks

is b = λ
(v

t)
(k

t)
.

We will only be interested in designs with t = 2. By
definition, an affine plane of order m is a 2-(m2, m, 1) design
with m ≥ 2. Denote the plane as S(m2, m, 1).

So it is defined on the set of v = m2 points, there are
b = m2 + m blocks, every block contains k = m points.
every point occurs in r = m + 1 distinct blocks.

An affine plane can be represented by its incidence matrix
A = [aij ], which is a b × v binary matrix such that aij = 1
if j-th point is in the i-th block, otherwise aij = 0.

It is known that affine planes exist whenever m is a power
of a prime. And there are polynomial-complexity algorithms
for creating incidence matrices of affine planes (see e.g. [9]).

B. KPS

Consider an incidence matrix of an affine plane as the
incidence matrix of a KPS. The points of the plane turn into
nodes, the blocks correspond to keys. (Note, however, that
usually the opposite binding is used: the points correspond to
keys, while blocks — to nodes.) In thus defined KPS every
pair of nodes share a key. And there is only one key for the
pair. So this KPS is a deterministic one. The KPS is globally
defined by a single parameter m. For the sake of brevity we
will call such a KPS the Affine(m).

The incidence matrix of any KPS defines a key-sharing
graph. The vertices of the graph are nodes. Two vertices are
connected by an edge if the corresponding nodes share a key.
If the key-sharing graph is connected, then a secure (multi-
hop) path between any two nodes could be found. The key
sharing graph of Affine(m) is connected with all one-hop paths
between nodes.

However the common key of a pair is not unique to that pair,
and m − 2 other nodes shares the same key. Compromising
a node means compromising all its keys. This equivalent to
exclusion of the corresponding vertex and edges from the
graph.

If a single node a is compromised, the links for (m2 −
1)(m − 2)/2 different pairs out of total (m2 − 1)(m2 − 2)/2
possible pairs not including a are compromised either.

If nodes are compromised sequentially, one by one, at some
moment the graph becomes disconnected — there will at least
two nodes having no key-path between them. Let us define the
connectivity breaking threshold s as the minimal number of
nodes to be compromised, so that the key-sharing graph of a
KPS becomes disconnected. In other words, if arbitrary s− 1
nodes are compromised, then the key-sharing graph of the KPS
remains connected.

III. GLOBAL CONNECTIVITY OF AFFINE(m)

Two natural questions concerning the key-sharing graph
given by a KPS are (i) what is the connectivity breaking
threshold s, (ii) how long are the key-paths between innocent
nodes if ` < s nodes are compromised. For the graph given
by the Affine(m) we will answer both questions below.

Lemma 1: Consider Affine(m). Suppose some nodes to-
gether with the keys belonging to them are compromised. The
key-sharing graph of the scheme remains connected as long
as every node holds at least two noncompromised keys. The
longest key-path between two nodes includes at most 2 hops.

Proof: Consider some innocent node a. Assume that two
edges, say E1 and E2 are incident to a. The corresponding
blocks of the plane are A1 = {a, a2, a3, . . . , am} and A2 =
{a, am+1, am+2, . . . , a2m−1}.

Consider arbitrary innocent node b 6= a. What are the paths
between a and b? Consider two cases.

Case 1. If b ∈ A1 or b ∈ A2, then a and b are incident to
the same edge, and there is a 1-hop path between a and b in
the key-sharing graph.

Case 2. Assume b /∈ A1 and b /∈ A2.
It is known [10] that in an affine plane for any block A and

a point x /∈ A there is a unique block B containing x such
that A ∩ B = 0.

According to this property there is a unique block B1 such
that b ∈ B1 and B1∩A1 = 0. But according to the condition of
the lemma there are at least two blocks B1 and B2 containing
b. So we conclude that A1 ∩ B2 = c1. Then between a and b
there is a 2-hop path through c1.

Moreover by the same property B1 ∩ A2 = c2 6= 0 and
c2 6= c1. Otherwise there would be two blocks A1 and A2

containing both a and c1 which contradicts the property of
the affine plane.
The proof of the lemma gives us a useful corollary.

Corollary 1: If the key-sharing graph of the Affine(m) is
connected after some nodes’ compromise, then two innocent
nodes either connected by a 1-hop key-path or at least by two
different 2-hop key-paths.



The following lemma gives the exact answer, when the
condition of lemma 1 holds.

Lemma 2: The key-sharing graph of Affine(m) stays con-
nected as long as no more than m − 1 nodes have been
compromised.

Proof: Consider an arbitrary node a. There are exactly
r = m+1 blocks A1, A2, . . . , Am+1 in the plain containing a.
According to the properties of the plain for every node b 6=
a there is only one block Aj containing both a and b. If b
is compromised, then Aj is compromised. If some m − 1
different nodes are compromised, then at most m − 1 blocks
containing a is compromised. So there is at least r − (m −
1) = 2 noncompromised blocks left which contain a, and thus
according to the lemma 1 the remaining key-sharing graph is
connected.

What happens if more than m−1 nodes are compromised?
There are sets m nodes, whose compromise will partition the
network into at least m − 1 segments of size at most m. A
particular such set is a set of m nodes that are in same block
of the affine plane. Thus, we proved the following theorem.

Theorem 1: The KPS generated by S(m2, m, 1) affine plain
has the connectivity breaking threshold equal to m.

Example 1: Consider an affine plane S(1024, 32, 1) giving
a KPS for N = 1024 nodes. Every node stores m + 1 = 33
keys. Two innocent nodes will find a secure path of length at
most 2 as long as no more than m − 1 = 31 other nodes are
compromised.

IV. BAFFINE(w, N) — MULTIPLE SPACES KPS

Affine-plane-generated KPSs have very moderate connec-
tivity breaking threshold. A known approach to increase the
resilience of a KPS against nodes’ compromise is to combine
two KPS to create the so called “multiple spaces” KPS [11],
[12]. In a multiple spaces scheme, each key in the first KPS
(which is now called “outer” scheme) is replaced by keying
information for the second scheme, called “inner”, scheme.

Suppose that in the outer scheme every key belongs to kout

nodes and every node stores rout keys. Suppose further that
in the inner scheme the node stores rin(p) keys if there are
p nodes in the scheme. So in the the resulting (composite)
scheme the node has to store r = rout · rin(kout). Taking
Affine(m) as the outer scheme we get r = (m + 1)rin(m)
keys. The obvious restriction is r ≤ N − 1, otherwise the
trivial KPS where every pair of node share a unique key would
be absolutely better. Since N = m2, then rin(m) ≤ m − 1.
If a w-secure deterministic set-intersection KPS is taken, then
theoretically rin(m) ∼ w log2 m [13]. From this we obtain
w ≤

√

N

log
2

√

N
which is not flexible enough for practical

applications.
So we see that as an inner scheme we should either choose

some probabilistic KPS or Blom’s scheme. Our choice is
Blom’s scheme, since it is deterministic, with known connec-
tivity, and its security can be controlled and tuned according
to the requirements.

We briefly remind the reader the construction of Blom’s
scheme [14]. There are several equivalent descriptions of it,

and we use a polynomial one here. The scheme uses a sym-
metric bivariate polynomial P (x, y) over a finite field GF (q),
that is a polynomial with the property that P (x, y) = P (y, x)
for all x, y ∈ GF (q). A node i is given a univariate polynomial
fi(y) = P (i, y). The common key of nodes i and j is
computed as kij = fi(j) = fj(i). Obviously kij ∈ GF (q).
If P has degree w, then each node has to store w + 1
coefficients of its polynomial, which are elements of GF (q). If
an adversary compromises less than w nodes, then it does not
learn any information about keys established between innocent
nodes. But if he compromises w + 1 or more nodes, then it
can reconstruct the polynomial P and hence learn all the keys.
So Blom’s scheme can be constructed as w-secure for any w.

If we take Affine(m) as the outer scheme and w-secure
Blom’s scheme as the inner one, we obtain a composite
scheme defined by two parameters: w and m. Such a scheme
we will refer to as BAffine(w, N), where, of course, N = m2.

A. Storage

Blom’s construction allows us to build a scheme for any
w such that rin = w + 1 independently of the network size.
Hence, in BAffine(w, N) the node stores

r(w, N) = (w + 1)(m + 1) = (w + 1)(
√

N + 1)

keys. Since we need r(w, N) ≤ N − 1, this limits us to w ≤
m−2. On the other hand this is a trivial restriction for Blom’s
scheme with m nodes.

B. Resilience and Connectivity: direct links

In BAffine, every pair of nodes shares exactly 1 key, and
thus BAffine is a deterministic KPS. Indeed, since in an affine
plane two distinct elements occur together in only one block,
so two nodes in BAffine share only one key space. In this key
space there is exactly 1 common key for every pair given by
the Blom’s scheme.

If we are only concerned about 1-hop paths between nodes,
then BAffine(w, N) is exactly w-secure. If the adversary can
compromise nodes on his choice, then to compromise the
direct link between any two nodes he must compromise exactly
w + 1 other nodes, which share with that pair the same key
space.

Suppose on the contrary, that the adversary has got no ability
to choose which nodes to compromise and compromises them
randomly. What is the probability to compromise a direct
link between two certain nodes a and b if c other nodes are
compromised? Denote this probability as P (c).

If c ≤ w then trivially P (c) = 0. To compromise the
direct link between two nodes it is required to compromise the
key space which they share. So at least w + 1 nodes among
all compromised ones must share that key space. There are
(

m2
−2

c

)

ways to choose c nodes for compromise (remember
a and b are not among them). There are

(

m−2
z

)

ways to
compromise z nodes that share the required key space, and
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Fig. 1. Probability of compromising a particular link vs the number of
compromised nodes

(

m2
−m

c−z

)

ways to compromise c − z other nodes. Therefore

P (c) =

u
∑

z=w+1

(

m−2
z

)(

m2
−m

c−z

)

(

m2
−2
c

) , u = min(c, m − 2) (1)

The graph of P (c) for parameters from example 1 and
different w is depicted in figure 1. We see that in some quite
broad region of the number of compromised nodes P (c) is
extremely small.

C. Global Resilience and Connectivity: multi-hop paths

Consider now secure transmission through multi-hop paths.
The following theorem gives the lower bound for the connec-
tivity breaking threshold of BAffine(w, N).

Theorem 2: The connectivity breaking threshold of
BAffine(w, N) is

s ≥ (w + 1)
√

N

Proof: Consider a key-sharing graph defined by BAffine.
It is a complete graph, with the same vertices and edges as in
the graph defined by Affine(m). But in the case of BAffine to
compromise a key space the adversary needs to compromise
w +1 nodes sharing this key space. In lemma 1 it was proved
that the key-sharing graph of Affine(m) is connected as long
as every nodes holds two noncompromised keys. So in BAffine
the key-sharing graph is connected as long as any node enters
at least two noncompromised key spaces.

Consider a particular node a in BAffine. a enters m + 1
different blocks Ai of the affine plane. To compromise a key
space in BAffine the adversary has to compromise w + 1
nodes in some block Ai. So to disconnect the key-sharing
graph the adversary has to compromise w + 1 in each of
m blocks Ai, otherwise there will be 2 noncompromised key
spaces. Any node other than a is in exactly one of these Ai’s
according to the property of the affine plane. So the adversary
has to compromise at least (w + 1)m = (w + 1)

√
N nodes to

disconnect the graph.
The following lemma gives some more information on the

resiliency of BAffine(w, N).
Lemma 3: To completely compromise the node’s key ring

in BAffine(w, N) at least (w + 1)(
√

N + 1) other nodes must
be compromised.

Proof: To compromise the key ring of node a the adver-
sary must compromise all key spaces in which a enters. There
are m+1 such spaces, and in each of them w +1 nodes must
be compromised. And as discussed before, any node other than
a enters those m + 1 spaces exactly once.

Example 2: Suppose we have a network of N = 1024
nodes. Assume that every node can store about r = 200
keys. We can organize BAffine such that m =

√
N = 32

and w = br/(m + 1) − 1c = 5. So we can establish
BAffine(5, 1024). It is at least 5-secure scheme. The breaking
connectivity threshold is at least (5 + 1) · 32 = 192 nodes and
the real size of the key block is r(5, 1024) = (5+1)·33 = 198
keys.

It is interesting to note that when the number of compro-
mised nodes is about the breaking connectivity threshold, the
probability to compromise a particular link, when the nodes
are compromised at random, is about 1/2.

D. Length of key-paths

An important question is how fast BAffine degrades from
the deterministic KPS, when no nodes are compromised, to a
probabilistic one when more and more nodes are being com-
promised before connectivity breaking threshold is reached.
This process can be characterized by an average length L
of the key-path in the key-sharing graph between two nodes.
Deterministic schemes, where every pair has a common key,
have L = 1. Probabilistic KPSs have L > 1, and L obviously
grows with the number of nodes compromised.

Let us estimate L as a function on the number of com-
promised nodes c for BAffine(w, N). Every key space gives
pairwise keys for m(m − 1)/2 pairs. There are N(N − 1)/2
different pairs in the network, so a portion of 1-hop links that
can be compromised when the key space is compromised is
m(m − 1)/N(N − 1)=1/m(m + 1). When the key space is
compromised 1-hop links disappear, and 2-hop links must be
used. As we proved before there are always 2-hop links for
BAffine before breaking connectivity threshold s is reached.
If ε keys spaces are compromised, so

L ≤ 1 · (m2 + m − ε) + 2 · ε
m2 + m

,

where m2+m is the total number of the key spaces in BAffine.
Any key space (defined by a particular Blom’s scheme) can

only be compromised when at least w + 1 nodes entering this
space are compromised. Every compromised node enters m+1
key spaces. So if c nodes were compromised, then

ε ≤ c(m + 1)/(w + 1)

key spaces are broken. Thus the upper bound on the average
key path length L as a function of c is

L(c) ≤ m(w + 1) + c

m(w + 1)
=

s + c

s
, c ≤ s

So we see that the upper bound grows linearly with the number
of compromised nodes. Evidently L(0) = 1 since BAffine is
deterministic for c = 0, and L(s) ≤ 2 as it was seen before.



And the result is independent of what particular nodes are
compromised and whether the adversary compromised them
randomly or on his choice.

When nodes are compromised randomly L(c) grows slower
than linearly with c. Due to apparent regularity of affine
planes, when some number of nodes are compromised the
number of colluders entering a key space is almost uniformly
distributed. So if a space is compromised almost immediately
all spaces are compromised. To compromise all spaces at
least s nodes must be compromised. So when nodes are
compromised randomly, L(c) ∼ 1 for 0 ≤ c ≤ s − δ for
some small δ. And only in a narrow region around s does
L(c) grow rather fast from 1 to 2. This is also justified by the
behavior of P (c) (see (1)).

V. CONCLUSION

We presented a key predistribution scheme based on two
KPSs, the one given by an affine plane S(m2, m, 1) and a w-
secure Blom’s scheme. Using “multiple key spaces” approach
we obtained from the two a new composite scheme called
BAffine(w, N) for the network of size N = m2. The scheme
can be constructed for any m such that m is any prime power.

BAffine is a deterministic KPS, i. e. any pair of nodes share
a common key. BAffine(w, N) is w-secure. The size of the
node’s key ring is (w + 1)(

√
N + 1) keys.

The key sharing graph of BAffine highly resistant to nodes’
compromise. Two nodes can always find a secure path between
them whenever the adversary compromised no more than any
(w + 1)

√
N − 1 nodes. Moreover there is either a direct link

or two different 2-hop paths between the pair.
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