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We consider a network with k servers and ` Poisson input flows,
each flow is assigned to some subgroup Sj of mj servers. A dy-
namic routing protocol is used: upon its arrival a message is
directed to the least loaded server.

The multi-server systems with dynamic routing protocol were investi-
gated in a number of papers, see for example [1]-[9], in particular different
asymptotic properties of such systems were investigated.

Consider a system S with k servers {si}, i = 1, ..., k, and ` input Poisson
flows {fj}, j = 1, ..., `, of intensity λj. Each flow is assigned to some subgroup
Sj of mj, servers sj1 , ..., sjmj

, 2 ≤ mj ≤ k. Upon arrival a message selects
a least busy server among the assigned ones and is directed to it (or is put
into the server’s buffer if the server is busy). The service is FCFS. Here
"least busy" may mean the least loaded one (where a new message will have
minimal waiting time) or the one with the shortest queue.

The flows are presented by the sequences

(ξ(j)
n , τ (j)

n ), n = ...,−1, 0, 1, ..., j = 1, ..., `, (1)

where τ
(j)
n are the intervals between arrivals of two messages and ξ

(j)
n - the

message lengths. All variables are iid, τ
(j)
n are exponentially distributed,

Pr(τ
(j)
n > t) = e−λjt. The distributions of message lengths ξ

(j)
n are identical.

The service rate of a server is equal to µ.
Examples: I) k servers form a circle where each of ` = k flows is served by

two neighboring servers. II) The system contains k servers, each of ` =
(

k
m

)
flows is served by m servers.

Denote by w(j)(t) the workload (the amount of unserved work) at server
sj at time moment t; w(t) = (w(1)(t), ..., w(k)(t)), define by v(j)(t) the queue
length (the number of messages) at the buffer of server sj at time moment t
(the served massage is also counted).

The system is stable if
∑n

r=1 λjrEξ < µl for any set S =
⋃n

r=1 Sjr , 1 ≤
n ≤ `, that contains l servers.

We want to present a property of systems with dynamic routing that does
not depend on stability.
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We say that the system S is balanced if there exist such

α(j, ir), 0 ≤ α(j, ir) ≤ 1, j = 1, ..., `, ir = i1, ..., imj

that
mj∑
r=1

α(j, ir) = 1,
∑

j

λjα(j, i) = λ = const.

(Here j is number of flow and i – the number of server).
The system is connected if for any pair of servers sp, sq there exist such

servers sp = si0 , si1 , . . . , sin = sq and flows fj1 , ..., fjn that α(ji, ri−1), α(ji, ri) >
α̂ > 0, 1 ≤ i ≤ n.

Let us first consider a case where the workload of servers guides the
routing. Suppose that ξ

(j)
n have finite second moments. The trajectories

w(t) = (w(1)(t), ..., w(k)(t)) define a Markov process U , U ∈ Rk.
Let (0, wP (t)) be the projection of vector (0, w(t)) ∈ Rk onto the hy-

perplane P that is orthogonal to the bisectrix (w(1) = ... = w(k)), wP (t) ∈
Rk−1.

Consider a Markov processes UP : wP (t) of dimension k − 1.

Theorem 1 If the system is balanced and connected then the Markov
process UP is ergodic.

That means that the trajectories w(t) are mainly concentrated in the
neighborhood of bisectrix (w(1) = ... = w(k)) even in case where the process
is not stable and vector (0, w(t)) grows with t.

The proof is based on the following property:
If at moment t of a message arrival maxi,j |w(i)(t)− w(j)(t)| is sufficiently

large then E(|wP (t + 0)| − |wP (t − 0)|) < c < 0. Here |w| is the norm of
vector (0, w), see [10], [11].

Consider a case where the queue lengths guide the routing. Suppose that
ξ

(j)
n are distributed exponentially with mean equal to 1. The trajectories

v(t) = (v(1)(t), ..., v(k)(t)) define a Markov process V , V ∈ Zk. Let (0, vP (t))
be the projection of (0, v(t)) onto the hyperplane P that is orthogonal to the
bisectrix (v(1) = ... = v(k)).

Theorem 2 If the system is balanced and connected then the Markov
process VP is ergodic.

The proof is similar to the proof of Theorem 1.
The case where the messages are of unit length and µ = 0 is presented in

[12].
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