We consider a network with \(k \) servers and \(\ell \) Poisson input flows, each flow is assigned to some subgroup \(S_j \) of \(m_j \) servers. A dynamic routing protocol is used: upon its arrival a message is directed to the least loaded server.

The multi-server systems with dynamic routing protocol were investigated in a number of papers, see for example [1]-[9], in particular different asymptotic properties of such systems were investigated.

Consider a system \(S \) with \(k \) servers \(\{s_i\}, i = 1, ..., k \), and \(\ell \) input Poisson flows \(\{f_j\}, j = 1, ..., \ell \), of intensity \(\lambda_j \). Each flow is assigned to some subgroup \(S_j \) of \(m_j \) servers, \(2 \leq m_j \leq k \). Upon arrival a message selects a least busy server among the assigned ones and is directed to it (or is put into the server’s buffer if the server is busy). The service is FCFS. Here "least busy" may mean the least loaded one (where a new message will have minimal waiting time) or the one with the shortest queue.

The flows are presented by the sequences

\[
(\xi_n^{(j)}, \tau_n^{(j)}), \quad n = \ldots, -1, 0, 1, \ldots, \quad j = 1, \ldots, \ell,
\]

where \(\tau_n^{(j)} \) are the intervals between arrivals of two messages and \(\xi_n^{(j)} \) - the message lengths. All variables are iid, \(\tau_n^{(j)} \) are exponentially distributed, \(\Pr(\tau_n^{(j)} > t) = e^{-\lambda_j t} \). The distributions of message lengths \(\xi_n^{(j)} \) are identical. The service rate of a server is equal to \(\mu \).

Examples: I) \(k \) servers form a circle where each of \(\ell = k \) flows is served by two neighboring servers. II) The system contains \(k \) servers, each of \(\ell = \binom{k}{m} \) flows is served by \(m \) servers.

Denote by \(w^{(j)}(t) \) the workload (the amount of unserved work) at server \(s_j \) at time moment \(t \); \(w(t) = (w^{(1)}(t), ..., w^{(k)}(t)) \), define by \(v^{(j)}(t) \) the queue length (the number of messages) at the buffer of server \(s_j \) at time moment \(t \) (the served massage is also counted).

The system is stable if \(\sum_{r=1}^n \lambda_j E\xi < \mu \bar{t} \) for any set \(\mathcal{S} = \bigcup_{r=1}^n S_{j_r}, 1 \leq n \leq \ell \), that contains \(\bar{t} \) servers.

We want to present a property of systems with dynamic routing that does not depend on stability.
We say that the system S is balanced if there exist such
\[\alpha(j, i_r), \ 0 \leq \alpha(j, i_r) \leq 1, \ j = 1, \ldots, \ell, \ i_r = i_1, \ldots, i_{m_j} \]
that
\[\sum_{r=1}^{m_j} \alpha(j, i_r) = 1, \sum_j \lambda_j \alpha(j, i) = \lambda = \text{const.} \]
(Here j is number of flow and i – the number of server).

The system is connected if for any pair of servers s_p, s_q there exist such servers $s_p = s_{i_0}, s_{i_1}, \ldots, s_{i_n} = s_q$ and flows f_{j_1}, \ldots, f_{j_n} that $\alpha(j_i, i_{r-1}), \alpha(j_i, i_r) > \hat{\alpha} > 0, \ 1 \leq i \leq n$.

Let us first consider a case where the workload of servers guides the routing. Suppose that $\xi_n^{(j)}$ have finite second moments. The trajectories $w(t) = (w^{(1)}(t), \ldots, w^{(k)}(t))$ define a Markov process $U, U \in \mathbb{R}^k$.

Let $(0, w_P(t))$ be the projection of vector $(0, w(t)) \in \mathbb{R}^k$ onto the hyperplane P that is orthogonal to the bisectrix $(w(1) = \ldots = w(k))$, $w_P(t) \in \mathbb{R}^{k-1}$.

Theorem 1 If the system is balanced and connected then the Markov process U_P is ergodic.

That means that the trajectories $w(t)$ are mainly concentrated in the neighborhood of bisectrix $(w(1) = \ldots = w(k))$ even in case where the process is not stable and vector $(0, w(t))$ grows with t.

The proof is based on the following property:
If at moment t of a message arrival $\max_{i,j} |w^{(i)}(t) - w^{(j)}(t)|$ is sufficiently large then $\mathbb{E}(|w_P(t + 0)| - |w_P(t - 0)|) < c < 0$. Here $|w|$ is the norm of vector $(0, w)$, see [10], [11].

Consider a case where the queue lengths guide the routing. Suppose that $\xi_n^{(j)}$ are distributed exponentially with mean equal to 1. The trajectories $v(t) = (v^{(1)}(t), \ldots, v^{(k)}(t))$ define a Markov process $V, V \in \mathbb{Z}^k$. Let $(0, v_P(t))$ be the projection of $(0, v(t))$ onto the hyperplane P that is orthogonal to the bisectrix $(v(1) = \ldots = v(k))$.

Theorem 2 If the system is balanced and connected then the Markov process V_P is ergodic.

The proof is similar to the proof of Theorem 1.

The case where the messages are of unit length and $\mu = 0$ is presented in [12].
References

