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The ensemble of braided block codes (BBC) [1] using Hamming codes as
component codes is considered. A method of calculation of thresholds for
these codes is suggested. Results of calculation of thresholds for BBC with
the (7,4), (15,11), and (31,26) Hamming codes as component codes in binary
erasure channel (BEC) are presented.

1 Introduction

Low-density parity-check (LDPC) codes, invented by Gallager [2], who described and an-
alyzed a block variant of the codes, arouse great interest of researchers. These codes are
widely used in practice since they can be decoded by using relatively simple iterative
decoding algorithms. Several modifications of these codes are known, in particular, gen-
eralized LDPC codes [3]. In contrast to Gallager’s LDPC codes, using single parity-check
codes as component codes, the generalized LDPC codes use as component codes arbitrary
block codes.

The convolutional version of Gallager’s codes, called convolutional LDPC codes, was
described in [4]. These codes have better decoding reliability performance then the re-
lated LDPC block codes. Particularly, if the density of the parity-check matrices of con-
volutional LDPC codes increases, then their threshold (see below) tends to the Shannon
limit [5], [6].

Braided block codes [1] and braided convolutional codes [7] can be considered as special
constructions of generalized LDPC convolutional codes.

In this paper, we will analyze the thresholds of braided block codes with Hamming
component codes. Thresholds are most important for the asymptotical performance of
LDPC codes, characterizing the iterative decoding reliability when the blocklength (mem-
ory) goes to infinity.
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2 Braided Block Codes

A BBC is constructed by the interconnection of two block codes, a horizontal component
code and a vertical component code. These component codes are usually chosen to have
relatively small a posteriori probability decoding complexity as, e.g., the Hamming codes.
In this paper we consider BBCs based on the (ν, κ) Hamming component codes. We
describe symmetric BBC, using the same Hamming code as both horizontal and vertical
component code.

It is convenient to define a BBC by means of a two-dimensional infinite array. The
array representation of BBCs is based on multiple convolutional permutors. The code
symbols are placed into the cells of the permutor and checked row-wise and column-wise
by the horizontal and vertical components codes.

A symmetric multiple convolutional permutor of memory m and multiplicity ν can
be described as an infinite binary matrix of width m having ν 1s in each row and each
column (the other elements of the matrix are 0s). The nonzero elements of the matrix
represent memory cells capable to store the input symbols. Therefore, each row and
each column of the array stores ν symbols. Symbols stored in each row and in each
column form codewords of the component Hamming code such that 2κ − ν symbols of
a codeword are information symbols and 2ν − 2κ symbols are parity-check symbols. For
example, if the component codes are the (7, 4) Hamming codes, each row/column stores
1 information symbol and 6 parity symbols; if they have parameters (15, 11), then each
row/column stores 7 information and 8 parity symbols; if they are (31, 21) codes, then
each row/column stores 21 information and 10 parity symbols. Correspondingly, the rates
R of BBCs are equal to 1/7, 7/15, and 21/31.

Consider a communication over a BEC with erasure probability δ. We assume that
a binary BBC with (ν, κ)-Hamming component codes is used and that the girth of the
Tanner graph of the code goes to infinity when the memory of the code goes to infinity1.
Then we can assume that the iterative decoder operates on a cycle-free graph.

The variable nodes of the Tanner graph are associated with code symbols; half of the
check nodes (first group) are associated with horizontal component codes and the other
half of the check nodes (second group) are associated with vertical component codes.

The iterative message-passing decoding algorithm of BBC codes is based on a pos-
teriori probability (APP) decoding of component codes and operates as follows. Assume
that at the beginning of the decoding process, the symbols of the received sequence r

are associated with the corresponding variable nodes. After each iteration the decoder
reconstructs some erased symbols and then uses the modified received sequence r′ for the
next iteration.

1A proof of the existence of such BBC is analogous to the proof given for conventional regular LDPC
codes (see, for example, [8]).
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Let us explain the decoding using the Tanner graph of the code. In the first phase
of the first iteration all variable nodes send messages to their connected check nodes of
the first group. The message is the value of the corresponding received symbol , i.e., 0, 1,
or the erasure symbol ∆. In the second phase of the first iteration, the decoder performs
APP decoding of the horizontal component codes. Then, the check nodes of the first
group send the corresponding messages to their connected variable nodes.

In the first phase of the second iteration, variable nodes corresponding to nonerased
symbols retain these symbols independently of the messages received from their connected
check nodes and continue to pass the same messages. If a variable node corresponding
to an erased symbol receives from a connected check node of the first group a 0 or 1
symbol, it corrects the erasure, resulting in a modified received sequence r′, and sends the
corresponding message to a connected check node of the second group. In the second phase
of the second iteration the decoder performs APP decoding of the vertical component
codes. Then the check nodes of the second group send the corresponding messages to
their connected variable nodes.

In the first phase of the odd-numbered iterations the variable nodes send correspond-
ing messages to the check nodes of the first group; in the first phase of the even-numbered
iterations they send corresponding messages to the check nodes of the second group. In
the second phase of the odd-numbered iterations decoder performs APP decoding of the
horizontal component codes. In the second phase of the even-numbered iterations de-
coder performs APP decoding of the vertical component codes. Then check nodes send
the corresponding messages to their connected variable nodes. Decoding continues until
either all symbol nodes have 0 or 1 symbols, i.e., the modified received sequence r′ does
not contain any erased symbols, or the sequence r′ becomes a stopping set.

3 Shannon Limit, Iterative Limit and Threshold

The Shannon limit δsh for the BEC is defined as the maximal erasure probability δ for
which reliable communication over the channel with code rate R and blocklength N → ∞
is possible. It is connected to the code rate R as

δsh = 1−R. (1)

The iterative limit of the BBC δid for BEC is also a function of the code rate R and
it characterizes communication when N → ∞. But in contrast to the Shannon limit,
we assume that the parameters of the code and iterative decoding method are fixed.
The iterative limit is defined as the maximal erasure probability δ for which reliable
communication over the BEC is possible, conditioned that the parameters of used BBC
and decoding method are fixed. Calculating the iterative limit for LDPC-like codes is a
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complicated problem, therefore, in practice a lower bound on δid is found. This bound is
called the threshold,

δid ≥ δth. (2)

The standard method of threshold calculation is called density/probability evolution. In
the case of analysis of the communication over the BEC it is reduced to calculating the
code symbol erasure probability fi, i = 1, 2, . . . , after ith decoding iteration.

4 Thresholds Calculation

Our goal is to calculate the thresholds δth for a BBC for the BEC with erasure probability
δ. By definition, if δ ≤ δth, then there exists iteratively decodable BBC of sufficiently
large memory m such that the bit-error probability of the code goes to zero as m → ∞.

We assume that the decoder operates on a cycle-free graph, i.e., the code has girth
g = O(logm) → ∞ , and the number of decoding iterations I does not exceed ℓ0 =
⌈(g − 4)/4⌉. Then we get the following recurrent equations for the probability fi that a
code symbol is erased after the ith iteration:

for the BBC code with (7, 4) component Hamming codes

fi = δ[1− (1− fi−1)
6 − 6fi−1(1− fi−1)

5 − 12f 2

i−1
(1− fi−1)

4]; (3)

for the BBC code with (15, 11) component Hamming codes

fi = δ[1−(1−fi−1)
14−14fi−1(1−fi−1)

13−84f 2

i−1
(1−fi−1)

12−224f 3

i−1
(1−fi−1)

11]; (4)

for the BBC code with (31, 21) component Hamming codes

fi = δ[1− (1− fi−1)
30 − 30fi−1(1− fi−1)

29 − 420f 2

i−1
(1− fi−1)

28 − (5)

− 3360f 3

i−1
(1− fi−1)

27 − 13440f 4

i−1
(1− fi−1)

26].

In all cases the initial condition is

f0 = δ. (6)

Using the recurrent equations (3)–(5), we can find the maximum δ for which the
function fi → 0 as i → ∞. This value represents the iterative decoding threshold of the
corresponding BBC.

We get the following results: for the rateR = 1/7 BBC with(7,4) Hamming component
codes δth = 0.7032506; for the rate R = 7/15 BBC with (15,11) Hamming component
codes δth = 0.4116977; for the rate R = 21/31 BBC with (31,21) Hamming component
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codes δth = 0.2385489. The Shannon limits for the BEC are: for the rate R = 1/7 codes
δsh = 0.8571428; for the rate R = 7/15 codes δsh = 0.5333333; for the rate R = 21/31
codes δsh = 0.3225806.

Note that ratios of the thresholds δth and the Shannon limits δsh are close to those of
LDPC codes with the same rates and parity-check densities.

5 Conclusion

In this paper, we calculated the thresholds of BBC with Hamming component codes. In
our analysis we do not take into account the convolutional nature of the BBC codes.
Because of this, our analysis is valid for the corresponding constructions of generalized
LDPC block code [3], i.e., there exist generalized LDPC codes with Hamming component
codes having the same thresholds as given in Section 4. We expect that application of
more ingenious analytical methods, analogous to those used in [5], will give thresholds
very close to the Shannon limits.
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