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General description of work

Background and Relevance of the Work. Deep learning (DL) mod­
els have rapidly transformed both academia and real-world applications, such
as medical diagnosis [1], biometrics [2], speech processing [3], and generative
technologies including Large Language Models (LLMs) [4; 5]. Despite these
advances, DL models remain limited in reliability and robustness. Firstly,
models are vulnerable to adversarial perturbations, which are minor changes
in input that might be insignificant to human perception but can drastically
degrade performance [6; 7]. Secondly, DL models can also fail under natural
perturbations such as noise, blurring, brightness, or contrast adjustment. More­
over, the spread of generative technologies has created new threats to security
and privacy, including realistic voice cloning [8] and multimodal deepfakes. In
high-risk applications like medicine, biometrics, or self-driving, such failures
can have severe consequences. These risks highlight the importance of inves­
tigating vulnerabilities, understanding model limitations, and designing new
empirical and certifiable defenses to enhance robustness, trustworthiness, and
privacy of DL systems.

Degree of prior research on the topic. Deep learning models are
well known to be vulnerable to adversarial perturbations [6]. Formally, for
a classifier 𝑓 : R𝑛 ↦→ [0,1]𝐶 , an adversarial attack aims to change the pre­
dicted class

argmax 𝑓(𝑥+ 𝛿) ̸= argmax 𝑓(𝑥), (1)

while constraining the perturbation norm ‖𝛿‖𝑝 (e.g., ℓ2, ℓ∞). A classical ex­
ample is the FGSM attack [7]: 𝛿 = 𝜀 sign [∇𝑥ℒ(𝑓, 𝑥, 𝑦)], where 𝑦 is a ground
truth class, 𝜀 is an ℓ∞ attack level. Numerous attack types exist [9], including
white-box [10], black-box [11], patch [12], and physical attacks [13]. To counter
them, empirical defenses such as adversarial training were proposed [14], but
they often fail against novel attacks [15], leading to a cat-and-mouse game.
Certification approaches [16; 17] instead provide provable robustness guaran­
tees within a perturbation set. Among them, randomized smoothing (RS) [18;
19] has become the most widely adopted: a smoothed classifier

𝑔(𝑥) = E𝜀∼𝒩 (0,𝜎2𝐼)𝑓(𝑥+ 𝜀) (2)

is shown to be a Lipschitz function, allowing robustness certification due to
the property that the model’s output perturbation can be limited for a fixed
input perturbation level. When 𝑔(𝑥) is confident in predicting the correct class
𝑖1 for the input 𝑥, 𝑔(𝑥)𝑖1 = 𝑝𝑖1 ≥ 𝑝𝑖2 = max𝑖 ̸=𝑖1 𝑔(𝑥)𝑖 then it is robust in
ℓ2−ball around 𝑥 of radius

𝑅 =
𝜎

2

(︀
Φ−1(𝑝𝑖1)− Φ−1(𝑝𝑖2)

)︀
, (3)
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∀𝛿 : ‖𝛿‖2 < 𝑅 ↦→ argmax 𝑔(𝑥) = argmax 𝑔(𝑥+ 𝛿), (4)

where Φ−1(·) is the inverse of the standard Gaussian cumulative density func­
tion.

RS has also been applied to semantic transformations [20; 21] and
few-shot models [22], though limited to restricted transformation sets and
without covering speaker identification tasks.

In parallel, voice anti-spoofing has gained attention with the rise of text­
to-speech, voice cloning, and conversion models. Benchmarks and contests such
as ASVspoof [23] and ADD [24] drive progress in methods like AASIST [25],
which combines spectral and temporal features with graph neural networks.
Further improvements are achieved using self-supervised encoders [26; 27], aug­
mentations [28], and specialized losses [29], though performance still degrades
in unseen domains, limiting the reliability in applications.

Simultaneously, adversarial methods are also studied for speaker privacy
(voice anonymization). Regenerative approaches [30] and universal adversarial
perturbations (UAPs) [31] aim to conceal speaker identity while preserving in­
telligibility. UAPs are lightweight and suitable for real-time applications, but
their performance needs enhancement. They struggle with long audio record­
ings, balancing privacy with speech quality, and can underperform for new
speakers and biometrics models, limiting the empirical privacy robustness in
applications.

Dissertation objectives. This dissertation investigates methods to im­
prove the robustness, trustworthiness, and privacy of deep learning models,
with a particular focus on classification and few-shot classification tasks. The
goal of this dissertation is to develop novel improved certified and empirical
approaches that enhance robustness, reliability, and privacy of deep learning
models while preserving their target performance without imposing significant
application limitations. To achieve this goal, the following problems are ad­
dressed:

1. Development of an enhanced certification method for a broad class
of resolvable semantic transformations, without underperforming ex­
isting methods on the transformations they certify. This requires
analyzing transformation-dependent Lipschitz continuity of smoothed
classifiers, deriving corresponding robustness certificates, and design­
ing a numerical evaluation scheme.

2. Development of the improved certification method for the prototypical
(embedding) few-shot models against norm-bounded perturbations via
analysis of scalar mapping from the embedding space and derivation
of theoretical robustness guarantees based on its Lipschitz properties.

3. Development of an enhanced UAP-based speaker privacy method to
achieve a better balance (trade-off) between fooling rate and preserva­
tion of perceptual and speech recognition quality.
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4. Development of a novel architecture and training strategy for the voice
anti-spoofing models to improve generalization to previously unseen
synthetic speech generators.

Scientific novelty.

1. The thesis presents a new universal certification approach against
compositions of resolvable semantic transformations based on random­
ized smoothing, complemented by an efficient numerical verification
procedure and yielding state-of-the-art robustness guarantees across
multiple datasets. The approach can be applied to any resolvable
compositional transformation, in contrast to previous works, and
demonstrates state-of-the-art results.

2. A novel randomized smoothing-based certification approach for
few-shot embedding models against additive perturbations is pro­
posed. This result also includes the first provable robustness
guarantees for the speaker identification task, achieves state-of-the-art
results, and establishes the first certification benchmark for this
problem.

3. The thesis presents the novel speaker privacy UAP method that
achieves state-of-the-art fooling rate and word error rate results, es­
pecially for long audio. An application of exponential total variance
loss and a length-independent tiling during training is proposed, re­
sulting in superior performance in fooling rate, perceptual quality, and
robustness on long-duration audio compared to existing approaches.
Additionally, a fair length and noise-agnostic evaluation protocol is
proposed.

4. The dissertation also presents the novel voice anti-spoofing architec­
ture enhanced via Kolmogorov–Arnold neural layers, advanced audio
pre-processing, augmentations, and a self-supervised backbone to im­
prove overall model generalization.

Theoretical and practical significance. This work presents a theoret­
ical analysis of the transformation-dependent Lipschitz continuity of smoothed
image classifiers with respect to transformation parameters and derives corre­
sponding robustness certificates. It provides a theoretically robust guarantee
that a smoothed image classifier will be robust against a given resolvable se­
mantic perturbation within the considered parameter set. Also, this work
provides new theoretical certification guarantees for the few-shot embedding
models based on a scalar mapping from the embedding space. Furthermore,
the following methods for robustness evaluation and certification of neural net­
works, speaker privacy protection, and voice anti-spoofing have been developed:

1. General Lipschitz, theoretical, numerical, and experimental framework
for the certification of image classifiers against resolvable semantic
transformation and robustness evaluation.
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2. ASI Certification, theoretical and experimental framework for the cer­
tification of ASI models or other few-shot embedding models, and
evaluation of their robustness against bounded additive perturbations.

3. Voice-UAP, a speaker privacy (anonymization) empirical method
which is targeted to fail voice biometrics models in a real-time speak­
er-agnostic scenario, exploiting vulnerabilities of deep learning speaker
recognition models.

4. AASIST-3 (KAN-AASIST), a novel voice anti-spoofing model, ori­
ented on the empirically robust detection of artificially generated or
modified speech.

Research methodology. The methodology includes methods of ma­
chine learning, deep learning, classical algorithms, and data structures. The
mathematical methods used in this dissertation include aspects of real anal­
ysis, linear algebra, numerical methods (including methods of digital signal
processing), probability theory, and statistics.

Propositions for defense.
1. A theoretical certification guarantees of classifiers against resolv­

able transformations and their compositions, and the corresponding
semi-automatic numerical certification procedure.

2. A theoretical certification method for the few-shot embedding mod­
els against additive, norm-bounded perturbations, and its particular
application for the speaker identification task.

3. A speaker privacy (anonymization) method based on universal adver­
sarial perturbation trained with an application of exponential total
variance loss and length-agnostic tiling.

4. Voice anti-spoofing models based on self-supervised audio encoders
and the incorporation of Kolmogorov-Arnold neural layers.

Validation of the research results, reliability. The theoretical find­
ings presented in this dissertation are formulated as mathematical statements
supported by rigorous proofs. The effectiveness of the proposed theoretical
methods for model certification and empirical methods for voice anonymiza­
tion and voice anti-spoofing has been demonstrated through a broad range
of experiments, including comparative evaluations against state-of-the-art ap­
proaches, in which the proposed solutions demonstrated superior performance.
All developed methods and experimental settings are described in detail in the
main text, in the appendix, and in open-sourced code.

Publications. During the PhD studies, 6 works were accepted, 5 of which
are already published. The main results of the dissertation are presented in 4
articles: three in CORE A/A* conferences and one in a workshop of CORE A
conference. Relevant results of the fifth article are included in the appendix,
while the sixth work is not discussed in this dissertation.
The list of the author’s main publications:

8



1. Dmitrii Korzh, Mikhail Pautov, Olga Tsymboi, and Ivan Oseledets.
General Lipschitz: Certified robustness against resolvable semantic
transformations via transformation-dependent randomized smoothing
//ECAI 2024. – IOS Press, 2024. – С. 1591-1598. (CORE A). [A1].

2. Dmitrii Korzh, Elvir Karimov, Mikhail Pautov, Oleg Y. Rogov, and
Ivan Oseledets. Certification of speaker recognition models to additive
perturbations //Proceedings of the AAAI Conference on Artificial In­
telligence. – 2025. – Т. 39. – №. 17. – С. 17947-17956. (CORE A*).
[A2].

3. Elvir Karimov, Alexander Varlamov, Danil Ivanov, Dmitrii Korzh,
Oleg Y. Rogov. Novel Loss-Enhanced Universal Adversarial Patches
for Sustainable Speaker Privacy //Proc. Interspeech 2025. – 2025. –
С. 1513-1517. (CORE A). [A3].

4. Kirill Borodin*, Vasiliy Kudryavtsev*, Dmitrii Korzh*, Alexey Efi­
menko*, Grach Mkrtchian, Mikhail Gorodnichev, Oleg Y. Rogov.
AASIST3: KAN-enhanced AASIST speech deepfake detection using
SSL features and additional regularization for the ASVspoof 2024 Chal­
lenge //Proc. ASVspoof 2024. – 2024. – С. 48-55. [A4].

Other publications:

1. Artyom Iudin, Dmitrii Korzh, Matvey Skripkin, Oleg Y. Rogov.
Clarispeech: LLM-Enhanced Speech Recognition Post-Correction -
2025. This article [A5] was accepted to the Artificial Intelligence
and Natural Language (AINL) Conference 2025. The proceedings are
under preparation. Several results of this work are discussed in the
appendix of the dissertation.

2. Alexey Dontsov, Dmitrii Korzh, Alexey Zhavoronkin, Boris
Mikheev, Denis Bobkov, Aibek Alanov, Oleg Y. Rogov, Ivan Os­
eledets, and Elena Tutubalina. Clear: Character unlearning in textual
and visual modalities //Findings of the Association for Computational
Linguistics: ACL 2025. – 2025. (CORE A*). This work [A6] is not
discussed in the dissertation.

Approbation. The author presented the results at several conferences
and workshops:

1. ASVspoof 2024 Workshop (Kos Island, Greece; August 2024). Oral
presentation. Topic: “AASIST3: KAN-enhanced AASIST speech deep­
fake detection using SSL features and additional regularization for the
ASVspoof 2024 Challenge”.

2. ECAI 2024 (Santiago de Compostela, Spain; October 2024). Oral
presentation. Topic: “General Lipschitz: Certified robustness against
resolvable semantic transformations via transformation-dependent ran­
domized smoothing”.
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3. AINL 2024 (Novosibirsk, Russia; April 2025). Oral presentation.
Topic: “Clarispeech: LLM-Enhanced Speech Recognition Post-Correc­
tion”.

4. RSI AIRI and SAIL MTUCI Workshop “Cybersecurity and robustness
in the AI era” (Moscow, Russia; August 2025). Oral presentation.
Topic: “Trusted AI in voice biometrics and multimodal models”.

5. Interspeech 2025 (Rotterdam, the Netherlands; August 2025). Poster
presentation. Topic: “Novel Loss-Enhanced Universal Adversarial
Patches for Sustainable Speaker Privacy”.

Author’s contribution. The author contributed to the presented works
as follows:

1. In the work “General Lipschitz: Certified robustness against resolvable
semantic transformations via transformation-dependent randomized
smoothing” [A1], the author contributed to the formulation and proof
of the theorem and lemmas, namely devoted to the certification
condition against resolvable semantic transformations, estimation of
logarithm and its derivative of smoothing probability density distri­
bution for resolvable transformations. The author contributed to
numerical implementations of the proposed methods, conducted all
the extensive experiments, analyzed the results, estimated the error
bounds of the numerical scheme, and provided an analytical deriva­
tion example. Together with co-authors, the author prepared the
manuscript’s text and its revisions.

2. In the work “Certification of speaker recognition models to additive
perturbations” [A2], the author proposed the main idea of the article,
contributed to the formulation and proof of the theorem (certification
of vector function against additive perturbations). The author con­
tributed to the experimental implementation of the proposed methods,
designed the evaluation methodology, conducted the main experi­
ments, and analyzed the results. Together with co-authors, the author
prepared the manuscript’s text and its revision.

3. In the work “Novel Loss-Enhanced Universal Adversarial Patches for
Sustainable Speaker Privacy” [A3], the author proposed the approach,
contributed to its experimental development, and to the preparation of
the final (best) method. The author significantly participated in the
implementation, experiments, and evaluation of the methods. The
author prepared several parts of the manuscript.

4. In the work “AASIST3: KAN-enhanced AASIST speech deepfake
detection using SSL features and additional regularization for the
ASVspoof 2024 Challenge” [A4], the author significantly contributed
to the experimental development and to the final proposed method, de­
signed the experimental framework, conducted extensive experiments,
and prepared several parts of the manuscript.
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Contents of the dissertation

The introduction provides an overview of the research area and prior
work, discusses the relevance of the research, defines its goal and objectives, and
highlights the scientific novelty and practical significance of the dissertation.

The first chapter is devoted to the certified robustness of image classi­
fiers against semantic perturbations and provides novel state-of-the-art results,
including results for the transforms for which certified guarantees were not pre­
viously proposed. Section 1.1 provides a general introduction and motivation
to this problem, while Section 1.2 describes relevant works and competitors,
especially certification methods against semantic transformation.

Section 1.3 is devoted to the proposed certification approach and its the­
oretical analysis. In subsection 1.3.1, preliminaries are introduced. Suppose a
parametric mapping 𝜑 : 𝑋×Θ → 𝑋 corresponds to a semantic perturbation of
the input of the classification model, where Θ is the space of parameters of the
perturbation. The goal of this paper is to construct a framework to certify that
a classifier is robust at 𝑥 ∈ 𝑋 to the transformation 𝜑(𝑥, ·) for some set of pa­
rameters ℬ(𝛽0), where 𝜑(𝑥, 𝛽0) = 𝑥 for all 𝑥 ∈ 𝑋. A transform 𝜑 : 𝑋×Θ → 𝑋
is called resolvable [21] if for any parameter 𝛼 ∈ Θ there exists a continuously
differentiable function 𝛾 : Θ×Θ → Θ such that for all 𝑥 ∈ 𝑋 and all 𝛽 ∈ Θ

𝜑(𝜑(𝑥, 𝛼), 𝛽) = 𝜑(𝑥, 𝛾(𝛼, 𝛽)). (5)

Subsection 1.3.2 defines the smoothed classifier ℎ(𝑥) in the form of expec­
tation over perturbation density 𝜌(𝑦|𝑥) conditioned on the observed sample 𝑥:

ℎ(𝑥) =

∫︁
Θ

𝑓(𝜑(𝑥, 𝛼))𝜌(𝜑(𝑥, 𝛼)|𝑥)𝑑𝛼 =

∫︁
R𝑛

𝑓(𝑦)𝜌(𝑦|𝑥)𝑑𝑦. (6)

Moreover, the goal of the study is defined: to present a procedure that guaran­
tees a smoothed model to be robust to semantic perturbations, that is

argmax
𝑖∈{1,2,...𝐶}

ℎ𝑖(𝑥) = argmax
𝑖∈{1,2,...𝐶}

ℎ𝑖(𝜑(𝑥, 𝛽)), (7)

for all 𝛽 ∈ ℬ(𝛽0), where 𝜑(𝑥, 𝛽0) = 𝑥. One way to achieve robustness to para­
metric perturbation is to bound the Lipschitz constant of the classifier from
Eq. (6) with respect to the transformation parameters. For this purpose, the
perturbation-dependent conditional smoothing density 𝜌(𝑦|𝑥), which has to be
continuously differentiable with respect to perturbation parameters, is intro­
duced in the form:

𝜌(𝑦|𝑥̂) =

∫︀
Θ
exp

{︁
−‖𝑦−𝜑(𝑥̂,𝛼)‖2

2

2𝜎2

}︁
𝜏(𝛼)𝑑𝛼

(2𝜋𝜎2)
𝑛
2

, (8)

where 𝑥̂ = 𝜑(𝑥, 𝛽) is a perturbed sample, 𝑦 = 𝜑(𝑥̂, 𝛼)+ 𝜀, 𝜀 ∼ 𝒩 (0, 𝜎2𝐼𝑛), 𝜏(𝛼)
is the smoothing distribution of the transformation.
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Subsection 1.3.3 presents the main theoretical result and a sketch of the
proof. Let 𝑥 ∈ 𝑋 be the input object of class 𝑐 and assume that the smoothed
classifier ℎ defined in Eq. (6) correctly classifies 𝑥 with significant confidence,
i.e., ℎ𝑐(𝑥) > 1

2 . Then, the following result holds.

Theorem 1. Certification condition. Let 𝛽(𝑡) : [0,1] → Θ be a smooth curve
such that 𝛽(0) = 𝛽0 and 𝛽(1) = 𝛽. Then there exist mappings 𝜉 : [0, 1] → R
and 𝑔(𝛽) : Θ → R such that if 𝑔(𝛽) < −𝜉(1− ℎ𝑐(𝑥)) + 𝜉(1/2), then ℎ is robust
at 𝑥 for all 𝛽 ∈ 𝛽(𝑡), where 𝑡 ∈ [0, 1].

The Theorem (1) anticipates a numerical procedure to compute certifica­
tion functions 𝜉, 𝑔 semi-automatically, based on Lipschitz-continuity analysis of
the smoothed classifier via gradient bounding. Subsections 1.3.4-1.3.6 explain
the required methods and algorithms in detail.

It is assumed that the input sample 𝑥 is fixed and the smoothed model ℎ
is threat as the function of the perturbation parameter 𝛽, namely ℎ(𝜑(𝑥, 𝛽)) ≡
ℎ(𝑥̂) ≡ ℎ(𝑥,𝛽) ≡ ℎ(𝛽) for simplicity. Within the proposed framework, func­
tions 𝜉, 𝑔 are derived as the ones bounding the smoothed classifier’s directional
derivative with respect to the perturbation parameter:

⟨∇𝛽ℎ(𝛽), 𝛽⟩ ≤ 𝑔(ℎ(𝛽), 𝛽) ≤ 𝑝(ℎ)𝑔(𝛽), (9)

where 𝑔(ℎ(𝛽), 𝛽) is an upper bound on the directional derivative. This function
is also bounded by the product of a function of ℎ and the function of 𝛽. If
the functions 𝑝(ℎ) and 𝑔(𝛽) are known, the mappings from Theorem 1 have
the following form:

𝜉(ℎ) =

∫︁
1

𝑝(ℎ)
𝑑ℎ, 𝑔(𝛽) =

∫︁ 1

0

𝑔(𝛽(𝑡))𝑑𝑡. (10)

A bound for the directional derivative in the form from Eq. (9) is used to
compute functions 𝜉, 𝑔 from Theorem (1). However, in the case of a complicated
form of conditional density from Eq. (8), it may be unfeasible to construct an
exact bound. Instead, a numerical procedure to bound directional derivatives
of the smoothed model is proposed. The gradient of the smoothed classifier
with respect to the parameters of transformation has the following form:

∇𝛽ℎ =

∫︁
𝑓(𝑦)∇𝛽𝜌(𝑦|𝑥̂)𝑑𝑦 =

∫︁
𝑓(𝑦)𝜂(𝑦, 𝑥̂)𝜌(𝑦|𝑥̂)𝑑𝑦, (11)

where 𝜂(𝑦, 𝑥̂) = ∇𝛽 log 𝜌(𝑦|𝑥̂). Given fixed 𝛽, the problem of bounding the
directional derivative ⟨∇𝛽ℎ(𝛽), 𝛽⟩ is equivalent to the search for the worst base
classifier, i.e., the one with the largest bound. The search for the worst classifier
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𝑞* may be formulated as the optimization problem:

𝑞* =argmax
𝑞∈𝒬

∫︁
𝑞(𝑦)𝜂(𝑦, 𝑥̂)𝜌(𝑦|𝑥̂)𝑑𝑦,

s.t. ℎ(𝑥̂) =

∫︁
𝑞(𝑦)𝜌(𝑦|𝑥̂)𝑑𝑦,

(12)

where 𝒬 = {𝑞|𝑞 : 𝑋 → [0, 1]} is the set of all binary classifiers. Under the
specific choice of resolvable transform 𝜑 and perturbation distribution 𝜏(𝛼),
the problem from Eq. (12) admits the analytical solution. In general, if the
evaluation of 𝜌(𝑦|𝑥̂) and 𝜂(𝑦,𝑥̂) is available, the solution of the problem from
Eq. (12) could be obtained numerically via sampling, and the corresponding
procedure is described in the full version of the dissertation.

Since the exact evaluation of the density from Eq. (8) is challenging, it is
proposed to emulate sampling from the conditional density 𝜌(𝑦|𝑥̂) by estimating
the gradient of the log-density 𝜂(𝑦, 𝑥̂) from Eq. (11). While the derivation of
the Laplace approximation of the log density admits an arbitrary parametric
transform 𝜑, for the resolvable one, there exists a closed-form limit when 𝜎 → 0.
The last is summarized in Lemma 1, allowing computation of log-density either
analytically or through automatic differentiation tools.

Lemma 1. Let 𝛾(𝛼, 𝛽) be the resolving function: 𝜑(𝜑(𝑥, 𝛽), 𝛼) = 𝜑(𝑥, 𝛾(𝛼, 𝛽)).
Then, the formula for the logarithm of the conditional density from Eq. (8) has
the limit when 𝜎 → 0 in the form

log 𝜌(𝑦|𝑥̂) = −1

2
log det𝐽⊤𝐽 + log 𝜏(𝛼), 𝐽 =

𝜕𝜑

𝜕𝛼
. (13)

Accordingly, for the resolvable transforms 𝜌(𝑦|𝑥̂) = 𝜏(𝛼)√
det 𝐽𝑇 𝐽

, which, for
example, for additive transforms simplifies to the well-known 𝜏(𝛼). Both den­
sity and the logarithm of the density can be evaluated analytically or via
automatic differentiation, though numerically it is more precise to do so for
the logarithm of the density. The automatic differentiation, however, might
require the mapping from normally distributed random variables to variables
distributed as 𝜏(𝛼). Moreover, in the analytical approach, the integration with
the more complex (often multidimensional) 𝜏(𝛼) might still be required. If the
log-density log 𝜌(𝑦|𝑥̂) is known, the expression for 𝜂(𝑦, 𝑥̂) = ∇𝛽 log 𝜌(𝑦|𝑥̂) is
given by the following lemma:

Lemma 2 (Gradient of log-density for resolvable transformations). Suppose
that the log-density log 𝜌(𝑦|𝑥̂) = 𝑧(𝛼, 𝛽) = 𝑧(𝛼(𝛽), 𝛽) is known. Then

𝜂(𝑦|𝑥̂) = ∇𝛽𝑧 =
𝜕𝑧

𝜕𝛽
− 𝜕𝑧

𝜕𝛼

(︂
𝜕𝛾

𝜕𝛼

)︂†
𝜕𝛾

𝜕𝛽
,

where 𝛾 is a resolving function of the transform: 𝜑(𝜑(𝑥, 𝛽), 𝛼) = 𝜑(𝑥, 𝛾(𝛼, 𝛽)).
13



The overall numerical procedure is presented in Algorithms 1, 2 in the
full version of the dissertation.

Table 1 — Quantitative results on ImageNet dataset. Smoothing distribu­
tions and certified robust accuracy are reported for the proposed approach and
competitors’ methods. The best results are highlighted in bold, underlined
denotes equivalent performance. Symbol ′′−′′ in the table corresponds to the
transformation in which a method does not certify the model against the given
distribution parameters. The CRA is evaluated in the fixed parameter range
𝑅𝑙 ≤ 𝛽 ≤ 𝑅𝑟 for each transformation type. In the parameter column,
𝑐, 𝑏, 𝛾, (𝑇𝑥, 𝑇𝑦), 𝑟𝑏 represent contrast, brightness, gamma-correction, transla­
tions, and Gaussian blur attacks’ parameters, respectively. GL stands for the
General Lipschitz, the proposed method. The architecture of the base model
𝑓 is ResNet-50.

Transform 𝛽 𝑅𝑙 𝑅𝑟 Distribution GL TSS [21] MP [20] CGS [32]

Brightness 𝑏 -0.4 0.4 𝒩 (0, 0.3) 0.68 0.68 – 0.67

Contrast 𝑐 0.6 1.4 LogNorm(0, 0.3) 0.68 – 0.68 0.67

Blur 𝑟𝑏 1 4 Exp(0.3) 0.59 0.59 – 0.0

Translation 𝑇𝑥, 𝑇𝑦 -56 56 𝒩 (0, 50) 0.49 0.28 – 0.45

Gamma 𝛾 1.0 2.0 Rayleigh(0.1) 0.66 – 0.54 –

Gamma 𝛾 0.5 1.0 Rayleigh(0.1) 0.66 – 0.61 –

Contrast 𝑐 0.6 1.4 LogNorm(0, 0.6) 0.62 0.59 – 0.62Brightness 𝑏 -0.4 0.4 𝒩 (0, 0.6)

Gamma 𝛾 0.8 1.4 Rayleigh(0, 0.1) 0.62 – – –Contrast 𝑐 0.6 2.0 LogNorm(0, 0.1)

Brightness 𝑏 -0.2 0.2 𝒩 (0, 0.4) 0.46 0.02 – –Translation 𝑇𝑥, 𝑇𝑦 -56 56 𝒩 (0, 30)

Contrast 𝑐 0.8 1.2 LogNorm(0, 0.4) 0.09 – – –Translation 𝑇𝑥, 𝑇𝑦 -25 25 𝒩 (0, 30)

Contrast 𝑐 0.8 1.2 LogNorm(0, 0.4)
0.06 – – –Brightness 𝑏 -0.2 0.2 𝒩 (0, 04)

Translation 𝑇𝑥, 𝑇𝑦 -15 15 𝒩 (0, 15)

Translation 𝑇𝑥, 𝑇𝑦 -3 3 𝒩 (0, 10)

0.20 – – –Blur 𝑟𝑏 1 3 Rayleigh(1)
Brightness 𝑏 -0.1 0.1 𝒩 (0, 0.3)
Contrast 𝑐 0.95 1.05 LogNorm(0, 0.3)

The experimental setting and results, including computational complex­
ity estimation, are described in Section 1.4. The certified robust accuracy
(CRA) was used for the evaluation, which is a fraction of correctly classified
images 𝑥𝑖 from the test set on which the certification condition is met.

The proposed approach was evaluated against [20; 21; 32] and the results
were presented in Tables 1 and 2. The method achieved state-of-the-art ro­
bustness certificates for the majority of transformations and provided the first
certified results against such transforms, as Gamma-Contrast and Contrast­
Translation. Figure 1 illustrates CRA dependency on the parameter range
of the attack.
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Table 2 — Certified robust accuracy (CRA) for some attacks on CIFAR-10
and CIFAR-100 datasets. The best results are highlighted in bold, underlined
denotes equivalent performance. For the contrast transform, the proposed GL
method vs. MP has 86.2 vs. 86.2 and 45.6 vs. 46.0 for CIFAR-10 and CI­
FAR-100, respectively. The architecture of the base model is Resnet-110.

Transform CIFAR-10 CIFAR-100
GL TSS GS GL TSS GS

Brightness 86.8 86.6 85.6 45.6 43.8 43.2
Contrast 86.2 – 85.6 45.6 – 43.2
Blur 74.2 75.4 0.0 39.8 41.8 0.0
CB 85.5 83.4 85.5 41.6 38.0 41.4

Section 1.5 discusses limitations. For instance, the proposed method is
suitable only for the resolvable transformation. It is also worth mentioning
that, although the certification theorem provides deterministic guarantees, the
smoothed model cannot be evaluated exactly, even for simple transformations,
as deep learning models cannot be analytically represented under the integral;
thus, Monte-Carlo sampling is used, leading to probabilistic guarantees via
confidence estimation. The presented approach is based on the randomized
smoothing technique; hence, the certified model can not be evaluated exactly.
In the considered experimental setting, for the sample 𝑥 of class 𝑐, the true
value of the smoothed classifier ℎ𝑐(𝑥) is estimated as the lower bound of the
Clopper-Pearson confidence interval [33] over 𝑁max samples for some confidence
level 𝛼*. Namely, ℎ̂(𝑥) = 𝐵(𝛼*/2, 𝑛,𝑁max − 𝑛 + 1), where 𝐵 is Beta distribu­
tion, 𝑁max is the sample size and 𝑛 is the number of perturbations for which
𝑓(𝜑(𝑥, 𝛼𝑗)) > 1

2 . Thus, the approach produces certificates with probability
𝑝 ≥ 1 − 𝛼*, where 𝛼* is the upper bound on the probability to return an
overestimated lower bound for the value ℎ(𝑥).

The error analysis of the proposed numeric scheme and its influence on
the certification are also discussed. Section 1.6 finishes the first chapter with
conclusions and possible future research directions.

The second chapter is devoted to the robustness of few-shot vector
(embedding/prototypical) classifiers against ℓ2-norm bounded additive pertur­
bations and addresses the issues of robustness and privacy in deep learning
voice biometrics models, presenting state-of-the-art results. Section 2.1 pro­
vides a general introduction, and Section 2.2 describes related works devoted
to the speaker recognition tasks, adversarial attacks, empirical and certified
defenses in various domains, including few-shot classification.

Section 2.3 defines the problem statement, provides an overview of the
techniques used, and describes the proposed method and the proof of the main
theoretical result for certifying embedding models against norm-bounded ad­
ditive perturbations. Consider 𝑓 : R𝑛 → R𝑑 as the base model that maps
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Figure 1 — CRA visualization for different transformations, ImageNet dataset.
By design of the proposed approach, if the classifier is certified at the input
point 𝑥 for the parameter value 𝛽, it is certified for all parameters 𝛽* ∈ [𝛽0, 𝛽].
The CRA values are presented by color bars. Remark: the CRA against the
given transform in Table 1 is the infimum of CRAs on the corresponding plot.

input audios to normalized embeddings, where ‖𝑓(·)‖2 = 1, 𝑛 is an input di­
mension, and 𝑑 is an embedding dimension. After training the embedding
model, new speakers, whom one wants to authorize later in the biometrics
system, are required to enroll. For every enrolled speaker, the enrollment vec­
tor or centroid is established as the mean or weighted sum of embeddings
derived from collected audio samples of the speaker. These centroids create
the basis for calculating the similarity with the embeddings of new audio
samples during inference authorization. The enrollment dataset, denoted as
𝑆𝑒 = {(𝑥1, 𝑦1), . . . , (𝑥𝑙, 𝑦𝑙)}, consists of audio samples 𝑥𝑖 ∈ R𝑛 assigned to cor­
responding speakers 𝑦𝑖 ∈ [1, . . . ,𝐾]. Depending on the application, this dataset
may consist of speakers not encountered during training or a mix of seen and
unseen speakers. For a given class 𝑘, the subset 𝑆𝑒

𝑘 = {(𝑥𝑖, 𝑦𝑖) ∈ 𝑆𝑒 : 𝑦𝑖 = 𝑘}
comprises the audios belonging to the speaker 𝑘. For simplicity, 𝑀(𝑘) is fixed
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in the experiments 𝑀(𝑘) = 𝑀 for the fair comparison.

𝑐𝑘 =
1

𝑀

∑︁
𝑥∈𝑆𝑒

𝑘

𝑓(𝑥), ‖𝑐𝑘‖2 = 1, (14)

and a database 𝑆𝑐 = {𝑐𝑗}𝑗=𝐾
𝑗=1 of centroid vectors is constructed. During infer­

ence, a new sample 𝑥 ∈ 𝑆𝑖 is classified by assigning it to the speaker whose
enrollment vector from 𝑆𝑐 is the closest in terms of some distance function 𝜌:

𝑖1 = argmin
𝑘∈[1,...,𝐾]

𝜌(𝑓(𝑥), 𝑐𝑘). (15)

The automatic speaker identification (ASI) and few-shot models are equated
in this chapter to emphasize that the proposed method is also applicable to
other few-shot scenarios.

Suppose that 𝑓 : R𝑛 → R𝑑 is the base vector (embedding) model. The
smoothed vector model 𝑔 : R𝑛 → R𝑑 might be obtained as the ordinary
smoothed classifier following the Eq. (2) and the corresponding certification
goal against additive perturbations can be described in a similar way, but in­
stead of logits one should use some distance metric. Note that 𝑓 and centroids
𝑐𝑘 are normalized while 𝑔 is not.

Suppose that input audio 𝑥 is correctly assigned to class 𝑖1 represented
by centroid 𝑐𝑖1 . Assume that 𝑐𝑖2 is the second closest to 𝑔(𝑥) centroid. A scalar
mapping is introduced 𝜑 : R𝑑 → [0,1] in the form

𝜑 = 𝜑(𝑔(𝑥), 𝑐𝑖1 , 𝑐𝑖2) =
⟨𝑔(𝑥), 𝑐𝑖1 − 𝑐𝑖2⟩
2‖𝑐𝑖1 − 𝑐𝑖2‖2

+
1

2
, (16)

then the following robustness guarantee holds:

Theorem 2 (Main result). For all additive perturbations 𝛿 : ‖𝛿‖2 ≤ 𝑅(𝜑, 𝜎) =
𝜎Φ−1(𝜑)

argmin
𝑘∈[1,...𝐾]

‖𝑔(𝑥)− 𝑐𝑘‖2 = argmin
𝑘∈[1,...𝐾]

‖𝑔(𝑥+ 𝛿)− 𝑐𝑘‖2, (17)

where 𝑅(𝜑,𝜎) is called certified radius of 𝑔 at 𝑥.

The proof of this theorem is presented in the full version of the disser­
tation in Subsection 2.3.2.

Section 2.4 describes the corresponding numeric scheme and probabilis­
tic guarantees. The reason is similar to that in the previous chapter, the
base deep learning model cannot be “smoothed” analytically to obtain 𝑔(𝑥),
the sample-mean estimation 𝑔(𝑥) via Monte-Carlo sampling is used. However,
in the few-shot setting, the model is not a classifier that returns logits, but
an embedder, thus a different statistical evaluation for confidence intervals is
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Figure 2 — Pyannote model. Few-shot setting. Dependency of certified accu­
racy on the variance 𝜎 of the additive noise, on the number 𝑀 of audios of
a single speaker, the number of enrolled speakers 𝐾, and the audio length in
seconds. The dashed lines represent results for SE, while the solid lines corre­

spond to the presented method.

used, which collects distances from the sample-mean embedding to the nearest
speaker centroids 𝑐𝑖, in contrast to those described in the previous chapter.

Section 2.5 describes experimental details, default parameters, considered
common datasets and speaker recognition models, and presents the comparison
with the competitor’s approach Smoothed Embeddings (SE) [22]. Evaluation
procedure implied considering 𝐾 enrolled speakers and, for each of them, cre­
ating 𝑐𝑘 ∈ 𝑆𝑐 of 𝑀 randomly sampled speakers’ enrollment audios, which are
presented in 𝑆𝑒. To test the models, inference audios 𝑥 ∈ 𝑆𝑖, 𝑆𝑒 ∩ 𝑆𝑖 = ∅
were provided, where the number of unique test speakers in 𝑆𝑖 is fixed and
equal to 118. The CA was reported for each method on the 𝑆𝑐 centroids
and 𝑆𝑖 test audios. Certified accuracy represents the proportion of correctly
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matched samples from 𝑆𝑖 to the corresponding centroids in 𝑆𝑐 for which the
smoothed model has a certified radius exceeding the given attack magnitude.
Specifically, given the recognition rule

𝑖1(𝑥) = argmin
𝑘∈{1,...,𝐾}

𝜌 (𝑔(𝑥), 𝑐𝑘) , (18)

and the norm of perturbation 𝜀, the certified accuracy is computed as follows:

𝐶𝐴(𝑆𝑐, 𝑆𝑖, 𝜀) =
|(𝑥,𝑦) ∈ 𝑆𝑖 : 𝑅(𝑥) > 𝜀 ∧ 𝑖1(𝑥) = 𝑦|

|𝑆𝑖|
, (19)

where 𝑅(𝑥) is the certified radius from Theorem 2. In addition, empirical
robust accuracy (ERA) was used, which is the fraction of correctly recognized
perturbed audios 𝑥 + 𝛿 for all sampled perturbations 𝛿 ≤ 𝑙, where 𝑙 is the
current attack level.

Section 2.6 presents and discusses the results, such as Figure 2, which
illustrates the effects of varying a single parameter while keeping all others at
their default values for the SE and the presented approaches. Several observa­
tions were obtained from these results:

– The proposed method demonstrates a marginal improvement across all
scenarios compared to the SE approach;

– 𝜎 significantly impacts the certification system (the proposed, SE, and
RS). Higher values lead to a more robust system, which comes at the
expense of reduced accuracy (robustness-accuracy trade-off);

– Confidence level 𝛼 does not affect the certification significantly;
– There are threshold values for the number of speaker enrollment audios

𝑀 and audio length beyond which the results remain nearly unchanged;
– An increase of the number of noise samples 𝑁max enhances the certi­

fication process, while classification difficulty rises as the number of
enrolled speakers 𝐾 increases.

Section 2.6 continues the discussion that the empirical robustness of 𝑔 and 𝑓
is significantly better than the certification results of 𝑔, explaining it with the
fact that the presented attacks do not necessarily convey the worst certification
result, as stronger attacks exist, and the worst-case ERA might be closer to
CA. Additionally, dependency on inference audio length, transferability to other
tasks and types of attacks, and comparison with the RS over class probabilities
are discussed. Section 2.7 concludes the study and provides possible future
research directions.

The third chapter discusses two problems, devoted to the empirical
robustness of speech models. In section 3.1, voice anonymization results are
presented, while section 3.2 discusses voice antispoofing enhancement.

Subsection 3.1.1 introduces the speaker privacy (anonymization) systems
(SPS), which are designed to confuse ASI models while maintaining the in­
telligibility and naturalness of modified audio. The focus of the study is an
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Figure 3 — Pyannote model. Few-shot setting. Empirically Robust Accuracy
(ERA) of functions 𝑓 and 𝑔 under different perturbations: Gaussian noise,
PGD adversarial attack, speaker anonymization, and Universal Adversarial
Patch (UAP). The dashed lines represent results for inference audio length

= 3 seconds, while the solid lines correspond to the 5 seconds.

improvement of SPS based on additive adversarial attacks, specifically, on uni­
versal adversarial patches (UAP). Let 𝑓 be a speaker recognition model that
maps an input audio to a speaker embedding space 𝑓 : R𝑛 → R𝑑. Given an
audio sample 𝑥 ∈ R𝑛 and the set of enrolled speakers representations 𝑒𝑖 ∈ R𝑑,
one can introduce a UAP 𝛿 ∈ R𝑙, that aims to mislead the ASI model 𝑓 for
any speaker: argmax𝑘 𝜌(𝑓(𝑥+ 𝛿), 𝑒𝑘) ̸= argmax𝑘 𝜌(𝑓(𝑥), 𝑒𝑘), where 𝛿 ∈ R𝑛 is a
repeated UAP to suit the length of 𝑥. Simultaneously, audio distortion should
be minimized to ensure the perturbation remains imperceptible, enabling prac­
tical real-time applications such as emitting the described repeated additive
noise over-the-air.
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Subsection 3.1.2 provides a literature review, providing an overview of
voice biometrics and SPS methods, and emphasizing the drawbacks of existing
solutions. Subsection 3.1.3 provides relevant explanations, including why UAPs
work, and the proposed methodology, describing the designed loss functions,
preprocessing techniques, and an optimized training procedure. Namely, the
well-known cosine similarity loss that ensures that the adversarial perturbation
effectively alters the speaker representation 𝐿fooling = 𝜌(𝑓(𝑥), 𝑓(𝑥+𝛿)). To com­
pete with previous studies which incorporate ℓ2 regularization (𝐿ℓ2 = ||𝛿||2

𝑙 ),
novel Exponential Total Variance loss, which is inspired by the total variation
(TV) loss commonly used in the image domain, is described to preserve the
imperceptibility of the UAP:

𝐿Exp TV =
1

𝑙

𝑙−1∑︁
𝑖=0

𝜑(𝛿𝑖, 𝛿𝑖+1), (20)

where 𝛿𝑖 UAP’s amplitudes and

𝜑(𝑥, 𝑦) =

⎧⎪⎨⎪⎩
exp{(|𝑦| − |𝑥|)} − 1 if |𝑦| > |𝑥|,
exp{(|𝑦|)} − 1 elif sign(𝑦) ̸= sign(𝑥),
0 else.

(21)

Here, 𝑙 = 3200 corresponds to the UAP 𝛿 length (0.2 seconds at a 16 kHz sam­
pling rate). The goal of this loss is to penalize only when the absolute values of
the amplitudes increase, while avoiding penalization when they decrease, allow­
ing the perturbation to remain minimal in less critical regions, while adapting
to higher magnitudes where necessary. This point-wise approach distinguishes
the proposed loss function from traditional losses, enabling a more targeted
and adaptive perturbation strategy.

Table 3 — Comparison of the proposed methods with the state-of-the-art. ECA­
PA-TDNN model. VoxCeleb2 dataset. 20s-length audio samples.

Loss Function FR (%) SNR PESQ WER (%)

𝐿ℓ2 74.80 17.54 2.48 94.1
𝐿Exp TV 75.70 19.18 2.68 52.6
Hanina S. et al.[31] 67.94 19.37 2.74 73.2

Subsection 3.1.4 describes the experimental setup, which is partially the
same as that discussed in Chapter 2, including common voice biometrics models
and the dataset. The training strategy proposes the use of longer audio than
in previous studies and loudness normalization. The primary evaluation met­
ric is Fooling Rate (FR), which is the percentage of audio samples for which
the speaker recognition model produces incorrect predictions after applying
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Table 4 — Comparison of the proposed method with the state-of-the-art on 4
speaker recognition models. LibriSpeech dataset. 10s-length audio samples.
All methods (UAPs) were trained using the ECAPA-TDNN model on the Lib­
riSpeech train dataset. “ZP” stands for zero-padding, while “RP” – for repeat
padding.

ASI Model Loss Volume FR (ZP) FR (RP) WER (%) SNR PESQ

ECAPA-TDNN

𝐿Exp TV -23

83.9 67.1

22.2 18.52 2.29WavLM 92.5 85.4
ResNet 31.6 0.05
XVecSincNet 64.2 59.5

ECAPA-TDNN

[31] -23

80.0 45.5

79.2 23.2 2.91WavLM 89.2 82.6
ResNet 32.1 0.01
XVecSincNet 57.9 53.9

ECAPA-TDNN

[31] -27

89.9 73.7

94.3 19.2 2.34WavLM 92.0 85.9
ResNet 38.3 0.04
XVecSincNet 62.7 56.4
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Figure 4 — Comparison of the proposed UAP (with 𝐿Exp TV) approach perfor­
mance with that of [31] across different test audio lengths.

the adversarial perturbation. Also, perceptual (PESQ, SNR) and performance
metrics (Word Error Rate, WER) are evaluated on anonymized audio.

Subsection 3.1.5 compares the proposed method with the previous
state-of-the-art approach and discusses the results. The main result include
Tables 3, 4 and Figure 4. The obtained results demonstrate that the Expo­
nential TV loss effectively enhances the trade-off between fooling rate and
imperceptibility. It is also shown that the proposed method outperforms the
competitor for various audio lengths. Embeddings Similarity Analysis of sim­
ilarity between vectors of attacked and initial audio is also presented in the
subsection 3.1.5. Subsection 3.1.6 concludes the presented study and proposes
future research directions.

Subsection 3.2.1 briefly introduces the voice antispoofing problem as an
audio binary classification, which should distinguish genuine speech (bona
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fide) from artificially generated (spoofs, deepfakes). This subsection also de­
scribes related works, highlighting weak generalization to rapidly developing
voice generative models. The distinguishable features of the presented models,
AASIST3 (or KAN-AASIST), are summarized, which is based on a spatial-tem­
poral graph attention network AASIST [25], Kolmogorov-Arnold Networks
(KAN) [34], and strong self-supervised encoders [26].

Table 5 — Final evaluation results of the submitted predictions (AASIST
results were evaluated later) on the evaluation (test) set of the ASVspoof5.

condition model EER

closed AASIST 27.49
closed AASIST3 22.67
open 𝑓 4.89

Table 6 — Additional experiments on extended and custom datasets. All values
are rounded to 4 significant digits after the decimal point. EER (Equal Error
Rate), ROC AUC (Area Under the Receiver Operating Characteristic Curve),
Acc (accuracy), BF (bonafide). Bonafide is considered a positive class.

Model Train Notes EER Precision Recall F1 AUC-ROC Spoof
Acc

BF
Acc

AASIST №2 – 0.1073 0.8124 0.8927 0.8506 0.9346 0.9194 0.8151

W2V2-
AASIST №2 – 0.0579 0.8944 0.9421 0.9177 0.9716 0.9405 0.9526

W2V2-
AASIST3 №2 – 0.0537 0.9017 0.9463 0.9235 0.9803 0.9413 0.9649

W2V2-
AASIST3 №1 – 0.0218 0.9538 0.9832 0.9683 0.9942 0.9752 0.9832

W2V2-
AASIST3 №1 Averaging 0.0199 0.9583 0.9847 0.9713 0.9955 0.9777 0.9847

Subsection 3.2.2 provides preliminary information about the Kol­
mogorov–Arnold theorem and KAN layers. Subsection 3.2.3 describes the
models’ main blocks, including feature extractors, encoders, homogeneous
and heterogeneous graph attention layers, graph pooling, stacking, and clas­
sification operations.

Subsection 3.2.4 describes experimental settings, the utilized datasets,
augmentations, and loss functions. A pre-emphasis, which is a filtering opera­
tion that attenuates low-frequency components while amplifying high-frequency
ones, is discussed as helpful. It was applied to the raw audio amplitudes of ini­
tial audio as 𝑥𝑙 = 𝑥𝑙 − 0.97 · 𝑥𝑙−1, where 𝑙 ∈ {1, 2, . . . , 𝐿} and 𝐿 denotes the
total length of the audio signal. The submission details, training, and inference
tricks for the ASVspoof5 [23] contest are discussed. Two conditions (contest’s
tracks) were considered. In a closed condition, it is prohibited to use pre-trained
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models or external data, in contrast to the open condition. The corresponding
submission results and several ablation results are presented in Tables 5, 6.
The primary metric is equal-error-rate (EER), which is a decision threshold
regarding the ASI or classification task for which the model’s false acceptance
and false rejection rates are equal. 𝑓 averages predictions of W2V2-AASIST3,
and W2V2-AASIST-KAN, that utilize Wav2Vec2 features for the frontend.

Subsection 3.2.5 discusses limitations, including a general problem in
voice antispoofing that, although the proposed models generalize better than
a strong competitor, they still fail a lot. Despite new, stronger models, loss
functions, or augmentations, a straightforward dataset expansion and re-train­
ing are also required, which is illustrated in Table 6. Train set 1 extends train
set 2, with several additional datasets, and the models were evaluated on an
internal test set. One can observe that, having the same augmentations and
loss functions, the main contributions to the improved performance come from
SSL encoders and more data. Subsection 3.2.5 concludes the presented study
and proposes future work directions.

Conclusion

This dissertation investigated robustness, trustworthiness, and privacy
methods for deep learning image and audio classification models. The primary
outcome is the development of novel certified and empirical approaches that
enhance the robustness and reliability of the models. The following results
were obtained:

1. A universal certification approach against resolvable compositions of
semantic transformations was proposed with a corresponding semi-au­
tomatic numeric procedure, enabling efficient robustness verification
and achieving state-of-the-art guarantees across multiple datasets.

2. An improved certification method for few-shot embedding models
against additive norm-bounded perturbations was developed, provid­
ing the first provable robustness guarantees for speaker identification
and surpassing existing baselines.

3. A novel universal adversarial perturbation framework for speaker
privacy was introduced, suitable for long audio and based on in­
corporating the exponential total variance loss during training and
length-agnostic tiling during training and inference. The method out­
performed the competitor in terms of fooling and word error rates,
while demonstrating comparable perceptual metrics.

4. An enhanced voice anti-spoofing architecture was designed using Kol­
mogorov–Arnold network layers, advanced audio pre-processing and
augmentations, and a self-supervised backbone, resulting in a more
robust performance for new test data.
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