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Petri nets (PN) [1], used for formal description and modeling of parallel and asynchronous interconnection in compound systems allow simultaneous accounting of the structure of the system and  the dynamics (the behavior) of the proceeding processes [2]. An interesting possibility for synthesis of new net structures with corresponding parameters of the systems is suggested by Kron [3,4] and developed by Kulagin for PN [5]. The subject of the presented paper is an analysis of some tensor equations for PN [6], aiming to define which properties are stored by tensor transformations of the structure of PN-models.

1. General relations and signatures
Let the Petri net is defined as an ordered five [2]:


N = (P,T,I,O,(0) ,





(1)
where P is a set of positions P={p1,p2,...,pn}, T is a set of transitions  T={t1,t2,...,tm}, P ( T = (,  I and O  - input and output functions, which map a set T into set P, and (0 - an initial marking.

Matrix equation of changing of marking ( (of functioning of PN) is the following:


('' = (' + D. f(() ,






(2)
where D is the incidence matrix presenting input and output functions  and f(() is vector of existing sequence of fired transitions (representation of Parich) [2]. If it is presented in index from the result is as follows:


(''( = ('( + 
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Let we have a Petri net which in some coordinate system is described by incidence matrix (in index form) 
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 and initial marking (0 (where the indexes are changing (=1..m, (= 1..n ) and in an other coordinate system – by 
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 and (‘0. According to the tensor approach we accept, that there are two projections of Petri net, corresponding N and N’ in two coordinate systems, for which the equations for functioning are:
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(5)
where the indexes (,(’ are changing as (=1..k, (’= 1..k’ (k, k’ are determined by the powers of two sets of vectors f(() from existing sequences of fired transitions in N and N’).

The transition from first to second coordinate system is determined in common case by a transforming tensor (TT) C, and there is a transformation of the incidence matrix from N to N’ :
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(6)
The inverse transition is determined by the corresponding tensor E [6].

Then the relation between two projections (4) and (5) is as follows:
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(7)
where F is representation, which we named Kulagins’ representation.

2. Properties of the transformed PN.
Obviously, the common equation for relation (7) gives the transformation of reachable markings of generalized PN by transition from one coordinate system to other. Or, by other way, it is an equation for the dynamic properties of PN-model, by transition from one form of modeling interconnection to other. Consequently for to determinate how the dynamics is transformed, it has to be known the representation F.  Since reachable markings begin from initial marking, it has to investigate the relation between initial markings in different projections in PN-model.

The common formulation for initial markings’ relation of N’ and N follows from (7):
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(8)
The benefit of using of tensor methodology is that there is no need to solve the equations in common view, and we have to use the idea of primitive system (PS) as a guiding point  [3]. For PN is introduced an additional system, named reduced (RS) [5]. We shell write the top relation - (8) - for RS and PS. There in the sets of transitions are coincidence (if |(|=|(‘|=|(| ( (6a)  
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That gives as a possibility to prove the following lemma: 

Lemma. The transformation of initial marking from PS to RS is given by TT with accuracy to constant.

Proof. Let the formula (9) is fulfilled. In extended record:
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Let to develop the first equation:
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The initial marking 
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 by definition is a vector with permanent values for its components :
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And consequently:
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A similar development of the second and the followings rows of (10) leads to:
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For initial marking 
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And from (13) and (14) follows:
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where K is constant.

There is a following new form of the equation (9):
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Corollary 1. The sum of the elements, disposed on each column (by index () of the representation 
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Corollary 2. Constant K may take only positive integer values.

That is a result of the definition for PN. The elements of 
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 are integer non-negative numbers. The trivial case K=0 is needed only for completeness.

Since in the tensor transformation the aim is the new PN to be functionally similar to the source model, we can suggest:

Suggestion 1. The constant K has a value 1.

Obviously, in other case, PN in N’ projection will not response functionally to the PN in N.

Corollary 3. The sum of the elements, disposed on each column (by index () of the representation 
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It is not yet determined unambiguously the representation F. 
3. Conclusion

In the presented form the tensor approach, applied to a given PN model (by Kulagin) saves the criterion of the model behavior (by Kron), but do not guarantee saving of concrete dynamic properties while the Kulagin representation is not defined completely.
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