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a function of thematrix set. In the paper, an explicit formula for the

related Lipschitz constant is obtained.
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1. Introduction

Information about the rate of growth of matrix products with factors taken from somematrix set is

of great importance in various problems of control theory [1–3] wavelet theory [4–6] and other fields

of mathematics. One of the most prominent values characterizing the exponential rate of growth of

matrix products is the so-called joint or generalized spectral radius.

Let K = R,C be the field of real or complex numbers, and A ⊂ Kd×d be a set of d × d matrices.

As usual, for n� 1 denote by An the set of all n-products of matrices from A; A0 = I.
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Given a norm ‖ · ‖ in Kd, the limit

ρ(A) = lim sup
n→∞ ‖An‖1/n, (1)

with ‖An‖ = supA∈An‖A‖ is called the joint spectral radius of the matrix set A [7]. The limit in (1) is

finite for bounded matrix sets A ⊂ Kd×d and does not depend on the norm ‖ · ‖. As shown in [7], for

any n� 1 the estimates ρ(A) � ‖An‖1/n hold, and therefore the joint spectral radius can be defined

also by the following formula:

ρ(A) = inf
n� 1

‖An‖1/n. (2)

If A is a singleton set then (1) turns into the known Gelfand formula for the spectral radius of a linear

operator. By this reason sometimes (1) is called the generalized Gelfand formula [8].

Besides (1) and (2), there are quite a number of different equivalent definitions of ρ(A) in which

the norm in (1) is replaced by the spectral radius [4,5,9] or the trace of a matrix [10], or by a uniform

non-negative polynomial of even degree [11]. Sometimes ρ(A) is defined in terms of existence of

specific norms [2,12] (the Barabanov and Protasov norms). Unfortunately, the common feature of all

thementioneddefinitions is their nonconstructivity. In all thesedefinitions thevalueofρ(A) is defined
either as a certain limit or as a result of some “existence theorems”, which essentially complicates the

analysis of properties of the joint spectral radius.

In the paper, we are concerned with properties of the joint spectral radius ρ(A) as a function of A
for compact (i.e. closed and bounded) matrix sets A. In this case it is convenient to denote the set of

all nonempty bounded subsets of Kd×d by B(Kd×d), and the set of all nonempty compact subsets of

Kd×d byK(Kd×d). Both of these sets becomemetric spaces if to endow themwith the usual Hausdorff

metric

H(A,B) := max

{
sup
A∈A

inf
B∈B ‖A − B‖, sup

B∈B
inf
A∈A ‖A − B‖

}
.

In doing so the space K(Kd×d) is proved to be complete while the set I(Kd×d) of all irreducible

compact matrix families is open and dense in K(Kd×d).
In 2002, Wirth has proved [13, Corollary 4.2] that the joint spectral radius of irreducible compact

matrix sets satisfies the local Lipschitz condition.

Wirth’s Theorem. For any compact set P ⊂ I(Kd×d) there is a constant C (depending on P and the

norm ‖ · ‖ in Kd×d) such that

|ρ(A) − ρ(B)| � C · H(A,B), ∀A,B ∈ P.

The aim of the present paper is to obtain an explicit expression for the constant C in the above

inequality.

As demonstrated the following example the joint spectral radius is not locally Lipschitz continuous

if to discard supposition about irreducibility of a matrix set.

Example 1. Consider the matrix set Aε composed of a single matrix

Aε =
(
1 1

ε 1

)
,

depending on the real parameter ε > 0.

Clearly, the singleton matrix set A0 is not irreducible. Besides, ρ(Aε) = 1 + √
ε, and therefore

|ρ(Aε) − ρ(A0)| = |ρ(Aε) − ρ(A0)| = √
ε,

whereas H(Aε ,A0) = ‖Aε − A0‖ = εc, where c is some constant.
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2. Main result

Given a matrix set A ⊂ Kd×d, for each n� 1 denote by An the set of all k-products of matrices

from A ⋃{I} with k � n, that is An = ∪n
k=0Ak . Denote also by An(x) the set of all the vectors Ax with

A ∈ An. Let ‖ · ‖ be a norm in Kd then S(t) stands for the ball of radius t in this norm.

Let us call the p-measure of irreducibility of the matrix set A (with respect to the norm ‖ · ‖) the
quantity χp(A) determined as

χp(A) = inf
x∈Rd

‖x‖=1

sup{t : S(t) ⊆ conv{Ap(x) ∪ Ap(−x)}}.

Under the name ‘the measure of quasi-controllability’ the measure of irreducibility χp(A) was

introduced and investigated in [14–16] where the overshooting effects for the transient regimes of

linear remote control systems were studied. The reason why the quantity χp(A) got the name ‘the

measure of irreducibility’ is in the following lemma.

Lemma 1. Let p� d − 1. The matrix set A is irreducible if and only if χp(A) > 0.

The proof of Lemma 1 can be found in [15,16]. In these works it is proved also that, for compact

irreducible matrix sets, the quantity χp(A) continuously depends on A in the Hausdorff metric.

Theorem 1. For any pair of matrix sets A ∈ I(Kd×d), B ∈ B(Kd×d) for each p� d − 1 it is valid the

inequality

|ρ(A) − ρ(B)| � νp(A)H(A,B), (3)

where

νp(A) = max{1, ‖A‖p}
χp(A)

.

Taking into account that thequantityνp(A) continuously dependsonA in theHausdorffmetric, and

hence it is bounded on any compact setP ⊂ I(Kd×d), Theorem 1 impliesWirth’s Theorem. However,

unlike to Wirth’s Theorem, in Theorem 1 neither compactness nor irreducibility of the matrix set B is

assumed.

As will be shown below under the proof of Theorem 1, in fact evenmore accurate estimate than (3)

holds:

|ρ(A) − ρ(B)| �
max{1, (ρ(A))p}

χp(A)
H(A,B).

However, this last estimate is not quite satisfactory because practical evaluation of the quantity ρ(A)
is a problem. At the same time the quantity νp(A) in (3) can be evaluated in a finite number of algebraic

operations involving only information about A.

Remark also that whereas the value of the joint spectral radius is independent of a norm in Kd×d,

the quantities νp(A), χp(A) and H(A,B) in (3) do depend on the choice of the norm ‖ · ‖ in Kd×d.

At last, point out that in the casewhen both of thematrix setsA and B are irreducible and compact,

that is A,B ∈ I(Kd×d), inequality (3) can be formally strengthened:

|ρ(A) − ρ(B)| �min
{
νp(A), νp(B)

}
H(A,B).

3. Auxiliary statements

To prove Theorem 1wewill need some auxiliary notions and facts related to the irreducible matrix

sets. The principal technical tool in proving Theorem 1 will be the notion of the Barabanov norm

mentioned above, existence of which follows from the next theorem [2].
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Barabanov’s Theorem. The quantity ρ is the joint (generalized) spectral radius of the matrix set A ∈
I(Kd×d) if and only if there is a norm ‖ · ‖b in Kd such that

ρ‖x‖b ≡ max
A∈A ‖Ax‖b. (4)

In what follows a norm satisfying (4) is called a Barabanov norm corresponding to the matrix setA.

In the next elementary lemma, a simpleway to get as upper as lower estimates for the joint spectral

radius is suggested.

Lemma 2. Let A be a nonempty matrix set from Kd×d. If, for some α,

sup
A∈A

‖Ax‖ � α‖x‖, ∀x ∈ Kd, (5)

then ρ(A) � α. If, for some β ,

sup
A∈A

‖Ax‖ � β‖x‖, ∀x ∈ Kd, (6)

then ρ(A) � β.

Proof. Clearly, the constants α and β may be thought of as non-negative. To prove the first claim note

that (5) implies the inequality‖A‖ = supA∈A ‖A‖ � α. Then‖An‖ = supAi∈A ‖An · · · A2A1‖ � αn, and

ρ(A) � α by the definition (1).

Similarly, to prove the second claim note that (6) implies, for each n = 1, 2, . . . , the inequality

sup
Ai∈A

‖An · · · A2A1x‖ = sup
A1∈A

sup
A2∈A

. . . sup
An∈A

‖An · · · A2A1x‖ � βn‖x‖, ∀x ∈ Kd.

Hence supAi∈A ‖An · · · A2A1‖ � βn. Then ‖An‖ = supAi∈A ‖An · · · A2A1‖ � βn, and ρ(A) � β by the

definition (1). The lemma is proved.

Following to [17], for convenience of comparison of norms in Kd let us introduce an appropriate

notion. Given two norms ‖ · ‖′ and ‖ · ‖′′ in Kd, define the quantities

e−(‖ · ‖′, ‖ · ‖′′) = min
x /=0

‖x‖′

‖x‖′′ , e+(‖ · ‖′, ‖ · ‖′′) = max
x /=0

‖x‖′

‖x‖′′ . (7)

Since all norms in Kd are equivalent then the quantities e−(·) and e+(·) are well defined, and

0 < e−(‖ · ‖′, ‖ · ‖′′) � e+(‖ · ‖′, ‖ · ‖′′) < ∞.

Therefore the quantity

ecc(‖ · ‖′, ‖ · ‖′′) = e+(‖ · ‖′, ‖ · ‖′′)
e−(‖ · ‖′, ‖ · ‖′′)

� 1, (8)

called the eccentricity of the norm ‖ · ‖′ with respect to the norm ‖ · ‖′′, is also well defined.

4. Proof of Theorem 1

We will prove Theorem 1 in two steps. First, slightly modifying the idea of the proof from [13,

Corollary 4.2], we will show in Section 4.1 that under the conditions of Theorem 1 the eccentricity

of any Barabanov norm ‖ · ‖A for the matrix set A with respect to the norm ‖ · ‖ may serve as the

Lipschitz constant for the joint spectral radius, that is

|ρ(A) − ρ(B)| � ecc(‖ · ‖A, ‖ · ‖)H(A,B). (9)
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Then, using the techniques of the measures of irreducibility (see, e.g., [14,16,18]), we will prove in

Section 4.2 the estimate

ecc(‖ · ‖A, ‖ · ‖) � νp(A) := max{1, ‖A‖p}
χp(A)

. (10)

4.1. Proof of estimate (9)

Let ‖ · ‖A be some Barabanov norm for the matrix set A. By definition of the Hausdorff metric, for

any matrix B ∈ B there is a matrix AB ∈ A such that ‖B − AB‖ �H(A,B). Then, by definition of the

eccentricity of the norm ‖ · ‖A with respect to the norm ‖ · ‖,
‖B − AB‖A � C · ‖B − AB‖ � C · H(A,B), (11)

where C = ecc(‖ · ‖A, ‖ · ‖).
Consider the obvious inequality

‖Bx‖A � ‖ABx‖A + ‖(B − AB)x‖A, ∀x ∈ Kd.

Here ‖ABx‖A � ρ(A)‖x‖A because ‖ · ‖A is a Barabanov norm for thematrix setA, and ‖(B − AB)x‖A
� C · H(A,B)‖x‖A by inequality (11). Therefore

‖Bx‖A � (ρ(A) + C · H(A,B)) ‖x‖A, ∀x ∈ Kd,

and, due to arbitrariness of B ∈ B,
sup
B∈B

‖Bx‖A � (ρ(A) + C · H(A,B)) ‖x‖A, ∀x ∈ Kd.

From here by Lemma 2

ρ(B) � ρ(A) + C · H(A,B). (12)

Now, let us prove that

ρ(B) � ρ(A) − C · H(A,B). (13)

By definition of the Hausdorff metric, for any matrix A ∈ A there is a matrix BA ∈ B such that ‖BA −
A‖ �H(A,B). Then, as before,

‖BA − A‖A � C · ‖BA − A‖ � C · H(A,B). (14)

By evaluating with the help of (14) the second summand in the next obvious inequality

‖BAx‖A � ‖Ax‖A − ‖(BA − A)x‖A, ∀x ∈ Kd,

we obtain:

‖BAx‖A � ‖Ax‖A − C · H(A,B)‖x‖A, ∀x ∈ Kd.

Maximizing now the both sides of this last inequality over all A ∈ A (which is possible due to arbi-

trariness of A ∈ A), we get:

sup
A∈A

‖BAx‖A � sup
A∈A

‖Ax‖A − C · H(A,B)‖x‖A, ∀x ∈ Kd.

Here the left-handpart of the inequality doesnot exceed supB∈B ‖Bx‖A,while byBarabanov’s Theorem

supA∈A ‖Ax‖A ≡ ρ(A)‖x‖A. Hence,
sup
B∈B

‖Bx‖A � (ρ(A) − C · H(A,B)) ‖x‖A, ∀x ∈ Kd,

from which by Lemma 2 we obtain (13).

Inequalities (12), (13)with C = ecc(‖ · ‖A, ‖ · ‖) imply (9)which finalizes the first step of the proof

of Theorem 1.
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4.2. Proof of estimate (10)

By definition of the eccentricity, the quantity ecc(‖ · ‖A, ‖ · ‖) is defined as follows

ecc(‖ · ‖A, ‖ · ‖) = e+(‖ · ‖A, ‖ · ‖)
e−(‖ · ‖A, ‖ · ‖) .

Here, by the definition (7) of the quantities e−(·) and e+(·),
e−(‖ · ‖A, ‖ · ‖) = ‖x−‖A, e+(‖ · ‖A, ‖ · ‖) = ‖x+‖A

for some elements x− and x+ satisfying ‖x−‖ = 1, ‖x+‖ = 1. Hence

ecc(‖ · ‖A, ‖ · ‖) = ‖x+‖A
‖x−‖A . (15)

By definition of the measure of irreducibility χp(A), for elements x− and x+ there are a natural

numberm, matrices Ãi ∈ Ap, i = 1, 2, . . . , m, and real numbers λi, i = 1, 2, . . . , m, such that

χp(A)x+ =
m∑
i=1

λiÃix
−,

m∑
i=1

|λi| � 1. (16)

Here each matrix Ãi is either the identity matrix or a product of no more than p factors from A,

that is Ãi = Aik · · · Ai1 with some k � p and Aij ∈ A. If Ãi = I then ‖Ãi‖A = 1. If Ãi = Aik · · · Ai1 then

‖Ãi‖A �(ρ(A))k because, by definition of the Barabanov norm, ‖Ãij‖A � ρ(A) for any matrix Aij ∈ A.

Therefore

‖Ãi‖A �max
{
1, (ρ(A))k

}
�max

{
1, (ρ(A))p

}
,

and (16) implies

χp(A)‖x+‖A �max
{
1, (ρ(A))p

} ‖x−‖A.

From here and from (15)

ecc(‖ · ‖A, ‖ · ‖) �
max{1, (ρ(A))p}

χp(A)
,

and, since ρ(A) � ‖A‖ by (2), this last inequality implies the estimate (10), which finalizes the second

step of the proof.

The proof of Theorem 1 is completed.
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