ИТиC'08 Раздел 5

Движения глаз при восприятии неоднозначных изображений типа куба Неккера

М.Ю. Желтова, П.В. Максимов, В.А. Бастаков, А.К. Панютин Институт проблем передачи информации РАН 127994 Москва, Б. Каретный пер., 19. bastakov@iitp.ru

Аннотация

Цель работы - оценить корреляцию между движениями глаз и динамикой восприятия неоднозначных фигур. В качестве неоднозначной использован куб Неккера, длительном наблюдении которого происходит чередование двух возможных интерпретаций контурного рисунка - как бы обращение куба. Регистрацию движений глаз производили при помощи установки для записи движения глаз, iView $X^{\text{\tiny TM}}$ Hi-Speed 1250 (SMI). B условиях бинокулярного наблюдения было протестировано 15 взрослых испытуемых от 18 до 60 лет. Построенные no результатам эксперимента карты плотности фиксации взора в разных точках изображения демонстрируют индивидуальную большую вариабельность. Анализ этих карт и исходных треков позволяет отвергнуть любые гипотезы, связанные с непосредственным использованием характера движений глаз для детекции моментов обращения фигуры условиях наших экспериментов..

1. Введение

Для понимания механизмов формирования видимых образов особый интерес представляют неоднозначные изображения, которые допускают две или более интерпретаций в смысле взаимного расположения по глубине вершин и граней (трансформирующиеся или обращающиеся фигуры) либо в смысле отнесения определенных фрагментов к объекту и фону.

Одной из самых простых и самых исследованных изображений такого рода является куб Неккера - контурное изображение, соответствующее параллельной проекции вершин и ребер куба на плоскость. Такое изображение и две возможные пространственные интерпретации приведены на рис. 1.

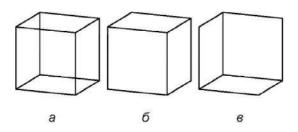


Рис. 1. Куб Неккера (а) и его возможные пространственные интерпретации (б, в).

Динамика трансформаций куба Неккера изучалась многими исследователями, причем во многих работах - в аспекте связи обращений фигуры с движениями глаз. Одни авторы придерживаются мнения, что обращениям куба способствует смена точек фиксации. Такая точка зрения высказывалась еще в работах начала века. В качестве альтернативы был выдвинут тезис, что обращение происходит в результате какого-то центрального процесса в сенсорной зрительной системе, а движения глаз являются следствием этого процесса и отражают его особенности (Гиппенрейтер, 1964; 1971).

Основной способ проверки этих двух гипотез состоял в подсчете числа случаев, когда обращение фигуры следовало за скачком и когда оно ему предшествовало. К началу 70-х гг, по итогам многих экспериментов, большинство исследователей склонилось к выводу, обращения куба определяются центральными процессами. группой Затем отечественных психофизиологов были проведены детальные эксперименты, которые показали, что результаты некоторых серий экспериментов могут лучше соответствовать первой гипотезе (Ярбус, 1965; Ефимов, Лебедев, 1976).

В экспериментах Гиппенрейтер с коллегами, кроме оценки корреляции обращений куба со скачками глаз, строили также карты плотности фиксаций взора, предполагая обнаружить максимумы плотности, соответствующие двум возможным интерпретациям изображения

<u>ИТиС'08</u> Раздел 5

(Гиппенрейтер, 1971). Такие максимумы как будто бы были получены, но число испытуемых было слишком мало, чтобы можно было верить этим выводам. Целью работы проверка предположений о положительной корреляции обращений куба со скачками глаз.

2. Методика

2.1. Аппаратура для записи и анализа движений глаз

Запись движений глаз производили на установке iView X™ Hi-Speed 1250 (SensoMotoric Instruments (SMI) Ltd.). Это система видеослежения темным зрачком, использующая инфракрасное освещение компьютерную обработку изображений реальном масштабе времени. В процессе обработки вычисляются координаты центра зрачка, которые после калибровки переводятся в данные о направлении взора. Кроме того, регистрирующая система отслеживает роговичный рефлекс, чтобы скомпенсировать изменения позиций видеокамеры по отношению к голове. На рис. 2 показаны метки в центре зрачка (белый крест) и на роговичном блике (черный крест), по которым определяется направление взора. Пространственное разрешение установки в лучших условиях может доходить до одной угловой минуты, временное разрешение при бинокулярной регистрации соответствует частоте 500 Гц.

Общий вид экспериментальной установки с испытуемым показан на рис. 3. Голова испытуемого опиралась на подбородник и фиксировалась с помощью лобного упора. Система видеослежения находилась над головой, а световые лучи от глаз попадали туда, отражаясь от наклонного полупрозрачного зеркала.

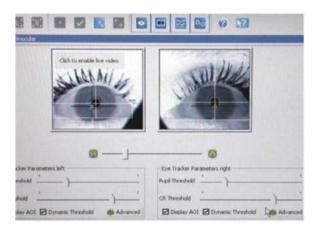


Рис. 2. Фрагмент интерфейса программы, работающей в составе регистрирующей системы

Рис. 3. Общий вид экспериментальной установки с испытуемым

На каждом испытуемом перед записью движений глаз производили калибровку прибора по 13 точкам в различных участках экрана.

При анализе записей движений глаз выделяли фиксации (фазы блуждания взора на малом участке изображения) и саккады (быстрые скачки с амплитудой более 0.2° и скоростью более 30°/сек от одной точки фиксации к другой).

2.2 Тестовый материал

Тестовое изображение представляло собой классический куб Неккера с длиной ребра 10 см. Общая протяженность изображения по горизонтали и вертикали составляла 15 см. Расстояние до экрана монитора равнялось 1 м, так что угловые размеры стимула укладывались в 30 градусов. Стимулы предъявляли на мониторе BenQ FP91G 19" с разрешением 1280х1024 пикселей.

2.3 Процедура

После инструктажа калибровки испытуемому в течение 50 секунд предъявляли тестовое изображение. Как и в экспериментах Гиппенрейтер, результаты которых мы хотели воспроизвести. В ДВУХ сериях опытов использовали разные инструкции: (1) свободно рассматривать куб, отмечая легким движением указательных пальцев моменты обращений куба; (2) удерживать каждую интерпретацию как можно дольше с помощью ментальных усилий, стараясь минимизировать число обращений куба.

2.4 Испытуемые

Было протестировано - 15 испытуемых. Возраст испытуемых от 25 до 59 лет (из них 3 - мужского пола).

<u>ИТиС'08</u> Раздел 5

3. Результаты и обсуждение

Типичные карты фиксаций взора приведены на рис. 4-6. Плотность точек на этих картах отражает время фиксации взора в соответствующем месте.

Рис. 4 демонстрирует большую индивидуальную вариабельность карт, не позволяющую подтвердить вывод Гиппенрейтер с соавторами о наличии двух центров концентрации взора при рассматривании куба Неккера.

Рис. 5 убедительно показывает, что **характер инструкции** практически не влиял на карты внимания. Как видно из сравнения двух столбцов данных, относящихся к разным инструкциям, явных различий между ними не наблюдается.

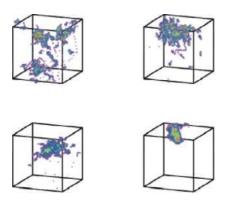


Рис. 4. Вариабельность карт внимания

В результате двух серий экспериментов убедительно показано, что любые гипотезы, связанные с непосредственным использованием характера движений глаз для детекции моментов обращения фигуры условиях В экспериментов не состоятельны. Инверсия изображения в случае неоднозначных фигур подчинено, по всей видимости, нескольким механизмам зрительного восприятия и связано с оценкой глубины зрительного пространства и формированием объемного изображения. Роль движений глаз, по-видимому, не является ведущей, а их вклад в процесс формирования объемного изображения требует дальнейших исследований.

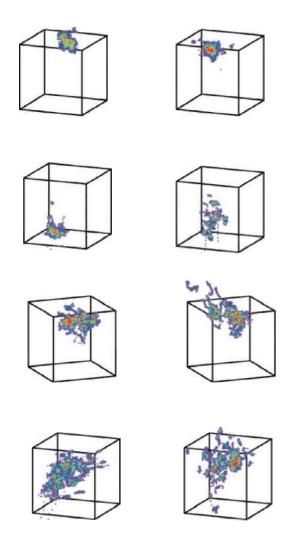


Рис. 5. Карты внимания при разных инструкциях, даваемых испытуемым, построенные для четырёх испытуемых. Левый столбец соответствует свободному рассматриванию, правый удержанию интерпретации.

5. Литература

- [1] Ярбус А.Л. *Роль движения глаз в процессе зрения*, М., 1965. С. 166.
- [2] Ефимов С.К., Лебедев Д.Г. Фотокимограф для записи движений глаз // Вопр. психол. 1976. № 3. С. 152-153.