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Looking at the dynamics of the system described by the equation

x(n + 1) = f(x(n))

one may say that coordinates of the vector x = {x1, x2, . . . , xN}
are updated synchronously. What happens with the system if co-
ordinates of the vector x are updated asynchronously, i.e., if at
a given moment n only coordinates with indices i from some set
ω(n) ⊆ {1, 2, . . . , N} are changed in accordance with the law

xi(n + 1) = fi(x(n))

while others remain intact? This is the main topic which is dis-
cussed in the paper.
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1 Preface

The theory of asynchronous systems got its rather distinctive shape about
20 years ago. It was grounded on quite practical problems concerning func-
tioning of distributed computational networks and from the very beginning
demonstrated plenty of mathematically difficult, though easily formulated,
problems. Examples of systems, for which the problem of synchronization
is acute, are complex digital electronic devices, multiprocessor systems, dis-
tributed digital networks, discrete-time models of market economy, etc. So,
from different points of view it should be very attractive field of investigation
for mathematicians. Nevertheless, until now only few of them are familiar
with asynchronous systems. To overcome this, on the 6th International Con-
ference on Difference Equations and Applications (August 2001, Augsburg,
Germany) there was delivered an ‘educational’ talk “Asynchronous systems:
an intersection point of ‘easy questions’ with difficult solutions” [15]. An up-
to-date version of an analogous survey lecture given by the author during his
visit of Boole Centre for Research in Informatics, Cork, Ireland, is presented
below.

In the paper, the main attention is paid to discussion of the problem of
how asynchronism affects stability of the system. Examples show [1] that all
possible combinations of stability/instability for the pair ‘synchronous/asyn-
chronous system’ may occur. And also, simple examples demonstrate that
the problem of investigation of stability for asynchronous system is more
complicated than for synchronous one, even in the linear case. Nevertheless,
in some situations asynchronous systems possess more robust properties than
synchronous ones. Formal explanation of this fact is presented, and various
methods of stability investigation for asynchronous system are discussed.

2 Introduction

The simplest, and at the same time the most important object of investigation
in the theory of difference equations is the autonomous equation

x(n + 1) = f(x(n))

which is often used to describe the dynamics of a system
where {Tn} are discrete moments at which the state ξ(t) of the object is
instantaneously updated by the controller in accordance to the law

ξ(Tn + 0) = f(ξ(Tn − 0)) (1)
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Figure 1: General dynamical system

and the connection between ‘physical’ state vector ξ(t) and ‘abstract’ one
x(n) is established by the relation x(n) := ξ(Tn − 0).

Clearly, Fig. 1 is very simplified and schematic. A more realistic situation
is represented on Fig. 2.
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Figure 2: Two-component system

Fig. 2 reflects the fact that usually practical systems consist of several
subsystems (components) the state of which are updated synchronously (say,
when updating mechanism is triggered by a time impulse coming from an
external clock). In this case equation (1) also takes the more detailed form

ξ1(Tn + 0) := f1(ξ(Tn − 0)),
ξ2(Tn + 0) := f2(ξ(Tn − 0)).

(2)

Now one may try to go further and to consider even more realistic sit-
uation when different components of the system W on Fig. 2 are updated
non-synchronously with each other. Such systems are plotted on Fig. 3 where
the so called phase-asynchronous mode of updating is demonstrated and
on Fig. 4 where the so called frequency-asynchronous mode of updating is
demonstrated.

And now, one may formulate the key problem:
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Figure 3: Two-component system with asynchronous updating
moments T 1

n := nτ + ϕ1, T 2
n := nτ + ϕ2 where ϕ1 6= ϕ2
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Figure 4: Two-component system with asynchronous updating mo-
ments: T 1

n := nτ1 + ϕ1, T 2
n := nτ2 + ϕ2 where τ1 6= τ2

What happens with the dynamics of the system W

if updating moments for different components do not
coincide?

3 Asynchronous Systems

While for a two-component system with synchronous updating mode (syn-
chronous system) we have the dynamic’s equation (2), for a two-component
system with asynchronous updating mode (asynchronous system) we obtain
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outwardly similar, but nevertheless different equations of dynamics:

ξ1(T
1
n + 0) := f1(ξ(T

1
n − 0)),

ξ2(T
2
n + 0) := f2(ξ(T

2
n − 0)).

(3)

This means, in fact, that for a given updating moment t = Tn ∈ {T 1
n} ∪

{T 2
n} the state vector (ξ1(t), ξ2(t)) of the system W is changed in accordance

to the law

ξ1(Tn + 0) := ξ1(Tn − 0),
ξ2(Tn + 0) := f2(ξ(Tn − 0)),

or
:= f1(ξ(Tn − 0)),
:= ξ2(Tn − 0),

(4)

depending on whether Tn ∈ {T 2
k } while Tn 6∈ {T 1

k } or vise versa Tn ∈ {T 1
k }

while Tn 6∈ {T 2
k }. And only in the case when Tn = T 1

m = T 2
k or, what is the

same Tn ∈ {T 1
k } ∩ {T 2

k } 6= ∅, updating law for the system W at the moment
t = Tn is described by equations (2).

Unfortunately, description of the dynamics of the system W in terms of
‘impulse’ equations (2) or (3) is not very convenient. Thus, it is natural to
describe the dynamics of W in terms of more habitual difference equations.

Clearly, as was mentioned earlier, in the simplest situation the dynamics
of synchronous system W is covered by the vector equation (1) which can be
rewritten in the following form:

x(n + 1) := f(x(n)) =

(
f1(x(n))
f2(x(n))

)
.

For asynchronous system by analogy with (4) one can get:

x(n + 1) :=

(
x1(n)

f2(x(n))

)
or :=

(
f1(x(n))
x2(n)

)
. (5)

depending on whether Tn ∈ {T 2
k } or Tn ∈ {T 1

k }.

4 Equations of Dynamics

Let us summarize now, what one needs to describe the dynamics of asyn-
chronous system?

• For each n, one should know the set ω(n) of indices of the coordinates
of the state vector x updated at the moment n. In the case of two-
dimensional system the set ω(n) may be {1} or {2} or {1, 2}; in the
general case of N–component system the set ω(n) is a non-empty subset
of the set {1, 2, . . . , N}.
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• For each set of indices ω, one should define the mapping fω(x) (the
ω–mixture of the mapping f) i-th coordinate of which is defined in ac-
cordance with the rule

fω,i(x) :=

{
fi(x), if i ∈ ω,
xi, if i 6∈ ω;

(6)

• At last, one should write down the ‘asynchronous’ equation of dynamics

x(n + 1) := fω(n)(x(n)). (7)

So, to describe the dynamics of asynchronous version of the system W one
should replace ‘synchronous’ equation (1) by its ‘asynchronous’ counterpart
(7).

As is seen, the right-hand term of ‘asynchronous’ equation (7) essentially
depends on the procedure of ‘taking the mixture’ of the mapping f . So, look
at some examples of mixtures for different mappings.

Example 4.1

Let f(x) =


f1(x)
f2(x)
f3(x)
f4(x)

 , then f{2}(x) =


x1

f2(x)
x3

x4

 .

Example 4.2 Let f(x) be a linear mapping, f(x) = Ax, where A is the
matrix

A =


a11 a12 a13 a44

a21 a22 a23 a44

a31 a32 a33 a44

a41 a42 a43 a44


then fω(x) = Aωx where

A{2} =


1 0 0 0

a21 a22 a23 a44

0 0 1 0
0 0 0 1

 , A{1,3} =


a11 a12 a13 a14

0 1 0 0
a31 a32 a33 a34

0 0 0 1

 .

Another thing that we need to pay attention to when considering asyn-
chronous equation (7) is the index sequence ω(n), as the properties of this
sequence dramatically affect properties of the right-hand term of equation
(7). These properties in more details will be discussed later, while now we
shall make only one important remark.
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Remark 4.3 From ‘physical’ considerations it is natural to suppose that
each coordinate of the vector x is updated infinitely many times, i.e. each
i ∈ {1, 2, . . . , N} belongs to infinitely many sets ω(n), n ≥ 0 (the sequences
ω(n) possessing this property will be called admissible). The meaning of such
a requirement is that each component is ‘alive’ forever as in the opposite case
the state vector of the corresponding component will be constant starting
from some moment. When considering the long-term dynamics, this will
allow to exclude this component from further considerations and to reduce
the dimension of the state vector of the system under consideration.

5 Short Historical Survey

Now, when we have acquainted the reader with the notion of asynchronous
system, we present a short survey of basic stages in forming the idea of
asynchronous systems.

Long ago (we may say ‘in prehistoric times’) there were known the method
of Simple Iterations and the method of Gauss–Seidel of solving linear or
nonlinear equations. The method of Gauss–Seidel can be treated as the
asynchronous version of the method of Simple Iterations with choosing

ω(n) := {n− 1 (mod N) + 1}.

It is known (see, e.g., [1]) that the method of Simple Iterations and the
method of Gauss–Seidel may converge or diverge independently of each other;
thus, all combinations of stability/instability for the pair of synchronous sys-
tem and its asynchronous counterpart may occur. In terms of asynchronous
systems this leads to the principal conclusion: stability/instability proper-
ties of a system may change dramatically depending on whether the system
operates in synchronous or asynchronous mode.

It seems that the first distinctive formulations of the idea of asynchro-
nism, as applied to investigation of dynamic properties of control systems,
have appeared somewhere in 50s. They were mainly connected with attempts
to consider impulse systems in control theory with asynchronously interact-
ing components (see, e.g., Sklansky & Raggaciny [25, 26], Kranc [19, 20], Fan
Chung Wuy [13]). Principal attention was paid to investigation of the so-
called ‘multirate’ impulse systems which are essentially (in our terminology)
the systems with ‘frequency’ updating components. The main conclusion
that may be drawn from these works is the fact that theoretical investiga-
tion of asynchronous systems, even in linear case, is much more complicated
comparing with that for usual, synchronous, systems.
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In 60-70s the main interest to asynchronous systems was motivated by
necessity to develop tools for the so-called parallel methods of computation.

In 1969 the work of Chazan & Miranker [9] was published, in which the
stability of linear asynchronous systems with positive matrices was ‘fully’
investigated. The word ‘fully’ is taken here in quotation marks because the
principal necessary and sufficient condition of stability has been formulated
in terms of ‘all possible asynchronous systems with a given matrix’, but not
in terms of an individual asynchronous system with a given updating law
{ω(n)}.

In 90s an accumulated knowledge in the theory of asynchronous systems
was summarized to some extent in monographs by Bertsekas & Tsitsiklis
[3], Asarin, Kozyakin et al. [1] and Bhaya & Kaszkurewicz [4]. These three
monographs precisely reflect three directions of investigation of asynchronous
systems formed up to now. The first direction is originated from the needs
of computational mathematics and its principal problem is how to organize
computational procedure to obtain most efficiently (fast, with low memory
consumption or processor load) converging iteration algorithm. The second
direction is originated from considerations of control theory and its principal
problem whether the system under consideration remains to be stable or
unstable following to such a perturbation in its behavior as asynchronous data
transmission between different its components. The third direction is the
attempt to develop ‘robust’ linear algebraic conditions which enable stability
of a system independently on whether this system operates in synchronous
or asynchronous mode.

6 First Set of Problems

Let us formulate some natural problems arising in investigation of stability
of asynchronous systems. It is worth to stress that, as it will be seen be-
low, the main problems arising in investigation of asynchronous systems are
originated not from the fact of linearity or non-linearity of the system under
consideration. So, it what follows only linear systems will be considered.

Given an N ×N real matrix A. Consider the usual ‘synchronous’ linear
system

x(n + 1) = Ax(n) (W )

and its asynchronous counterpart

x(n + 1) = Aω(n)x(n) (Wa)
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Question 6.1 What kind of conditions should be imposed on A under which
stability of (W ) implies stability of (Wa)

• for all admissible (see definition in Remark 4.3) sequences {ω(n)}?
• for sequences {ω(n)} from some class (corresponding, e.g., to phase or

frequency updating mode, some stochastic low of updating of coordinates,
etc.)?

• for some individual sequence {ω(n)}?

Another set of problems covers ‘perturbation’ properties of asynchronous
equation (Wa). More precisely, given an N×N real matrix A and a sequence
{ω(n)}, such that the asynchronous equation (Wa) be asymptotically stable.

Question 6.2 How will be changed the stability of (Wa) if we perturb the
matrix A?

Question 6.3 How will be changed the stability of (Wa) if we ‘slightly’ per-
turb the updating sequence {ω(n)}? And what is the meaning of the term
‘slight perturbation of {ω(n)}’ from applicational point of view?

In connection with the last question one should take into account that
‘small’ from the physical point of view perturbation of updating moments
{T i

n} as a rule results in a ‘big’ perturbation of right-hand terms of asyn-
chronous equations. For example, in the case of phase-frequency updating
moments T i

n := nτi+ϕi it is naturally from the physical point of view to treat
perturbation of moments T i

n as ‘slight’ or ‘small’ if the parameters τi or ϕi

are slightly perturbed. But such a ‘slight’ perturbation of T i
n will result in a

rather ‘big’ in any reasonable metric perturbation of the set-valued sequence
ω(n).

Even in physically ‘natural’ situations behavior of the sequence {ω(n)}
is rather complicated, e.g. it is not periodic. As a result, it is more diffi-
cult to investigate ‘individual’ asynchronous equations than ‘classes’ of such
equations. So, there naturally arises the following general question.

Question 6.4 How the right-hand terms of asynchronous equations depend
on ω(n)?

Another set of questions arise when one is interested in the problem of
synthesis. Given an N ×N real matrix A. Again consider the asynchronous
equation (Wa).

Question 6.5 Is it possible to choose such a sequence {ω(n)} which makes
equation (Wa) stable?
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Question 6.6 Is it possible to choose such a non-degenerate matrix Q and
a sequence {ω(n)} which makes stable the ‘equivalent’ equation

x(n + 1) =
(
QAQ−1

)
ω(n)

x(n).

At last, formulate a very ‘simple’ question. Given an N ×N real matrix
A and equations

x(n + 1) = Ax(n), (W )

x(n + 1) = A∗x(n). (W ∗)

It is well known that these equations are simultaneously either stable or
unstable. Now, consider asynchronous versions of equations (W ) and (W ∗):

x(n + 1) = Aω(n)x(n), (Wa)

x(n + 1) = (A∗)ω(n)x(n). (W ∗
a )

Question 6.7 Is it valid that stability of equation (Wa) implies stability of
equation (W ∗

a ) and vise versa?

The questions formulated above are gathered here not by ‘difficulty’ prin-
ciple but simply to demonstrate that even quite naturally formulated ques-
tions which have evident answers in ‘synchronous’ setting become not-so-
evident when one start to investigate them in the ‘asynchronous’ formula-
tion. In more details these and other questions are discussed in [1]. Some of
them have quite natural answers that can be obtained relatively easy, other
also have natural answers but prove the corresponding statements there is
needed to develop a special technique, and at last, among these questions
there are such that unresolved until now.

7 Chazan–Miranker theorem

Partially, answers to some questions formulated in the previous Section will
be given below.

Theorem 7.1 (Chazan & Miranker, [9]) Let A = (aij) be a real matrix
with positive entries, aij > 0. If ρ(A) < 1 then any asynchronous equation
(Wa) is asymptotically stable. If ρ(A) ≥ 1 then such a sequence {ω(n)} can be
found that the corresponding asynchronous equation will be not asymptotically
stable.
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In the control theory, instead of words ‘any equation (from some class)
is stable’, usually are said ‘equation is absolutely stable in a class of all
asynchronous equations (Wa). This remark makes it possible to reformulate
Theorem 7.1 in the following way.

Theorem 7.2 Let A = (aij) be a real matrix with positive entries, aij >
0. Then the asynchronous equation (Wa) is absolutely asymptotically stable
in the class of all admissible updating sequences {ω(n)} (see definition in
Remark 4.3) if and only if ρ(A) < 1.

The following theorem allows to use Chazan–Miranker criterium for ob-
taining sufficient conditions of stability of asynchronous systems with arbi-
trary matrices.

Theorem 7.3 (Majorization Principle) Let B = (bij) be a real matrix
with positive entries satisfying ρ(B) < 1, and let the matrix A = (aij) be
such that |aij| ≤ bij. Then the asynchronous equation (Wa) is absolutely
asymptotically stable in the class of all admissible updating sequences {ω(n)}.

The following criterium of stability is again a word-to-word reformulation
of the fact well known in the ‘synchronous’ setting.

Theorem 7.4 ([1]) If the matrix A symmetric, A = A∗, then the asyn-
chronous equation (Wa) absolutely asymptotically stable in the class of all
admissible updating sequences {ω(n)} if and only if ρ(A) < 1.

In [1] a criterium of absolute asymptotical stability of equation (Wa) in
the class of all admissible updating sequences {ω(n)} for the case of 2 × 2
matrices A is obtained.

Unfortunately, theorems presented in this Section almost exhaust the
set of easily formulated statements concerning investigation of the problem
of absolute stability of asynchronous systems known up to date. Another
frustrating thing is that proofs of the theorems formulated above are much
more complicated than proofs of their ‘synchronous’ analogs.

The proof of ‘sufficient parts’ of the above theorems is based on the fol-
lowing remark: it suffices to find a norm ‖ · ‖ in RN (called joint strongly
contracting norm) such that

‖Aω‖ ≤ 1, (8)

‖Aω1Aω2 · · ·Aωk
‖ ≤ γ < 1, as soon as

k⋃
i=1

ωi = {1, 2, . . . , N}, (9)
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in order to guarantee absolute asymptotic stability of the asynchronous equa-
tion (Wa) with the matrix A.

With this remark, the ‘sufficient’ part of Theorem 7.1 is obtained with the
choice of the norm ‖x‖ = maxi{λi|xi|} and appropriate λi, i = 1, 2, . . . , N .
To prove the ‘sufficient’ part of Theorem 7.4 it suffices to define the norm ‖x‖
as ‖x‖ =

√
((I − A)x, x). For the case N = 2 the definition of corresponding

norm is more complicated.
What is important is that, in fact, conditions (8), (9) are not only suffi-

cient for stability of asynchronous systems, but also necessary.

Theorem 7.5 ([1]) Existence of a norm ‖ · ‖ satisfying condition (8) is
necessary and sufficient for absolute stability of asynchronous equation (Wa).

Existence of a norm ‖ · ‖ satisfying conditions (8), (9) with some γ < 1
is necessary and sufficient absolute asymptotical stability of asynchronous
equation (Wa).

8 Complexity Issues

Note, that usual spectral criterium ρ(A) < 1 of asymptotic stability of the
‘synchronous’ equation (W ), as is well known, equivalent to the condition

∃ ‖ · ‖, γ < 1 : ‖A‖ ≤ γ < 1, (10)

which is exactly the condition (9) presented in Theorem 7.5. The spectral
condition ρ(A) < 1 can be treated as ‘simple’ from various points of view —
it is algorithmic, it is semialgebraic in terms of entries of the matrix A, i.e.,
it can be written as a finite set of algebraic equalities and inequalities over
entries of the matrix A, etc. So, condition (10) is also may be qualifies as
‘simple’, which gives us hope that conditions (8)–(9) are also rather ‘simple’
for use.

Unfortunately, this is not the case. Given a set of N × N matrices A1,
A2,. . . ,Ak. The norm ‖ · ‖ in RN will be called joint contracting (nonexpand-
ing) if

‖A1‖, ‖A2‖, . . . , ‖Ak‖ < 1 (≤ 1).

Clearly, this condition is of the same type as conditions (8)–(9).

Theorem 8.1 (Kozyakin, [1]) If N, k ≥ 2 then the problem of existence
of the joint contracting (nonexpanding) norm is not semialgebraic.

Loosely speaking, Theorem 8.1 means that the problem of existence of
the joint contracting (nonexpanding) norm for a set of matrices cannot be
resolved by finite Boolean combinations of algebraic formulae.
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Solutions to finite combinations of algebraic equalities and inequalities
form semialgebraic sets with a variety of good (tame) properties which makes
them a rather attractive object in mathematical constructions. To isolate the
basic properties of semialgebraic sets, in the 80’s Van den Dries, Knight, Pil-
lay and Steinborn [10, 14, 24] axiomatically introduce the notion of o-minimal
structures and prove that the main bulk of tame properties of semialgebraic
sets are inherited by sets definable in o-minimal structures (see., e.g., [11]).
Remark that analytical functions (seemingly the most natural candidate to
inherit the basic properties of semialgebraic sets) does not form an o-minimal
structure nor contained in any o-minimal structure.

One of the most broad and useful in practice examples of the sets, de-
finable in o-minimal structures, is the family San,exp [12] of all sets which
can be described by finite Boolean combinations of formulae composing of
finite number of algebraic operations, the operation of exponentiation and
application of a finite number of the restricted analytical functions. Here
by restricted analytical function is meant the function which is equal to an
analytical function on some compact set and to zero outside of it.

In [16] a generalization of Theorem 8.1 is proved stating that the problem
of existence of the joint contracting (nonexpanding) norm for a set of matri-
ces is undefinable in o-minimal structures. Informally, this means that this
problem is unsolvable by finite Boolean combinations of formulae composing
of finite number of algebraic operations, the operation of exponentiation and
application of a finite number of the restricted analytical functions.

The proofs in [16] (so as the proof of Theorem 8.1) are essentially based on
two facts: that sets definable in o-minimal structures have only finitely many
components of connectedness and that polynomial images of such sets are
again sets definable in o-minimal structures (Tarski–Seidenberg principle).

Blondel & Tsitsiklis [3] show that analogous problem of computing and
approximating the so-called joint spectral radius of a set of matrices A1,
A2,. . . ,Ak is NP-hard, when not impossible.

9 Robustness of Stability

In spite of the fact that Theorem 7.5, as indicated in the previous Section, is
not too constructive, it nevertheless may help to derive quite strong proper-
ties of asynchronous systems (details see, e.g., in [1]).

Theorem 9.1 (Robustness of Stability) Let asynchronous equation (Wa)
be absolutely asymptotically stable and B be a matrix with sufficiently small

14



norm ‖B‖. Then the perturbed asynchronous equation

x(n + 1) = (A + B)ω(n)x(n)

is also absolutely asymptotically stable.

Theorem 9.2 (First Approximation Principle) Let asynchronous equa-
tion (Wa) be absolutely asymptotically stable and function f(x) satisfies ‘first
approximation condition’ f(x) = Ax + o(‖x‖). Then the zero equilibrium of
nonlinear asynchronous equation

x(n + 1) = fω(n)(x(n))

is absolutely asymptotically stable.

10 Finiteness Conjecture

For an asynchronous system

x(n + 1) = Aω(n)x(n), (Wa)

one may pose the following questions.

Question 10.1 How to characterize those index sequences {ω(n)} for which
‖x(n)‖ tends to zero in a fastest way (or tends to infinity in a slowest way)?

Question 10.2 How to characterize those index sequences {ω(n)} for which
‖x(n)‖ tends to zero in a slowest way (or tends to infinity in a fastest way)?

First of the above questions arises in the problem of stabilization of a
system (Wa) with the help of choice of appropriate desynchronization law
{ω(n)}. Second question is connected with the stability analysis of system
(Wa). In an abstract setting Question 10.2 is closely related with the Finite-
ness Conjecture by Lagarias & Wang [21] formulated below.

Define, for a set of matrices A := {A1, A2, . . . , Ak}, the greatest Lyapunov
exponent as

λ+(A) := sup
n≥1

1

n
log

(
max
Aij

∈A
ρ (Ai1Ai2 · · ·Ain)

)

Lagarias & Wang [21] conjectured that here sup may be replaced by max.
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Recently, Bousch & Mairesse [8] built a counterexample to Finiteness
Conjecture heavily based on measure theoretical considerations1. Unfortu-
nately, their proof is provided in terms of the so-called topical maps, not
matrices, which requires an additional effort to ‘translate’ their construc-
tions on the ‘matrix’ language. Since constructions of Bousch & Mairesse
[8] allows to get a partial answer to Question 10.2, below is given their geo-
metric interpretation exploited some properties of discontinuous circle maps
presented in [17, 18].

Let A = (aij) be a 2 × 2 matrix with positive entries, aij > 0. Then
[2, 8, 27] there exist a special norm, called the Barabanov norm, ‖ · ‖b (where
the lower index b stands for Barabanov) and a number λ > 0 such that2

max
{
‖A{1}x‖b, ‖A{2}x‖b

}
= λ‖x‖b for x ≥ 0.

It may be shown, that the set of those x for which ‖A{1}x‖b = ‖A{2}x‖b is a
straight line L = {x : l(x) = 0}, where l(x) is a linear functional, crossing
over the first and third quadrants. From this an ‘explicit’ construction of
the fastest growing trajectory of asynchronous equation (Wa) can be readily
derived. Provided that the point x(n) ia already obtained, to construct
x(n + 1) one should define it in the following manner

x(n + 1) = F (x(n))

where the ‘maximizing’ map F (x) is defined for x = (x1, x2) with positive
coordinates x1 and x2 as follows

F (x) =

{
A{1}x, if l(x) ≥ 0,
A{2}x, if l(x) < 0.

From the definition of the maximizing map F it is clear that the se-
quence of vectors {x(n)} will satisfy to asynchronous equation (Wa). The
corresponding index sequence {ω(n)} is defined by the formula

ω(n) =

{
{1}, if l(x(n)) ≥ 0,
{2}, if l(x(n)) < 0.

As is shown in [8] the set-valued sequence ω(n) built above is Sturmian3

(see, e.g., definition in [8, 17])4. Therefore [1], two-component asynchronous

1Later, another counterexample to the Finiteness Conjecture, which is exploited com-
binatorial properties of matrix products, was proposed by Blondel, Theys & Vladimirov
[6, 7].

2Idea of construction such a norm is taken from the works of Barabanov [2] and Mañé
[22, 23], see also [27].

3More precisely, it is isomorphic to some Sturmian sequence.
4The same conclusion in a bit more constructive way may be drawn from geometric

analysis of order preserving discontinuous circle maps [17, 18]
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systems (Wa) which provide the the slowest convergence of solutions to zero
(or fastest grows of solutions to infinity) are exactly those with frequency-
asynchronous mode of updating.

11 Concluding Remarks

Of course, in a short paper it is impossible to give a detailed survey of all
results obtained in the theory of asynchronous systems. So, below some of
topics which would be interesting to discuss but which were skipped here due
to lack of space are listed.

• Robustness of instability of asynchronous systems and its connection
with the so-called overshooting effect and notion of quasi-controllability;

• problems specific to nonlinear asynchronous systems. Here, plenty of
interesting and natural examples were found in the field of neural net-
works;

• to investigate stability of frequency asynchronous systems there were
developed quite specific set of methods which are essentially based on
the symbolic dynamics methods and especially on the properties of the
so-called ‘sturmian sequences’. Here, there are known a few robustness
results (unfortunately, only for 2–component systems);

• stochastic asynchronous systems — in spite of very acute problems only
some ‘first’ results are known;

• asynchronous analogs for differential equations — again, in spite of very
natural statements of problems only some preliminary results were ob-
tained in last years;

• from the applicational point of view it would be very important to de-
velop approximate methods of investigation of individual asynchronous
equations;

• etc.
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