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1 Introduction

Order preserving circle homeomorphisms possess a lot of interesting and non-
trivial properties [4, 6] and play an important role in various fields of math-
ematics. Among such properties is the property of the rotation number of
the homeomorphism f to be rational if and only if f has a periodic point,
and also the Poincaré classification theorem giving conditions under which a
circle homeomorphism is conjugate to a circle rotation map.

However, sometimes continuity of a map f may be restrictive (see, e.g.,
[1, Ch. VIII] and [2]). Therefore, it is desirable to distinguish a class of circle
maps into itself retaining as many of the properties of homeomorphisms as
possible while remaining rather broad and containing not only circle home-
omorphisms but also non continuous maps. One such class of maps will be
considered below. It is the class of so-called order preserving circle maps
which in general are not continuous.

Of course, if a circle map lacks continuity than it inevitable loses some
of its properties. An elementary example in Section 3 demonstrates that a
discontinuous circle map with rational rotation number may have no periodic
points.

The paper is organized as follows. In Section 2, basic properties of order
preserving circle maps and their lifts, strictly monotone maps of degree one,
are discussed. Such maps are chosen in the paper as a replacement for circle
homeomorphisms. Section 3 contains the definition of the rotation number
τ(F ) for the strictly monotone map F : R → R of degree one, and proofs
of basic properties of τ(F ) are also discussed. In Section 4, it is shown that
τ(F ) depends continuously on the graph of F in the Hausdorff semi-metric,
which generalizes usual statements on continuity of the rotation number of
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circle homeomorphism. In Section 5, it is proved that, in the case of irrational
rotation number, iterations of a point under F are ordered like those for the
corresponding rotation map. From this a restricted version of the Poincaré
Classification Theorem for circle homeomorphisms is deduced, stating that an
order preserving circle map with irrational rotation number is semi-conjugate
to a circle rotation map. Finally, Section 6 is devoted to investigation of the
problem of whether or not an order preserving circle map has bi-infinite
trajectories.

2 Monotone maps of degree one

Consider the class of all strictly monotone1 maps F : R → R of degree one2,
i.e., class of all maps F : R → R satisfying

F (x + 1) ≡ F (x) + 1, F (x) < F (y) for x < y. (1)

Point out that generally maps satisfying (1) are not supposed to be con-
tinuous. At the same time namely continuous strictly monotone maps of
degree one play an important role in investigation of circle homeomorphisms
[4, 6]. To be more precise, each strictly monotone continuous map F : R → R
of degree one generates with the help of the relation

f(x) = F (x) (mod 1) (2)

the orientation-preserving homeomorphism f of the circle S1 = R/Z which is
convenient to treat as the interval [0, 1) with topologically identified points
0 and 1. Reverse is also true: for any orientation-preserving circle homeo-
morphism f there exists infinitely many strictly monotone continuous maps
F : R → R of degree one satisfying (2); such maps are called lifts of f . It is
worth pointing out here that any two lifts of the orientation-preserving circle
homeomorphism f differ from each other on an integer constant.

Now, suppose that the map F is no longer continuous. What happens as
a result of such supposition? This is the main question which will be studied
below.

Notice first, that condition (1) implies

0 < F (y)− F (x) < 1 for 0 < y − x < 1. (3)

From (1) and (3) the next lemma immediately follows.

1Throughout the paper the term strictly monotone is used as equivalent of the term
strictly increasing.

2The map F : R → R are said to be of degree k ∈ Z if F (x + 1) ≡ F (x) + k.
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Lemma 1 Any iteration of strictly monotone map F of degree one is also
strictly monotone map of degree one. The map F∗(x) = F (x)−x is 1-periodic
and satisfies

|F∗(x)− F∗(y)| < 1, ∀ x, y ∈ R. (4)

Mutual properties of maps F : R → R and f : S1 → S1 tied by relation
(2) are described by the following lemma (see, e.g., [5]).

Lemma 2 Let F : R → R be a strictly monotone map of degree one. Then
for the map f defined by (2) there exist subintervals I+(f), I−(f) ⊆ [0, 1),
one of which may be empty, such that

(i) 0 ∈ I+(f), I+(f) ∩ I−(f) = ∅, I+(f) ∪ I−(f) = [0, 1);
(ii) f(x) is one-to-one increasing map on each of the intervals I+(f) and

I−(f);
(iii) f(x) > f(y) for any x ∈ I+(f), y ∈ I−(f)
Conversely, for any map f : S1 → S1 satisfying conditions (i)–(iii) there

exists a strictly monotone lift F : R → R of degree one. Any two strictly
monotone lifts of f of degree one differ from one another by a constant.

I-( f )I+( f )

1

10

f (  )x

Figure 1: Order preserving circle map

Maps f : S1 → S1 satisfying conditions (i)–(iii) of Lemma 2 will be re-
ferred to as order preserving circle maps (see, e.g., [5]). Typical plot of an
order preserving circle map in presented on Fig. 1. It is worth pointing out
that under supposition that the map F is generally discontinuous, the corre-
sponding order preserving circle map f defined by (2) is also discontinuous.
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3 Rotation number

In this Section it will be shown that strictly monotone maps F : R → R of
degree one share basic properties of lifts of circle homeomorphisms although
proofs are changed comparing with traditional proofs which usually based on
the continuity of related maps (see, e.g., [4, Ch. 11]).

Theorem 1 Let F : R → R be a strictly monotone map of degree one. Then
for any x ∈ R there exists independent from x number τ(F ) ( the rotation
number of the map F ) such that∣∣∣∣F n(x)− x

n
− τ(F )

∣∣∣∣ ≤ 2

n
. (5)

If the map f = F (mod 1) has a periodic point then τ(F ) is rational.

Proof. The proof is an insignificant modification of usual proofs known for
the case of homeomorphisms (see, e.g., [4, 6]) and is given below for the sake
of completeness.

Fix an x ∈ R and an integer n > 0 and set F (n)(x) = F n(x) − x. Then
by Lemma 1

F (n)(0)− 1 ≤ F n(x)− x = F (n)(x) ≤ F (n)(0) + 1. (6)

Now, add together the relations (6) for points x = y, F n(y), . . . , F (m−1)n(y)
with an arbitrary y ∈ R:

m(F (n)(0)− 1) ≤ Fmn(y)− y ≤ m(F (n)(0) + 1). (7)

Dividing (7) by mn and subtracting from it the relation (6) divided by n, we
get ∣∣∣∣Fmn(y)− y

mn
− F n(x)− x

n

∣∣∣∣ ≤ 2

n
. (8)

Analogously can be obtained the relation∣∣∣∣Fmn(y)− y

mn
− Fm(x)− x

m

∣∣∣∣ ≤ 2

m
. (9)

and thus, ∣∣∣∣Fm(x)− x

m
− F n(x)− x

n

∣∣∣∣ ≤ 2

n
+

2

m
. (10)
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From (10) it follows that {(F n(x)− x)/n} for any x ∈ R is a Cauchy
sequence and so it has a limit τ(F, x). Then, firstly taking the limit in (8)
as m →∞ we get ∣∣∣∣τ(F, y)− F n(x)− x

n

∣∣∣∣ ≤ 2

n
, (11)

and secondly taking the limit in (11) as n → ∞ we deduce that |τ(F, y) −
τ(F, x)| = 0, from which it follows that the limit τ(F, x) in fact does not
depend on x, i.e., τ(F, x) ≡ τ(F ).

Now, from the identity τ(F, x) ≡ τ(F ) and (11) we obtain (5).
To finalize to proof it remained to show that the rotation number τ(F )

is rational in the case when the map f = {F} has a periodic point. Let
fn(x) = x for some x ∈ [0, 1) and integer n > 0. Then F n(x) = x + p for
some integer p and therefore Fmn(x) = x + mp for any integer m = 1, 2, . . ..
Hence

Fmn(x)− x

mn
=

mp

mn
=

p

n

and taking the limit as m →∞ in the left side of the last equality we conclude
that τ(F ) = p/n. Theorem is proved. �

If f is an orientation preserving circle map and F is its strictly monotone
lift of degree one then the value τ(f) := τ(F ) (mod 1) is called the rotation
number of f . Since by Lemma 2 any two strictly monotone lifts of f of degree
one differ from each other on an integer constant then the value τ(f) is well
defined.

Remark 1 Unfortunately, the reverse statement, usual for homeomorphisms,
that rationality of τ(F ) implies the existence of a periodic point of the map
f = F (mod 1) is not valid under conditions of Theorem 1. Indeed, as is
easy to see the map f(x) = (x + 1)/2 defined on [0, 1) has no periodic points
while for any its strictly monotone lift F of degree one the equality τ(F ) = 0
is valid. Nevertheless, the corresponding statement is valid for discontinuous
maps in a slightly modified form.

Given a strictly monotone map F : R → R of degree one, one can consider
its upper and lower associated maps, F+ and F−, defined as

F+(x) = lim
s→x,s>x

F (x), F−(x) = lim
s→x,s<x

F (x).

Clearly, since F (x) is monotone, maps F+ and F− are defined correctly and
the both of them are strictly monotone maps of degree one satisfying

F−(x) ≤ F (x) ≤ F+(x). (12)
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Theorem 2 Let F : R → R be a strictly monotone map of degree one with
rational rotation number τ(F ) = p/q. Then either the map f = F (mod 1)
or the map f− = F− (mod 1) or the map f+ = F+ (mod 1) has a periodic
point of period q.

As it will be shown later in Theorem 4, τ(f) = τ(f−) = τ(f+). Then, by
supposing in Theorem 4 that τ(f) = τ(f−) one may derive the following

Corollary 1 Let F : R → R be a strictly monotone map of degree one with
rational rotation number τ(F ) = p/q. Then either the map f− = F− (mod 1)
or the map f+ = F+ (mod 1) has a periodic point of period q.

To prove Theorem 2 we will need a simple fixed-point statement concern-
ing monotonic maps.

Lemma 3 Let h : [a, b] → R1 with −∞ < a < b < ∞ be a non-decreasing
map.3 If h(a) ≥ a and h(b) ≤ b then there exists such an x∗ ∈ [a, b] for which
h(x∗) = x∗.

Proof. If h(a) = a or h(b) = b then Lemma is proved. So, without loss in
generality one may suppose that h(a) > a and h(b) < b. Consider the set

X∗ = {x : h(x) > x, x ∈ [a, b]} .

From supposition that h(a) > a and h(b) < b it follows that

[a, h(a)) ⊆ X∗, (h(b), b] ⊆ [a, b]\X∗, (13)

since by monotonicity of the function h one have:

x < h(a) ≤ h(x), for x ∈ [a, h(a))

and
h(x) ≤ h(b) < x, for x ∈ (h(b), b].

From (13) it follows that the set X∗ contains infinitely many points and
thus possesses a maximal accumulation point x∗, i.e. such a point that in
each its left neighborhood there are infinitely many points from X∗ and to
the right from it there are only finitely many points from X∗. Then to the
right from x∗ there are infinitely many points from [a, b]\X∗. Hence there
exist yn → x∗ and zn → x∗, such that

yn < x∗, yn < h(yn) and x∗ ≤ zn, h(zn) ≤ zn (14)

3The map h is not supposed to be continuous.
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for all n = 1, 2, . . ..
From (14) it follows that

yn < h(yn) < h(x∗) ≤ h(zn) ≤ zn

and taking here the limit when yn → x∗ and zn → x∗ we get h(x∗) = x∗. �

In proving Theorem 2 we will follow the scheme of proof of the correspond-
ing statement from [4, see. Prop. 11.1.4] with necessary changes caused by
possible discontinuity of the map F .

Proof of Theorem 2. By definition of the rotation number τ(f) = τ(F )
(mod 1) we have

τ(f q) = lim
n→∞

1

n
((F q)n(x)− x)) = q lim

n→∞

1

qn
((F qn(x)− x)) = qτ(f) (mod 1).

So, τ(f q) = 0 since the rotation number of the map f is defined with the
accuracy to an integer. Then to prove Theorem it suffices to show that the
relation τ(f) = 0 implies that either f− or f+ has a fixed point.

Consider now such a lift F of the map f for which F (0) ∈ [0, 1). If
F (x) − x ≤ 0 for some x ∈ [0, 1) then by Lemma 3 the map F has a fixed
point which implies that the map f also has a fixed point. Analogously, if
F (x)−x ≥ 1 for some x ∈ [0, 1) then by Lemma 3 the map F −1 has a fixed
point from which again follows the existence of a fixed point for the map f .
So, we should only consider the case when

0 < F (x)− x < 1 for x ∈ [0, 1).

If
inf

0≤x<1
{F (x)− x} = 0

then either min0≤x≤1 {F−(x)− x} = 0 or min0≤x≤1 {F+(x)− x} = 0. In the
former case the map F− has a fixed point while in the latter case the map
F+ has a fixed point, and in both cases Theorem is proved.

If
sup

0≤x<1
{F (x)− x} = 1

then either max0≤x≤1 {F−(x)− x} = 1 or max0≤x≤1 {F+(x)− x} = 1. In the
former case the map F−−1 has a fixed point while in the latter case the map
F+ − 1 has a fixed point. This means that either the map f− or the map f+

has a fixed point. So, again, in both cases Theorem is proved.
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It remained to consider only the case, when there exists such a δ > 0 for
which

δ < F (x)− x < 1− δ for x ∈ [0, 1).

Putting in the above inequalities the values x = F i(0) and sum the resulting
estimates from i = 0 to i = n− 1 we get

nδ < F n(0) < n(1− δ)

or

δ <
F n(0)

n
< 1− δ.

Now, taking here the limit as n →∞ we conclude that δ < τ(F ) < 1−δ and
thus τ(f) 6= 0. A contradiction, which completes the proof of Theorem. �

4 Continuity of the rotation number in the

Hausdorff metric

As is known, the rotation number τ(f) of a circle homeomorphism f depends
continuously on f in the topology of uniform convergence (see, e.g., [4, Prop.
11.1.6]). Clearly, the same is valid for rotation numbers of strictly monotone
continuous maps of R of degree one. In the general case, when considering
discontinuous maps, the uniform or even pointwise convergence is too restric-
tive. So, below it will be proposed a more general result on continuity of the
function τ(F ).

Denote by Γ(F ) := {z ∈ R2 : z = (F (x), x), x ∈ R} the graph of the map
F . Denote by ‖z‖ the max-norm in R2, i.e., ‖z‖ = max{|z1|, |z2|}. And, at
last, define the Hausdorff semi-metric between graphs of strictly monotone
maps F and G of degree one as

χ(F, G) = max

{
sup

z∈Γ(F )

inf
u∈Γ(G)

‖z − u‖, sup
u∈Γ(G)

inf
z∈Γ(F )

‖u− z‖

}
.

Point out that χ(F, G) possesses all the properties of metric except one: since
graph of discontinuous map is not closed then it may happen that χ(F, G) = 0
while F 6= G. Generally, convergence defined by the semi-metric χ(F, G) is
weaker than uniform or even pointwise convergence. Nevertheless, there are
situations when χ-convergence implies pointwise convergence.

Lemma 4 Let m be an integer and let x, F (x), . . . , Fm−1(x) be points of
continuity for the map F and χ(F, Fn) → 0. Then Fm

n (xn) → Fm(x) for any
sequence {xn} such that xn → x.
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Proof. Prove first Lemma for the case m = 1. Given the sequences {Fn}
and {xn}, by definition of the Hausdorff metric χ for any n = 1, 2, . . . it may
be chosen yn = (F (zn), zn) ∈ γ(F ) such that

‖(Fn(xx), xn)− yn‖ ≤ χ(F, Fn).

Then by definition of the max-norm ‖ · ‖

|xn − zn| ≤ χ(F, Fn) → 0, (15)

|Fn(xn)− F (zn)| ≤ χ(F, Fn) → 0. (16)

From (15) and condition that xn → x it follows that zn → x. Then by
continuity of the map F at the point x we get F (zn) → F (x) and in view of
(16) Fn(xn) → F (x). Lemma is proved for the case m = 1.

Ie the general case Lemma can be proved by induction. Suppose that the
statement of lemma is valid for k = p − 1 with 1 ≤ p − 1 < m, prove that
then it is valid for k = p.

By supposition un = F p−1(xn) → F p−1(x) as xn → x where by condition
of Lemma F p−1(x) is the point of continuity of F . Then by the already
proven statement of Lemma for the case m = 1 we get F p(xn) = F (un) →
F (F p−1(x)) = F p(x). The step of induction is completed and so, Lemma is
proved. �

Theorem 3 Let F , Fn, n = 1, 2, . . ., be strictly monotone maps of degree
one such that χ(F, Fn) → 0 as n →∞. Then τ(Fn) → τ(F ) as n →∞.

Proof. Denote by D1(F ) the set of all points of discontinuity for the map
F ; since F by supposition is monotone then the set D1(F ) is countable. By
supposition the map F is not only monotone, it is strictly monotone and
thus injective. Then the set D2(F ) := {x : F (x) ∈ D1(F )} is also countable.
Analogously, each set Dn(F ) := {x : F n(x) ∈ D1(F )}, n = 2, 3, . . ., is also
countable4. Then the set

D(F ) =
⋃
n≥1

Dn(F ).

is also countable. Hence the set C(F ) = R\D(F ) consisting of all x ∈ R such
that x, F (x), F 2(x), . . . are points of continuity for the map F is not empty.

4Strictly speaking, each of the sets Dn(F ) consists of no more that countably many
points.
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Choose now an ε > 0 an fix some x ∈ C(F ). Then by Theorem 1 for any
integer m satisfying m ≥ 6/ε there will be valid estimate∣∣∣∣Fm(x)− x

m
− τ(F )

∣∣∣∣ ≤ ε

3
. (17)

Fix any m for which the above estimate is true. Then, by definition
of the set C(F ) and choice of the point x ∈ C(F ), according to Lemma 4
Fm

n (x) → Fm(x) as n →∞. Hence such an N(ε) can be chosen that∣∣∣∣Fm
n (x)− x

m
− Fm(x)− x

m

∣∣∣∣ ≤ ε

3
as n ≥ N(ε). (18)

At last, again by Theorem 1 since m ≥ 6/ε then∣∣∣∣Fm
n (x)− x

m
− τ(Fn)

∣∣∣∣ ≤ 2

m
≤ ε

3
, ∀ n. (19)

From (17), (18) and (19) one can deduce that |τ(Fn)− τ(F )| ≤ ε for
n ≥ N(ε) and hence τ(Fn) → τ(F ) as n →∞. Theorem is proved. �

Now, one important corollary of Theorem 3 specific to discontinuous
strictly monotone maps of degree one will be proved. Strictly monotone
maps F and G of degree one will be called equivalent if

F−(x) ≤ G(x) ≤ F+(x), x ∈ R. (20)

Clearly, relations F−(x) ≤ G(x) ≤ F+(x) imply relations G−(x) ≤ F (x) ≤
G+(x), so the definition of equivalency of F and G is correct.

Theorem 4 If F and G are equivalent strictly monotone maps of degree one
then τ(F ) = τ(G).

Proof. From definition of the rotation number it follows that τ(F1) ≤ τ(F2)
if F1(x) ≤ F2(x) for x ∈ R. Then the relations

F−(x) ≤ F (x), G(x) ≤ F+(x)

imply
τ(F−) ≤ τ(F ), τ(G) ≤ τ(F+). (21)

Now, from the fact that Γ(F−) = Γ(F+)5 the relation χ(F−, F+) = 0 follows.
Then by Theorem 3 τ(F−) = τ(F+) which, in view of (21), implies that
τ(F ) = τ(G). Theorem is proved. �

5Remark, that generally χ(F, F+) 6= 0 and χ(F, F−) 6= 0 as is, for example, in the case
when F (x0) 6= F−(x0) and F (x0) 6= F+(x0) for some x0. Clearly, x0 in this case is such a
point of discontinuity of F for which (F (x0, x0)) is an isolated point of the graph Γ(F ).
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5 Semi-congujacy with a circle shift map

One of the most important results of the theory of circle homeomorphisms is
one stating that each circle homeomorphisms with irrational rotation number
semi-conjugate to a circle shift (or rotation) map

ρτ (x) := x + τ (mod 1), x ∈ [0, 1). (22)

As it turned out the same result is valid also for generally discontinuous order
preserving circle maps. It is worth pointing out that generally related proofs
are changed.

Prove first that orbits of an order preserving circle map f with irrational
rotation number τ(f) are ordered exactly as those for the circle shift map ρτ

with τ = τ(f).

Lemma 5 Let F be a strictly monotone lift of degree one of an order pre-
serving circle map f with irrational rotation number τ = τ(F ). Then for any
n1, n2, m1, m2 ∈ Z and x ∈ R

n1τ + m1 < n2τ + m2 if and only if F n1(x) + m1 < F n2(x) + m2.

Proof. First consider the case when F n1(x) + m1 < F n2(x) + m2 and
n1 < n2. By setting y = F n1(x) the former inequality is equivalent to
y < F n2−n1(y) + m2 −m1. From this, since the map F is strictly monotone
and of degree one, we obtain

y < F n2−n1(y) + m2 −m1 < F n2−n1(F n2−n1(y) + m2 −m1) + m2 −m1 =

= F 2(n2−n1)(y) + 2(m2 −m1).

Inductively,

y < F k(n2−n1)(y) + k(m2 −m1), k = 1, 2, . . . ,

and so

τ = τ(F ) = lim
k→∞

F k(n2−n1)(y)− y

k(n2 − n1)
> lim

k→∞

k(m2 −m1)

k(n2 − n1)
=

m2 −m1

n2 − n1

(with a strict inequality due to irrationality of τ). Hence,

n1τ + m1 < n2τ + m2.

Now, consider the case when F n1(x) + m1 < F n2(x) + m2 while n1 > n2.
Then by setting y = F n2(x) we get F n1−n2(y) + m1 −m2 < y. From this, as
in the previous case, we obtain

F k(n1−n2)(y) + k(m1 −m2) < y, k = 1, 2, . . . ,
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Then

τ = τ(F ) = lim
k→∞

F k(n1−n2)(y)− y

k(n1 − n2)
< lim

k→∞

k(m1 −m2)

k(n1 − n2)
=

m1 −m2

n1 − n2

(with a strict inequality due to irrationality of τ) which again imply

n1τ + m1 < n2τ + m2.

Thus we have proved that F n1(x)+m1 < F n2(x)+m2 implies n1τ +m1 <
n2τ +m2. Similarly F n1(x)+m1 > F n2(x)+m2 implies n1τ +m1 > n2τ +m2

and equality in the considered relations never occurs (since τ is irrational and
thus F has no periodic points). So, the lemma is proved. �

The preceding lemma demonstrates that in the case of irrational rotation
number iterations of a point under F ordered like those for the correspond-
ing rotation. The following Theorem is a restricted version of the Poincaré
Classification Theorem for circle homeomorphisms [4, Th. 11.2.7].

Theorem 5 Let f : S1 → S1 be an order preserving map (generally discon-
tinuous) with irrational rotation number τ = τ(f). Then map ρτ (x) := x+ τ
(mod 1) is a topological factor6 of f via continuous order preserving map
h : S1 → S1.

Proof. Let F be a strictly monotone lift of degree one of the map f (such
a lift exists due to Lemma 2). Consider for an arbitrary x ∈ R the set

B = B(x) := {F n(x) + m : n,m ∈ Z}

and define the map

H : B → R such that F n(x) + m 7→ nτ + m

where τ = τ(F ). Then by Lemma 5 the map H is monotone (moreover, it is
a map of degree one). Note also that due to irrationality of τ the set H(B)
is dense in R. So, if we use the notation Rτ for the map Rτ : x 7→ x + τ ,
then H ◦ F = Rτ ◦H since

H ◦ F (F n(n) + m) = H(F n+1(x) + m) = (n + 1)τ + m

and
Rτ ◦H(F n(x) + m) = Rτ (nτ + m) = (n + 1)τ + m.

6Remind, that a map g : Y → Y is a topological factor of the map f : X → X if there
exists a surjective continuous map h : X → Y such that h ◦ f = g ◦ h.
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Prove now that H has a continuous extension to the closure B̄ of B.
Indeed, if y ∈ B̄ then there exists a sequence {yn} ⊂ B such that y =
limn→∞ yn. To define by continuity H at the point y we should set H(y) :=
limn→∞H(yn). To show that limn→∞H(yn) exists and does not depend on
the choice of the sequence approximating y observe first that the left and
right limits exist and are independent of the sequence since H is monotone.
At last, note that the left and right limits will coincide as in the opposite
case the set R \H(B) contains an interval. So, we have proved that H has
a continuous extension to the closure B̄ of B.

Now, H can easily be extended to R. Since H : B̄ → R is monotone and
surjective (since H is monotone and continuous on B, B̄ is closed, and H(B)
is dense in R) there is no choice in defining H on the intervals complementary
to B̄ as to set H = const on those intervals, choosing the constant value
equal to the values at endpoints. This defines the map H : R → R satisfying
H ◦F = Rτ ◦H which is of degree one since for y = F n(x) + m ∈ B we have

H(y + 1) = H(F n(x) + m + 1) = nτ + m + 1 = H(y) + 1

and this property persists under continuous extension.
Now, from H ◦F = Rτ ◦H it follows that h◦f = ρτ ◦h with h(x) = H(x)

(mod 1) and ρτ (x) = Rτ (x) (mod 1) ≡ x + τ (mod 1). �

Corollary 2 Let f : S1 → S1 be an order preserving map with irrational
rotation number and let I ⊂ S1 be a closed interval with endpoints fm(x) and
fn(x) where m 6= n are positive integers. Then for any y ∈ S1 there is a
positive integer k such that fk(y) ∈ I.7

Proof. The conjugating map h constructed in the proof of Theorem 5 maps
the points fm(x) and fn(x) to the points ϕ1 = mτ (mod 1) and ϕ2 = nτ
(mod 1) respectively. Since τ is irrational and m 6= n then ϕ1 6= ϕ2. Then,
again by irrationality of τ , for any y ∈ S1 there exists a positive integer k
such that h(fk(y)) = h(y) + kτ (mod 1) ∈ [ϕ1, ϕ2]. From this, since h is
monotone and continuous, we get that fk(y) ∈ h−1([ϕ1, ϕ2]) = I. �

Corollary 3 Let f : S1 → S1 be an order preserving map with irrational
rotation number. Then the ω-limit set8 ω(x) is independent of x.

7There are exactly two intervals in S1 with endpoints fm(x) and fn(x); the corollary
is valid for either case.

8The ω-limit set for a point x is defined as the set of all limiting points of the sequence
{fn(x)}∞n=1.
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Proof. We need to show that ω(x) = ω(y) for x, y ∈ S1. Let z ∈ ω(x).
Then there is a sequence mn > 0 such that fmn(x) → z. By Corollary 2
for y ∈ S1 there exist kn > 0 such that fkn(y) ∈ [fmn(x), fmn+1(x)]. Thus
limn→∞ fkn(y) = limn→∞ fmn(x) = z. Therefore ω(y) ⊆ ω(x) for all , y ∈ S1

and by symmetry ω(y) = ω(x) for all x, y ∈ S1. �

Clearly, any ω-limit set is closed. In the case when f is a circle homeo-
morphism the set ω = ω(x) is also invariant with respect to f , i.e., f(ω) = ω,
while for an order preserving circle map we can not even state that f(ω) ⊆ ω.

6 Bi-infinite trajectories

One of the most important features of circle homeomorphisms is that for any
x ∈ S1 there exists a bi-infinite trajectory {xn}∞n=−∞ of the corresponding
map f satisfying x0 = x, i.e.,

xn+1 = f(xn), −∞ < n < ∞, x0 = x. (23)

Clearly, order preserving circle maps generally do not possess the above
feature as for them the image f(S1) may be a proper part of S1 and so there
may exist points with no preimages at all. Nevertheless, as is stated by
Theorem 6 below in under some conditions the set ω∞(f) of all points x ∈ S1

for which there exists a bi-infinite trajectory {xn}∞n=−∞ hitting x at zero time
(see (23)) is not empty.

Theorem 6 Let f : S1 → S1 be an order preserving map with irrational
rotation number τ(f). Then ω∞(f) 6= ∅.

To prove Theorem 6 we need two auxiliary statements. First we shall
prove that Theorem 6 is valid under supposition that the map f is semi-
continuous (from the left or from the right). Then we shall prove that for
semi-continuous maps the set ω∞ in not only non-empty; the cardinality of
this set is continuum. From this we shall deduce that analogous properties
are valid for general maps satisfying conditions of Theorem 6.

Lemma 6 Let f : S1 → S1 be an order preserving semi-continuous from
the left (from the right) map with irrational rotation number τ = τ(f), and
x ∈ S1. Then any limiting point of a monotone subsequence9 fn0(x) <
fn1(x) < . . . < fnk(x) . . . belongs to the set ω∞(f) and so ω∞(f) 6= ∅.

9Here to use the monotonicity arguments we identify S1 with [0, 1).
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Proof. Given an x ∈ S1, prove first that there exists at least one bounded
increasing sequence of the form {fnk(x)}. Fix some positive integers m, n
such that 0 ≤ fn(x) < fm(x) < 1. By Corollary 2 there is a number n0 such
that fn(x) ≤ fn0(x) ≤ fm(x) < 1. Then, again by Corollary 2 there is a
number n1 > n0 such that fn0(x) ≤ fn1(x) ≤ fm(x) < 1, etc. Hence there is
a sequence of positive integers {nk} such that

0 ≤ fn0(x) ≤ fn1(x) ≤ . . . ≤ fm(x) < 0. (24)

Notice, that all the inequalities in (24) are, in fact, strict since due to irra-
tionality of τ(f) the map f has no periodic points.

So, the existence of bounded increasing sequences {fnk(x)} is proved. Let
{fnk(x)} be one of such sequences, then denote z0 = limk→∞ fnk(x). Show
that z0 ∈ ω∞(f) and thus ω∞(f) 6= ∅. Consider the sequence {fnk−1(x)}.
Since this is a sequence from S1 then it is compact and without loss in
generality it may be treated as converging, i.e., there exists z1 ∈ S1 such that
fnk−1(x) → z1 as k → ∞. But in view of local monotonicity of the map f
(see Lemma 2) the sequence {fnk−1(x)} should be non-decreasing since the
sequence {fnk(x)} is non-decreasing by definition. Then fnk−1(x) ≤ z1 and

f(z1) = lim
k→∞

f(f bk(x)) ≡ lim
k→∞

fnk(x) = z0

where the first limit is valid due to supposition that f(x) is semi-continuous
from the left. So, f(z1) = z0. Analogously, there exists z2 ∈ S1 such that
f(z2) = z1, etc.

From the above reasoning it follows the existence of sequence {zk} such
that f(zk+1) = zk, k = 0, 1, . . ., which means that z0 ∈ ω∞(f) and thus
ω∞(f) 6= ∅. �

Clearly, by definition f(ω∞) = ω∞. From the proof of Lemma 6 it is also
seen that ω∞(f) = ω(f) for the semi-continuous from the left of from the
right map f with irrational rotation number.

Lemma 7 Let f satisfy conditions of Lemma 6. Then for any x ∈ S1 the
cardinality of the set of limiting points of all growing sequences fn0(x) <
fn1(x) < . . . < fnk(x) . . . is continuum. So the cardinality of ω∞(f) is also
continuum.

Proof. Given an x ∈ S1 fix positive integers n1, n2, n3, n4 such that

0 < fn1(x) < fn2(x) < fn3(x) < fn4(x) < 1;
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such integers exist by Lemma 5 since, by supposition, τ(f) is irrational and
so all the points fk(x), k = 0, 1, . . ., are distinctive. Define intervals of “zero
level”

∆0 = [fn1(x), fn2(x)], ∆1 = [fn3(x), fn4(x)].

Then choose inside interval ∆0 four points fn01(x), fn02(x), fn03(x), fn04(x)
satisfying

fn1(x) < fn01(x) < fn02(x) < fn03(x) < fn04(x) < fn1(x)

and define intervals of the “first level”

∆00 = [fn01(x), fn02(x)] ⊂ ∆0, ∆01 = [fn03(x), fn04(x)] ⊂ ∆0.

Analogously, we can choose inside interval ∆1 four points fn11(x), fn12(x),
fn13(x) and fn14(x) satisfying

fn3(x) < fn11(x) < fn12(x) < fn13(x) < fn14(x) < fn4(x)

and define two more intervals of the “first level”

∆10 = [fn11(x), fn12(x)] ⊂ ∆1, ∆11 = [fn13(x), fn14(x)] ⊂ ∆1.

The procedure of construction of the ∆-intervals can be continued by
induction. Provided that we have got already 2n+1 intervals of the 2nth level,
we can choose in each of such intervals 2 new intervals with endpoints from
the set {fk(x)}∞k=1 in such a way that the endpoints of all the ∆-intervals
(old and newborn) would be distinctive.

So, such a procedure results in construction of a set of intervals with
distinctive endpoints taken from the set {fk(x)}∞k=1, subdivided in “levels”.
On the highest, zero level there are two such intervals. On the n-th level
there are 2n+1 intervals, and each of them contains exactly 2 intervals from
the next (n + 1)-th level.

As is easy to see this procedure resembles the construction of a Cantor
set. The only difference is that, due to the fact that endpoints of our intervals
are distinctive, the intersection of any infinite filtered sequence of such in-
tervals10 is non-empty and has no common points with another such interval
determined by a different filtered sequence of intervals. Hence, the unity of
all the intersections of all the filtered sequences from our set of intervals has
cardinality of all the binary sequences which is continuum.

10The sequence of intervals {∆n} is called filtered if ∆0 ⊇ ∆1 ⊇ . . . ⊇ ∆n ⊇ . . ..
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Note now, that for any filtered sequence of intervals {∆k} from our set
of intervals their left endpoints increase and have the form fnk(x). So, each
filtered sequence of intervals uniquely determines the point

z = lim
k→∞

fnk(x), fnk(x) < fnk+1(x) < z, k = 1, 2, . . . , (25)

and cardinality of different points defined in such a manner is continuum.
At last, by Lemma 6 any point defined by (25) belongs to ω∞(f), so the

cardinality of ω∞(f) is also continuum. �

Proof of Theorem 6. Define an auxiliary map

f̃(x) := lim
y→x,y<x

f(x).

Then f̃(x) is a semi-continuous from the left order preserving circle map.
Since f(x) and f̃(x) may differ only at points of discontinuity of f(s) while
f(x) has only countably many points of discontinuity then the set

Df := {x ∈ S1 : f(x) 6= f̃(x)}

is finite or countable. Therefore the set

D∞
f : {x ∈ S1 : fn(x) ∈ Df for some integer n ≥ 0}

is also finite or countable due to injectivity of the map f . Hence the set
S1 \D∞

f is not empty.
Choose an x ∈ S1 \ D∞

f . By definition of the set S1 \ D∞
f all the points

fn(x), n = 0, 1, . . ., are points of continuity of the map f(x) and therefore

fn(x) = f̃n(x), n = 0, 1, . . . . (26)

By Lemmas 6 and 7 the cardinality of the set ω∞(f̃) is continuum. Moreover,
by Lemma 7 the set ωf̃ contains continuum of points which are limits from

the left of increasing subsequences of the form f̃nk(x). Since the set D∞
f is

countable, then there exists an increasing subsequence f̃nk(x) converging to
a point z 6∈ D∞

f . In this case by Lemma 6 z ∈ ω∞(f̃) but since z 6∈ D∞
f then

in fact z ∈ ω∞(f). So, ω∞(f) 6= ∅. �
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