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There are plenty of known non-trivial properties of circle home-
omorphisms. Sometimes, continuity of a circle map may be re-
strictive in applications. Therefore, the problem of distinguishing
a class of circle maps retaining as much properties of homeo-
morphisms as possible while remaining rather broad is urgent.
Clearly, by discarding continuity of a map one inevitably loses
some properties inherent to circle homeomorphisms. Neverthe-
less, as it turned out discontinuous order preserving circle maps
retain the majority of symbolic properties of circle homeomor-
phisms.
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1 Introduction

Order preserving circle homeomorphisms possess plenty of interesting and
non-trivial properties [6, 12] and play an important role in various fields of
mathematics. Among such properties is the property of the rotation number
of the homeomorphism f to be rational if and only if f has a periodic point
[6, 12]. Another property, that is perhaps less well known, is related to the
so-called Sturmian symbolic sequences (see [11] and a preprint of a book
under preparation [1]) associated with trajectories

xn+1 = f(xn), n = 0, 1, . . . . (1)

Such symbolic sequences are found to be very useful in analysis of dynamical
properties of various systems (see, e.g., [2, 3, 5, 7, 8, 9]).

However, continuity of a map f may sometimes be restrictive as is, e.g.,
in [2, Ch. VIII] or in [3]. So it is desirable to distinguish a class of circle maps
retaining as many of the properties of homeomorphisms as possible whilst
still being broad and containing both continuous and noncontinuous maps.
One such class of maps will be considered below. It is the class of so-called
order preserving circle maps which in general are not continuous.

Of course, if a circle map lacks such a strong attribute as continuity than
it inevitably loses some of its properties. For example, a discontinuous circle
map with rational rotation number may have no periodic points. Neverthe-
less, as it turns out iterations of points generated by such a map continue to
produce Sturmian symbolic sequences.

The paper is organized as follows. In Section 2, several equivalent defini-
tions of Sturmian sequences are considered. In Section 3, basic properties of
circle maps are discussed with emphasis on what happens when the continu-
ity of the map is neglected and how the property of continuity is replaced.
As such a replacement, discontinuous order preserving circle maps and their
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lifts, increasing maps of degree one, are chosen. In Section 4, it is shown
that Sturmian sequences naturally arise in the symbolic description of tra-
jectories of order preserving circle maps and their lifts. Here also “Sturmian
coding” properties of the locally growing relaxation map of the interval [0, 1)
into itself are investigated. This map appear in various applications. Sec-
tion 5 contains concluding remarks on possible alternative ways to investigate
properties of discontinuous circle maps.

2 Sturmian sequences

A binary symbolic sequence1 σ = σ0σ1 . . . is called Sturmian if, for each
n = 1, 2, . . ., the number pσ(n) of different subwords of the length n in this
sequence equals to n + 1. The function pσ(n) is called also the complexity
function of the sequence σ.

Sturmian sequences play an important role in description of different
phenomena. There are known different equivalent definitions of Sturmian
sequences (see, e.g., [1, 11]), some of which will be presented below as they
highlighted properties of Sturmian sequences from different points of view.

Cutting sequence. Consider the integer grid and a line with irrational
slope in the plane (see Fig. 1), and build a sequence σ by writing down
0 or 1 each time the line intersects vertical or horizontal line of the grid,
correspondingly. In the case when the line intersects a node of the grid one
shell write down 0 or 1 at its own choice. The resulting sequence is called a
cutting sequence. For example, the grid and line plotted on Fig. 1 generate
the sequence σ = 0010010100100 . . .. It is known, that the sequence σ is
cutting if and only if it is Sturmian.

Rotation sequence. The sequence σ = σ0σ1 . . . is called a rotation se-
quence if there exist an irrational α ∈ [0, 1] and a real x such that

σn = [(n + 1)α + x]− [nα + x] (2)

where [t] denotes the integral part of a real number t, i.e., is the greatest
integer does not exceeding t.

Rotation sequences occur in a number of natural situations, see e.g., [2,
5, 8, 9]. One of them is coding of trajectories of the circle shift map:

S : S1 → S1 x 7→ {x + α}

where {t} := t − [t] ≡ t mod 1 denotes the fractional part of t; clearly
{t} ∈ [0, 1) for any t.

1A sequence is called binary if it consists of 0’s and 1’s.
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Figure 1: Cutting sequence

Divide S1 into two intervals I0 = [0, 1−α) and I1 = [1−α, 1), and denote
by ν the coding function defined by

ν(x) =

{
0 if x ∈ I0,
1 if x ∈ I1.

(3)

Then the rotation sequence σ = σ0σ1 . . . defined by α and x is just the
sequence with σn = ν(Sn(x)), see Fig. 2. It is known, that the sequence σ is
rotating if and only if it is Sturmian.
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Figure 2: Rotation sequence
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Balanced sequence. Consider the sequence σ = σ0σ1 . . . with σn = 0, 1
and denote by |w|0 or |w|1 the number of 0’s or 1’s respectively in the subword
w of σ. Then the sequence σ is called balanced if for any two its subwords
w, v of equal lengths the following is valid:∣∣|w|0 − |v|0

∣∣ ≤ 1 or, what is the same,
∣∣|w|1 − |v|1

∣∣ ≤ 1.

It is known, that the ultimately non-periodic sequence σ is balanced if and
only if it is Sturmian.

In spite of simplicity of the definition, the structure of a Sturmian se-
quence is rather complicated. Mention some basic properties of such se-
quences, see, e.g., [1, 11]:

• each Sturmian sequence σ is ultimately non-periodic (i.e., every its tail
σkσk+1 . . . is non-periodic);

• the frequency of 1’s in a Sturmian sequence σ, defined as the limit

τ(σ) = lim
n→∞

|σ0σ1 . . . σn−1|1
n

is well defined, and is irrational;

• a Sturmian sequence is recurrent, that is, every word w that occurs
in the sequence occurs infinite number of times with some well defined
frequency τ(w).

Some other properties of Sturmian sequences can be found in [1, 2, 5, 8,
9, 11].

Remark 1 The notions of Sturmian, cutting or rotating sequences, as they
are given above, are related only to ultimately non-periodic sequences. Nev-
ertheless, sometimes it is useful to consider broader classes of sequences with
properties similar to properties of Sturmian sequences, except the property
of ultimate non-periodicity.

For example, in the definition of Sturmian sequence one may consider the
sequences complexity function of which satisfies pσ(n) ≤ n + 1 instead of
pσ(n) ≡ n + 1. In the definition of cutting sequence one may consider all
the sequences generated by lines with arbitrary slope (not only irrational)2.
In the definition of rotation sequence one may consider all the sequences
generated by the shift rotation map with arbitrary rotation angle α (not
only irrational).

2Of course, in order that the notion of cutting sequence in this case be precise, we need
to state what happens when at the nodes of the grid. In this case we should systematically
take either 0 or 1, but not mix them.
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3 Order preserving circle maps and their lifts

Denote by S1 := R/Z the circle which is convenient to treat as the interval
[0, 1) with topologically identified points 0 and 1.

Pairwise distinctive points x, y, z from the circle S1 = [0, 1) are said to
have natural cyclic ordering if (x − y)(y − z)(x − z) > 0 and have reverse
cyclic ordering if (x − y)(y − z)(x − z) < 0 (see detailed discussion of the
notion of cyclic ordering in [4]). The map f : S1 → S1 will be called order
preserving if the cyclic ordering of the points f(x), f(y), f(z) coincides with
the cyclic ordering of the points x, y, z, i.e.,

f(x)− f(y)

x− y
· f(x)− f(z)

x− z
· f(y)− f(z)

y − z
> 0, (4)

as soon as points x, y, z ∈ [0, 1) are pairwise distinctive. The following lemma
gives a geometrical characterization of order preserving circle maps.

Lemma 1 The map f : S1 → S1 is order preserving if and only if there exist
subintervals I+(f), I−(f) ⊆ [0, 1), one of which may be empty, such that (see
Fig.3)

(i) 0 ∈ I+(f), I+(f) ∩ I−(f) = ∅, I+(f) ∪ I−(f) = [0, 1);
(ii) f(x) is one-to-one increasing map on each of the intervals I+(f) and

I−(f);
(iii) f(x) > f(y) for any x ∈ I+(f), y ∈ I−(f).

Proof. Remark first that in view of (4) the map f is one-to-one with its
image, or injective. Define the sets I+(f) and I−(f) as follows:

I+(f) := {x ∈ [0, 1) : f(x) ≥ f(0)}, I−(f) := {x ∈ [0, 1) : f(x) < f(0)}.

By setting z = 0 in (4) we get

f(x) < f(y) if x < y and x, y ∈ I+(f) or x, y ∈ I−(f). (5)

Show now that the sets I+(f), I−(f) are intervals. Clearly I+(f)∪I−(f) =
[0, 1) and 0 ∈ I+(f), so it suffices to prove that I+(f) is interval. By supposing
the contrary one can find x, y, z ∈ [0, 1) such that x < y < z and x, z ∈ I+(f),
y ∈ I−(f). Then (x− y)(y − z)(x− z) < 0 while (5) implies

f(x)− f(y) > 0, f(x)− f(z) < 0, f(y)− f(z) < 0

which contradicts to (4). So, both the sets I+(f), I−(f) are intervals and
properties (i)–(iii) are proved.
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Figure 3: Order preserving circle map

At last, any map satisfying conditions (i)–(iii) is clearly order preserving
as the map from S1 into itself. Lemma is proved. �

A convenient and prevalent tool to investigate properties of circle maps is
the so-called lift of a map. The map F : R → R is called the lift of the circle
map f : S1 → S1 if f = {F}. As is easy to see for any lift of a circle map
the value F (x + 1)− F (x) is integer. If the lift of a circle map is continuous
then F (x + 1)− F (x) ≡ k with integer k; in this case k is called degree of F
and denoted by deg(f), see, e.g., [6]. Clearly, lifts of orientation preserving
circle homeomorphisms are maps of degree one. So, in what follows we will
be interested primarily in lifts of degree one of circle maps.

The lift of a circle map is defined non-uniquely and to make this notion
useful it is necessary to impose some additional properties on F . For exam-
ple, when considering the lifts of circle homeomorphisms one usually requires
also the continuity of the map F . In our case, when considering generally dis-
continuous order preserving circle maps we will be interested only in strictly
monotone (increasing) lifts F : R → R of degree one, i.e., lifts satisfying

F (x + 1) ≡ F (x) + 1, F (x) < F (y) for x < y. (6)

If map F of degree one is strictly monotone then its restriction f(x) =
{F (x)} to the circle S1 is order preserving and is one-to-one with its image
f(S1). It is worth mentioning also that condition (6) implies

0 < F (y)− F (x) < 1 for 0 < y − x < 1. (7)
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Lemma 2 For any order preserving circle map f there exists a strictly mono-
tone lift of degree one. Any two strictly monotone lifts of f of degree one
differ from one another by a constant.

Proof. Let I+(f) and I−(f) be intervals mentioned in Lemma 1. Define
the function F (x) for x ∈ [0, 1) as

F (x) :=

{
f(x) if x ∈ I+(f),

f(x) + 1 if x ∈ I−(f).

and extend it on the whole set of reals R preserving “degree one” property.
Clearly, such a function F will be increasing and have degree one.

Now, if F is strictly monotone map of degree one, then f(x) = F (x)
mod 1 ≡ {F (x)}, x ∈ [0, 1), looks like the function plotted on Fig. 3. Then
by Lemma 1 f(x) is an order preserving circle map.

At last, let F (x) and G(x) be lifts of the same order preserving circle map
f(x), i.e.,

{F (x)} = {G(x)} = f(x).

Then F (x) and G(x) may be represented as

F (x) = m(x) + {F (x)}, G(x) = n(x) + {G(x)}, x ∈ R,

where m(x) and n(x) are integer-valued functions. Hence

(m(x)− n(x))− (m(y)− n(y)) = (F (x)− F (y))− (G(x)−G(y)). (8)

Here, since F and G are maps of degree one then

(F (x)− F (y))− (G(x)−G(y)) = (F (s)− F (t))− (G(s)−G(t))

where s = {x} ∈ [0, 1), t = {y} ∈ [0, 1). And then from (7) applied to both
of the maps F and G we get

|(F (s)− F (t))− (G(s)−G(t))| < 1. (9)

So, (8)–(9) imply

|(m(x)− n(x))− (m(y)− n(y))| < 1.

For the integer-valued function m(x) − n(x) the latter inequality may be
valid only in the case m(x)−n(x) = const which means that F (x)−G(x) =
m(x)− n(x) ≡ const. Lemma is proved. �

In what follows it will be useful the following
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Lemma 3 Any iteration of strictly monotone map F of degree one is also
strictly monotone map of degree one. The map F∗(x) = F (x)−x is 1-periodic
and satisfies

|F∗(x)− F∗(y)| < 1, ∀ x, y ∈ R. (10)

Proof. The fact that n-th iteration of F is a strictly monotone map of
degree one immediately follows by induction from the analogous properties
of F .

The map F∗(x) = F (x)− x is 1-periodic as the difference of two maps of
degree one, F (x) and x. To prove (10) note that the strict monotonicity of
F (x) implies the relations

0 < F∗(x)− F∗(y) + (x− y) < 1, 0 < x− y < 1.

Then |F∗(x)− F∗(y)| < 1 for 0 < x − y < 1 from which, in view of already
proven 1-periodicity of F∗(x), the estimate (10) follows. �

4 Main results

In this Section a result which generalizes “Sturmian coding” properties of
rotation sequences to sequences generated by a strict monotone (but generally
discontinuous) map F : R → R of degree one will be formulated and proved.

Set α = {F (0)} and denote I1 = [0, α), I0 = [α, 1).3

Theorem 1 Let I0, I1 be intervals defined above and ν be a coding function
(3). Then the coding sequence σ(F, x) = σ0(F, x)σ1(F, x) . . . with σn(F, x) :=
ν({F n(x)}), n = 0, 1, . . ., is balanced for any x ∈ [0, 1).

Proof. Remark first that the sequence σ(f, x) = σ0(F, x)σ1(F, x) . . . for
any x ∈ [0, 1) can be defined similar to (2):

σn(F, x) = [F n+1(x)− F (0)]− [F n(x)− F (0)].

Hence given two words

w = σ0(F, x)σ1(F, x) . . . σn(F, x), w′ = σ0(F, x′)σ1(F, x′) . . . σn(F, x′)

one can write

|w|1 =
n∑

k=0

(
[F k+1(x)− F (0)]− [F k(x)− F (0)]

)
=

= [F n+1(x)− F (0)]− [x− F (0)] (11)

3Remark, that in the case when F (0) is integer and thus α = 0 the set I1 is empty
while I0 coincides with [0, 1).
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and analogously

|w′|1 =
n∑

k=0

(
[F k+1(x′)− F (0)]− [F k(x′)− F (0)]

)
=

= [F n+1(x′)− F (0)]− [x′ − F (0)]. (12)

Since F is strictly monotone function of degree one then one may suppose
without loss in generality that 0 ≤ x ≤ x′ < 1. Then

0 ≤ (x′ − F (0))− (x− F (0)) = x′ − x < 1 (13)

and by Lemma 3

0 ≤
(
F n+1(x′)− F (0)

)
−

(
F n+1(x)− F (0)

)
= F n+1(x′)−F n+1(x) < 1. (14)

From (13) and (14) immediately follows that

0 ≤ [x′ − F (0)]− [x− F (0)] ≤ 1

and
0 ≤ [F n+1(x′)− F (0)]− [F n+1(x)− F (0)] ≤ 1,

and so ∣∣|w′|1 − |w|1
∣∣ ≤ 1.

Theorem is proved. �

For lifts of circle homeomorphisms there is known (see, e.g., [6, 12]) a
very important characteristics, called rotation number τ(F ) of the lift F (or
of the corresponding homeomorphism):

τ(F ) = lim
n→∞

F n(x)− x

n
.

It is known that the function τ(F ) is well defined, i.e., it exists and does
not depend on x. Extension of the notion of rotation number to the case of
generally discontinuous srtictly monotone maps of degree one can be found
in [10].

From Theorem 1 immediately follows the corollary establishing connec-
tion between rotation number of the map F and frequency of the correspond-
ing Sturmian sequence.

Corollary 1 τ(σ(F, x)) ≡ τ(F ).
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Proof. Fix x ∈ [0, 1) and set σ = σ(F, x). Then from (11) it follows that

τ(σ(F, x)) = lim
n→∞

|σ0σ1 . . . σn+1|
n + 1

= lim
n→∞

[F n+1(x)− F (0)]− [x− F (0)]

n + 1
.

But on the other hand, clearly

lim
n→∞

[F n+1(x)− F (0)]− [x− F (0)]

n + 1
= lim

n→∞

F n+1(x)− x

n + 1
= τ(F ),

which completes the proof. �

Now, results obtained above will be applied to investigate symbolic prop-
erties of a locally growing relaxation map arising in various applications, see,
e.g., [2, Ch. VIII] and [3].

Let f : [0, 1) → [0, 1) be a function satisfying conditions

• ∃α ∈ (0, 1) such that f(x) is continuous and strictly increasing on the
intervals [0, α) and [α, 1);

• x < f(x) < 1 if 0 ≤ x < α;

• 0 ≤ f(x) < x if α ≤ x < 1;

• f(y) < f(x) if 0 ≤ x < α ≤ y < 1.

The function satisfying above conditions will be called the locally growing
relaxation function. Typical graph of such a function is plotted on Fig. 4.

Consider, as in Section 2, two intervals I0 = [0, α) and I1 = [α, 1) and
denote by ν the coding function defined by

ν(x) =

{
0 if x ∈ I0,
1 if x ∈ I1.

Theorem 2 For any x ∈ [0, 1) the sequence σ1(x) := ν(f(x))ν(f 2(x)) . . . is
balanced.4

Proof. Remark first that for any x ∈ [0, 1) the elements fn(x), n ≥ 1, lay
in the interval [s, r) where

s := inf
α≤x<1

f(x), r := sup
0≤x<α

f(x).

4Remark that in the statement of Theorem 2 it is intentionally considered the 1-tail
σ1(x) of the full coding sequence σ(x) := ν(x)ν(f(x))ν(f2(x)) . . . generated by the func-
tion f and point x. Whether Theorem 2 is valid for the full coding sequence is a question.
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Figure 4: Locally growing relaxation function

Consider now two intervals Ĩ0 = [s, α) and Ĩ1 = [α, r) and denote by ν̃ the
coding function defined by

ν̃(x) =

{
0 if x ∈ Ĩ0,

1 if x ∈ Ĩ1.

Then from inclusion fn(x) ∈ [s, r), n ≥ 1, it follows that ν(fn(x)) = ν̃(fn(x))
for n ≥ 1, and so

σ1(x) ≡ σ̃(y) (15)

where
σ̃(y) = ν̃(y)ν̃(f(y))ν̃(f 2(y)) . . . , y = f(x) ∈ [s, r).

Without loss of generality one can suppose that s = 0 and r = 1. Indeed,
in the opposite case perform the change of variables x̃ = (x− s)/(r− s) and
consider the function

f̃(x̃) :=
f((r − s)x̃ + s)− s

r − s
.

The function f̃ will possess all the properties of the function f with s = 0
and r = 1 and some α. So from now on it will be supposed that (see Fig. 5)

inf
α≤x<1

f(x) = 0, sup
0≤x<α

f(x) = 1.
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Figure 5: Function f(x) with s = 0 and r = 1

Our goal is to use Theorem 1 to finalize the proof. But Theorem 1 deals
with a strictly monotone map of degree one defined on R while in our case
f is the map from S1 into itself. Besides, in Theorem 1 intervals I1 = [0, α),
I0 = [α, 1) involved in construction of a coding sequence are defined in such
a way that α = {F (0)} while in our case f(α) = 0.

So, consider strictly monotone lift F (x) of degree one of the function f(x),
which exists by Lemma 2. Then perform yet another change of variables to
achieve α = {F (0)} by setting x̂ = x − α. In new coordinates the function
F will take the form F̂ (x̂) = F (x̂ + α)− α (see Fig. 6); clearly the function
F̂ is also strictly monotone function of degree one satisfying the condition
{F̂ (0)} = α̂ with α̂ := {−α} = 1− α.

To finalize the proof consider again the point y = {F (x)}. Then introduce
intervals Î0 = [α̂, 1) and Î1 = [0, α̂) and denote by ν̂ the coding function
defined by

ν̂(y) =

{
0 if y ∈ Î0,

1 if y ∈ Î1.

From the definition of the function F̂ we get for ŷ = y − α:

{F n(y)} ∈ Ĩ0 ⇔ {F̂ n(ŷ)} ∈ Î0, {F n(y)} ∈ Ĩ1 ⇔ {F̂ n(ŷ)} ∈ Î1.

Then ν̃({F n(y)}) ≡ ν̂({F̂ n(ŷ)}), and so

σ̂(ŷ) ≡ σ̃(y) (16)
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where
σ̂(ŷ) = ν̂(ŷ)ν̂(F̂ (ŷ))ν̃(F̂ 2(ŷ)) . . . .

Now, the function F̂ is subjected to Theorem 1 and thus the sequence
σ̂(ŷ) is balanced. Then by (16) the sequences σ̃(y) is also balanced and by
(15) so is the sequence σ1(x). Theorem is proved. �

5 Concluding remarks

Sometimes, it might be fruitful to rest an investigation of order preserv-
ing discontinuous maps on ideas of limiting behavior of the corresponding
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dynamical system (1). As is shown in [10] any order preserving (possibly
discontinuous) circle map f(x) with irrational rotation number τ(f) is semi-
conjugate to circle shift ρτ(f)(x) := x + τ(f) mod 1. From this, in the case
when τ(f) is irrational, it is possible to derive almost all the basic properties
of order preserving circle maps presented above. Yet, in the paper a direct
way of analyzing properties of f is intentionally chosen since it allows to
study f for arbitrary values of τ(f).
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