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Abstract—This paper is concerned with the convergence and boundedness or unboundedness
of the set of all possible matrix products with coefficients belonging to some finite set, i.e.,
the problem to which many problems of control theory and mathematics are reduced. The
indefinability of this problem in o-minimal structures containing semialgebraic sets, which can
be regarded as a characteristic for the complexity of the problem, is demonstrated. The result
shows, in particular, that the solution of our problem cannot be found as a finite Boolean
combination of conditions containing a finite number of ordinary arithmetical operations of
addition, subtraction, and multiplication, as well as exponentiation and application of bounded
analytic functions.

1. INTRODUCTION

Many problems of control theory and mathematics are reduced to the study of the properties of
infinite matrix products

. . . AnAn−1 . . . A1, (1)

where every matrix Ai belongs to some (finite or infinite) matrix set A. Examples of such problems
are the estimation of Lyapunov indexes for time-varying linear systems in the absolute stability
problem [1, 2], analysis of the convergence of asynchronous parallel computation algorithms [3], the
stability of desynchronized control systems [4], computation of the generalized spectral radius of
a matrix family [5], etc. In many papers (e.g., [6]), a formal justification is given to demonstrate
that it is not a simple matter to study such products if the matrix set A contains more than one
matrix. In particular, according to [4], even sets of two-matrix sets A for which all products (1)
tend to zero or bounded, are not semialgebraic, i.e., cannot be described by combinations of a finite
number of algebraic equalities and inequalities consisting of the elements of the matrices belonging
to A. In this sense, the convergence of products of the type (1) or boundedness of the set of all
possible matrix products with coefficients from A cannot be “formally” resolved.

Semialgebraic sets have certain good properties (see Section 2). Therefore, there is an innate
desire to inquire whether there exist any wider classes of sets having similar properties. Formally, an
axiom set that equips semialgebraic sets with “good” properties is successfully constructed in [7–9]
and the corresponding theory is called the o-minimality theory (see the brief review and references
cited in Section 2). In particular, new classes of sets that can be described constructively and
1 This work was supported by the Russian Foundation for Basic Research, project no. 03-01-00258, President’s Aid
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quite natural for applications and possessing many key properties of semialgebraic sets have been
designed. The desire to extend the results of [4] to these classes of sets has stimulated me to write
this paper.

Another driving force is the desire to describe new analytical constructs (unlike the geometric
constructs of [4]) that may aid in proving the semialgebraic insolubility of our problem or its
indefinability in o-minimal structures. The need for such constructs arise, because, on the one
hand, their use is technically simpler and, on the other hand, precisely they (but not the fact of
insolubility) may be of help in further investigations.

2. SEMIALGEBRAIC SETS AND THE MAIN CONCEPTS
OF THE o-MINIMALITY THEORY

In the classical algebraic geometry of closed algebraic fields, the image of an affine algebraic
manifold under projection onto an affine space of reduced dimension is a Boolean combination of
algebraic manifolds. The situation is rather complicated in the study of algebraic manifolds over
fields of reals. For example, the image of the circle x2 + y2 = 1 under projection onto the axis x is
the interval [−1, 1], but not a Boolean combination of algebraic manifolds.

A subset of the space R
n is said to be semialgebraic if it is a finite Boolean combination of sets

of solutions of the polynomial equations

p(x1, . . . , xn) = 0 (2)

and polynomial inequalities

q(x1, . . . , xn) > 0. (3)

Semialgebraic sets are attractive for two reasons. On the one hand, the set of all semialgebraic
sets is rather rich and semialgebraic sets exhibit diverse properties. On the other hand, semialge-
braic sets admit a simple description—to verify whether a point belongs to a given semialgebraic
set or not, it suffices to be able to implement the operations of addition, subtraction, multiplication,
and congruence of numbers. Therefore, semialgebraic sets are usually identified as ‘tame” objects
that admit a finite (algorithmic) description. Nevertheless, it is not a simple matter in concrete
situations to express the polynomials defining a semialgebraic set.

In many problems, there is no need to know the concrete type of the polynomials defining
a semialgebraic set—but what matters is the semialgebraicity. A construct that aids in many
situations in ascertaining the semialgebraicity of a set follows from the Seidenberg–Tarski principle,
which asserts that the image f(X) of a semialgebraic set X ⊂ R

n under a polynomial mapping
f : R

n → R
m is also a semialgebraic set.

The semialgebraicity of the complete preimage of a semialgebraic set under a polynomial map-
ping is self-evident. But the semialgebraicity of the image of a semialgebraic set is an abyssal fact.
Note that the preimage of an algebraic set under polynomial mapping is an algebraic set, but the
image, in general, is not an algebraic set. We give some examples.

Example 1. The quadratic polynomial p(x) = x2 +p1x+p2 is uniquely defined by its coefficients
{p1, p2} in R

2. Is the set P of pairs {p1, p2} ∈ R
2 for which the polynomial p(x) has real roots x1 and

x2 lying in the interval [−1, 1] algebraic or not? To answer this question, note that p1 = −(x1 +x2)
and p2 = x1x2 by the Vieta theorem. Therefore, the set P is the image of the semialgebraic set
(square) −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1 under the polynomial mapping {x1, x2} �→ {−(x1 + x2), x1x2}.
Hence the set P is semialgebraic by the Seidenberg–Tarski principle. ��
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Example 2. Let A be a square matrix of order N with real elements. The matrix A can be identi-
fied with a point of the coordinate space R

N2
, numbering its elements in some order. Consequently,

there is meaning in the algebraicity or nonalgebraicity of a set of matrices. The following statement
is true: sets of square matrices A of order N satisfying the condition ρ(A) ≤ 1 or ρ(A) < 1 are
semialgebraic. This assertion can be demonstrated, using the well-known Routh–Hurwitz criterion
to express in explicit form the algebraic relations between the elements of the matrix A that are
equivalent to the condition ρ(A) ≤ 1 or ρ(A) < 1. Another approach to prove this assertion is to
apply the idea of Example 1 and the Seidenberg–Tarski principle; it only reveals the semialgebraic-
ity of the respective sets, but does not give their explicit description. ��

The Seidenberg–Tarski principle is a powerful tool to demonstrate the semialgebraicity of sets.
But sometimes there is a need to demonstrate the opposite, namely, a given set is not semialgebraic.
As is known (see, e.g., [10]), the complement of a real algebraic set to another set contains not more
than a finite number of linear connectivity components.2 This fact implies that every semialgebraic
set contains not more than a finite number of the linear connectivity components. Applying this
fact, we find that the graph of the function y = sin(1/x), x > 0, in R

2 is not a semialgebraic set
since its intersection with the semialgebraic set y = 0 contains infinitely many isolated points.

Semialgebraic sets have the following “tame” properties.

• Stratifiability. For every semialgebraic set X, there exists a finite number of disjoint semialge-
braic sets X1, . . . ,Xn such that X = X1 ∪ . . . ∪ Xn; moreover, every Xi is a connected smooth
real manifold, and if Xi ∩Xj �= ∅ for i �= j, where X i is the closure of the set Xi, then X i ⊇ Xj

and dim Xi > dim Xj . In particular, every semialgebraic set has a finite number of connectiv-
ity components and the boundary of a semialgebraic set is a semialgebraic set of much lower
dimension.

• Triangulability. Every compact semialgebraic set admits semialgebraic triangulation.
• Finiteness of the topological type. Let X ⊆ R

n+m be a semialgebraic set. For every a ∈ R
m, let

Xa = {x ∈ R
n : (x, a) ∈ X}. Then there exists a finite number of elements a1, . . . , al ∈ R

m for
which there exists an i ≤ l and a semialgebraic homeomorphism f : Xa → Xai for every a ∈ R

m.
• Piecewise-smoothness of semialgebraic mappings. A mapping is said to be semialgebraic if its

graph is a semialgebraic set. If f : X → R is a semialgebraic mapping, then X can be partitioned
into a finite number of pairwise disjoint semialgebraic sets X1, . . . ,Xn such that every restriction
f |Xi is an analytical mapping.

• Validity of the curve choice lemma. Let X ⊆ R
n be a semialgebraic set and let a ∈ X . Then

there exists a real analytic function f : (0, 1) → X such that limt→0 f(t) = a. Moreover, the
function f can be chosen such that its graph is an algebraic set.

These properties are discussed in [11, 12].
Since these properties of semialgebraic sets are rather strong and nontrivial, it is worthwhile

to find the description of far wider classes of sets possessing these properties. The most probable
candidates for this purpose are semianalytic and subanalytic sets.

A set X ⊆ R
n is said to be semianalytic if for every point a ∈ R

n there exists an open neigh-
borhood U such that X ∩ U is a finite union of the sets

{x ∈ U : f1(x) = . . . = fm(x) = 0, g1(x) > 0, . . . , gl(x) > 0} ,

where f1, . . . , fm, g1, . . . , gl are analytic functions in U .

2 Recall that a set X ⊆ R
n is said to be linearly connected if for any two points x and y of the set there exists a

continuous function γ : [0, 1] �→ R
n such that γ(0) = x, γ(1) = y and γ(t) ∈ X for 0 ≤ t ≤ 1.
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The local properties of semianalytic sets are mostly similar to those of semialgebraic sets. For
example, every semianalytic set X ⊆ R

n with a compact closure is the union of a finite number of
semianalytic sets, each of which is a real analytic manifold. Unfortunately, semianalytic sets are
unstable to projection. An example is the unbounded semianalytic set

{(1/n, n) : n = 1, 2, . . .} , (4)

whose projection onto R is not semianalytic in the neighborhood of the point 0. Even bounded
semianalytic sets may have projections that are not semianalytic sets. For example, the set

Y = {(x, y, z, w) : 0 < x, y,w ≤ 1, yw = x, z = yew}

is semianalytic, but, as shown by Osgood (see, for example, [13]), its projection onto the space of
first three coordinates is not a semianalytic set.

To avoid such difficulties, Lojasiewicz and Hironaka introduced a class of subanalytic sets (see the
Introduction to Subanalytic Sets in [14]). A set X ⊆ R

n is said to be subanalytic if for every point
a ∈ R

n there exists an open neighborhood U and a semianalytic set Y ⊆ R
n × R

m with compact
closure such that X ∩ U is the projection of Y onto R

n. Subanalytic sets with compact closure
exhibit the “good” properties of semialgebraic sets described above (more exactly, subanalytic sets
exhibit these properties locally).

Unfortunately, even such a “tame” set as the graph of the function e−1/x2
is not subanalytic.

This compelled Grothendieck to undertake a project (see [15]): “To study classes of sets having the
“tame” properties of semialgebraic sets.”

The o-minimality concept formulated below answers our question. Though the o-minimality
concept initially emerged in the theory of models (an area in mathematical logic), knowledge of
basic concepts of logic is sufficient to understand and prove our main results.

An ordered structure in R is defined to be a sequence S = (S1, S2, . . .) of Boolean algebras Sn of
subsets of R

n having the properties

(i) ∅ ∈ Sn, R
n ∈ Sn,

(ii) {(x, y) : x, y ∈ R
n, x = y} ∈ S2n,

(iii) if a ∈ R, then {a} ∈ S1,
(iv) {(x, y) : x, y ∈ R, x < y} ∈ S2,
(v) if A ∈ Sn, then A × R ∈ Sn+1 and R × A ∈ Sn+1,
(vi) if A ∈ Sn+1 and B is the projection of A onto the first n coordinates, then B ∈ Sn.

If A ∈ Sn, then the set A is said to be definable in the structure S; a function is said to be definable
if its graph is a definable set.

An ordered structure S is said to be o-minimal if

(vii) every set A ∈ S1 is a finite union of points and intervals (possibly, unbounded) in R.

An example of an ordered structure is the set of all semialgebraic subsets. But the set of all
subanalytic subsets is not an ordered structure since the projection of the unbounded subanalytic
set (4) is not a subanalytic set.

In practice, it is often convenient to define an ordered set as a minimal ordered structure con-
taining a certain set of sets: for every n = 1, 2, . . ., a set Bn of subsets of R

n is taken and the least
ordered structure S for which Bn ⊆ Sn for all n is determined.

Let us give a few examples of ordered structures.

• Slin (a structure of polyhedral sets) is the minimal ordered structure containing all linear mani-
folds of the type {x ∈ R

n :
∑

rixi = 0, where r1, . . . , rn ∈ R},
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• Salg (a structure of semialgebraic sets) is the minimal ordered structure containing all algebraic
sets,

• Sexp is the minimal ordered structure containing semialgebraic sets and graph of the function
x �→ ex,

• San is the minimal ordered structure containing semialgebraic sets and all subanalytic sets with
compact closure,

• San,exp is the minimal ordered structure containing semialgebraic sets, graph of the function
x �→ ex, and all subanalytic sets with compact closure.

The o-minimality of the structure Slin of polyhedral sets is self-evident. The o-minimality of the
structure Salg of semialgebraic sets is a consequence of the Seidenberg–Tarski principle (in reality, a
reformulated version). Van den Dries has shown [16] that the structure San of subanalytic sets with
compact closure is o-minimal [16]. Wilke, who has contributed much to the study of the “tame”
properties of sets, has shown [17] that Sexp is an o-minimal structure. Finally, Van den Dries,
Macintyre, and Marker [18] have shown that the structure San,exp is o-minimal. Other results on
the theory of o-minimality are described, for example, in [13].

The question here is which definable sets among ordered structures have properties inherent in
semialgebraic sets. Apparently, if an o-minimal ordered structure S contains semialgebraic sets,
the definable sets in it have all “tame” properties inherent in semialgebraic sets.

In conclusion, let us describe the sets in San, Sexp, and San,exp in less formal terms, but under-
standable to nonspecialists in mathematical logic and theory of o-minimal structures. Recall that
semialgebraic sets are defined by sets expressed as Boolean combinations of sets by polynomial
formulas (2) and (3). Here the term “polynomial” can be interpreted as an expression resulting
from the application of a finite number of operations 〈+,−,×〉 to arguments.

Let us begin with the description of sets of the structure Sexp. A formula corresponding to
the structure Sexp is an expression obtained from the application of a finite number of operations
Oexp = 〈+,−,×, exp〉 to arguments. An example of a formula corresponding to the structure Sexp

is the expression

eey2+1 − zex−2y + 3xy − 7.

Then definable sets in the structure Sexp are precisely the sets that are finite Boolean combinations
of the sets of solutions of Eqs. (2) and (3), where p(x1, . . . , xn) and q(x1, . . . , xn) are now not
polynomials, but formulas corresponding to the structure Sexp.

We now describe sets of the structure San. Let f be a real analytic function defined in some
neighborhood of the cube [−1, 1]n ⊆ R

n. A function f̂ : R
n → R

n defined by the formula

f̂(x) =

{
f(x), x ∈ [−1, 1]n

0, otherwise,

is called a bounded analytic function. The set of all bounded analytic functions is denoted by {f̂ }. In
this case, formulas corresponding to the structure San are expressions resulting from the application
of a finite number of operations belonging to the operation set Oan = 〈+,−,×, {f̂ }〉 to arguments.
The definable sets in the structure San are sets that are finite Boolean combinations of sets of
solutions of Eqs. (2) and (3), in which p(x1, . . . , xn) and q(x1, . . . , xn) are now not polynomials,
but formulas corresponding to the structure San.

Finally, the sets of the structure San,exp are derived by the same scheme as for the sets of the
structure San, but with the difference that the operation set Oan,exp is obtained by complementing
the operation set Oan with the exponentiation operation Oan,exp = 〈+,−,×, exp, {f̂ }〉.
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3. THE MAIN RESULT: MATRIX PRODUCTS

Let M(p, q) denote a set of ordered sets L = {L1, L2, . . . , Lq} of p × p real3 matrices Li, i =
1, 2, . . . , q. Obviously, the set M(p, q) can be identified with the space R

qp2
if the coordinates of

the element L ∈ M(p, q) are defined by the elements of the matrix L1, L2, . . . , Lq, ordering them
in some manner (for example, row-wise).

With every set of matrices L ∈ M(p, q) let us associate the corresponding set P(L) of all finite
products of matrices in L:

P(L) := {AnAn−1 . . . A1 : Ai ∈ L, n = 1, 2, . . .}.

The matrix set L is said to be convergent if every matrix sequence {An}, An ∈ L, satisfies the
relation

AnAn−1 . . . A1 → 0 as n → ∞. (5)

The set of all convergent sets of matrices belonging to M(p, q) is denoted by C(p, q). As is known
(see, for example, [4]), if the matrix set L is convergent, then the matrix set P(L) is bounded.

A matrix set L is said to be bounded if the matrix set P(L) is bounded, but relation (5) is not
satisfied for at least one of the matrix sequences {An}, An ∈ L. The set of all bounded sets of
matrices belonging to M(p, q) is denoted by B(p, q).

If a matrix set P(L) is not bounded, then the matrix set L is said to be unbounded; the set of
all unbounded sets of matrices belonging to M(p, q) is denoted by U(p, q). Clearly, the matrix sets
C(p, q), B(p, q), and U(p, q) are pairwise disjoint and form the whole set M(p, q) in aggregate:

M(p, q) = C(p, q) ∪ B(p, q) ∪ U(p, q).

Theorem 1. If p, q ≥ 2, then none of the sets C(p, q), B(p, q), and U(p, q) is definable in o-ordered
structures containing semialgebraic sets.

The proof of Theorem 1 and all necessary auxiliary constructs are given in the Appendix.
A weaker variant of Theorem 1 formulated in [4] asserts that none of the sets C(p, q), B(p, q), and

U(p, q) is semialgebraic. Theorem 1 and examples on o-ordered structures given in Section 2 imply,
for example, that none of the sets C(p, q), B(p, q), and U(p, q) can be described by a finite Boolean
combination of formulas, each of which, in turn, contains only a finite number of arithmetical
operations and exponentiation operation or application of bounded analytic functions.

4. CONCLUSIONS

A traditional characteristic of the complexity of a problem is its algorithmic complexity; algo-
rithmically a complex problem is also said to be NP -hard. As is known (see, e.g., review [6]),
the convergence, boundedness or unboundedness of infinite matrix products are NP -hard prob-
lems. Furthermore, even an apparently simple problem, viz., whether a finite matrix product with
coefficients from a given set of matrices with integral elements vanishes or not, is NP -hard.

My results may also be regarded as an alternative characteristic for the complexity of the class
of problems studied in this paper.

I thank E.A. Asarin and V. Blondel for their fruitful discussion on different aspects of o-mini-
mality and complexity theories and for inviting me to the Fourier University, Grenoble (France)
under the NATO Project CRG-961115 “Computational complexity of control problems.”
3 The study of complex matrices does not add anything to the generality and, therefore, we restrict ourselves only

to real matrices.
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APPENDIX

A.1. PRODUCT OF TWO MATRICES, OF WHICH ONE IS DEGENERATE

Let us describe certain properties of 2×2 matrices that are simple, but nonetheless play a pivotal
role in the sequel. Let there be a set L = {L,M} of 2 × 2 matrices. Let us study the convergence
of products of the type

AnAn−1 . . . A1, (A.1)

where Ai = L or Ai = M for every i = 1, 2, . . . , n.
In the general case in which L and M are not assumed to be commuting matrices, it is not

a simple matter to investigate the convergence.4 To simplify the situation such that it yields to
analysis, and at the same time interesting effects in the behavior of products (A.1) do not disappear,
we may assume that one of the matrices L or M is degenerate. In what follows, we take that the
matrix M is degenerate. The implication of such an assumption is that any matrix product of the
type MmLnMp in which m, p ≥ 1 can be represented as γM with some constant γ, which can be
easily determined in many cases in explicit form.

By this remark, we can simply and constructively study the asymptotic properties of (A.1).

Lemma A.1. Let L =

∥∥∥∥∥ p q
r s

∥∥∥∥∥ and M =

∥∥∥∥∥ a b
c d

∥∥∥∥∥, where det M = 0. Then

Mn = (tr M)n−1M ≡ ρn−1(M)M, (A.2)
MLM = η(L,M)M, (A.3)

where η(L,M) := (ap + br + cq + ds).

Proof. If the matrix M is degenerate, then the relations c = αa and d = αb hold for some α,

i.e., M =

∥∥∥∥∥ a b
αa αb

∥∥∥∥∥. Therefore, M2 =

∥∥∥∥∥ a b
αa αb

∥∥∥∥∥ ×
∥∥∥∥∥ a b

αa αb

∥∥∥∥∥ = (a + αb)M = (tr M)M . Hence

we obtain (A.2). To demonstrate (A.3), it suffices to note that

MLM =

∥∥∥∥∥ a b
αa αb

∥∥∥∥∥ ×
∥∥∥∥∥ p q

r s

∥∥∥∥∥ ×
∥∥∥∥∥ a b

αa αb

∥∥∥∥∥ = (ap + br + αaq + αbs)L = (ap + br + cq + ds)L.

Hence we obtain (A.3). ��
Now we consider an arbitrary matrix product (A.1), in which Ai = L or Ai = M for every i =

1, 2, . . . , n. Grouping like coefficients in (A.1), we find that (A.1) admits one of the representations

AnAn−1 . . . A1 = LnpMnp−1 . . . Mn1Ln0 ,

AnAn−1 . . . A1 = MnpLnp−1 . . . Mn1Ln0 ,

AnAn−1 . . . A1 = LnpMnp−1 . . . Ln1Mn0 ,

AnAn−1 . . . A1 = MnpLnp−1 . . . Ln1Mn0 ,

where n0 + n1 + . . . + np−1 + np = n, ni ≥ 1.

4 Furthermore, if L and M are commuting matrices, the convergence of product (A.1) is a trivial problem: L ∈ C(2, 2)
if and only if ρ(L) < 1 and ρ(M) < 1. Hence interesting effects can be expected only for noncommuting matrices.
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Without loss of generality, we take AnAn−1 . . . A1 = LnpMnp−1 . . . Mn1Ln0 , where n0 and np

may be zero. Then, by Lemma A.1, the matrix product AnAn−1 . . . A1 admits the representation

AnAn−1 . . . A1 = γLnpMLn0 , (A.4)

in which the constant γ can be determined in explicit form:

γ = (tr M)np−1−1η(Lnp−2 ,M) . . . η(Ln2 ,M)(tr M)n1−1

= (tr M)np−1+...+n1−[p/2]η(Lnp−2 ,M) . . . η(Ln2 ,M). (A.5)

From representations (A.4) and (A.5) we obtain the following conditions for the convergence,
boundedness, and unboundedness of a matrix set {L,M}.

Lemma A.2. For ρ(L) and ρ(M) < 1, the matrix set {L,M} ∈ M(2, 2) converges, is bounded,
or unbounded if and only if

η∗(L,M) := sup
n

|η(Ln,M)|

is less than, equal to, or greater than 1, respectively.

Proof. First assuming that η∗(L,M) < 1, consider a matrix sequence {An} in which An = L
or An = M . If this sequence contains only a finite number of matrices of the type L or M , then,
beginning from some n = n0, all elements if the sequence {An} are identical. In this case, An = L
for n ≥ n0, or An = M for n ≥ n0. In either case, the conditions ρ(L) < 1 and ρ(M) ≡ |tr M | < 1
imply the relation AnAn−1 . . . A1 → 0.

If the sequence {An} contains infinitely many elements of the type L as well as of the type M ,
then representation (A.4), (A.5) holds. In this case, by the conditions ρ(L) < 1 and ρ(M) < 1, the
factors Lni and M in (A.4) are uniformly upper bounded in matrix norm. Furthermore, the factor

(tr M)np−1+...+n1−[p/2] ≡ ρ(M)np−1+...+n1−[p/2] (A.6)

in (A.5), by the condition ρ(M) < 1, is not greater than 1, and factors of the type η(Lni ,M) in (A.5)
are not greater that η∗(L,M) < 1 in modulus. Since, by assumption, the sequence {An} contains
infinitely many elements of the types L and M , factors of the type η(Lni ,M) in (A.5) unboundedly
increase in number with n. Hence the estimates given above imply the relation AnAn−1 . . . A1 → 0.

Now take η∗(L,M) = 1. Then, as in the previous case, by the conditions ρ(L) < 1 and
ρ(M) < 1, the factors Lni and M in (A.4) are uniformly upper bounded in matrix norm, factor (A.6)
in (A.5) is not greater than 1, and every factor of the type η(Lni ,M) in (A.5) is also not greater
than η∗(L,M) = 1 in modulus. This implies the boundedness of the matrix set P({L,M}).
Let us demonstrate the existence of a sequence of matrices An ∈ {L,M} for which the relation
AnAn−1 . . . A1 → 0 is not satisfied under this situation.

Since, by assumption, η∗(L,M) = supn |η(Ln,M)| = 1, there exists a sequence of indexes ni,
i = 1, 2, . . ., for which ∏

i

η(Lni ,M) > 0. (A.7)

In this case, let us construct a matrix sequence {An}, n ≥ 0, in which the first element is M , then
the next n1 elements are L, the succeeding element is again M , and the next n2 elements are L and
so on. In other words, the matrix sequence {An} consists of groups of n1, n2, . . . , nk . . . elements
of the type L and each group is separated from the other by an element of the type M . In this
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case, according to representation (A.4), (A.5), every n of the type n = ni + . . . + n1 + i + 1 admits
the representation

AnAn−1 . . . A1 = η(Lni ,M) . . . η(Ln2 ,M)η(Ln1 ,M)M

and, consequently, by virtue of (A.7), the product of matrices An does not tend to zero. This
completes the proof for the boundedness of the matrix set {L,M}.

Finally, let the condition η∗(L,M) > 1 hold. Then, the inequality |η(Ln0 ,M)| > 1 holds for
some n = n0 and representation (A.4), (A.5) implies that the periodic sequence {An}, in which the
first n0 + 1 elements are of the type A1 = M , A2 = A3 = . . . = An0+1 = L and other elements are
repeated with period n0 + 1, satisfies the relation

lim
n→∞

‖AnAn−1 . . . A1‖ = ∞.

This completes the proof for the sufficiency of the conditions η∗(L,M) < 1, η∗(L,M) = 1,
and η∗(L,M) > 1 for the convergence, boundedness, and unboundedness of the matrix {L,M},
respectively. Since these three conditions contain all possible combinations of relations between the
numbers η∗(L,M) and 1, they are also the necessary conditions. This completes the proof. ��

According to Lemmas A.1 and A.2, to study the convergence of the matrix set {L,M} under
the above assumptions, we must compute η∗(L,M), and, consequently, η(L,M).

At first sight, the function η(Ln,M) admits an explicit expression through the elements of the
matrices L and M only in certain particular cases: either for n = 1 or if the elements of the
matrix Ln is expressed explicitly through the elements of the matrix L. Fortunately, applying some
suitable coordinate substitution, we can always reduce the matrix L to normal Jordan form. Hence,
without loss of generality, we can assume that the matrix L is defined by one of the equalities5

L =

∥∥∥∥∥ λ 0
0 μ

∥∥∥∥∥ , or L =

∥∥∥∥∥ λ 1
0 λ

∥∥∥∥∥ , or L = λ

∥∥∥∥∥ cos ϕ − sinϕ
sin ϕ cos ϕ

∥∥∥∥∥ .

Now explicit expressions for the respective constants η(Ln,M) can be found with Lemma A.1; they
are given in the next lemma.

Lemma A.3. Let M =

∥∥∥∥∥ a b
c d

∥∥∥∥∥, where det M = 0. Then

η(Ln,M) = aλn + dμn for L =

∥∥∥∥∥ λ 0
0 μ

∥∥∥∥∥ , (A.8)

η(Ln,M) = aλn + (n − 1)cλn−1 + dλn for L =

∥∥∥∥∥ λ 1
0 λ

∥∥∥∥∥ , (A.9)

η(Ln,M) = (a + d)λn cos nϕ + (b − c)λn sin nϕ for L = λ

∥∥∥∥∥ cos ϕ − sin ϕ
sin ϕ cos ϕ

∥∥∥∥∥ . (A.10)

As has already been mentioned, by Lemmas A.1 and A.2, to study the convergence of the matrix
set {L,M}, we must compute η∗(L,M) := sup

n
|η(Ln,M)|, which consists in determining the largest

value of the function |η(Ln,M)|. The corresponding analysis for a diagonal matrix L is given in
the next lemma.
5 Along with the reduction of the matrix L to Jordan form by some transformation, the matrix M also must be

reduced. Since the choice of M is arbitrary, the reduction of L to the normal Jordan form is not restrictive.
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Lemma A.4. For 0 < λ, μ < 1, and |a+ d| < 1, the function ϕ(u) := |aλu + dμu|, u ≥ 0, u ∈ R,
is maximal at the point

u∗ =
ln

(
−a ln λ

d ln μ

)
ln μ − ln λ

(A.11)

if

ad < 0, (μ − λ) (a| ln λ| − d| ln μ|) > 0, (A.12)

or at the point u∗ = 0 otherwise.

Proof. A function ϕ(u) of the form ϕ′(u) = aλu ln λ + dμu ln μ vanishes only if(
μ

λ

)u

= −a ln λ

d ln μ
. (A.13)

Hence Eq. (A.13) has exactly one positive solution (A.11) or no solution if condition (A.12) holds
or not. Consequently, the function |ϕ(u)| steadily decreases for u ≥ 0 and has a unique maximum
at zero. ��

Corollary. If a = −d > 0 and μ = λ2 < 1, then a function ϕ(u) of the form ϕ(u) = a(λu − λ2u)
is maximal at the point u∗ = − ln 2/ ln λ and

sup
u≥0

ϕ(u) = ϕ(u∗) =
a

4
. (A.14)

Lemma A.5. If the conditions of Lemma A.1 hold and ρ(L) < 1, then η∗(L,M) continuously
depends on L,M ∈ M(2, 2).

Proof. Let Lk,Mk ∈ M(2, 2). Let Lk → L0 and let Mk → M0. Then the relations

lim
k→∞

η∗(Lk,Mk) := lim
k→∞

sup
m

η(Lm
k ,Mk) ≥ lim

k→∞
η(Ln

k ,Mk) = η(Ln
0 ,M0)

hold for every fixed n. Hence, taking the supremum in the right and left sides of the resulting chain
of inequalities, we obtain

lim inf
k→∞

η∗(Lk,Mk) ≥ sup
n

η(Ln
0 ,M0) = η∗(L0,M0).

What now remains to conclude the proof is to show that

lim
k→∞

η∗(Lk,Mk) ≤ η∗(L0,M0). (A.15)

Let ‖·‖ be some norm in the space of matrices M(2, 2). Then, by the condition ρ(L0) < 1, there
exist numbers q ∈ (0, 1), σ > 0, and c < ∞ such that the uniform estimates ‖Ln‖ ≤ cqn hold for
all matrices L in the σ-neighborhood of the matrix L0 (i.e., if ‖L − L0‖ < σ). Indeed, the spectral
radius of the matrix L0 is given by the formula [19]

ρ(L0) = lim
n→∞

‖Ln
0‖1/n. (A.16)

For some positive number ν < 1 − ρ(L0), let

‖x‖ν = sup
n≥0

(ρ(L0) + ν)−n ‖Ln
0x‖.
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Formula (A.16) shows that the numbers (ρ(L0) + ν)−n ‖Ln
0‖ are bounded above by some constant

c < ∞. Therefore, ‖x‖ ≤ ‖x‖ν ≤ c‖x‖ and, consequently, ‖ · ‖ν is the norm. Simple computations
yield

‖L0x‖ν = sup
n≥0

(ρ(L0) + ν)−n ‖Ln+1
0 x‖ ≤ (ρ(L0) + ν) ‖x‖ν .

Hence ‖L0‖ν ≤ ρ(L0) + ν. Now we choose a number q such that ρ(L0) + ν < q < 1. Then the
estimate ‖L‖ν ≤ q holds for all matrices L satisfying the relation ‖L − L0‖ν ≤ q − ρ(L0) − ν.
Consequently, such matrices L also satisfy the relation ‖Ln‖ν ≤ qn for n = 1, 2 . . . . Therefore
‖Ln‖ ≤ cqn, n = 1, 2 . . ., for all matrices L satisfying the relation ‖L−L0‖ ≤ σ = (q−ρ(L0)−ν)/c.

Thus, without loss of generality, we can assume that the estimates ‖Ln
k‖ ≤ cqn hold for all n

and k. Therefore, for every ε > 0, there exists a number n(ε) such that

|η(Ln
k ,Mk)| ≤ ε ∀n ≥ n(ε) ∀k. (A.17)

Now expressing η∗(Lk,M) as

η∗(Lk,M) := sup
n

|η(Ln
k ,Mk)| = max

{
max

n<n(ε)
|η(Ln

k ,Mk)|, sup
n≥n(ε)

|η(Ln
k ,Mk)|

}
,

we obtain

η∗(Lk,M) ≤ max

{
max

n<n(ε)
|η(Ln

k ,Mk)|, ε

}
,

by virtue of (A.17). In the estimate, taking the limit as k → ∞ (this is possible, because the inner
maximum contains a finite number of terms not dependent on k), we obtain

lim
k→∞

η∗(Lk,Mk) ≤ max

{
max

n<n(ε)
|η(Ln

0 ,M0)|, ε

}
≤ max {η∗(L0,M0), ε} .

Since the choice of ε is arbitrary, we have

lim
k→∞

η∗(Lk,Mk) ≤ η∗(L0,M0).

This completes the proof of inequality (A.15) and, along with it, the proof of the lemma. ��

A.2. PROOF OF THEOREM 1

The underlying idea of the proof of Theorem 1 is similar to the idea underlying the proof of a
weaker assertion of [4] based on the fact that semialgebraic sets only contain a finite number of
connectivity components. Since, as mentioned in Section 2, definable sets in o-minimal structures
also contain only a finite number of connectivity components, to prove Theorem 1, we can apply
the constructs and reasoning of [4]. Nevertheless, not only the indefinability of the sets C(p, q),
B(p, q), and U(p, q) in o-ordered structures, but also the constructs used in demonstrating this fact
may be of interest in application. Therefore, below we give an analytical proof for Theorem 1,
which is quite different from that given in [4].

Let us outline the scheme of proof for the case p = q = 2. We construct a family of pairs of
2 × 2 matrices L(t) = {L(t),M(t)} ∈ M(2, 2) dependent on a parameter t ∈ [0, 1] and having a
property, i.e., the set L+ =

⋃
t∈[0,1]

(L(t), t) is semialgebraic set and, consequently, a definable subset
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of M(2, 2)×R
1 in the respective o-ordered structure. Then, assuming that the sets C(2, 2), B(2, 2),

are U(2, 2) are definable in the respective o-ordered structure, we find that each of the sets

LC = L+ ∩
(
C(2, 2) × R

1
)

, LB = L+ ∩
(
B(2, 2) × R

1
)

, LU = L+ ∩
(
U(2, 2) × R

1
)

,

being a Boolean combination of definable sets, must also be definable in the respective o-ordered
structure. Therefore, by property (vi) of ordered structures, the projections of the sets LC, LB
and LU onto the R

1-component of the direct product M(2, 2) × R
1 must also be definable. But

the matrices L(t) and M(t) are constructed such that the corresponding projections consist of
an infinite number of connectivity components and, consequently, are not definable in o-ordered
structures containing semialgebraic sets. This contradiction implies that the sets C(2, 2), B(2, 2),
and U(2, 2) are not definable in o-ordered structures containing semialgebraic sets.

Then to prove the theorem for arbitrary p, q ≥ 2, it suffices first to construct two p× p matrices
L̃1(t) and L̃2(t) containing predetermined matrices L(t) and M(t), respectively, at the upper left
corner and zero at other places. Then L̃3(t), . . . , L̃q(t) are taken to be zero matrices. The matrix
set L̃(t) :=

{
L̃1(t), L̃2(t), L̃3(t), . . . , L̃q(t)

}
thus constructed belongs to M(p, q) for every t and is

obviously convergent, bounded or unbounded if and only if the set of 2 × 2 matrices {L(t),M(t)}
is convergent, bounded or unbounded, respectively. Then the indefinability of the sets C(2, 2),
B(2, 2), and U(2, 2) in o-ordered structures containing semialgebraic sets implies that the sets
C(p, q), B(p, q), and U(p, q) are undefinable in o-ordered structures containing semialgebraic sets.

We now construct pairs of matrices L(t) = {L(t),M(t)} ∈ M(2, 2) for which the projections
of the sets LC , LB, and LU on the R

1-component of the direct product M(2, 2) × R
1 contain an

infinite number of connectivity components. Suppose that we have constructed families of matrices
L(t) and M(t) satisfying the following conditions.

Δ1: The elements of the matrices L(t) and M(t) are interrelated with one another and with t
by a polynomial dependence:

Δ2: the inequalities ρ(L(t)) < 1 and ρ(M(t)) < 1 hold for all sufficiently small t > 0,
Δ3: there exist tn → 0, tn > 0, for which supn |η(Ln(tn),M(tn))| < 1,
Δ4: there exist sn → 0, sn > 0, for which supn |η(Ln(sn),M(sn))| > 1, and
Δ5: there exist rn → 0, rn > 0, for which supn |η(Ln(rn),M(rn))| = 1.

In this case, without loss of generality, we can assume that the elements of the sequences {tn},
{sn} and {rn} are interrelated by the expression tn+1 < sn < rn < tn. Then the projection of
each of the semialgebraic sets LC , LB, and LU onto the t-coordinate contains an infinite number
of connectivity components (since the elements of {tn}, {sn}, and {rn} belonging to projections
of different sets, by virtue of the relations tn+1 < sn < rn < tn, alternate). Hence, as mentioned
above, we find that the sets C(2, 2), B(2, 2), and U(2, 2) are not definable in o-ordered structures
containing semialgebraic sets.

Remark A.1. The proof requires only the existence of the sequences {tn} and {sn} having the
above properties. The existence of the sequence {rn} is implied by the existence of the sequences
{tn} and {sn}. Indeed, by the continuity of the function η∗(L(t),M(t)) (see Lemma A.5), for every
pair of numbers sn < tn satisfying conditions Δ3 and Δ4, there exists an rn ∈ (sn, tn) for which
condition Δ5 is satisfied, that means, the sequence {rn} exists.

Thus, our problem now is to construct families of matrices L(t) and M(t) satisfying conditions
Δ1–Δ5. Let us choose a pair of matrices

L(t) =

∥∥∥∥∥ λ(t) 0
0 μ(t)

∥∥∥∥∥ , M(t) =

∥∥∥∥∥ a(t) b(t)
c(t) d(t)

∥∥∥∥∥ , det M(t) ≡ 0, (A.18)
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where λ(t) > 0 and μ(t) > 0. Then the first condition of Δ2 is equivalent to the inequalities
0 < λ(t) and μ(t) < 1, and the second condition of Δ2 takes the form |a(t) + d(t)| < 1. We
additionally assume that the elements λ(t), μ(t), a(t), and d(t) of the matrices L(t) and M(t)
satisfy the relations

μ(t) ≡ λ2(t), a(t) ≡ −d(t) > 0.

Then, by Lemmas A.2 and A.4, the convergence of the matrix set {L(t),M(t)} for a certain value
of the parameter t is determined by

η∗(L(t),M(t)) := sup
n

|η(Ln(t),M(t))| = sup
u≥0,u∈Z

ϕt(u).

At the same time, by the corollary of Lemma A.4,

|η(Ln(t),M(t))| ≡ ϕt(n) = a(t)(λu(t) − λ2u(t)).

Moreover,

sup
u≥0,u∈R

ϕt(u) = ϕt(ut) =
a(t)
4

, where ut = − ln 2
ln λ(t)

. (A.19)

Note that sup
k≥0,k∈Z

ϕt(k) coincides with sup
u≥0,u∈R

ϕt(u) only if ut is an integer. In other cases, we

have the strict inequality

sup
k≥0,k∈Z

ϕt(k) = max {ϕt([ut]), ϕt([ut] + 1)} < sup
u≥0,u∈R

ϕt(u), (A.20)

where [ · ] is the integral part of the number (i.e., the largest integer that is not greater than the
value of the argument). The concluding part of the proof depends precisely on the strictness of the
inequality in the right side of (A.20).

Let us find a number sequence {tn} such that utn = n for every n. By virtue of (A.19), we have

sup
k≥0,k∈Z

ϕtn(k) = ϕtn(n) =
a(tn)

4
, λ(tn) := 2−

1
n . (A.21)

Let us now find a number sequence {sn} such that usn = n +
1
2

for every n. Then, by (A.20),
we obtain the relations

sup
k≥0,k∈Z

ϕsn(k) = max {ϕsn(n), ϕsn(n + 1)} , λ(sn) := 2−
2

2n+1 . (A.22)

Here, by the definition of the function ϕt(u),

ϕsn(n) = a(sn)
(
λn(sn) − λ2n(sn)

)
, ϕsn(n + 1) = a(sn)

(
λn+1(sn) − λ2n+2(sn)

)
and direct computation yields λn(sn) − λ2n(sn) < λn+1(sn) − λ2n+2(sn). Therefore

sup
k≥0,k∈Z

ϕsn(k) = ϕsn(n + 1) = a(sn)
(
λn+1(sn) − λ2n+2(sn)

)
,

where, by virtue of the relation λ(sn) := 2−
2

2n+1 ,

λn+1(sn) − λ2n+2(sn) =
1
2

√
λ(sn) − 1

4
λ(sn) =

1
4

(
1 −

(
1 −

√
λ(sn)

)2
)

.
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Hence we finally obtain

sup
k≥0,k∈Z

ϕsn(k) =
a(sn)

4

(
1 −

(
1 −

√
λ(sn)

)2
)

, λ(sn) := 2−
2

2n+1 . (A.23)

Now to conclude the proof, it suffices to choose functions a(t) and λ(t) polynomially dependent
on t for which supk≥0,k∈Z ϕtn(k) > 1 and supk≥0,k∈Z ϕsn(k) < 1, respectively, or, which, by virtue
of (A.21) and (A.23), are equivalent to

a(tn)
4

> 1,
a(sn)

4

(
1 −

(
1 −

√
λ(sn)

)2
)

< 1, (A.24)

in which tn and sn are defined by the equalities λ(tn) := 2−
1
n , and λ(sn) := 2−

2
2n+1 , respectively.

It is easy matter to verify that relations (A.24) hold if the functions a(t) and λ(t) are defined
by a(t) = 4 + t3 and λ(t) = 1 − t, respectively. Indeed, in this case a(tn)

4 = 1 + 1
4t3n > 1 and

a(sn)
4

(
1 −

(
1 −

√
λ(sn)

)2
)

�
(

1 +
1
4
s3
n

) (
1 − 1

4
s2
n

)
� 1 − 1

4
s2
n < 1

for all sufficiently large n (and, accordingly, small sn).
Hence, by virtue (A.24), the conditions Δ3 and Δ4 hold for a family of pairs of 2 × 2 matri-

ces L(t) = {L(t),M(t)} with elements λ(t) = 1 − t, μ(t) = λ2(t), and a(t) = b(t) = −d(t) =
−c(t) = 4 + t3. Consequently, the projection of each of semialgebraic sets LC , LB, and LU onto the
t-coordinate contains an infinite number of connectivity components.

This completes the proof of the theorem. ��

Remark A.2. This scheme of the proof of Theorem 1 is also applicable to the case in which the
matrix L(t) is not diagonal as in (A.8), but representable as a Jordan block (A.9) or a rotation
matrix (A.10). These cases are not considered here, because the proof steps differ only in technical
details related to the determination of the largest value of the function |η(Ln,M)|.
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