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1 Introduction

A discrete time nonautonomous dynamical system on a state space Rd can be formulated
in terms of a parameterized state space system that is driven by an autonomous dynamical
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system on a parameter space P , specifically as a triangularly coupled pair of difference
equations

xn+1 = f(pn, xn), pn+1 = Θ(pn), n ∈ Z (1)

on Rd × P , where P is a topological space and Θ : P → P is a homeomorphism. A trivial
example is a general nonautonomous difference equation

xn+1 = g(n, xn), n ∈ Z, (2)

which can be rewritten in the form (1) with P = Z, f(p, x) := g(n, x) and Θ(p) := p.
However, examples that involve a compact parameter space P are much richer dynamically
and mathematically more interesting [3].

In this paper we focus attention on a class of such systems known as discrete time
asynchronous systems [1]. These consist of several subcomponents that are updated at
discrete time instants according to the reading of an internal clock.

The system (1) here has the specific form

xn+1 = f(pn, xn), pn+1 = pn + η, mod 1, (3)

for a given η ∈ (0, 1), where f : P × Rd → Rd satisfies

f(p, x) =


F (x), if p = 0,
G(x), if p ∈ (0, η),
H(x), if p ∈ [η, 1).

(4)

for three particular functions F,G,H : Rd → Rd, while the “clock” Θ : P → P with
P = [0, 1] is defined by

Θ(p) := p+ η, mod 1. (5)

Such situations arise in parallel computing, control theory or telecommunication appli-
cations, where one is interested to know if some dynamical property for a particular initial
value p∗0 of (5) implies the same dynamical property for all initial values p0 ∈ P . This ques-
tion has been extensively investigated for the asymptotical stability of an equilibrium state
x̄, i.e. with f(p, x̄) = x̄ for all p ∈ P . See [1, 5, 6], where an affirmative answer is given
when η is irrational and the mapping f(p, x) is homeomorphic in x for each p ∈ [0, 1) in
some neighborhood of x̄.

The paper is structured as follows. The cocycle formalism of nonautonomous dynamics is
recalled in the next section, along with the definitions of forwards and pullback attractors and
of forwards and pullback dissipativity conditions. Finally, sufficient conditions ensuring the
validity of such a dissipativity condition along the entire parameter trajectory of the driving
system when it holds for a single parameter value are then given. These issues are discussed
in detail and applied in the third section in the context of discrete time asynchronous systems,
which have a very special kind of driving system or clock (5). There are two appendices, the
first containing a symbolic analysis of the driving system (5) and its effects on the dynamics
of the asynchronous system, while the second explains the origin of the difference equations
formalism of the asynchronous systems that are used earlier in the paper.

2 Cocycle dynamics and attractors

The solution mapping Φ : Z+ × P × Rd → Rd of (1), which is defined directly as

Φ(n+ 1, p, x) = f(θnp, , ·) ◦ · · · ◦ f(θ1p, ·) ◦ f(p, x), x ∈ Rd, p ∈ P, n ∈ Z+, (6)
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where we write θnp := Θn(p) for n ∈ Z+ for brevity, or recursively as

Φ(n+ 1, p, x) = f (θnp,Φ(n, p, x)) , x ∈ Rd, p ∈ P, n ∈ Z+,

with the initial condition property

Φ(0, p, x) = x, x ∈ Rd, p ∈ P,

satisfies the cocycle property

Φ(m+ n, p, x) = Φ(m, θnp,Φ(n, p, x)), x ∈ Rd, p ∈ P, m, n ∈ Z+.

The solution mapping Φ is a cocycle mapping on Rd with respect to the autonomous dy-
namical system Θ on P and we call the pair (Φ,Θ) a cocycle or nonautonomous dynamical
system (NDS).

We make the following assumptions on the mappings f and Θ in (1).

Assumption 1 The mapping x 7→ f(p, x) is continuous in x ∈ Rd for each p ∈ P .

Assumption 2 The mapping Θ : P → P is a homeomorphism, i.e. the mapping p 7→
θnp := Θn(p) exists and is continuous in p ∈ P for each n ∈ Z.

It follows then that the mapping x 7→ Φ(n, p, x) is continuous in x ∈ Rd for each n ∈ Z+

and p ∈ P . Note that in [3] the mapping f : P ×Rd → Rd was assumed to be continuous in
(p, x), in which case the mapping (p, x) 7→ Φ(n, p, x) would also be is continuous in (p, x) for
each n ∈ Z+, but this is not essential here and certainly does not apply to the asynchronous
system (3)–(5).

A family Â = {Ap; p ∈ P} of nonempty compact subsets of Rd is called Φ-invariant if

Φ(n, p, Ap) = Aθnp, p ∈ P, n ∈ Z+

We say that Â forwards attracting if

H∗(Φ(n, p,D), Aθnp)→ 0 as n→∞, (7)

and pullback attracting if

H∗(Φ(n, θ−np,D), Ap)→ 0 as n→∞, (8)

for all p ∈ P and nonempty compact subsets D of Rd, where H∗ is the Hausdorff semi-metric.
Although pullback convergence (8) may seem less natural than forwards convergence (7), it
is convenient as it ensures convergence to a specific component set Ap for a fixed p.

Definition 1 A family Â = {Ap; p ∈ P} of nonempty compact subsets of Rd is called a
forwards attractor for the NDS (Φ,Θ) if it
(i) is Φ-invariant,
(i) forwards attracts nonempty compact subsets D of Rd, and
(iii) is the minimal family under inclusion that satisfies (i) and (ii).

Definition 2 A family Â = {Ap; p ∈ P} of nonempty compact subsets Rd is called a pull-
back attractor for the NDS (Φ,Θ) if it
(i) is Φ-invariant,
(ii) pullback attracts nonempty bounded subsets of Rd, and
(iii) is the minimal family under inclusion that satisfies (i) and (ii).

The two types of convergence (7) and (8) are generally not equivalent, but if one of them
holds uniformly in p ∈ P , then so does the other, see [2].
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2.1 Construction of forwards and pullback attractors

For an autonomous dynamical system the existence of an attractor follows from that of a
simpler absorbing set, the omega limit points of which enable one to construct the attractor.
The situation is more complicated for an NDS, but as in [3] an analogous construction of
the components of a pullback attractor is possible in terms of a pullback absorbing set (or
family of sets). However, such a “construction” is more of theoretical than practical usage,
in particular as it must be repeated for every possible starting (or ending) parameter value
p0 ∈ P of the driving system Θ.

In practice, it is much easier to verify “limiting” properties such as the forwards dissipa-
tivity property

lim
n→∞

H∗(Φ(n, p0, D), {0}) ≤ c <∞, (9)

or the pullback dissipativity property

lim
n→∞

H∗(Φ(n, θ−np0, D), {0}) ≤ c <∞ (10)

(these should be satisfied for all compact subset D of Rd) for just a single given starting
or ending parameter value p0 = p∗0 ∈ P rather than for all possible p0 ∈ P . The question
then is: what structural properties should the mapping f in (1) possess in addition to such
a single parameter dissipativity condition in order to guarantee the existence of a forwards
or pullback attractor.

Once we have somehow found or constructed just a single component subset Aθnp0 of a
possible forwards or pullback attractor (i.e. for a specific p0), then we can use the required
Φ-invariance property to determine the corresponding Ap subsets for all future p = θnp0 with
n ≥ 1, namely

Aθnp0 := Φ(n, p0, Ap0) for n ≥ 1

If the pullback dissipativity condition (10) also holds for this p0, then we might be tempted
to construct the corresponding Ap subsets for all past p = θnp0 with n ≤ −1 through the
pullback limit

Aθnp0 :=
⋃
D

⋂
q≥0

⋃
m≥q

Φ(m, θn−mp0, D) for n ≤ −1 (11)

where the outer union is taken over all compact subsets D of Rd. (It is not clear even how
to construct a subset Ap0 when the forwards dissipativity condition (9) holds). However,
there is no guarantee here that resulting component subset in (11) will be compact without
some additional assumptions. This failure, which is illustrated in Figure 1, is due to the
unbounded growth of the reachable sets as the starting time approaches −∞.

Even if we are successful in constructing compact subsets Aθnp0 for all n ∈ Z, we still
need to determine the Ap subsets for p ∈ P \ {θnp0; n ∈ Z}. Some kind of “continuity”
argument may seem appropriate here, but in general the mapping p 7→ Ap is only upper
semi continuous, even when the mapping f in (1) (and hence the solution mapping Φ) is
continuous in both p and x [2]. However, there is some hope of progress when the trajectory
{θnp0; n ∈ Z} is dense in the parameter space P , which is the case for the asynchronous
system (3)–(5) when the constant η in (5) is irrational.

2.2 Dissipativity along a single parameter trajectory

The following Lemmata, the proofs of which are obvious, list several sufficient conditions for
the forwards dissipativity condition (9) or the pullback dissipativity condition (10), respec-
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Figure 1:

tively, to hold for all p0 ∈ {θnp∗0; n ∈ Z} when the condition is valid for the single parameter
p∗0.

Lemma 1 Suppose that the forwards dissipativity condition (9) holds for some p0 = p∗0 ∈ P .
Then (9) holds for any p0 ∈ {θkp∗0; k ∈ Z} if one of the following is satisfied:

(i) the preimage Φ−1(n, p∗0, D) := {x ∈ Rd; Φ(n, p∗0, x) ∈ D} is nonempty and bounded for
every bounded subset D of Rd and n ∈ Z+;

(ii) the preimage Φ−1(1, θnp
∗
0, D) := f−1(θnp

∗
0, D) is nonempty and bounded for every

bounded subset D of Rd and n ∈ Z+.

In the pullback case we express the corresponding conditions slightly differently for later
convenience and include some additional ones. Here B[0; r] denotes the closed ball in Rd of
radius r that is centered at the origin.

Lemma 2 Suppose that the pullback dissipativity condition (10) holds for some p0 = p∗0 ∈ P .
Then (10) holds for any p0 ∈ {θkp∗0; k ∈ Z} if one of the following is satisfied:

(i) the preimage Φ−1(n, θ−np
∗
0, x0) := {x ∈ Rd; Φ(n, θ−np

∗
0, x) = x0} is nonempty and

bounded for every x0 ∈ B[0; c], where c is the constant in (10), and n ∈ Z+;
(ii) the preimage Φ−1(n, θ−np

∗
0, x0) is nonempty and bounded for every x0 ∈ Rd and

n ∈ Z+;
(iii) for every n ∈ Z+

‖Φ(1, θ−np
∗
0, x)‖ = ‖f(θ−np

∗
0, x)‖ → ∞ as ‖x‖ → ∞.

(iv) for every p ∈ P

‖Φ(1, p, x)‖ := ‖f(p, x)‖ → ∞ as ‖x‖ → ∞.

Condition (i) in Lemma 2 is the least demanding, but the most difficult to verify, conditions
(ii) and (iii) are equivalent and easier to verify than (i), while condition (iv) is the most
demanding, but the easiest to verify. None of the conditions is necessary for the stated
result.
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3 Attractors of two-component asynchronous systems

The asynchronous systems described by equations (3)–(5) correspond to a system with two
components and a particular switching sequence between these components, see [1]. Our
aim is to determine conditions to supplement the forwards dissipativity condition (9) or the
pullback dissipativity condition (10) for a single p∗0 that ensure the existence of a forwards or
pullback attractor, respectively, for such an asynchronous system. We begin by investigating
more closely the dissipativity conditions (9) and (10) for systems of the form (3)–(5).

3.1 Uniform boundedness conditions

The forwards dissipativity condition (9) for a given p0 ∈ P implies that for every nonempty
bounded subset D of Rd there exists a positive number ρf (p0, D) such that

H∗ (Φ(n, p0, D), {0}) ≤ ρf (p0, D), ∀n ∈ Z+, (12)

which means the entire set-valued trajectory Φ(n, p0, D) corresponding to the set-valued ini-
tial condition D is bounded for any bounded subset D. However, in general, the boundedness
condition (12) does not imply the uniform boundedness condition

H∗ (Φ(n, θmp0, D), {0}) ≤ ρf (p0, D), ∀n,m ∈ Z+, (13)

i.e. uniform with respect to the starting parameter values θmp0 over m ∈ Z+

Similarly, the backwards dissipativity condition (10) for a given p0 ∈ P does not imply
that an analogous uniform boundedness condition holds for set-valued pullback trajectories,
i.e. the existence a positive number ρpb(p0, D) for every nonempty bounded subset D of Rd

such that

H∗ (Φ(n, θ−mp0, D), {0}) ≤ ρpb(p0, D), ∀m ∈ Z+, 0 ≤ n ≤ m. (14)

For an asynchronous system (3)–(5) with irrational η the forwards and pullback uniform
boundedness conditions (13) and (14) are in fact equivalent.

Lemma 3 Let η in (5) be irrational and p0 ∈ [0, 1). Then conditions(13) and (14) for
an asynchronous system (3)–(5) are equivalent to each other as well as to the following
condition: for every bounded subset D of Rd there exists a constant ρ(D) <∞ such that

H∗ (Φ(n, p,D), {0}) ≤ ρ(D), ∀n ∈ Z+, ∀ p ∈ [0, 1). (15)

Proof. Condition (15) obviously implies both of the conditions (13) and (14), so the lemma
will be proved if we show that each of conditions (13) and (14) implies (15).

Let condition (13) hold and assume first that the pair (n, p) ∈ N × [0, 1) is such that
0, η 6∈ {θkp; k = 0, . . . , n − 1}. Then by Lemma 7 (see Appendix 1) there exists an ε0 > 0
such that Φ(n, p′, ·) ≡ Φ(n, p, ·) for all p′ with |p′− p| < ε0. Now by the irrationality of η the
trajectory {θkp0; k ∈ Z+} is dense in [0, 1), so there exists a k0 ∈ Z+ such that |p−θk0p0| < ε0.
Hence by Lemma 7

Φ(n, θk0p0, ·)) ≡ Φ(n, p, ·)

while by (13)
H∗(Φ(n, θk0p0, D), {0}) ≤ ρf (p0, D).
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Hence

H∗(Φ(n, p,D), {0}) ≤ ρf (p0, D), ∀ (n, p) : 0, η 6∈ {θkp; k = 0, . . . , n− 1}. (16)

Consider now an arbitrary pair (n, p). Again, due to the irrationality of η, there exist at most
one integer k = k0 ∈ [0, n− 1] such that θk0p = 0 and at most one integer k = k1 ∈ [0, n− 1]
such that θk1p = η. Moreover, if both of the numbers k0 and k1 belong to the interval
[0, n − 1], then k1 = k0 + 1. By the definition (6), in either case, the solution mapping
Φ(n, p, ·) can be represented in the form

Φ(n, p, ·) = Φ(n− k0 − 2, θk0+1p, ·) ◦ f(θk0+1p, ·) ◦ f(θk0p, ·) ◦ Φ(k0, p, ·).

The first and the last factors here satisfy the uniform bound (16) proved above, while the
intermediate factors remain bounded on bounded sets due to piecewise structure in p and
continuity in x of the mapping f(p, x) defined in (4). The required estimate (15) follows
immediately, that is, condition (13) implies (15).

The proof that (14) implies (15) is analogous, so will be omitted.

We shall now show that single parameter trajectory attractivity conditions (9) and (10)
together with single parameter trajectory uniform boundedness conditions (13) and (14)
imply the uniform attractivity of the asynchronous system (3)–(5).

Lemma 4 Let η in (5) be irrational and let p0 ∈ [0, 1) be such that one of the following
conditions holds:

(i) 0, η 6∈ {θkp0; k ∈ Z+} and (9) and (13) hold for every bounded subset D of Rd.
(ii) 0, η 6∈ {θkp0; k ∈ Z−} and (10) and (14) hold for every bounded subset D of Rd.
Then there exists a constant C <∞ such that for every bounded subset D of Rd a number

N(D) can be found for which

H∗(Φ(n, p,D), {0}) ≤ C, ∀n ≥ N(D), ∀ p ∈ [0, 1). (17)

Proof. Since the statement of the lemma is proved analogously for both conditions (i) or
(ii), we will provide the proof only for the case of condition (ii).

Suppose condition (ii) holds. Then by Lemma 3 there is a function ρ(·) for which the
uniform bound (15) holds. Fix an arbitrary ε0 > 0 and set

C := ρ(B[0; c∗])

where c∗:= c + ε0 and c is the constant from (10). Consider the ball D∗ := B[0; ρ(D)] for a
given bounded subset D of Rd. Then by (10) (which is a part of supposition (ii)) there is an
integer n(D∗) such that

H∗ (Φ(n, θ−np0, D∗), {0}) ≤ c∗ for n ≥ n(D∗),

or, what is the same

Φ (n, θ−np0, D∗) ⊆ B[0; c∗] for n ≥ n(D∗).

Finally, setN(D) := 6N∗(D)+2, whereN∗(D) := max{r, s} and r, s ≥ n(D∗) = n(B[0; ρ(D)])
are the pair of numbers given in Lemma 6 (see Appendix 1). The constants C and N(D) so
defined are the ones that we need in the assertion of the Lemma under proof.
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Fix n ≥ N(D) and arbitrary p ∈ [0, 1). Since the relations 0, η ∈ {θkp; k = −n, . . . , 0}
can be satisfied only for at most two consecutive values of k, then either 0, η 6∈ {θkp; k =
−n, . . . ,−n+3N∗(D)} or 0, η 6∈ {θkp; k = −3N∗(D), . . . , 0}. In either case an integer m0 can
be found such that [−m0,−m0 + 3N∗(D)] ⊂ [−n, 0] and 0, η 6∈ {θkp; k = −m0, . . . ,−m0 +
3N∗(D)}, and so that the solution mapping Φ(n, θ−np, ·) can be represented in the form

Φ(n, θ−np, ·) = Φ(m0−3N∗(D), θ−m0+3N∗(D), ·)◦Φ(3N∗(D), θ−m0p, ·)◦Φ(n−m0, θ−np, ·) (18)

Further, by Lemma 9 (see Appendix 1) there exist integers n0 and n∗ (where n∗ = r or
n∗ = s) such that [−n0,−n0 +n∗] ⊂ [−m0,−m0 +3N∗(D)] and so that the solution mapping
Φ(3N∗(D), θ−m0p, ·) can be represented in the form

Φ(3N∗(D), θ−m0p, ·) = Φ(−m0 + 3N∗(D) + n0 − n∗, θ−n0+n∗p, ·) ◦
Φ(n∗, θ−n0p, ·) ◦ Φ(m0 − n0, θ−m0p, ·) (19)

where
Φ(n∗, θ−n0p, ·) ≡ Φ(n∗, θ−n∗p0, ·). (20)

It thus follows from (18) and (19) follows that we can write

Φ(n, θ−np, ·) = Φ(n0 − n∗, θn0+n∗p, ·) ◦ Φ(n∗, θ−n0p, ·) ◦ Φ(n− n0, θ−np, ·)

or, taking into account (20),

Φ(n, θ−n, ·) = Φ(n0 − n∗, θ−n0+n∗p, ·) ◦ Φ(n∗, θ−n∗p0, ·) ◦ Φ(n− n0, θ−np, ·) (21)

where the middle factor is expressed through the solution mapping with parameter p0.
Now, by Lemma 3

Φ(n− n0, θ−np,D) ⊆ B[0; ρ(D)] = D∗,

then by choice of the number n∗

Φ(n∗, θ−n∗p0, D∗) ⊆ B[0; c∗]

and, at last, by definition of the constant C

Φ(n0 − n∗, θ−n0+n∗p,B[0; c∗]) ⊆ B[0;C].

The statement of the lemma then follows from these inclusions and from (21) (see Figure 2).
The statement of the lemma under supposition (i) is proved analogously with the excep-

tion that Lemma 8 (see Appendix 1) on the “forwards decomposition” of solution mapping
should be used instead of the “pullback decomposition” in Lemma 9.

3.2 Main result

Our main result, Theorem 3 to be stated at the end of the subsection, concerns the existence
of forwards and pullback attractors of the asynchronous system (3)–(5). Its formulation and
proof are based on the following two theorems.

Theorem 1 Let η in (5) be irrational and let p0 ∈ [0, 1) be such that (10) and (14) hold
for every bounded subset D of Rd. Suppose also that the preimage f−1(p,D) := {x ∈
Rd; f(p, x) ∈ D}, where f is defined by (4), is bounded for every bounded subset D of Rd

and p ∈ [0, 1).
Then there exists a finite constant C such that for every bounded subset D of Rd a number

N(D) can be found for which the uniform bound (17) is satisfied.
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Proof. The assertion of the theorem immediately follows from statement (ii) of Lemma 4
when 0, η 6∈ {θkp0; k ∈ Z−}. If one of the points 0 or η belongs to the set {θkp0; k ∈ Z−}, we
can find a p∗ ∈ {θkp0; k ∈ Z−} such that 0, η 6∈ {θkp0; k ∈ Z−}. Then, from the condition
that the preimage f−1(p,D) is bounded for any bounded subset D of Rd and any p ∈ [0, 1),
it follows by Lemma 2 that (10) and (14) hold with p0 = p∗ for every bounded subset D of
Rd. The assertion of the theorem follows from this, again by the statement (ii) of Lemma 4.

Theorem 2 Let η in (5) be irrational and let p0 ∈ [0, 1) be such that (9) and (13) hold for
every bounded subset D of Rd. Suppose also that the preimage f−1(p,D), where f is defined
by (4), is bounded for any bounded subset D of Rd and any p ∈ [0, 1).

Then there exists a finite constant C such that for every bounded subset D of Rd a number
N(D) can be found for which the uniform bound (17) is satisfied.

Proof. The proof is a word by word repetition of the proof of Theorem 1 with the exception
that Lemma 1 should be used instead of Lemma 2 and statement (i) of Lemma 4 should be
used instead of the statement (ii).

Remark 1 The condition in Theorem 1 that the preimage f−1(p,D), where f is defined by
(4), is bounded for every bounded subset D of Rd and any p ∈ [0, 1) can be replaced by less
demanding condition (i) of Lemma 1. Analogously, the same in Theorem 2 condition can be
replaced by any one of the conditions (i)–(iv) of Lemma 2.

We now formulate our main result.

Theorem 3 Under the conditions of Theorem 1 the asynchronous system (3)–(5) has a
pullback attractor, while under the conditions of Theorem 2 it has a forwards attractor.

Proof. The assertions follow immediately from the uniform bound (17), the validity of which
is assured by Theorems 1 or 2 and by Theorems 2.8 or 2.9 of [2], respectively.

Theorems 1, 2 and 3 are similar to the stability investigations of asynchronous systems
mentioned in the Introduction in the sense that they are also concerned with determining if
some dynamical property will hold for all initial values p0 of the “clock” (5) when it holds
for a particular initial value p∗0. However, they differ in the sense that they are concerned
with global properties, the existence of uniform bounds and attractors, rather than with a
local property such as determining the asymptotic stability of an equilibrium point that is
already known to exist.
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4 Appendix 1: Symbolic analysis of the driving com-

ponent

The dynamics of the asynchronous system (3)–(5) is strongly affected by the properties of
the driving system (5), that is, the shift mapping Θ of the interval [0, 1) onto itself, which
was defined by Θ(p) := p+ η, mod 1, and is obviously invertible on [0, 1), so

θnp := Θn(p) = p+ nη, mod 1, n ∈ Z.

Thus the sequence {pn;n ∈ Z+} defined by the recursion

pn+1 = Θ(pn) := pn + η, mod 1, n ∈ Z+,

for an initial value p0 ∈ [0, 1) satisfies pn = p0 +nη for each n ∈ Z+. However, the dynamics
of this sequence is not easily described unless η is rational, in which case it is periodic. This
sequence, in fact, determines the corresponding state space dynamics because the solution
mapping Φ(n, p0, ·) is explicitly represented by

Φ(n, p0, ·) = f(pn−1, ·) ◦ · · · ◦ f(p1, ·) ◦ f(p0, ·). (22)

and thus, in view of the piecewise constant structure of the mapping f defined by (4), consists
of compositions of the mappings F,G and H depending on whether the pj belong to {0},
(0, η) or [η, 1).

We can thus associate the abstract symbols, say, “a”, “b” and “c”, with each of these
possible parameter states {0}, (0, η) or [η, 1) and then represent the parameter sequence
{pk; k = 0, . . . , n − 1} by the symbolic sequence σ̄(θ) := {σ̄k(p0); k = 0, . . . , n − 1}, where
σ̄k(p0) := χ(pk) with the mapping χ : [0, 1) 7→ {a, b, c} defined by

χ(θ) =


a, if θ ∈ (0, η),
b, if θ ∈ [η, 1),
c, if θ = 0.

(23)

Specifically,

Lemma 5 The representation (22) of the solution mapping Φ(n, p0, ·) is completely deter-
mined by the symbolic sequence σ̄(p0) := {χ(pk); k = 0, . . . , n− 1} in the sense that

f(p, x) =


F (x), iff χ(p) = c ⇔ p = 0,
G(x), iff χ(θ) = a ⇔ p ∈ (0, η),
H(x), iff χ(p) = b ⇔ p ∈ [η, 1)

for each p = pk, k = 0, 1, . . . , n− 1.

We need some auxiliary terminology [9]. In particular, elements in symbolic sequences
will be not separated by commas. Let A be a fixed alphabet, that is, a set of elements called
letters or symbols. A finite cortege ν = ν1 . . . νn of letters fromA is called a word. The product
of any words ν1 = ν11 . . . ν

1
n1

and ν2 = ν21 . . . ν
2
n2

is the word ν1ν2 = ν11 . . . ν
1
n1
ν21 . . . ν

2
n2

and
the left factor (of length j ≤ n) of a word ν = ν1 . . . νn is the initial fragment νj = ν1 . . . νj of
ν. An infinite sequence σ = σ1σ2 . . . from the alphabet A is called an infinite word or text.
For such a text σ, the word σn = σ1σ2 . . . σn is called its left factor (of length n) and the
text σn = σn+1σn+2 . . . is called its right factor (of the colength n), while any word σi . . . σj
with i ≤ j is called a factor of σ.
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Let Σ = {σ1, . . . ,σk} be a set of words over the alphabet A. A text σ is said to be
Σ-decomposable if it can be represented as a product of words belonging to a set of words
Σ and is said to be weakly Σ-decomposable if it has a Σ-decomposable right factor σn for
which the colength n is strictly less than the maximal length of the words in Σ.

In particular, we will investigate the symbolic sequence or text

σ(p0) = σ0(p0)σ1(p0) . . . σn(p0) . . . (24)

consisting of two letters, say a and b and defined by

σn(p0) =

{
a, if pn = θnp0 ∈ [0, η),
b, if pn = θnp0 ∈ [η, 1).

(25)

Such texts (24)–(25) are called as sturmian beams with a-frequency η, see [8].
When η is rational the texts (24)–(25) are all eventually periodic, but if η is irrational

then the structure of texts is considerably more complicated. The following result is a
reformulation of Theorem 1 from [6] (see also Theorem 5 from [5]).

Lemma 6 Let η be irrational and let p0 ∈ [0, 1) with p0 6= η. Then there exist arbitrary large
integers r and s such that for any p̃0 ∈ [0, 1) the text σ(p̃0) will be weakly Σ-decomposable
with respect to the set of words Σ = {σr(p0),σs(p0)}.

Remark 2 The sequences (24)–(25) here are not quite the same as were used in (23) to
characterize the structure of the solution mapping Φ(n, p, ·), essentially absorbing the symbol
“c” into the symbol “a”. We will see below that the symbol “c” rarely occurs and that the
dynamics can be completely handled by the sequences (24)–(25)

The solution mapping Φ(n, p, ·) inherits the piecewise constant structure in the variable
p from the mapping f(p, ·).

Lemma 7 Let p0 be such that 0, η 6∈ {θkp0; k = 0, . . . , n − 1}. Then there exists an ε0 > 0
such that Φ(k, p, ·) ≡ Φ(k, p0, ·) for all k = 1, 2, . . . , n and p satisfying |p− p0| < ε0.

Proof. Since 0, η 6∈ {θkp0; k = 0, . . . , n− 1}, we have either θkp0 ∈ (0, η) or θkp0 ∈ (η, 1) for
k = 0, 1, . . . , n− 1. By the continuity of the shift mapping Θ on the torus T1 := [0, 1) there
thus exists an ε0 > 0 such that the θkp belong to the same intervals (0, η) or (η, 1) as the
corresponding θkp0 when |p − p0| < ε0. By definition (23) of the mapping χ, we thus have
χ(θkp) = χ(θkp0) for k = 0, 1, . . . , n− 1 and |p− p0| < ε0. The assertion of the lemma then
follows by Lemma 5.

The next two lemmas show that even when the solution mapping Φ(n, p, ·) is not periodic
in the n variable it nevertheless possesses a kind of pseudo periodicity.

Lemma 8 (A forward decomposition of the solution mapping) Let p0 ∈ [0, 1) be such
that 0, η 6∈ {θkp0; k ∈ Z+} and let p̃0 ∈ [0, 1) be such that 0 6∈ {θkp̃0; k = 0, . . . , n} for some
n > 0. Then for any N > 0 there exist integers r ≥ s ≥ N and mappings g1, g2, . . . , gm such
that

Φ(n, p̃0, ·) = gm ◦ · · · ◦ g2 ◦ g1(·), (26)

where

gi(·) =

{
Φ(ki, p̃0, ·) for i = 1,
Φ(ki, p0, ·) for i > 1,

and
ki < min{r, s} for i = 1,m, ki = r or s for i = 2, 3, . . . ,m− 1.

11



Remark 3 Lemma 8 means that, given a p0 ∈ [0, 1) satisfying the conditions of the lemma,
the solution mapping Φ(m, p̃0, ·) can be represented as the product of “long factors” Φ(r, p0, ·)
and Φ(s, p0, ·), apart from initial and ending “short factors” Φ(k1, p̃0, ·) and Φ(km, p0, ·). In
this way it “inherits” the limiting properties of the solution mapping Φ(n, p0, ·).

Remark 4 The condition 0, η 6∈ {θkp0; k ∈ Z+} is not restrictive in context of the “limiting”
properties of the system since, by the irrationality of η, both points 0 and η can occur only
once in the sequence {θkp0); k ∈ Z+}. In this case it suffices to replace p0 by θkp0 with
sufficiently large k.

Remark 5 We will see from the proof that the condition 0 6∈ {θkp̃0; k ∈ Z+} is also not
restrictive since by the irrationality of η the point 0 can occur only once in the sequence
{θkp̃0; k ∈ Z+}, say 0 = θk0 p̃0. The sequence {θkp̃0; k ∈ Z+} can then be split into three
parts, namely {θkp̃0; k = 0, . . . , k0− 1}, {θk0 p̃0} and {θkp̃0; k = k0 + 1, . . . ,∞}. The first and
the third parts here do not contain 0, so Lemma 8 can be applied to these sequences.

The following analog of Lemma 8 is useful in the pullback case.

Lemma 9 (A pullback decomposition of the solution mapping) Let p0 ∈ [0, 1) be
such that 0, η 6∈ {θkp̃0; k ∈ Z−} and let p̃0 ∈ [0, 1) be such that 0 6∈ {θkp̃0; k = −n, . . . , 0} for
some n > 0. Then for any N > 0 there exist integers r ≥ s ≥ N and maps g1, g2, . . . , gm
such that

Φ(n, θ−np̃0, ·) = gm ◦ · · · ◦ g2 ◦ g1(·),

where

gi =

{
Φ(ki, θ−ki p̃0, ·) for i = m,
Φ(ki, θ−kip0, ·) for i < m,

and
ki < min{r, s} for i = 1,m, ki = r or s for i = 2, 3, . . . ,m− 1.

Appropriately modified analogs of the Remarks 3– 5 also apply to Lemma 9.

Proof of Lemma 8. Consider the symbolic sequences σ̄(p0) and σ̄(p̃0) defined through
(23) by the sequences {θkp0} and {θkp̃0}, respectively. According to Lemma 5 the structure
of the solution mappings Φ(n, p0, ·) and Φ(n, p̃0, ·) is completely determined by σ̄(p0) and
σ̄(p̃0).

Since, by assumptions of the lemma, we have 0, η 6∈ {θkp0; k ∈ Z+}, then according to
(23) c 6∈ σ̄(p0) and so

σ̄(p0) ≡ σ(p0). (27)

Analogously, from suppositions of the lemma 0 6∈ {θkp̃0; k = 0, . . . , n} for some n > 0, it
follows that

σ̄n(p̃0) ≡ σn(p̃0) (28)

From relations (27) and (28) it follows the possibility to apply Lemma 6 for investigation of
structures of the symbolic sequences σ̄(p0) and σ̄n(p̃0).

Fix an arbitrary integer N > 0. By Lemma 6 there exist such integers r, s ≥ N for
which the text σ(p̃0) will be weakly Σ-decomposable with respect to the set of words Σ =
{σr(p0),σs(p0)}. This means that

σn(p̃0) = σr0(p̃0) . . . σr1−1(p̃0)σr1(p̃0) . . . σr2−1(p̃0) . . . σrm−1(p̃0) . . . σrm−1(p̃0),
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where, by Lemma 6, r0 = 0, rk = n, r1 < min{r, s} and for 1 ≤ i < m − 1 either
the equality σri(p̃0) . . . σri+1−1(p̃0) = σr(p0) is valid with ri+1 − ri = r or the equality
σri(p̃0) . . . σri+1−1(p̃0) = σs(p0) is valid with ri+1 − ri = s, while for i = k − 1 the equality
σrm−1(p̃0) . . . σrm−(p̃0) = σq(p0) with q = rm− rm−1 < min{r, s} takes place. By definition of
the symbolic sequences σ(p) from here and from Lemma 5 the relationship (26) follows.

Proof of Lemma 9 is provided analogously to the presented above proof of Lemma 8 and
so is omitted.

5 Appendix 2: Origin of discrete time asynchronous

systems

Asynchronous systems with frequency updating components are a natural, yet at the same
time non traditional, example of skew product or cocycle systems with rather complicated
behaviour. To avoid inessential details we will be restricted our attention here to two-
component systems.

Asynchronous systems arise quite naturally in the following setting. Consider a system
W consisting of two components (parts, elements) W1 and W2 for which the state of the
component Wi is described by a vector ξi ∈ Rdi for some di ≥ 1. The main assumption is
that such a vector can be updated only at some discrete time instants in accordance with
the rule:

ξi,new := ϕi(ξold), ξold := (ξ1,old, ξ2,old), i = 1, 2,

where ϕi : Rd1 × Rd2 7→ Rdi is some nonlinear function remaining unchanged at other
moments.

Let . . . < Ti,0 < Ti,1 < . . . < Ti,n < . . . denote the updating times for the component Wi.
Then the updating law for the variable state ξi(t) of the component Wi can be described

ξi(Ti,n + 0) := ϕi(ξ(Ti,n − 0)), i = 1, 2, (29)

with the function ξi(t) being constant on each time interval Ti,n < t ≤ Ti,n+1, i.e.

ξi(t) = const for Ti,n < t ≤ Ti,n+1, i = 1, 2, n ∈ Z.

For this exposition, we will suppose that each component Wi is updated periodically, i.e. its
updating times are given by

Ti,n = nτi + pi i = 1, 2, n ∈ Z,

where, without loss of generality, we may assume that

τ1 = 1, p1 = 0, τ2 = η ∈ (0, 1], p2 ∈ [0, η).

Let us now reformulate the above continuous time description (29) of an asynchronous
system by a more convenient discrete time system. For this we denote by ω ⊆ {1, 2} the
set of indices of the components of system W that can be updated at a given instant. In
addition, writing ξ = (ξ1, ξ2) and ξi ∈ Rdi for i = 1, 2, we denote by

ϕ(ω, ξ) := (ϕ1(ω, ξ), ϕ2(ω, ξ)), ϕi(ω, ξ) ∈ Rdi , i = 1, 2, (30)
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the mapping which is obtained from the above mapping

ϕ(ξ) := (ϕ1(ξ), ϕ2(ξ)), ϕi(ξ) ∈ Rdi , i = 1, 2, (31)

by replacing its components with indices i 6∈ ω on the identity mappings (in corresponding
spaces Rdi), obtaining

ϕ(ω, ξ) :=


(ϕ1(ξ), ξ2), if ω = {1},
(ξ1, ϕ2(ξ)), if ω = {2},
(ϕ1(ξ), ϕ2(ξ)) = ϕ(ξ), if ω = {1, 2}.

The mapping (30) is called the ω-mixture of the mapping (31). It allows us to describe quite
simply the updating procedure and dynamics of the asynchronous systems. Specifically, the
“updating procedure” for the state of the system W is described here by

ξnew := ϕ(ω, ξold), (32)

where ω is the set of indices of updatable (vector-valued) components ξi ∈ Rdi of ξ.
To describe the updating law for the state (32) as dynamical equations, we first enumerate

the totality of updating times {Ti,j}, i ∈ Z, j = 1, 2, in the increasing order as a sequence
. . . < T0 < T1 < . . . < Tn < . . . and denote by ωn ⊆ {1, 2} the set of indices of the
components {Wi} that are updated at time Tn. Then, from (29) and (32), we obtain the
following equation for the dynamics of the system W :

ξ(Tn+1 − 0) ≡ ξ(Tn + 0) = ϕ(ωn, ξ(Tn − 0)), n ∈ Z. (33)

In the case under discussion, it is possible to describe behaviour of the driving component ω
in terms of a dynamical system. To do this, we partition the time axis R into nonoverlapping
intervals (nη, (n + 1)η], n ∈ Z and write x(n) for the state vector of the system W at time
instances immediately following n, i.e.

x(n) = ξ(nη + 0).

Each interval (nη, (n + 1)η] obviously contains no more than one updating time of each
component of the system W . It contains exactly one updating time of the second compo-
nent which coincides with (n + 1)η, and it contains at most one updating time of the first
component. To determine whether the interval (nη, (n+ 1)η] contains the updating time for
the first component we introduce the number

p(n) := (n+ 1)η − [(n+ 1)η] ∈ [0, 1), (34)

where [·] denotes the (floor) integer part of a real number, i.e. the largest integer does
not exceeding the corresponding real number. Then [(n+ 1)η] will be exactly the largest
updating time of the first component that does not exceed (n+ 1)η, so the interval (nη, (n+
1)η] will contain the updating time of the first component if and only if p(n) ∈ [0, η).

It thus follows that the vector x(n + 1) is obtained from the vector x(n) through the
difference equation

x(n+ 1) = f(p(n), x(n)), (35)

where the function f(p, x) is defined by

f(p, x) =


F (x) := (ϕ1(x1, x2), ϕ2(x1, x2)) , if p = 0,
G(x) := (ϕ1(x1, x2), ϕ2(ϕ1(x1, x2), x2)) , if p ∈ (0, η),
H(x) := (x1, ϕ2(x1, x2)) , if p ∈ [η, 1).

(36)
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This representation follows from (30) since for p = p(n) = 0 both components of the system
W are updated simultaneously, for p ∈ (0, η) the first and second components are updated
sequentially, and for p ∈ [η, 1) only the second component is updated. In addition, the
p(n+ 1) and p(n) are related by the “η-shift mapping” on the interval [0, 1), i.e.

p(n+ 1) = p(n) + η, mod 1. (37)

The dynamics of the two-component asynchronous system W can thus be described by
the skew product system (35), (36) and (37), which is the same as system (3)–(5) in the
Introduction after some minor notational changes.
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