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Abstract. The influence of the driving system on a skew-product flow generated by

a triangular system of differential equations can be perturbed in two ways, directly
by perturbing the vector field of the driving system component itself or indirectly

by perturbing its input variable in the vector field of the coupled component. The

effect of such perturbations on a nonautonomous attractor of the driven component
is investigated here. In particular, it is shown that a perturbed nonautonomous

attractor with nearby components exists in the indirect case if the driven system has

an inflated nonautonomous attractor and that the direct case can be reduced to this
case if the driving system is shadowing.

1. Introduction. As in the theory of autonomous dynamical systems, a major
issue in the theory of nonautonomous cocycle dynamical systems or skew-product
flows concerns the robustness or persistence of certain dynamical properties of the
system (e.g., the existence of trajectories of a specific type such as equilibria or of
attractors) under various kinds of perturbations. There are already a number of
publications devoted to this matter in one context or another, e.g., the persistence
of nonautonomous (forwards or pullback) attractors under uniform perturbation
or numerical discretization [12, 13], the stability of asynchronous systems under
uniform perturbation [17], and the “lifting problem” in skew-product flows [19], as
well as the robustness of control sets [3] or random bifurcations [8].

Consider a system of autonomous differential equations

ẋ = f(x, p), (1.1)
ṗ = g(p), (1.2)

where the p-component is decoupled, so the system (1.1)–(1.2) generates a skew-
product flow. The p-component here may be considered to represent an independent
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system that drives the x-component system in the sense that

ẋ = f(x, p(t)) (1.3)

for any given solution p(t) of (1.2).
Suppose that the resulting dynamics has an attractor of some kind, e.g., a global

autonomous attractor for the autonomous skew-product flow or a nonautonomous
attractor (to be defined below) for the nonautonomous x-component system driven
by the p-component system as in equation (1.3). The issues to be considered in
this paper are:

What happens when the driving component is slightly perturbed?

What conditions on the equations (1.1)–(1.2) ensure the persistence of such an
attractor under perturbation of the driving component?

The answers to these questions are not as obvious or easy as it might at first
seem. Indeed, even an infinitesimal uniform perturbation of the vector field g in
(1.2) may cause substantial changes to the individual trajectories p(t) of (1.2), as
a result of which the solutions of the “driven” equation (1.3) may then behave in a
very different way to the those of the original unperturbed system. This effect will
be shown in Example 2.1 of Section 2, where the perturbations to the influence of the
driving component will be classified as strong and weak depending on whether just
the whole vector field g of the driving equation in (1.2) or just the p-component in
the vector field f of the driven equation (1.1) is perturbed. Weak perturbations will
be investigated in Section 4 in terms of the “inflation” of the vector field in (1.1) and
the existence of inflated nonautonomous attractors. In Section 5 it will be shown
that the investigation of the effect of strong perturbations can be reduced to the
weak case if the driving system (1.2) satisfies a shadowing property. Background
material on skew-product flows, nonautonomous cocycle dynamical systems and
their attractors will be given in Section 3.

The following notation and definitions will be used. H∗(A,B) denotes the Haus-
dorff separation or semi-metric between nonempty compact subsets A and B of Rd,
and is defined by

H∗(A,B) := max
a∈A

dist(a,B)

where dist(a,B) := minb∈B ‖a− b‖. For a nonempty compact subset A of Rd and
r > 0, the open and closed balls about A of radius r are defined, respectively, by

B(A; r) := {x ∈ Rd : dist(x, A) < r}, B[A; r] := {x ∈ Rd : dist(x, A) ≤ r}.

For a metric space X other than Rd the Hausdorff semi-metric will be denoted by
H∗

X .

2. Perturbation of the driving system. The following example illustrates how
small changes to the vector field g of the driving system (1.2) can lead to substantial
changes in the behaviour of the solutions of the driven equation (1.3).

Example 2.1. Consider the system of differential equations

ẋ = p1 x−
√

x, (2.1)

ṗ1 = −p2 γ(λ, p), ṗ2 = p1 γ(λ, p), (2.2)
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where x ∈ R+, p := (p1, p2) ∈ S := {p : p2
1 + p2

2 = 1} and

γ(λ, p) := 1 +
λ2

1 + 2λ
+

λ(1 + λ)
1 + 2λ

sign(p1) (2.3)

depending on a parameter λ ∈ R. The function γ(λ, p) is close to 1 for small λ and
provides the “perturbation” of the driving system (2.2) for λ different from 0. (The
discontinuity in γ(λ, p) and hence in the vector field of equation (2.2) at p1 = 0 can
be avoided, but at the expense of the convenient explicit solutions used below).

Equations (2.1)–(2.2) determine a skew-product system on R+ × S with the
driving component being defined by (2.2) on S. The p1-component of the solution
p(t) = (p1(t), p2(t)) for any small value of parameter λ is 2π-periodic with the mean
value

p̄1,λ := lim
t→∞

1
t

∫ t

0

p1(s) ds =
1
2π

∫ 2π

0

p1(s) ds =
2
π

λ

1 + λ
.

The solution x(t) = φ(t, x0, p0) of the forced equation (2.1) is given explicitly by

x(t) =
{

e
R t
0 p1(s) dsw2(t) if w(t) ≥ 0,

0 if w(t) < 0,
(2.4)

where

w(t) :=
√

x0 −
1
2

∫ t

0

e−
1
2

R s
0 p1(u) du ds

(for brevity the appropriate initial values have been omitted here).
Now p̄1,λ ≤ 0 for small λ ≤ 0 and the zero solution x̄(t) ≡ 0 of the driven system

(2.1) is globally asymptotically stable uniformly in p ∈ S; see Fig. 1. (In fact, it has
a nonautonomous (both forwards and pullback) attractor Â := {Ap = {0} : p ∈ S},
while the corresponding autonomous product system generated by equations (2.1)–
(2.2) has the global attractor A := {0} × S).
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Figure 1

On the other hand, for small λ > 0, the behaviour of the driven system (2.1)
changes dramatically. Indeed, the solution x(t) for sufficiently small initial value
x0 still tends to zero (thin solid lines in Fig. 2), but for a large initial value x0 it
tends to infinity (dotted lines in Fig. 2). These two kinds of solutions are separated
by a unique periodic solution xper(t) (thick solid line in Fig. 2) corresponding to
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the initial value xper(0) satisfying√
xper(0) =

1
2

∫ ∞

0

e−
1
2

R s
0 p1(u) du ds.
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Figure 2

The periodic solution xper(t) bifurcates from infinity when λ → 0 with λ > 0
(see [6, 18] for bifurcations at infinity) and is obviously unstable. Specifically, it
is the bifurcation from infinity of this unstable periodic solution that destroys the
global attractor of the unperturbed system.

In the preceding example the driving system was modified through a perturbation
of its vector field g, thus changing the dynamical behaviour of the driving system
and consequently also that of the driven system. There is another way in which
the influence of the driving system on the driven system can be modified without
actually modifying the driving system itself, namely by perturbing its input in the
vector field f of the driven system. These two types of perturbations will be called
strong and weak perturbations, respectively. They lead to the following close but
nevertheless different formulations of the “persistency” problem. Assume that the
original system (1.1)–(1.2) has an attractor of some kind.

Question 2.2 (weak perturbations). Will the system

ẋ = f(x, p + q(t, p)), (2.5)
ṗ = g(p), (2.6)

possess an attractor when ‖q(t, p)‖ ≤ ε for sufficiently small ε? What conditions
ensure the existence of an attractor of the weakly perturbed system (2.5)–(2.6)?

Question 2.3 (strong perturbations). Will the system

ẋ = f(x, p), (2.7)
ṗ = g(p) + h(t, p), (2.8)

possess an attractor when ‖h(t, p)‖ ≤ ε for sufficiently small ε? What conditions
ensure the existence of an attractor of the strongly perturbed system (2.7)–(2.8)?

It follows from the example above that the answer to the first part of Ques-
tions 2.2 and 2.3 is generally “no”.
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Finding an answer to the second part of each question seems to be easier for
Question 2.2 than for Question 2.3. Indeed, this part of Questions 2.2 will be
reformulated below in terms of inflated attractors for the “inflation” of the vector
field f of the driven system [11, 12]. The main difficulty for Question 2.3 is that a
trajectory of the perturbed driving system (2.8) may have very different long term
behaviour to the corresponding trajectory of the unperturbed driving system (1.2),
no matter how small perturbation term h(t, p). However, this can be overcome by
assuming that the unperturbed driving system (1.2) is “shadowing” (e.g., see [9]
and the references therein). Then for any trajectory of the perturbed driving system
there will exist a trajectory of the unperturbed driving system, which remains close
to it for all time, provided the magnitude of the perturbation is sufficiently small.
This will allow the problem formulated in the second part of Question 2.3 to be
reduced to that of Question 2.2.

3. Skew-product flows and their attractors. The system of differential equa-
tions (1.1)–(1.2) is autonomous. However, the x-component often represents the
state variable that is visible while the decoupled p-component represents an in-
dependent driving system that often remains hidden (in fact, this driving system
need not even be generated by a differential equation, e.g., as in [3, 8]). In this case
the dynamics of the x-component appears to be nonautonomously as in the driven
equation (1.3) and can be formulated as a nonautonomous cocycle dynamical sys-
tem or a skew-product flow, for which several kinds of nonautonomous attractors
can be defined.

Assumption 3.1. The vector field functions f : Rd × P → Rd in (1.1) and g :
P → P in (1.2), where P is a compact manifold, satisfy Lipschitz continuity and
bounded growth or dissipativity conditions which ensure the forwards existence and
uniqueness of solutions of (1.1)–(1.2) and the global existence and uniqueness of
solutions of (1.2).

Then the solution mapping (t, p0) 7→ p(t, p0) of (1.2), which is continuous, gen-
erates a group θ = {θt : t ∈ R} of mappings θt : P → P defined by θtp0 = p(t, p0)
for each t ∈ R and p0 ∈ P . This autonomous dynamical system θ on P acts
as a driving mechanism responsible for the time variation of the vector field of
(1.1) as in the driven differential equation (1.3). The resulting solution mapping
φ : R+ × Rd × P → Rd, which is continuous in all of its variables, satisfies

d

dt
φ(t, x0, p0) = f (φ(t, x0, p0), θtp0) , x0 ∈ Rd, p0 ∈ P, t ∈ R+ (3.1)

with the initial condition property

φ(0, x0, p0) = x0, x0 ∈ Rd, p0 ∈ P (3.2)

and the cocycle evolution property

φ(s + t, x0, p0) = φ(s, φ(t, x0, p0), θtp0), x0 ∈ Rd, p0 ∈ P, s, t ∈ R+. (3.3)

Consequently, the cartesian product mapping π = (φ, θ) forms an autonomous
semi-dynamical system, which is called a skew-product flow, on the product space
Rd × P [19]. The mapping φ is called a cocycle mapping on Rd with respect to the
autonomous dynamical system θ on P .

The definition of a global attractor for an autonomous semi-dynamical system
π on a metric state space X is well known [9]. Specifically, a nonempty compact
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subset A of X which is π-invariant, i.e., with π(t,A) = A for all t ∈ R+ (in fact,
for all t ∈ R), is called a global attractor for π if

lim
t→∞

H∗
X(π(t, D),A) = 0

for every nonempty compact subset D of X. For the skew-product flow π = (φ, θ)
above the state space X = Rd × P .

However, such a definition is often too restrictive in the “nonautonomous” con-
text of a driven differential equation (1.3) in Rd. Instead, it is often more useful to
say that a family Â = {Ap; p ∈ P} of nonempty compact subsets of Rd is invariant
under φ, or φ-invariant, if

φ(t, Ap, p) = Aθtp, t ∈ R+, p ∈ P.

The natural generalization of convergence then seems to be the forwards conver-
gence defined by

H∗(φ(t,D, p), Aθtp) → 0 as t →∞ (3.4)
for all nonempty compact subsets D of Rd, but this does not ensure convergence to
a specific component set Ap for a fixed p. For that one needs to start “progressively
earlier” at θ−tp in order to “finish” at p, which leads to the concept of pullback
convergence defined by

H∗(φ(t,D, θ−tp), Ap) → 0 as t →∞. (3.5)

The φ-invariant family Â is then called a pullback attractor in the case of pullback
convergence and a forwards attractor in the case of forwards convergence. To ensure
uniqueness in both cases it is usually also required that Â be minimal under com-
ponentwise set inclusion for all φ-invariant families which are pullback attracting,
see [5, 11].

The concepts of forwards and pullback attractors are usually independent of each
other [10]. However, if one of the limits (3.5) or (3.4) holds uniformly in p ∈ P ,
then so does the other one and the family Â is then both a forwards and pullback
attractor [2].

Note that for a forwards or pullback attractor Â the mapping t 7→ Aθtp is con-
tinuous for each fixed p ∈ P due to the continuity of φ in t and the φ-invariance
of Â. However, the mapping p 7→ Ap is usually only upper semi continuous
[2, 16]. Thus, if Â = {Ap; p ∈ P} is a forwards or pullback attractor, then the
set A = ∪p∈P (Ap × {p}) is a compact subset of Rd × P and is invariant for the
skew-product flow π = (φ, θ) on Rd×P . It is a global attractor for the autonomous
semi-dynamical system π when Â is a forwards attractor, but need not be when Â
is a pullback attractor.

A family B̂ = {Bp ; p ∈ P} of nonempty compact subsets Bp of Rd is called a
pullback absorbing neighbourhood system if it pullback absorbs all nonempty com-
pact subsets D of Rd, i.e., for each such D and p ∈ P there exists a T (D, p) ∈ R+

such that
φ (t, D, θ−tp) ⊂ Bp for all t ≥ T (D, p).

The existence of pullback absorbing neighbourhood system B̂ = {Bp ; p ∈ P} en-
sures the existence of a unique pullback attractor Â = {Ap ; p ∈ P} for which each
component subset Ap is determined by

Ap =
⋂
τ≥0

⋃
t≥τ

φ(t, Bθ−tp, θ−tp) for each p ∈ P. (3.6)
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See [4, 7, 14, 15]. Conversely, given a pullback attractor Â there always exists a
pullback absorbing neighbourhood system B̂ containing Â, see [10]. In this case B̂
is φ-positively invariant, i.e., satisfies

φ(t, Bp, p) ⊂ Bθtp for all t ≥ 0, p ∈ P.

4. Weak perturbations and inflated attractors. The effects of perturbations
of the driving component variable p in the driven equation (2.5) can be investigated
in terms of the “inflation” [11, 12] of the vector field of equation (2.5), specifically
by replacing the driven equation (1.1) by a differential inclusion

ẋ ∈ Fε(x, p), (4.1)

while the driving system (1.2) remains unaltered. Here Fε(x, p) is a nonempty
compact set, which can be defined either as the internal ε-preinflation,

F (ip)
ε (x, p) := {y ∈ Rd : y = f(x, p + q), ‖q‖ ≤ ε},

or as the internal ε-inflation

F (ii)
ε (x, p) := {y ∈ Rd : ‖y − f(x, p + q)‖ ≤ ρε(x, p)} = B[f(x, p); ρε(x, p)], (4.2)

where
ρε(x, p) := sup{‖f(x, p + q)− f(x, p)‖ : ‖q‖ ≤ ε}.

The choice of the ε-preinflation allows a more accurate tracing of the properties of
the unperturbed system (1.1)–(1.2), while the ε-inflation allows direct access to the
well developed theory of differential inclusions [1], since the set F

(ii)
ε (x, p) is convex.

The system (4.1) with the internal ε-inflation (4.2) and the unperturbed driving
system (1.2) is a straightforward generalization of the ε-inflated system introduced
in [9, 11], the main difference being that the inflation radius ρε(x, p) here may
grow unboundedly as ‖x‖ → ∞, while in [11] the corresponding the inflation radius
did not depend on either x or p. The set-valued mapping (ε, x, p) 7→ Fε(x, p) =
F

(ii)
ε (x, p) is continuous in all of its variables with compact convex values. Hence,

for any initial value x(0) = x0, the differential inclusion (4.1) has an absolutely
continuous solution x(t) satisfying

ẋ(t) ∈ Fε(x(t), θtp0) (4.3)

for almost all t ∈ [0, T ) for some maximal T = T (ε, x0, p0) ≤ +∞, where θtp0

denotes the solution p(t, p0) of the driving equation (1.2) with the initial condition
p(0) = p0 ∈ P .

Define Φε(t, x0, p0) to be the set of all points y ∈ Rd for which there exists a
solution x(t) of the differential inclusion (4.3) for this p0 ∈ P with x(0) = x0 and
x(t) = y. The set-valued mapping Φε will be called the internal ε-inflation of the
single-valued cocycle mapping φ generated by unperturbed system (1.1)–(1.2). As
in [12], Φε satisfies:

i) the mapping t 7→ Φε(t, x0, p0) is defined on a maximal interval [0, T (ε, x0, p0))
for each x0 and p0, where T (ε, x0, p0) ≤ +∞;
ii) Φε is continuous in all of its variables (t, x0, p0) as well as in ε ≥ 0;
iii) Φε(t, C, p0) is compact for any 0 ≤ t ≤ infx0∈C T (ε, x0, p0), compact subset
C of Rd and p0 ∈ P ;
iv) Φε satisfies the initial value property Φε(0, x0, p0) = x0 for all x0 ∈ Rd, p0 ∈ P
and the cocycle property

Φε(s + t, C, p0) = Φε(s,Φε(t, C, p), θtp0)
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for all s, t ≥ 0 such that s + t < infx0∈C T (ε, x0, p0) for any compact subset C of
Rd and p0 ∈ P .

Suppose T (ε, x0, p0) = ∞ for all x0 ∈ Rd and p0 ∈ P . Then Φε is a set-valued
cocycle dynamical system driven by the autonomous system θ and analogous defi-
nitions to the single-valued case apply for a family Âε = {Aε

p : p ∈ P} of nonempty
compact subsets of Rd to be Φε-invariant, a forwards attractor or a pullback attrac-
tor of the set-valued cocycle mapping Φε. Such an attractor (forwards or pullback)
of the internal ε-inflated set-valued cocycle Φε will be called the internal ε-inflated
attractor (forwards or pullback) of the unperturbed cocycle mapping φ. The fol-
lowing theorem is adapted from [11].

Theorem 4.1. Suppose that the single-valued cocycle dynamical system φ has an
internal ε0-inflated pullback attractor Âε0 = {Aε0

p : p ∈ P} for some ε0 > 0. Then φ

has an internal ε-inflated pullback attractor Âε = {Aε
p : p ∈ P} for every ε ∈ [0, ε0]

and these are related through

Aε
p ⊂ Aε′

p , Aε
p =

⋂
ε<ε′

Aε′

p

for any 0 ≤ ε < ε′ ≤ ε0 and each p ∈ P .

Dissipativity conditions on the vector field function f of equation (1.1) ensuring
the existence of an inflated pullback attractor for some ε0 > 0 are given in [11] in the
case of a uniform inflation radius. A related result for the discretization of a uniform
(hence both forwards and pullback) attractor is given in [13], where a Lyapunov
function characterizing the given attractor is used to construct a pullback absorbing
system for the discretized system. Both of these approaches can be adapted without
difficulty to the variable inflation context under consideration here.

In such cases it follows from Theorem 4.1 that weak perturbations of the driving
system variable in the vector field of the driven equation (1.1) give rise to a pullback
attractor of the perturbed system, which is componentwise close to the unperturbed
pullback attractor in the sense of upper semi continuous convergence as the per-
turbation magnitude ε approaches zero.

Remark 4.2. There are many situations, like that above or in the proof of Theo-
rem 5.3 below, where the uniformity of a nonautonomous attra ctor may be replaced
by a weaker notion of uniformity of the absorbing neighbourhood system. A family
B = {Bp ; p ∈ P} of uniformly bounded nonempty compact subsets Bp ⊂ Rd will
be called a uniform absorbing neighbourhood system for a nonautonomous dynam-
ical system (φ, θ) if it is φ-positively invariant and uniformly absorbs all nonempty
compact subsets sets of Rd, i.e., for each such set D there exists a T (D) ∈ R+,
which is independent of p ∈ P , such that

φ(t, p,D) ⊂ Bθtp for all t ≥ T (D), p ∈ P.

The existence of a uniform absorbing neighbourhood system ensures the existence
of both forwards or pullback attractors (which generally need not coincide nor be
uniform), see [4, 7, 14, 15].

5. Strong perturbations and shadowing. The autonomous dynamical system
θ generated by equation (1.2) is said to have the shadowing property if for any ε > 0
there is a δ = δ(ε) > 0 such that for any absolutely continuous function q : R → P
satisfying

‖q̇(t)− g(q(t))‖ < δ, for almost all t ∈ R, (5.1)



ATTRACTORS OF SKEW-PRODUCT FLOWS WITH SHADOWING 891

there exists a solution p(t) of unperturbed equation (1.2) such that

‖q(t)− p(t)‖ < ε, t ∈ R, (5.2)

holds.
Let φ{h} be the cocycle solution mapping of system (1.1) corresponding to the

solution mapping θ
{h}
t of the perturbed driving system (2.8) with the strong per-

turbation mapping h(t, p). (These may be set-valued depending on the regularity
properties of h, but for convenience will be written here as if they are single-valued).

Lemma 5.1. Suppose that the autonomous system (1.2) has the shadowing property
and that the perturbation term h(t, p) in (2.8) satisfies ‖h(t, p)‖ < δ for δ = δ(ε) as
given in the shadowing property. Then, for any nonempty compact subset D of Rd,

φ{h}(t, D, q) ⊆
⋃

‖p−q‖≤ε

Φε(t, D, p), t ∈ R+, (5.3)

and
φ{h}(t, D, θ

{h}
−t q) ⊆

⋃
‖p−q‖≤ε

Φε(t,D, θ−tp), t ∈ R+, (5.4)

where Φε is the internal ε-inflated cocycle solution mapping of (1.1)–(1.2).

Proof. Fix an ε > 0 and let ‖h(t, p)‖ < δ with δ = δ(ε) as given in the shadowing
property for the equation (1.2). Let q(t) be a solution of the perturbed driving
equation (2.8), i.e., satisfying

q̇(t) = g(q(t)) + h(t, q(t)), t ∈ R.

The inequality (5.1) thus holds for q(t), so by the shadowing property there exists a
solution p(t) of the unperturbed equation (1.2) such that the inequality (5.2) holds.

Let x(t) := φ{h}(t, x0, q(0)) denote the solution of the driven equation of

ẋ(t) = f(x(t), q(t)), x(0) = x0,

i.e., q(t) = θ
{h}
t q(0) here. Then

ẋ(t) = f(x(t), p(t) + (q(t)− p(t))), x(0) = x0,

and so, by the shadowing inequality (5.2),

ẋ(t) ∈ Fε(x(t), p(t)), x(0) = x0.

It then follows from the definition of the solution mapping for the internally inflated
system that

φ{h}(t, x0, q(0)) = x(t) ∈ Φε(t, x0, p(0))
and the required forwards inclusion (5.3) is an immediate consequence of the fact
that ‖p(0)− q(0)‖ < ε. The backwards inclusion (5.4) is proved analogously.

Remark 5.2. In spite of its simplicity, Lemma 5.1 is important because it clearly
demonstrates the differing influences of the weak and strong perturbations on the
behaviour of the system, the former manifesting itself through the second ε in (5.3)
and (5.4), i.e., in the Φε term, and the latter through the first ε in (5.3) and (5.4),
i.e., under the set union symbol.

Theorem 5.3. Suppose that the system (1.1)–(1.2) satisfies Assumption 3.1, that
the driven cocycle system φ possesses a uniform internal ε-inflated attractor Âε :=
{Aε

p : p ∈ P} for each ε ∈ [0, ε0] for some ε0 > 0, and that the driving system (1.2)
has the shadowing property. In addition, suppose that the perturbation term h(t, p)
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in (2.8) satisfies ‖h(t, p)‖ < δ for δ = δ(ε) as given in the shadowing property for
some ε ∈ (0, ε0].

Then the strongly perturbed system (2.7)–(2.8) has a pullback attractor Â{h} :=
{A{h}q : q ∈ P} such that

A{h}q ⊆
⋃ {

Aε
p : ‖q − p‖ ≤ ε

}
, q ∈ P. (5.5)

Proof of Theorem 5.3. Let ε ∈ (0, ε0] correspond to the δ(ε) that bounds the
perturbation h. Then by the uniformity assumption on the internal ε-inflated at-
tractor Âε, for any σ > 0 and nonempty compact subset D of Rd there exists a
T = T (ε, σ,D) ≥ 0 such that

Φε(t, D, p) ⊂ B
(
Aε

θtp;σ
)

for all t ≥ T (ε, σ,D), p ∈ P.

It follows immediately from this inclusion and from Lemma 5.1 that

φ{h}(t,D, q) ⊆ B
(⋃ {

Aε
θtp : ‖p− q‖ ≤ ε

}
;σ

)
(5.6)

and

φ{h}(t, D, θ
{h}
−t q) ⊆ B

(⋃ {
Aε

p : ‖p− q‖ ≤ ε
}

;σ
)

(5.7)

for all t ≥ T (ε, σ,D) and q ∈ P . Now fix an arbitrary σ > 0 and define

Bσ := B
[⋃ {

Aε0
p : p ∈ P

}
;σ

]
,

where Âε0 := {Aε0
p : p ∈ P} is the uniform internally ε0-inflated attractor. This

set Bσ is compact since the set P and the sets Aε0
p are compact and the mapping

p 7→ Aε0
p is upper semi-continuous. Moreover, by Theorem 4.1, Bσ contains any set

Aε
p with ε ∈ [0, ε0) and p ∈ P . Hence by (5.6) and (5.7), respectively,

φ{h}(t, D, q) ⊆ B
(⋃ {

Aε
θtp : ‖p− q‖ ≤ ε

}
;σ

)
⊆ Bσ

and

φ{h}(t, D, θ
{h}
−t q) ⊆ B

(⋃ {
Aε

p : ‖p− q‖ ≤ ε
}

;σ
)
⊆ Bσ (5.8)

for all t ≥ T (ε, σ,D) and q ∈ P .
The existence of an attractor (forwards and pullback) Â{h} := {A{h}p : p ∈ P}

of the strongly perturbed system (2.7)–(2.8) follows from the above inclusions by
Theorems 2.8 or 2.9 of [2]. In particular, (3.6) for (φ{h}, θ{h}) instead of (φ, θ) with
the pullback absorbing system consisting of the same subset Bσ gives

A{h}q =
⋂
τ≥0

⋃
t≥τ

φ{h}(t, Bσ, θ
{h}
−t q) ⊆ B

(⋃ {
Aε

p : ‖q − p‖ ≤ ε
}

;σ
)

, q ∈ P,

where the set inclusion follows from (5.8) with D= Bσ. The desired inclusion (5.5)
then follows since σ > 0 can be chosen arbitrarily small.

Remark 5.4. Although the system (1.1)–(1.2) is supposed to have a uniform at-
tractor, it is not clear whether the attractor Â{h} of the perturbed system (2.7)–
(2.8) will be uniform or not.
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