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Abstract. A nonautonomous or cocycle dynamical system that is driven by an

autonomous dynamical system acting on a compact metric space is assumed to have

a uniform pullback attractor. It is shown that discretization by a one-step numerical
scheme gives rise to a discrete time cocycle dynamical system with a uniform pullback

attractor, the component subsets of which converge upper semi continuously to their

continuous time counterparts as the maximum time step decreases to zero. The
proof involves a Lyapunov function characterizing the uniform pullback attractor of

the original system.

1. Introduction. The effects of discretization on autonomous dynamical systems
has been extensively investigated over the past fifteen years and are now well under-
stood. In particular, an autonomously discretized system has a maximal attractor
that converges upper semi continuously to the maximal attractor of the original
system [11, 19]. Matters are not so clear or straightforward for nonautonomous
systems, even for a variable time step (hence nonautonomous) discretization of an
autonomous system. A basic difficulty here is to find an appropriate definition of a
nonautonomous attractor. A far deeper difficulty is simply that essentially anything
can happen in the general nonautonomous setting, so attention needs to be focused
of special classes of nonautonomous systems that are nevertheless general enough
to encapture nontrivial dynamics. But how should one select or characterize such
classes of systems?

Recent developments in random dynamical systems provide two important in-
sights that can be exploited in the deterministic setting [1, 5, 7]. Very closely
related ideas can be found in the work on nonautonomous systems of Mark Vishik
and his coworkers, see for example [4, 6, 20]. The first is the cocycle formulation of
a nonautonomous dynamical system, in which the state space dynamics is driven
by an underlying autonomous dynamical system on some “parameter” space, with
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the resulting product system forming a skew-product flow. The second is the defi-
nition of a nonautonomous attractor, now called a pullback attractor, consisting of
parametrized component subsets of the state space that are carried into each other
under the cocycle dynamics and are attracting in a “pullback” sense that allows
convergence to a fixed component subset by starting progressively earlier. These
ideas have already been used to investigate such nonautonomous dynamical systems
under discretization, but the results obtained are only for very specific examples or
under very restricted structural assumptions. See [2, 12, 13, 14] and the references
therein.

In this paper we establish an analog of the autonomous result in [11] for general
uniform pullback attractors under discretization. As in [11], we make extensive
use of a Lyapunov function that characterizes the attractor of the continuous time
system.

The paper is organized as follows. The cocycle formulation of a nonautonomous
dynamics is recalled in the next section, and pullback attractors in Section 3, while
one-step numerical schemes with variable time steps are formulated as discrete time
cocycle systems in Section 4. The main result is stated in Section 5 and then proved
in section 6. The appendix contains the necessary modifications to the uniform case
of the construction of a Lyapunov function characterizing a pullback attractor from
[10]

The following notation and definitions will be used. H∗(A,B) denotes the Haus-
dorff separation or semi-metric between nonempty compact subsets A and B of Rd,
and is defined by

H∗(A,B) := max
a∈A

dist(a,B)

where dist(a,B) := minb∈B ‖a− b‖. For a nonempty compact subset A of Rd and
r > 0, the open and closed balls about A of radius r are defined, respectively, by

B(A; r) := {x ∈ Rd : dist(x,A) < r}, B[A; r] := {x ∈ Rd : dist(x,A) ≤ r}.

2. The cocycle formalism. We consider a parametrized differential equation

ẋ = f(p, x)

on Rd, where p is a parameter that is allowed to vary with time in a certain way.
In particular, let P be a compact metric space and consider a group {θt}t∈R

of mappings θt : P → P for each t ∈ R such that (t, p) 7→ θtp is continuous.
The autonomous dynamical system {θt}t∈R on P acts as a driving mechanism that
generates the time variation in the parameter p in the parametrized differential
equation above to form a nonautonomous differential equation

ẋ = f(θtp, x) (2.1)

on Rd for each p ∈ P .
A simple example is a triangular system of autonomous differential equations

ẋ = f(p, x), ṗ = g(p), (2.2)

for x ∈ Rd and p ∈ P , where P is a compact manifold in Rn for some n ≥ 2. The
mappings θtp0 here are defined as the translation along the solution of the second
equation, namely θtp0 := p(t, p0). A less trivial example of the above skew product
formalism is given by Sell’s investigations of almost periodic differential equations
[17], in which P is a compact metric space of admissible vector field functions and
θt is a temporal shift operator acting on these vector field functions. See also [18].
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Random dynamical systems [1, 5, 7] also provide examples, but with a measure
space rather than a topological space as the parameter space.

We make the following assumption.

Assumption 2.1. The mapping f : P × Rd → Rd, where P is a compact metric
space, and the mappings θt : P → P , t ∈ R, satisfy:

• (p, x) 7→ f(p, x) is continuous in (p, x) ∈ P × Rd;
• x 7→ f(p, x) is globally Lipschitz continuous on Rd with Lipschitz

constant L(p) for each p ∈ P ;
• p 7→ L(p) is continuous;
• (t, p) 7→ θtp is continuous.

For the present discussion we will also assume the global forwards existence and
uniqueness of solutions of (2.1), e.g., due to an additional dissipativity structural
assumption (later we will assume the existence of a global uniform pullback attrac-
tor).

The solution mapping Φ : R+ × P × Rd → Rd of (2.1), for which

d

dt
Φ(t, p, x0) = f (θtp,Φ(t, p, x0)) , x0 ∈ Rd, p ∈ P, t ∈ R+, (2.3)

with the initial condition property

Φ(0, p, x0) = x0, x0 ∈ Rd, p ∈ P, (2.4)

is continuous in all of its variables and satisfies the cocycle property

Φ(s+ t, p, x0) = Φ(s, θtp,Φ(t, p, x0)), x0 ∈ Rd, p ∈ P, s, t ∈ R+. (2.5)

That is, Φ is a cocycle mapping on Rd with respect to the autonomous dynamical
system {θt}t∈R on P . In fact, the product mapping Π = (Φ, θ) then forms an
autonomous semi–dynamical system, called a skew product flow, on the product
space Rd × P .

Note that the t variable in Φ is now the time that has elapsed since starting
rather than absolute time. Although solutions of initial value problems may also
be (at least partially) extendable backwards in time, interest in this paper is on
what happens forwards in time since starting, as is typical in investigations of
systems with some kind of dissipative behaviour.

3. Pullback attractors. Attractors concern the asymptotic behaviour of a dy-
namical system in the neighbourhood of an invariant set. However, the well known
definitions of attractors and invariant sets used for autonomous systems are too
restrictive in the nonautonomous context. Instead, it is more useful to say that a

family Â = {Ap; p ∈ P} of nonempty compact subsets of Rd is invariant under Φ,
or Φ–invariant, if

Φ(t, p, Ap) = Aθtp, p ∈ P, t ∈ R+.

The natural generalization of convergence then seems to be the forwards conver-
gence defined by

H∗(Φ(t, p, x0), Aθtp)→ 0 as t→∞,
but this does not ensure convergence to a specific component set Ap for a fixed p.
For this one needs to start “progressively earlier” at θ−tp in order to “finish” at p,
which leads to the concept of pullback convergence defined by

H∗(Φ(t, θ−tp, x0), Ap)→ 0 as t→∞.

The Φ– invariant family Â is then called a pullback attractor in the case of pullback
convergence and a forwards attractor in the case of forwards convergence. The
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concepts of forwards and pullback convergence are usually independent of each
other.

A more general definition of a pullback attractor [3, 10, 13] that encompasses
local attraction as well as parametric dependent regions of pullback attraction and
the attraction of compact sets will be used in this paper. A Φ–invariant family

of nonempty compact subsets Â = {Ap; p ∈ P} will be called a pullback attractor
with respect to a basin of attraction system Datt if it satisfies the pullback attraction
property

lim
t→∞

H∗
(
Φ(t, θ−tp,Dθ−tp), Ap

)
= 0 (3.6)

for all p ∈ P and all D̂ = {Dp; p ∈ P} belonging to a basin of attraction system

Datt, i.e., a collection of families of nonempty sets D̂ = {Dp; p ∈ P} where Dp is

compact in Rd for each p ∈ P with the property that D̂(1) =
{
D

(1)
p ; p ∈ P

}
∈

Datt if D̂(2) =
{
D

(2)
p ; p ∈ P

}
∈ Datt and D

(1)
p ⊆ D

(2)
p for all p ∈ P . Obviously, Â

∈ Datt. In fact, Ap ⊂ intDatt(p), where Datt(p) :=
⋃
D̂={Dp; p∈P}∈Datt Dp, for each

p ∈ P .

Similarly, a Φ–invariant family of nonempty compact subsets Â = {Ap; p ∈ P}
will be called a forwards attractor with respect to a basin of attraction system Datt
if it satisfies the pullback attraction property

lim
t→∞

H∗ (Φ(t, θtp,Dp), Aθtp) = 0 (3.7)

for all p ∈ P and all D̂ = {Dp; p ∈ P} ∈ Datt.
The forwards and pullback attractors will be a called uniform if the limits (3.6)

and (3.7) are uniform in p ∈ P . If one of these uniform convergences holds, then

so does the other and the family Â is both forwards and pullback attracting [3].

A family B̂ = {Bp ; p ∈ P} ∈ Datt of nonempty compact subsets Bp of Rd with
nonempty interiors is called a pullback absorbing neighbourhood system in Datt if it
is Φ–positively invariant, i.e. if

Φ(t, p, Bp) ⊂ Bθtp for all t ≥ 0, p ∈ P,

and if it pullback absorbs all families D̂ = {Dp; p ∈ P} ∈ Datt of compact subsets,

i.e., for each such family D̂ and p ∈ P there exists a T (D̂, p) ∈ R+ such that

Φ
(
t, θ−tp,Dθ−tp

)
⊂ intBp for all t ≥ T (D̂, p).

The existence of pullback absorbing neighbourhood system B̂ = {Bp ; p ∈ P} ∈ Datt
ensures the existence of a unique pullback attractor Â = {Ap ; p ∈ P} with respect
to the basin of attraction system Datt and the component subset Ap is determined
by

Ap =
⋂
t≥0

Φ(t, θ−tp,Bθ−tp) for each p ∈ P, (3.8)

see [5, 7, 12, 13].
The following lemma from [9] shows that there always exists such a pullback

absorbing neighbourhood system for any given cocycle attractor.

Lemma 3.1. If Â is a cocycle attractor with a basin of attraction system Datt for
a cocycle dynamical system (Φ, θ) for which (t, p, x) 7→ Φ(t, θ−tp, x) is continuous,

then there exists a pullback absorbing neighbourhood system B̂ ⊂ Datt of Â with
respect to Φ.
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Note that for a pullback attractor Â the mapping t 7→ Aθtp is continuous for each

fixed p ∈ Φ due to the continuity of Φ in t and the Φ-invariance of Â. However, the
mapping p 7→ Ap is usually only upper semi continuous, see [2, 14].

4. One–step numerical schemes. We also consider a variable timestep one-step
explicit numerical scheme corresponding to the differential equation (2.1), such as
the Euler scheme, which we write as

xn+1 = xn + hnF (hn, θtnp, xn) (4.9)

with stepsizes hn = tn+1−tn ∈ (0, 1], where F : [0, 1]×P×Rd→ Rd is the increment
function,

Assumption 4.1. The numerical scheme (4.9) satisfies:

• F : [0, 1]× P × Rd → Rd is continuous in all of its variables;
• a local discretization error estimate of the form

|Φ(h, p, x0)− x1| ≤ h µR(h), |x0| ≤ R, (4.10)

for each R > 0, where µR : [0, 1] → R+ is a strictly increasing function with
µR(h) > 0 for h > 0 with µR(0) = 0.

Note that for one-step order schemes such as the Euler and Runge–Kutta schemes,
µ(h) is typically of the form KRh

ν for some integer ν ≥ 1. In our case here this
would require the differentiability of F in p as well as x and of θt in t, which is too
restrictive for certain applications, e.g. random differential equations [2, 8].

To show that the numerical scheme (4.9) with variable time steps generates a
discrete time cocycle we first restrict the choice of admissible stepsize sequences.
As in [2, 12, 13], for each δ > 0 we define Hδ to be the set of all two sided sequences
h = {hn}n∈Z satisfying

1

2
δ ≤ hn ≤ δ (4.11)

for each n ∈ Z (the particular factor 1/2 here is chosen just for convenience [13]).
The set Hδ is compact metric space with the metric

ρHδ
(
h(1),h(2)

)
=

∞∑
n=−∞

2−|n|
∣∣∣h(1)n − h(2)n ∣∣∣ .

We then consider the shift operator θ̃ : Hδ → Hδ defined by θ̃h = θ̃{hn}n∈Z :=
{hn+1}n∈Z, which is a homeomorphism on the compact metric space

(
Hδ, ρHδ

)
and

its iterates {θ̃n}n∈Z forms a discrete time group on Hδ. For a given sequence h =

{hn}n∈Z we set t0 = 0 and define tn = tn(h) :=
∑n−1
j=0 hj and t−n = t−n(h) :=

−
∑n
j=1 h−j for n ≥ 1.

Finally, we introduce the parameter space Qδ = Hδ × P for a fixed δ > 0 and
define a mapping ψ : Z+ ×Qδ × Rd → Rd by

ψ(0, q, x0) := x0, ψ(n, q, x0) = ψ(n, (h, p), x0) := xn n ≥ 1,

where xn is the nth iterate of the numerical scheme (4.9) with initial value x0 ∈
Rd, initial parameter p ∈ P and stepsize sequence h ∈ Hδ. These mappings are
continuous on Qδ × Rd and satisfy a cocycle property with respect to a group of
continuous mappings Θ = {Θn}n∈Z on Hδ × P with Θn : Qδ → Qδ for n ∈ Z
defined by iteration of the basic mappings

Θ0 := idQδ , Θ1(h, p) :=
(
θ̃1h, θh0

p
)
, Θ−1(h, p) :=

(
θ̃−1h, θ−h−1

p
)
.
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For details see [2].
How one actually chooses or should choose the step sizes is a very important

issue with actual computations. Difficulties arise when one tries to incorporate the
mechanism for choosing the step sizes into the dynamics of the numerical system,
see Lamba [16]. Consequently, we believe that it is better to keep this mechanism
separate from the formulation of the numerical dynamical system. Whatever mech-
anism one uses to select an admissible step size sequence, once one has chosen such
a sequence the subsequent dynamics are included in our cocycle formalism proposed
here.

5. Discretization of uniform pullback attractors. Our main result is a nonau-
tonomous generalization of the result in [11] for the autonomous case.

Theorem 5.1. Let Assumptions 2.1 and 4.1 hold and suppose that the continuous
time cocycle system (Φ, θ) generated by the differential equation (2.1) has a uniform

pullback attractor Â = {Ap}p∈P with respect to the basin of attraction system Datt
containing all nonempty compact subsets of Rd.

Then the discrete time cocycle system (Ψ,Θ) generated by the numerical scheme

(4.9) has a uniform pullback attractor Âδ = {Aδq}q∈Qδ , provided the maximal step-
size δ is sufficiently small, such that

lim
δ→0+

sup
p∈P

sup
h∈Hδ

H∗
(
Aδ(p,h), Ap

)
= 0.

The global Lipschitz property in Assumption 2.1 here is not a major limitation,
since the essential dynamics that is being approximated occurs in a (possibly very
large) compact subset of Rd on which a local Lipschitz property could be used.

6. Proof of Theorem 5.1. The proof of Theorem 5.1 uses a Lyapunov function
that characterizes the uniform pullback attractor, in much the same way as a Lya-
punov function characterizing the uniformly asymptotically stable set was used in
[11] for the autonomous case.

The existence of a Lyapunov function characterizing a uniform pullback attractor
is provided by the following theorem. Its proof requires a modification of the
construction of the Lyapunov function in [9, 10] from general to uniform pullback
attractors and a compact parameter space. The essential difference is that the lower
bound in Property 2 is now independent of the parameter p. The proof is given in
the Appendix.

Theorem 6.1. Let Â be a uniform pullback attractor of a cocycle dynamical system
(Φ,Θ) on Rd × P generated by a differential equation (2.1) for which Assumption
2.1 holds.

Then there exists a function V : P × Rd → R+ such that

Property 1 (upper bound): For all p ∈ P and x0 ∈ Rd

V (p, x0) ≤ dist(x0, Ap); (6.12)

Property 2 (lower bound): There exists an increasing function a : R+ → R+

with a(0) = 0 and a(r) > 0 for r > 0 such that

a(dist(x0, Ap)) ≤ V (p, x0) (6.13)
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for all x0 ∈ Rd and all p ∈ P ;

Property 3 (Lipschitz condition): For all p ∈ P and x0, y0 ∈ Rd

|V (p, x0)− V (p, y0)| ≤ ‖x0 − y0‖; (6.14)

Property 4 (pullback convergence): For all p ∈ P and any bounded subset
D of Rd

lim sup
t→∞

sup
z∈D

V (p,Φ(t, θ−tp, z)) = 0. (6.15)

In addition,

Property 5 (forwards convergence): There exists a family N̂ of nonempty
compact sets Np, p ∈ P , which are Φ–positively invariant in the sense that Φ(t, p,Np)
⊆ Nθtp for all t ≥ 0, p ∈ P , and satisfy Ap ⊂ intNp for each p ∈ P such that

V (θtp,Φ(t, p, x0)) ≤ e−tV (p, x0) (6.16)

for all x0 ∈ Np and t ≥ 0.

Note that for a global pullback attractor the Φ–positively invariant family N̂

in the forwards convergence Property 5 and the pullback absorbing family B̂ in
Lemma 3.1 can be constructed to be arbitrarily large, i.e. with B(Ap;R) ⊂ Np ⊂
Bp for each p ∈ P given an arbitrary R > 0.

6.1. A Lyapunov inequality for the discretized dynamics. Similarly as in
[11], the key tool in our proof is provided by the following Lyapunov function in-
equality in which the function µ = µR is from the local discretization error estimate
(4.10) of the numerical scheme (4.9) with R chosen so large such that

⋃
p∈P Np ⊂

B[0;R].

Lemma 6.2.
V (θhp, x1(h, p)) ≤ e−ch V (p, x0) + hµ(h) (6.17)

where x1(h, p) is the first iteration of the numerical scheme (4.9) with any stepsize
h > 0 and initial state x0 ∈ Np for parameter p.

Proof: From the Lipschitz property of V with Lipschitz constant L = 1 we have

V (θhp, x1(h, p)) ≤ V (θhp,Φ(h, p, x0)) + ‖x1(h, p)− Φ(h, p, x0)‖.
Applying the forwards exponential decay in equality (Property 5) of the Lyapunov
function V in Theorem 6.1 to the first term on the right side and the local dis-
cretization error estimate (4.10) to the second then gives (6.17) for all h ≥ 0.

6.2. Construction of an absorbing family for the discretized dynamics.
Fix δ > 0 and define

η = η(δ) :=
2δ µ(δ)

1− e−cδ/2
.

Lemma 6.3. Λδp :=
{
x ∈ Rd : V (p, x) ≤ η(δ)

}
is a nonempty compact subset of

Rd with
H∗
(
Λδp, Ap

)
≤ α−1(η). (6.18)

Proof: Λδp is nonempty because it contains Ap =
{
x ∈ Rd : V (p, x) = 0

}
and

is closed in view of the continuity of V in x. Its boundedness and the inequality
(6.18) follow from the inequality

α(dist(x,Ap)) ≤ V (p, x)



430 PETER E. KLOEDEN AND VICTOR S. KOZYAKIN

in the second property of V in Theorem 6.1 and the definition of Λδp, giving

dist(x,Ap) ≤ α−1 (V (p, x)) ≤ α−1 (η)

for all x ∈ Λp(η).

The family Λ̂δ =
{

Λδp; p ∈ P
}

is positively invariant with respect to the discrete
time cocycle mapping ψ formed by iterating the numerical scheme, i.e.

Lemma 6.4. ψ
(
1, (p,h),Λδp

)
⊆ Λδθhp.

Proof: It suffices to consider any single iterate x1 = x1(h, p) for an arbitrary
x0 ∈ Λδp, so V (p, x0) ≤ η = η(δ). Then by the key inequality (6.17) with h ∈ [δ/2, δ]
and the definition of η(δ) we have

V (θhp, x1(h, p)) ≤ e−ch V (p, x0) + hµ(h)

≤ e−cδ/2 V (p, x0) + δ µ(δ)

≤ e−cδ/2 η(δ) +
1

2

(
1− e−cδ/2

)
η(δ)

=
1

2

(
1 + e−cδ/2

)
η(δ) ≤ η(δ),

so x1(h, p) ∈ Λδθhp.

The family Λ̂δ =
{

Λδp; p ∈ P
}

is in fact forwards absorbing under ψ uniformly
in p provided δ is chosen small enough.

Lemma 6.5. There is a δ∗ > 0 such that for each family D̂ = {Dp; p ∈ P} of
compact subsets with Dp ⊂ Np and δ ∈ (0, δ∗) there exists an integer ND̂,δ ≥ 1 for

which ψ (n, (p,h), Dp) ⊆ Λδθtnp for all n ≥ ND̂,δ uniformly in p ∈ P .

Proof: As in Lemma 3.4 of [11] there exists a γ > 0 such that

1 + e−cγ/2 = 2e−cγ/4 and 1 + e−cδ/2 < 2e−cδ/4

for all 0 < δ < δ∗ := γ.
Consider x1(h0, p) = ψ (1, (p,h), x0) with x0 /∈ Λδp. Then by the key inequality

(6.17) and the definition of η = η(δ) we have

V (θhp, x1(h0, p)) ≤ e−cδ/2 V (p, x0) + δ µ(δ)

= e−cδ/2 V (p, x0) +
1

2

(
1− e−cδ/2

)
η(δ)

<
1

2

(
1 + e−cδ/2

)
V (p, x0)

< e−cδ/4 V (p, x0)

since V (p, x0) > η(δ) and 0 < δ < δ∗. Repeating this argument,

V (θtnp, xn) < e−cnδ/4 V (p, x0) ,

where xn = ψ (n, (p,h), x0), as long as x0 /∈ Λδp, x1(h0, p) /∈ Λδθt1p
, . . . , xn−1 =

ψ (n− 1, (p,h), x0) /∈ Λδθtn−1
p. Now

V (p, x0) ≤ dist(x0, Ap) ≤ H∗(Dp, Ap) <∞

for all x0 ∈ D, so

V (θtnp, xn) < e−cnδ/4H∗(Dp, Ap)
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as long as x0 /∈ Λδp, x1(h0, p) /∈ Λδθt1p
, . . . , xn−1 = ψ (n− 1, (p,h), x0) /∈ Λδθtn−1

p.

Define ND̂,δ to be the smallest integer n for which

e−cnδ/4H∗(Dp, Ap) ≤ η(δ) < e−c(n−1)δ/4H∗(Dp, Ap).

Thus for each x0 ∈ Dp there exists an integer n ≥ ND̂,δ, possibly 0, such that

ψ(n, (p,h), x0) ∈ Λδθtnp. By the positive invariance of the Λδp proved in Lemma 6.4

it follows that the jth iterate of ψ then remains in Λδθtj p
for j ≥ n, so the proof of

Lemma 6.5 is complete.

6.3. Existence and convergence of the discretized pullback attractor. We
apply known existence results to the numerical cocycle mapping ψ and the ab-

sorbing family Λ̂δ =
{

Λδp; p ∈ P
}

defined in the previous subsection to obtain the

existence of a uniform pullback attractor Âδ =
{
Aδq; q = (p,h) ∈ Qδ

}
for ψ, namely

with

Aδq =
⋂
n≥0

ψ
(
|t−n| ,Θ−nq,Λδθt−np

)
.

(Note t−n < 0 here).

Let Â = {Ap; p ∈ P} be the pullback attractor for Φ. Then Ap ⊆ Λ(p,h)(η) for

all p ∈ P and h ∈ Hδ, so

H∗
(
Aδ(p,h), Ap

)
≤ H∗

(
Λδp, Ap

)
≤ α−1(η(δ))→ 0 as δ → 0

uniformly in p ∈ P and h ∈ Hδ.

This completes the proof of Theorem 5.1.

7. Appendix: The Lyapunov function for a uniform pullback attractor.
The construction of the Lyapunov function for a pullback attractor given in [10] will
be modified here for unform pullback attractors and a compact parameter space
P . The essential change is to show that there exists a lower bound function a(r) in
Property 2 that is independent of the parameter p.

As in [10] define V (p, x0) for all p ∈ P and x0 ∈ Rd by

V (p, x0) := sup
t≥0

e−Tp,tdist
(
x0,Φ(t, θ−tp,Bθ−tp)

)
,

where B̂ = {Bp ; p ∈ P} ∈ Rd is a pullback absorbing neighbourhood system for

the Φ–pullback attractor Â and

Tp,t = t+

∫ t

0

L(θ−sp) ds with Tp,0 = 0.

Note that Tp,t satisfies t ≤ Tp,t ≤ (1 + L∗)t for all t ≥ 0 and p ∈ P , where L∗ :=
maxp∈P L(p) exists and is finite by the continuity assumptions and the compactness
of P .

7.1. Proof of property 2. By Property 1, V (p, x0) = 0 for x0 ∈ Ap. Assume
instead that x0 ∈ Rd \Ap. Now the supremum in

V (p, x0) = sup
t≥0

e−Tp,tdist
(
x0,Φ(t, θ−tp,Bθ−tp)

)
involves the product of an exponentially decreasing quantity bounded below by zero
and a bounded increasing function, since the Φ(t, θ−tp,Bθ−tp) are a nested family
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of compact sets decreasing to Ap with increasing t. Hence there exists a T ∗ =
T ∗(p, x0) ∈ R+ such that

1

2
dist(x0, Ap) ≤ dist

(
x0,Φ(t, θ−tp,Bθ−tp)

)
for all t ≥ T ∗, but not for t < T ∗. Thus, from above,

V (p, x0) ≥ e−Tp,T∗ dist
(
x0,Φ(T ∗, θ−T∗p,Bθ−T∗p)

)
≥ 1

2
e−Tp,T∗ dist (x0, Ap) .

The lower bound a(p, r) in [10] was defined by

a(p, r) :=
1

2
r e−Tp,T̂ (p,r)

where

T̂ (p, r) := sup{T ∗(p, x0) : x0 ∈ Rd, dist (x0, Ap) = r},
which is finite.

Now by uniform pullback convergence there exists a finite T (r/2), which is in-
dependent of p ∈ P and can be chosen to be nonincreasing in r, such that

H∗(Φ(t, θ−tp,Bθ−tp), Ap) <
1

2
r

for all t ≥ T (r/2) and all p ∈ P . Hence r ≤ dist(x0,Φ(t, θ−tp,Bθ−tp)) + 1
2r for

dist(x0, Ap) = r and t ≥ T (r/2), i.e. 1
2r ≤ dist(x0,Φ(t, θ−tp,Bθ−tp)). Thus, T̂ (p, r)

≤ T (r/2) < ∞ and so Tp,T̂ (p,r) ≤ Tp,T (r/2) ≤ (1 + L∗)T (r/2) < ∞ for all p ∈ P .

Finally, define

a(r) :=
1

2
r e−(1+L

∗)T (r/2) ≤ a(p, r),

which satisfies the stated properties.

Remark 7.1. As already noted, a uniform pullback attractor is also a uniform
forwards attractor, and vice versa. When the pullback attraction is not uniform,
the lower bound function a in Property 2 of Theorem 6.1 depends explicitly on p
as well as x and there is no guarantee that infp∈P a(p, x) > 0, which is needed to
deduce forwards attraction from Property 5 of the Lyapunov function. Essentially,
the lower bound a(θtp, dist(Φ(t, p, x0), Aθtp)) then may converge to zero as t → ∞
without dist(Φ(t, p, x0), Aθtp) converging to zero as t→∞. See the example in [10].
This situation cannot occur in the uniform case.

REFERENCES

[1] L. Arnold, Random Dynamical Systems. Springer–Verlag, Heidelberg, 1998.

[2] D.N. Cheban, P.E. Kloeden and B. Schmalfuß, Pullback attractors in dissipative nonau-
tonomous differential equations under discretization. J. Dyn. Systems & Diff. Eqns. 13

(2001),185-213.

[3] D.N. Cheban, P.E. Kloeden and B. Schmalfuß, The Relationship between Pullback, For-
wards and Global Attractors of Nonautonomous Dynamical Systems. Nonlinear Dynamics &

Systems Theory. 2 (2) (2002), 9–28.
[4] V. Chepyzhov and M.I. Vishik, Attractors of non-autonomous dynamical systems and their

dimension, J. Math. Pures Appl., 73 (1994), 279–333.

[5] H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Relat.
Fields, 100 (1994), 365–393.

[6] M.A. Efendiev and S.V. Zelik, Attractors of the Reaction-Diffusion Systems with Rapidly

Oscillating Coefficients and Their Homogenization, Mathematische Nachrichten (2003) (to
appear)

[7] F. Flandoli and B. Schmalfuß, Random attractors for the 3d stochastic Navier Stokes equation

with multiplicative white noise, Stochastics and Stochastics Reports, 59 (1996), 21–45.



UNIFORM NONAUTONOMOUS ATTRACTORS 433
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