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Abstract. More than thirty new upper bounds on the smallest size t2(2, q)
of a complete arc in the plane PG(2, q) are obtained for 169 ≤ q ≤ 839.
New upper bounds on the smallest size t2(n, q) of the complete cap in the
space PG(n, q) are given for n = 3 and 25 ≤ q ≤ 97, q odd; n = 4 and q =
7, 8, 11, 13, 17; n = 5 and q = 5, 7, 8, 9; n = 6 and q = 4, 8. The bounds are
obtained by computer search for new small complete arcs and caps. New
upper bounds on the largest size m2(n, q) of a complete cap in PG(n, q)
are given for q = 4, n = 5, 6, and q = 3, n = 7, 8, 9. The new lower bound
534 ≤ m2(8, 3) is obtained by finding a complete 534-cap in PG(8, 3).
Many new sizes of complete arcs and caps are obtained. The updated
tables of upper bounds for t2(n, q), n ≥ 2, and of the spectrum of known
sizes for complete caps are given. Interesting complete caps in PG(3, q)
of large size are described. A proof of the construction of complete caps
in PG(3, 2h) announced in previous papers is given; this is modified from
a construction of Segre. In PG(2, q), for q = 17, δ = 4, and q = 19, 27,
δ = 3, we give complete ( 1

2
(q + 3) + δ)-arcs other than conics that share

1
2
(q+3) points with an irreducible conic. It is shown that they are unique

up to collineation. In PG(2, q), q ≡ 2 (mod 3) odd, we propose new con-
structions of 1

2
(q +7)-arcs and show that they are complete for q ≤ 3701.

Mathematics Subject Classification (2000). 51E21, 51E22, 94B05.

Keywords. complete arcs in planes, complete caps, small complete caps
and arcs, computer search, projective spaces.

1. Introduction

Let PG(n, q) be the projective space of dimension n over the Galois field Fq.
A k-cap in PG(n, q) is a set of k points, no three of which are collinear. A
k-cap in PG(n, q) is called complete if it is not contained in a (k + 1)-cap of
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PG(n, q). If n = 2, then a k-cap is usually called a k-arc. A survey of results
on caps and arcs can be found in [54,55]; see also [56,57,75,78].

The main questions on caps in PG(n, q), which are also of interest in Coding
Theory, concern the size of very large caps, especially near m2(n, q), the size
of the largest complete cap, and near m′

2(n, q), the size of the second largest
complete cap. On the other hand, very small complete caps have also been
investigated, especially the problem of determining t2(n, q), the size of the
smallest complete cap. Finally, the spectrum of possible sizes of complete caps
is one of most important problems in study of projective spaces.

In this paper we consider all problems listed above, collect known results,
including recent ones, and obtain new sizes and bounds. This leads to updated
tables of upper bounds for t2(n, q), n ≥ 2, and for the spectrum of known sizes
of complete caps; see [17,23]. In particular, new upper bounds on t2(n, q) for
values of n and q are obtained as follows:

n q

2 169, 256, 263, 283, 307, 317, 331, 349, 389, 421, 433, 521, 523, 547, 557, 607,
619, 631, 641, 643, 653, 661, 673, 701, 739, 743, 751, 811, 823, 827, 829, 839

3 25 ≤ q ≤ 97, q odd
4 7, 8, 11, 13, 17
5 5, 7, 8, 9
6 4, 8

The new lower bound 534 ≤ m2(8, 3) is given. The bounds mentioned above are
obtained by finding corresponding new complete arcs and caps. The new upper
bounds for m2(n, q) are obtained for q = 4, n = 5, 6, and q = 3, n = 7, 8, 9.

In PG(2, q), q ≡ 2 ( mod 3) odd, we propose two news constructions of 1
2 (q+7)-

arcs sharing 1
2 (q + 3) points with an irreducible conic. We show that the new

arcs are complete for q ≤ 3701.

Also a construction of complete caps in PG(3, 2h), modified from that of Segre,
that was announced by Pambianco and Storme in 1995 and cited in [57,
Table 4.8], is given. In addition, the structure and combinatorial properties
of interesting complete caps in PG(3, q) of large size are described.

For new computer results we used the randomized greedy algorithms con-
sidered in [17, Section 2], [23, Section 2], the back-tracking algorithms [17,
Section 2], the breadth-first algorithm [65, Section 3], algorithms combining
orbits of groups, and other geometrical algorithms.

The points of a k-cap K in PG(n, q) can be viewed as columns of the genera-
tor matrix G of the associated code A(K) with length k and dimension n + 1.
For the dual code A⊥(K) with codimension n + 1 the matrix G is its parity
check matrix. The dual code of complete cap has Hamming distance four and
covering radius two [56]. For an introduction to coverings of vector spaces over
finite fields and the concept of the code covering radius, see [16,74]. We use the
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connection with covering codes in Sect. 8 for lower bounds on t2(n, 2). On the
other hand, geometrical properties of caps help to obtain the weight spectrum
of A(K); see Sect. 5.

Throughout the paper the best known values of m2(n, q), m′
2(n, q), and t2(n, q)

are denoted by m2(n, q), m′
2(n, q), and t2(n, q), respectively. In all tables new

bounds and new sizes of complete caps obtained are marked by an asterisk �.
New bounds and sizes obtained are written in bold font. “Ref.” means “Ref-
erences”. Also, in all tables the completeness of the spectrum of possible sizes
of complete caps is marked by the dot after the value of q or n.

In Sect. 2 we give the updated table of the smallest known sizes t2(2, q) of
complete arcs in PG(2, q); more than thirty sizes are new. We also give some
new sizes of complete arcs, extending our knowledge on the spectrum of their
sizes. Two new constructions of 1

2 (q + 7)-arcs in PG(2, q) are proposed. In
addition, we consider complete (1

2 (q + 3) + δ)-arcs other than conics and shar-
ing 1

2 (q + 3) points with an irreducible conic. In Sect. 3 the known families of
complete caps in PG(3, q) are described. We give a proof of the modification
of Segre’s construction. In Sect. 4 the spectrum of the known sizes of com-
plete caps in PG(3, q), 3 ≤ q ≤ 23, is given. Section 5 describes properties of
interesting complete caps in PG(3, q) providing the upper and lower bounds.
In Sect. 6 the spectrum of complete cap sizes in PG(n, q), n ≥ 4, is considered.
Small caps in PG(n, q), n ≥ 3, q > 2, are investigated in Sect. 7. Some updated
tables are given in Sects. 6 and 7. The spectrum of sizes of binary complete
caps and a few conjectures connected with it are considered in Sect. 8.

Some of the results from this work were briefly presented without proofs in [18].

2. Complete arcs in planes PG(2, q)

For q ≤ 821, the sizes of the known small complete arcs in planes PG(2, q) are
collected in [17, Table 3]. With the help of the randomized greedy algorithms
[17,23], we obtained more than thirty small complete arcs in PG(2, q) giving
new upper bounds on t2(2, q). The updated table of t2(2, q) is given as Table 1.
For q = 27 a complete 34-arc is obtained from the affinely complete 32-arc of
[48, Appendix, Lemma 4.3] by adding two points; see also [21, Section 2].
From Table 1, we obtain Theorem 1, improving the corresponding theorem in
[17, p. 55].

Theorem 1. In PG(2, q),

t2(2, q) < 4
√

q for 3 ≤ q ≤ 841;
t2(2, q) ≤ 4

√
q − 8 for 23 ≤ q ≤ 269, q = 281, 283, 289, 307, 317;

t2(2, q) ≤ 4
√

q − 7 for 19 ≤ q ≤ 353, q = 361, 383;
t2(2, q) ≤ 4

√
q − 6 for 9 ≤ q ≤ 401, q = 421, 431, 433; (1)

t2(2, q) ≤ 4
√

q − 5 for 8 ≤ q ≤ 443, q = 509, 521, 523;
t2(2, q) ≤ 4

√
q − 4 for 7 ≤ q ≤ 557, q = 625, 729, 841;
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Table 1 The smallest known sizes t2 = t2(2, q) < 4
√

q of
complete arcs in planes PG(2, q). Aq = �4√

q − t2(2, q)�

q t2 Aq Ref. q t2 Aq Ref. q t2 Aq Ref. q t2 Aq Ref.
3 4� 2 [55] 131 36 9 [17] 349 67 7 � 601 96 2 [17]
4 6� 2 [55] 137 37 9 [17] 353 68 7 [17] 607 96 2 �
5 6� 2 [55] 139 37 10 [17] 359 69 6 [17] 613 97 2 [17]
7 6� 4 [55] 149 39 9 [17] 361 69 7 [17] 617 97 2 [17]
8 6� 5 [55] 151 39 10 [17] 367 70 6 [17] 619 97 2 �
9 6� 6 [55] 157 40 10 [17] 373 71 6 [17] 625 96 4 [47]
11 7� 6 [55] 163 41 10 [17] 379 71 6 [17] 631 98 2 �
13 8� 6 [68] 167 42 9 [17] 383 71 7 [17] 641 99 2 �
16 9� 7 [68] 169 42 10 � 389 72 6 � 643 99 2 �
17 10� 6 [68] 173 44 8 [17] 397 73 6 [17] 647 99 2 [17]
19 10� 7 [68] 179 44 9 [17] 401 74 6 [17] 653 100 2 �
23 10� 9 [68] 181 45 8 [17] 409 75 5 [17] 659 100 2 [17]
25 12� 8 [64] 191 46 9 [17] 419 76 5 [17] 661 100 2 �
27 12� 8 [64] 193 47 8 [17] 421 76 6 � 673 102 1 �
29 13� 8 [64] 197 47 9 [17] 431 77 6 [17] 677 103 1 [17]
31 14 8 [68] 199 47 9 [17] 433 77 6 � 683 103 1 [17]
32 14 8 [68] 211 49 9 [17] 439 78 5 [17] 691 104 1 [17]
37 15 9 [63] 223 51 8 [17] 443 79 5 [17] 701 104 1 �
41 16 9 [17] 227 51 9 [17] 449 80 4 [17] 709 105 1 [17]
43 16 10 [17] 229 52 8 [17] 457 81 4 [17] 719 106 1 [17]
47 18 9 [15] 233 52 9 [17] 461 81 4 [17] 727 106 1 [17]
49 18 10 [17] 239 53 8 [17] 463 82 4 [17] 729 104 4 [47]
53 18 11 [17] 241 53 9 [17] 467 82 4 [17] 733 107 1 [17]
59 20 10 [17] 243 54 8 [17] 479 83 4 [17] 739 107 1 �
61 20 11 [63] 251 55 8 [17] 487 84 4 [17] 743 108 1 �
64 22 10 [15] 256 55 9 � 491 84 4 [17] 751 108 1 �
67 23 9 [66] 257 56 8 [17] 499 85 4 [17] 757 109 1 [17]
71 22 11 [63] 263 56 8 � 503 85 4 [17] 761 109 1 [17]
73 24 10 [17] 269 57 8 [17] 509 85 5 [17] 769 110 0 [17]
79 26 9 [17] 271 58 7 [17] 512 86 4 [17] 773 111 0 [17]
81 26 10 [17] 277 59 7 [17] 521 86 5 � 787 112 0 [17]
83 27 9 [17] 281 59 8 [17] 523 86 5 � 797 112 0 [17]
89 28 9 [17] 283 59 8 � 529 88 4 [47] 809 113 0 [17]
97 30 9 [17] 289 60 8 [17] 541 89 4 [17] 811 113 0 �
101 30 10 [17] 293 61 7 [17] 547 89 4 � 821 114 0 [17]
103 31 9 [17] 307 62 8 � 557 90 4 � 823 114 0 �
107 32 9 [17] 311 63 7 [17] 563 92 2 [17] 827 115 0 �
109 32 9 [17] 313 63 7 [17] 569 93 2 [17] 829 115 0 �
113 33 9 [17] 317 63 8 � 571 93 2 [17] 839 115 0 �
121 34 10 [15] 331 65 7 � 577 93 3 [17] 841 112 4 [47]
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Table 1 continued

q t2 Aq Ref. q t2 Aq Ref. q t2 Aq Ref. q t2 Aq Ref.
125 35 9 [17] 337 66 7 [17] 587 94 2 [17]
127 35 10 [17] 343 67 7 [17] 593 95 2 [17]
128 34 11 [48] 347 67 7 [17] 599 95 2 [17]

t2(2, q) ≤ 4
√

q − 2 for 3 ≤ q ≤ 661;
t2(2, q) ≤ 4

√
q − 1 for 3 ≤ q ≤ 761.

For even q = 2h, 10 ≤ h ≤ 15, the smallest known sizes of complete k-arcs in
PG(2, q) are obtained in [21]; they are as follows: k = 124, 201, 307, 461, 665,
993, for h = 10, 11, 12, 13, 14, 15, respectively. Also, 6(

√
q − 1)-arcs in PG(2, q),

q = 42h+1, are constructed in [22]; for h ≤ 4 it is proved that they are complete.
It gives the complete 3066-arc in PG(2, 218).

Note that in [43, Table 2.4] and [17, Table 2], some entries on the existence
of complete 1

2 (q + 7)-arcs in PG(2, q) are based on [70,71]. The papers [70,71]
contain inaccuracies indicated in the recent work [61]. Below we give a few
results confirming the correctness of all entries on the existence of complete
1
2 (q+7)-arcs in [43, Table 2.4] and [17, Table 2] and, moreover, extending these
tables.

In the first, we note that for q ≤ 125, the validity of the entries in [43, Table 2.4]
and [17, Table 2] have checked by computer, see [61, Introduction]. In addi-
tion, in [46], for q ≡ 1 (mod 4), a construction of 1

2 (q + 7)-arcs in PG(2, q)
is proposed and it is showed by computer that the arcs are complete if q ≤
337, q �= 17. Also, in [61] it is proved that if q = ct − 1 ≥ 17, t odd prime,
c ∈ {2, 4}, then in PG(2, q) there is a complete 1

2 (q + 7)-arc. So, for q =
19, 25, 27, 37, 61, 67, 73, 121, 157, 163, the complete arcs needed exist. Finally,
by the method of [61], we obtained 1

2 (q + 7)-arcs for q = 97, 109, 139, 151, and
checked by computer that they are complete.

Now we give two explicit constructions of 1
2 (q + 7)-arcs in PG(2, q).

Construction S. Let q ≡ 2 (mod 3) be an odd prime, q ≥ 11. Then −3 is a
non square element in Fq [55, Section 1.5]. Let (x0, x1, x2, x3) be a point of
PG(3, q). We denote A∞ = (0, 0, 0, 1), P = (0, 1, 3, 0), P1 = (0, 1, 0, 0), P2 =
(0, 1,−3,−12). Let Q be the quadric of the equation 3x2

1 + x2
2 = x0x3. In

[25,26] the complete 1
2 (q2 + q + 8)-cap K in PG(3, q) is obtained such that

K = K1 ∪ {P1, P2} where

K1 =
{
(1, v, d, 3v2 + d2)|v ∈ Fq, d=v − 2i, i ∈ {v, v + 1, . . . , q − 1}} ∪ {A∞, P}

and K1\P ⊂ Q, see [26, Lemma 2]. The q points of the form (1, v,−v, 4v2) and
the point A∞ lie on tangents to Q through P [26, Lemma 1], while the rest of
points lies on bisecants of Q through P so that on every bisecant exactly one
point of Q is included to K1, cf. Segre’s Construction A in Section 3. Let s be
a nonzero square in Fq. The plane π(s) of the equation x3 = sx0 meets the
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quadric Q in the conic C of the equation 3x2
1 + x2

2 = sx2
0. At that end, π(s)

meets the cap K in the 1
2 (q + 7)-arc K(s), points (x0, x1, x2) of which can be

represented in π(s) as follows:

K(s) = {(1, v, d)|v ∈ Fq, d = v − 2i, i ∈ {v, v + 1, . . . , q − 1},

3v2 + d2 = s
} ∪ {P, P1}

where P = (0, 1, 3), P1 = (0, 1, 0). By above, K′(s) = K(s)\{P, P1} ⊂ C. Putt-
ing v = ± 1

2

√
s and i = v, we obtain two points (1, v,−v) ∈ K′(s) lying on

tangents to C through P, while other 1
2 (q − 1) points of K′(s) lie on bise-

cants of C through P so that on every bisecant exactly one point of C belongs
to K′(s).

Theorem 2. Let q ≡ 2 (mod 3) be an odd prime, q ≥ 11. Let s be a non-
zero square in Fq. Then in PG(2, q), the point set K(s) of Construction S is a
1
2 (q + 7)-arc other than a conic that shares 1

2 (q + 3) points with an irreducible
conic. For q ≤ 3701, q �= 17, the 1

2 (q + 7)-arc K(1) is complete. For q = 17,
the arc K(s) is an incomplete 12-arc embedded in the complete 14-arc.

Proof. The 1
2 (q+7)-set K(s) is an arc as it is an intersection of a cap in PG(3, q)

and a plane. The completeness of the arcs K(1) is checked by computer. �
Construction C. Let q ≡ 2 (mod 3) be a power of an odd prime, q ≥ 11.
In PG(2, q) we denote the points Ai = (1

2 (i2 + 1), i, 1), i ∈ Fq, T = (1, 0, 0),
P = (0, 1, 0), Q = (−1,−1, 1). The conic C of the equation x2

1 + x2
2 = 2x0x2

can be represented as C = {Ai|i ∈ Fq} ∪ {T}. For i �= ±1, we define a 3-cycle
Ci = {Ai, A i−3

1+i
, A i+3

1−i
} of three points. It holds that Ci = C i−3

1+i
= C i+3

1−i
and

C−i = {A−i, A− i−3
1+i

, A− i+3
1−i

}. The (q − 5)-set C\(C0 ∪ {T,A1, A−1}) is parti-

tioned to 1
6 (q − 5) pairs of “opposite” 3-cycles {Ci, C−i}, i �= 0. We form a

1
2 (q + 7)-set K = K1 ∪ {P,Q, T,A0, A1, A−3} where a 1

2 (q − 5)-set K1 consists
of 1

6 (q − 5) 3-cycles Ci, i �= 0. From every pair {Ci, C−i}, exactly one 3-cycle
is included in K1. At that end, any of two 3-cycles can be taken. So, there are
2(q−5)/6 formally distinct variants of the set K1. The points T,A0 and A1, A−3

lie on the tangents to C through P and Q.

Theorem 3. Let q ≡ 2 (mod 3) be a power of an odd prime, q ≥ 11. Then in
PG(2, q), for the all 2(q−5)/6 variants of the set K1, the set K of Construction
C is a 1

2 (q +7)-arc other than a conic that shares 1
2 (q +3) points with an irre-

ducible conic. For q ≤ 3701, there is a variant of K1 such that the 1
2 (q+7)-arc

K is complete. Also, for q ≤ 131, q �= 17, 59, all the variants of K1 give com-
plete arcs K. For q = 17, there are two equivalent variants of K1 providing
incomplete 1

2 (q + 7)-arcs K embedded in complete 1
2 (q + 11)-arcs; for q = 59,

there are four equivalent variants of K1 providing incomplete 1
2 (q + 7)-arcs K

embedded in complete 1
2 (q + 9)-arcs.

The properties of the set K of Construction C and Theorem 3 are proved
in [27]. We do not give here these proofs to save the space. For q ≤ 3701,
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Table 2 The sizes of the known complete k-arcs in PG(2, q)

q t2(2, q) Sizes k of the known m′
2(2, q) m2(2, q) References

complete arcs with
t2(2, q) ≤ k ≤ m′

2(2, q)
43 12 ≤ 16 ≤ k ≤ 26 = (q + 9)/2, ≤ 42 44 [17,61]

k = 28 = (q + 13)/2
59 14 ≤ 20 ≤ k ≤ 34 = (q + 9)/2 ≤ 57 60 [17,61]
64 13 ≤ 22 ≤ k ≤ 35 = (q + 6)/2, 57 66 [17,22]

k = 42 = 6
√

q − 6, k = 57
89 17 ≤ 28 ≤ k ≤ 48 = (q + 7)/2 ≤ 87 90 [17,46],�
97 18 ≤ 30 ≤ k ≤ 52 = (q + 7)/2 ≤ 94 98 [17,46],�
101 18 ≤ 30 ≤ k ≤ 54 = (q + 7)/2 ≤ 98 102 [17,46],�
109 19 ≤ 32 ≤ k ≤ 58 = (q + 7)/2 ≤ 106 110 [17,46],�
113 19 ≤ 33 ≤ k ≤ 60 = (q + 7)/2 ≤ 110 114 [17,46],�
128 18 ≤ 34 ≤ k ≤ 67 = (q + 6)/2 ≤ 114 130 [17,21,48],�
137 21 ≤ 37 ≤ k ≤ 72 = (q + 7)/2 ≤ 134 138 [17,46],�
149 22 ≤ 39 ≤ k ≤ 78 = (q + 7)/2 ≤ 145 150 [17,46],�
163 23 ≤ 41 ≤ k ≤ 85 = (q + 7)/2 ≤ 160 164 [17],�
167 23 ≤ 42 ≤ k ≤ 87 = (q + 7)/2 ≤ 164 168 [17],�

the completeness of the arcs is checked by computer. We state the following
conjecture.

Conjecture 1. Let q ≡ 2 (mod 3) be a power of an odd prime, q ≥ 11. Then,
in Construction C, there exists at least one variant of the set K1 providing a
complete 1

2 (q + 7)-arc K.

By Theorems 2 and 3, in PG(2, q) there is a complete 1
2 (q+7)-arc, in particular,

for q = 11, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 113, 125, 131, 137, 149, 167.

So, we have confirmed that all entries in [43, Table 2.4] and [17, Table 2] on
the existence of complete 1

2 (q + 7)-arcs are correct.

Now we summarize new data extending the tables of [43, Table 2.4] and [17,
Table 2]. Using the greedy algorithms we obtained complete k-arcs in PG(2, q)
with k = 35 for q = 128, k = 80, 82, 83 for q = 163, and k = 83, 84 for q = 167.
Also, in [22] a complete 42-arc in PG(2, 64) is obtained. In [61] a complete
26-arc in PG(2, 43) and a complete 34-arc in PG(2, 59) are constructed. By
the method of [61], we obtained complete 1

2 (q+7)-arcs for q = 97, 109. Finally,
by Theorems 2 and 3, for q = 89, 101, 113, 137, 149, complete 1

2 (q + 7)-arcs in
PG(2, q) exist. In Table 2 we give the updated list of the known sizes of com-
plete arcs in PG(2, q). Note also that in [59] it is shown that m′

2(2, 31) = 22,
m′

2(2, 32) = 24.

Theorem 4. In PG(2, q), q odd, let Kq(δ) be a complete ( 1
2 (q + 3) + δ)-arc

other than a conic but sharing 1
2 (q + 3) points with an irreducible conic. If ∆q

is the maximum value of δ, then
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(i) ∆17 = 4, ∆19 = ∆27 = 3, ∆11 = ∆23 = ∆29 = ∆31 = 2;
(ii) there is no any arc K17(3);
(iii) for δ = 3, 4 and q ≤ 27, the arcs Kq(δ) are unique up to collineations.

Proof. The assertion is proved by an exhaustive computer search. �
Remark 1. Let q = 2p − 1 where p is an odd prime. In [60] the following is
proved: ∆2p−1 ≤ 4; if, in addition, (2p − 1)2 ≡ 1 (mod 16), then ∆2p−1 ≤ 2.
An example of the arc with ∆2p−1 = 4 is given in [8] for p = 7, q = 13. So,
∆25 = 2 as 252 ≡ 1 (mod 16), and ∆13 = 4.

The results of [70,71] can be compared with Theorem 4, Remark 1, and the
arcs Kq(∆q) below. The unique 14-arc K17(4) is a counterexample to [71]. The
14-arc K19(3) is obtained in [71] but here is shown to be unique. Finally, the
unique 18-arc K27(3) is new.

Points of the unique 14-arc K17(4) are given in [26]:

{(1, 10, 12), (1, 6, 8); (1, 0, 6), (1, 0, 11), (1, 1, 4), (1, 1, 13), (1, 6, 9),
(1, 10, 5), (1, 14, 3), (1, 3, 14); (0, 1, 3), (0, 1, 0), (1, 5, 1), (1, 14, 10)}.

The first ten points lie on the conic 3x2
1 +x2

2 = 2x2
0 and the last four are placed

outside it. In addition, the first twelve points are the arc K(2) of Construc-
tion S. The semicolons separate the points into orbits of the stabilizer group.
For K17(4) the stabilizer is the dihedral group D4 of order eight.

The unique 14-arc K19(3) may be represented as follows:

{(1, 5, 6), (1, 2, 4); (1, 0, 0), (1, 7, 11), (1, 13, 17); (1, 1, 1), (1, 3, 9),
(1, 4, 16), (1, 6, 17), (1, 9, 5), (1, 17, 4); (1, 13, 6), (1, 1, 11), (1, 6, 8)}.

The first 11 points belong to the conic x2
1 = x0x2.

The unique 18-arc K27(3) may be represented as follows:

{(1, 14, 1), (1, 12, 23), (1, 10, 19); (1, 0, 0), (0, 0, 1), (1, 2, 3),
(1, 22, 17), (1, 13, 25), (1, 11, 21); (1, 8, 15), (1, 20, 13), (1, 19, 11),
(1, 16, 5), (1, 4, 7), (1, 5, 9); (0, 1, 0), (1, 6, 8), (1, 21, 12)}.

The field F27 is generated by the polynomial x3 − x2 − 2. The elements of F27

are represented as follows: 0 = 0, αi = i + 1, where α is a primitive element of
the field. The first 15 points of K27(3) belong to the conic x2

1 = x0x2.

The stabilizer group of the arcs K19(3) and K27(3) is the symmetric group S3

of order six. In K17(4),K19(3), and K27(3) the points outside the conic form
an orbit of the stabilizer group.

It should be noted that, independently of this work, in the recent paper [61], the
complete arcs K17(4),K19(3),K27(3),K43(3), and K59(3) are obtained with
the help of an interesting theoretical approach supported by computer search.
Moreover, in [61, Theorem 6.1] infinite families of (1

2 (q + 3) + δ)-arcs are con-
structed for q ≡ 3 (mod 4). The arc K17(4) is obtained also in [46].
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3. The families of complete caps in PG(3, q)

Surveys of the known families of complete caps in PG(3, q) can be found, e.g.,
in [40,42,43,57,78]. However, these surveys are insufficiently complete for our
goals and do not contain some details, refinements, corrections, developments
and recent results, important for our presentation; see, e.g., Theorems 5 and 6,
formulas (4),(7)–(9),(14),(19).

It is well known that m2(3, q) = q2 + 1, provided by an elliptic quadric [54],
[57, Theorem 4.1], [75].

In PG(3, q) we consider complete k-caps K having t points common with an
elliptic quadric Q where t < k. So, K � Q. The known constructions of caps
often start with a given cap of size Tq = 1+(q +1)+ 1

2q(q −1) = 1
2 (q2 + q +4)

containing all but just one point from an elliptic quadric of PG(3, q). As a mat-
ter of fact, Tq is an important number in the study of complete caps since any
cap containing at least Tq points from an elliptic quadric is entirely contained
in it [2,54,72,75]. Therefore we consider the situation t ≤ Tq − 1.

In the beginning we consider the families of complete k-caps in PG(3, q) with
k ≥ Tq. For such families the following construction plays an important role.

Segre’s Construction A. [75, Theorem V, p. 73]. Given an elliptic quadric Q ⊂
PG(3, q), the Tq-cap comprises a point P �∈ Q, the q + 1 common points
of Q with the polar plane of P together with one point from each bisecant
through P , choosing one of its two common points with Q. The resulting cap
is complete or it can be completed by adding at most q + 1 points.

By [75, Theorem V, p. 73], [54, Section 18.2], in PG(3, q) there are complete
k-caps with

Tq ≤ k ≤ Tq + q + 1, t = Tq − 1, q ≥ 2. (2)

In [75, Theorem V, p. 73] complete k-caps in PG(3, q) are constructed with

Tq + 1 ≤ k ≤ Tq + q + 1, t = Tq − 1, q is odd,

q ≡ 2 (mod 3) or q = 3h ≥ 9. (3)

By Remark 1, the results of [2], where it is assumed that always ∆2p−1 ≤ 2,
should be corrected. We give these results in the following form, see [6,25,26]
for q = 5:

In PG(3, q) there are complete k-caps with parameters

Tq ≤ k ≤ Tq + 3, t = Tq − 1, (q + 1)/2 odd prime,

q2 ≡ 1 (mod 16) or q = 5. (4)

In [72, Theorems IV,V] the results of (3),(4) are developed and it is proved
that in PG(3, q) there are complete k-caps with parameters
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k = Tq + 1, t = Tq − 1, q > 13, q = 2p − 1, p is odd prime. (5)
k = Tq + 1, t = Tq − 1, q = 4v + 1. (6)

Tq + 1 ≤ k, t = Tq − 1, q is odd, q �= 2r − 1. (7)

The condition q �= 2r − 1 of (7) includes the conditions q ≡ 2 (mod 3) and
q = 3h ≥ 9, of (3) [72, p. 285 ]. Note that in [72, Table, p. 271] there is a
misprint in the entry for the situation of (7).

In [25,26] complete k-caps in PG(3, q) are constructed with parameters

k = Tq + 2, t = Tq − 1, q odd prime, q ≡ 2 (mod 3), q ≥ 11. (8)

The construction of caps in (8), slightly modified, furnishes also one of two
inequivalent complete 20-caps in PG(3, 5) considered in [6].

In [7] the family of complete k-caps in PG(3, q) is obtained with parameters

k = Tq, t = Tq − 1, q ≡ 3 (mod 4), q ≥ 7. (9)

The caps of (9) are invariant under a linear collineation group of PG(3, q)
acting transitively on the common points of the cap and the elliptic quadric.

In [2,7,25,26,54,72,75] to obtain the results of (2)–(9) Segre’s Construction A
is used with distinct points P and distinct rules for the choice of one point of
the quadric on every bisecant through P .

Theorem 5. In PG(3, q), q ≥ 3, there is a complete Tq-cap sharing Tq − 1
points with an elliptic quadric.

Proof. The existence of complete Tq-caps in PG(3, q) is proved in the following
works: for q ≡ 3 (mod 4) in [75, Theorem V, p. 73], [54, Theorem 18.2.5], [7];
for q ≡ 1 (mod 4), q �= 5, 9, in [72]; for q = 2h with odd h > 3 in [31]; for
all even q > 8 in [1]; for q = 8 in [3]; for q = 9 in [43, Table 3.2]; for q = 4
in [76]. Also, the situation for q = 4 together with q = 3, 5 is considered in
[6,40], [43, Table 3.1]. See also the references in [54, Section 18.5]. The Tq-caps
of [1,3,7,54,72,75] are constructed by Segre’s Construction A, therefore they
have t = Tq − 1. For q = 4, 5, 9, the known caps do not have t = Tq − 1.
We obtained by computer Tq-caps with t = Tq − 1, q = 4, 5, 9, using Segre’s
Construction A with a random choice of one point on a bisecant. �
Now we consider the families of complete k-caps in PG(3, q) with k < Tq.

Segre’s Construction B. [76]. Let q = 2h, h ≥ 2, and let π1, π2 be planes of
PG(3, q) with the intersection line l. We consider irreducible conics C1 ⊂ π1

and C2 ⊂ π2 such that the both conics touch the line l at the same point T
and have the same nucleus O ∈ l with O �= T. We denote by Aj a point of
Cj\{T}, j = 1, 2. In [76] it is proved that every line A1A2 intersects q − 1
other such lines in the same point, say A3. There are q points of the form A3.
All lie in the same plane, say π3, containing the line l. The points A3 together
with the point T form an irreducible conic C3 ⊂ π3 with the same nucleus O.
Moreover, the points of C1∪ C2 ∪ {O} form a (2q + 2)-cap K∗ covering the
whole space PG(3, q) excepting π3\{C3 ∪ l}. To obtain a complete cap we can
add to K∗ any points of π3\{C3 ∪ l} chosen freely with the only condition that
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the set of points obtained by aggregating T and O to them is a k2-arc A ⊂ π3

[76, Theorem II, Proof]. In particular, as the arc A one can take a hyperoval.
This gives the family of complete k-caps with

k = 3q + 2, q = 2h, h ≥ 2. (10)

In 1995, Pambianco and Storme announced the following result, connected
with the paper [68] and cited in [57, Table 4.8]:

t2(3, q) ≤ 2q + t2(2, q), q = 2h, h ≥ 2. (11)

As a development of the idea of (11), from [76, Theorem II, Proof] and [68,
Remark 2.2(3)] we have the following result.

Theorem 6. Let q ≥ 4 be even. For every complete k2-arc in the plane PG(2, q)
there is a complete (2q + k2)-cap in the space PG(3, q).

Proof. Let (x0, x1, x2, x3) be a point of PG(3, q), xi ∈ Fq. We take the planes
x3 = 0 as π1 and x2 = 0 as π2. We take also the conics

C1 = {(1, g, g2, 0) | g ∈ Fq} ∪ {A∞
1 }, C2 = {(1, g, 0, g2) | g ∈ Fq} ∪ {A∞

2 },

where A∞
1 = (0, 0, 1, 0), A∞

2 = (0, 0, 0, 1). Then T = (1, 0, 0, 0), O = (0, 1, 0, 0),
and l is the line x2 = x3 = 0. Similarly to [68, Remark 2.2(3)] it can be
shown that π3 is the plane x2 = x3 and C3 = {(1, g, g2, g2)|g ∈ Fq} ∪ {A∞

3 },
A∞

3 = (0, 0, 1, 1).

Take in PG(2, q) a complete k2-arc A∗ that is not a hyperoval. Without loss
of generality, let

A∗ = {(1, 0, 0), (0, 1, 0), (0, 1, f), (1, t4, u4), . . . , (1, tk2 , uk2)} .

Let A∗
s = φs(A∗) where φs(a, b, c) = (a, b + sc, c) is a projectivity with s ∈ Fq.

We replace q arcs A∗
s in π3. Now the points of A∗

s have the form

(1, 0, 0, 0) = T, (0, 1, 0, 0) = O, (0, 1 + sf, f, f), (1, tj + suj , uj , uj).

Every point of the form (1, tj+suj , uj , uj) coincides with a point (1, v, v2, v2) ∈
C3\{T,A∞

3 } for one and only one value of s. If f = 1 the point (0, 1+ sf, f, f)
coincides with A∞

3 for s = 1. Hence we have at most k2 − 2 arcs A∗
s not con-

venient for our goal. But k2 − 2 < q and at least one of the arcs A∗
s can be

taken as the needed arc A in Segre’s Construction B. �
In [75] it is shown that in PG(n, q) there are complete k-caps with

k = 2n, q = 3, n ≥ 3. (12)
k = 2n+1 − 2, q = 4, n ≥ 3. (13)

On the families of (10)–(13) see also [54,68], [78, Theorems 6.9–6.11].

In [4] a complete k-cap in PG(3, 2h) with k = (n− 3)(q +1)+2 is constructed
from a complete n-arc of PG(2, 2h) having special properties. An example of
such arc with n = (q + 8)/3, q = 22h, h ≥ 4, is described. It implies the
existence of a family with

k =
q2 + 5

3
, q = 22h, h ≥ 4. (14)
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In [39] families with k < Tq are considered for odd q = ph with p, q sufficiently
large. The following is shown:

A =
{
k/q2| there is a complete k-cap in PG(3, q)

}

is dense in the interval
[
1
3
,
1
2

]
.

In [41], a family is described with

k =
q2 + rq + 6

3
, r ∈ {1, 2},

t = k − 2, q ≥ 5, q is an odd prime or q = 9, (15)

where r is the remainder of the division [(q − 3)/2 : 3].

In [67], complete k-caps in PG(3, q) are obtained with

k =
q2 + 6

3
, t = k − 2, q = 3n, n ≥ 2. (16)

In [69] a family is constructed with parameters

k =
q2 + 7

2
, t = k − 2, q is odd prime, q = 7 and 13 ≤ q ≤ 931. (17)

In the caps of (15) and (17) two points not belonging to a quadric lie on a line
external to it. In the caps of (16) two points not belonging to a quadric lie on
a tangent line to it.

In [73] two families are constructed with parameters

k =
q2 − 2q + 9

2
, q ≥ 5, q odd. (18)

k = (m + 1)(q + 1) + w, w = 0, 1, 2, q ≥ 7, q odd, (19)

where m is the greatest integer such that
(
m
2

) ≤ (q + 1)/4. In the previ-
ous formula we have q ≥ 7 as in PG(3, 5) a complete 19-cap does not exist.
Asymptotically the caps of (19) are the smallest known ones for odd q as the
order of their size is approximately q

√
q/2.

Caps entirely lying in only one orbit of the stabilizer group are considered in
[5,6,77].

4. On the spectrum of sizes of complete caps in PG(3, q)

Table 3 gives the known sizes of complete caps in PG(3, q). We used the sizes
of complete caps and bounds from the works [1–7,13], [23, Table 1], [25,26,
30,31,37–44,54,56,57,66–69,72,73,75–78], see also the references therein. We
applied the relations (2)–(19) and Theorem 6.

The complete k-caps with k = 17 in PG(3, 7), k = 20 in PG(3, 8), k = 24 in
PG(3, 9), and k = 30 in PG(3, 11), are obtained in [66]. In [13] it is proved that
t2(3, 7) = 17. The complete 41-cap in PG(3, 16) is noted in [68, Table I]; see
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Table 3 The sizes of the known complete k-caps in PG(3, q).
Tq = (q2 + q + 4)/2

q t2(3, q) Sizes k of the known m′
2(3, q) m2(3, q) References

complete caps with
t2(3, q) ≤ k ≤ m′

2(3, q)
3� 8 8 = Tq 8 10 [40,43,75]
4� 10 10, 12, 13, 14 = Tq + 2 14 17 [40,42,43,75,76]
5� 12 12 ≤ k ≤ 18 and 20 26 [5,6,25,26,30,40,41,

43,73]k = 20 = Tq + 3
7 17 17 ≤ k ≤ 30 and 32 50 [7,13,23,37,38,41–43,

53–57,66,69,73,75]k = 32 = Tq + 2
8 14 ≤ 20 ≤ k ≤ 41 = Tq + 3 ≤ 60 65 [3,23,40,43,54,66,68,

76],Th. 6
9 15 ≤ 24 ≤ k ≤ 48 = Tq + 1 ≤ 78 82 [23,30,40,41,43,66,67,

72,73,75]
11 18 ≤ 30 ≤ k ≤ 70 = Tq + 2 ≤ 116 122 [7,23,25,26,40–43,

54,66,72,73,75]
13 21 ≤ 36 ≤ k ≤ 93 = Tq ≤ 162 170 [23,25,26,40,41,43,66,

69,72,73,75]
16 25 ≤ 41 ≤ k ≤ 138 = Tq ≤ 242 257 [1,23,31,40,43,44,54,

57,68,76],Th. 6
17 26 ≤ 51 ≤ k ≤ 157 = Tq + 2 ≤ 278 290 [23,25,26,40–43,

66,69,72,73,75]
19 29 ≤ 58 ≤ k ≤ 192 = Tq ≤ 348 362 [7,23,25,26,40,41,43,

54,69,72,73,75]
23 35 ≤ 72 ≤ k ≤ 280 = Tq + 2 ≤ 512 530 [23,25,26,40,41,43,54,

69,72,73,75]

also (11). The complete 51-cap in PG(3, 17) is described in [23]. The complete
k-caps with k = 36 in PG(3, 13), k = 58 in PG(3, 19), and k = 72 in PG(3, 23),
are obtained in [25,26]. A number of relatively small complete caps in PG(3, q)
are given in [41,42]. The complete 20-cap in PG(3, 5) and 36-cap in PG(3, 9)
are obtained in [30]. The equality m′

2(3, 5) = T5 + 3 = 20 is proved in [6].

The result m′
2(3, 7) = T7 +2 = 32 is obtained in [37]. In [3] a (T8 +1)-cap with

t = T8 − 1 in PG(3, 8) is given. The complete k-caps with k = T8 + 3 = 41
in PG(3, 8) and k = T9 + 1 = 48 in PG(3, 9) are obtained in [23]. The com-
plete k-caps with k = Tq, q = 13, 16, 19, follow from Theorem 5. The complete
k-caps with k = Tq + 2, q = 11, 17, 23, follow from (8).

In the planes PG(2, 8) and PG(2, 16) there are complete k2-arcs with k2 = 6, 10
and k2 = 9, . . . , 13, 18, respectively; see [43]. Hence, by Theorem 6, in the
spaces PG(3, 8) and PG(3, 16) there are complete k-caps with k = 22, 26 and
k = 41, 42, 43, 44, 45, 50, respectively.
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We use the following estimates: m′
2(3, q) ≤ q2 − q + 6, q ≥ 7 odd [54, The-

orem 18.4.1]; m′
2(3, q) ≤ q2 − q/2 − √

q/2 + 2, q = 2h ≥ 4 [54, Theorem
18.5.1], [43, Theorem 3.3(a)] and the references therein; m′

2(3, q) ≤ q2 − q +2,
q = 2h ≥ 16 [44];

t2(n, q)(t2(n, q) − 1)
2

(q − 1) + t2(n, q) ≥ |PG(n, q)|. (20)

The estimate of (20) is also used in Tables 6, 7 and 8. See also the lower bounds
on t2(n, q) in [40, Lemma 2.5], [43, Theorem 3.4(d), Table 3.2].

The completeness of the spectrum of possible sizes of complete caps for q =
3, 4, 5 is shown in [6,40], [43, Table 3.1].

Open problem. To complete the spectrum of sizes of complete caps in PG(3, 7),
it only remains to solve the problem: “Is there a complete 31-cap in PG(3, 7)?”

The bounds which follow are obtained from the relations (2)–(9), Theorem 5
and Table 3, and from [1–7,23,25,26,31,37,40,43], [54, Sections 18.2, 18.5],
[72,73], [75, Theorem V, p. 73]; see also the references therein:

Tq ≤ m′
2(3, q) for all q ≥ 3; (21)

Tq + 2 = m′
2(3, q) for q = 4, 7; 20 = T5 + 3 = m′

2(3, 5);

41 = T8 + 3 ≤ m′
2(3, 8); (22)

Tq + 1 ≤ m′
2(3, q) for q odd with q �= 2r − 1,

or q = 4v + 1, or (q + 1)/2 an odd prime. (23)

Tq + 2 ≤ m′
2(3, q) for q an odd prime, q ≡ 2 (mod 3), q ≥ 11. (24)

Remark 2. Complete caps sharing Tq − 1 points with an elliptic quadric in
PG(3, q) in the first were constructed as examples of relatively small sizes.
However, at present time they give the lower bounds of m′

2(3, q) while the
smallest known sizes are provided by quite other constructions; see (10)–(19).
The known upper bounds on m′

2(3, q) are approximately cq2 with c = 1 for
q > 2 even and for q odd but not prime, while c = 2641/2700 for q an odd
prime. At the same time, the lower bounds are of order Tq = (q2+q+4)/2. For
references on bounds; see [2,23,43,44,51,54], [57, Theorem 4.2,Table 4.2(ii)],
[72,73,75,76,78] and (21)–(24). So, our knowledge on m′

2(3, q) seems to be
insufficient.

5. Some complete caps in PG(3, q) with boundary sizes

There exist two nonequivalent complete 20-caps in PG(3, 5) where 20 = T5 +
3 = m′

2(3, 5) [6]. These caps, called K1 and K2, are studied in [5,6] where it
is noted that each of them is preserved by a collineation group acting sharply
transitively on it. Orbits and structures of the stabilizer group and its sub-
groups, list of points, the number of points on the secant planes, and other
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Table 4 Relations of points of the 20-cap K1 ⊂ PG(3, 5) and
the quadric Q

� [6] Cap points π � [6] Cap points π
offQ on Q

P1 D 1111 All T1 B1 1144 τ1

P2 B3 1441 All T2 B2 1414 τ2

P3 A11 0141 Σ3 T3 C4 0111 Σ1

P ∗
3 A2 1410 Σ3 T ∗

3 C1 1110 Σ1

P4 A10 0144 Σ4 T4 A8 1041 Σ2

P ∗
4 A3 1140 Σ4 T ∗

4 A5 1401 Σ2

� [6] Cap points π Quadric points π
on Q off K1

S1 A7 1044 Σ3 0122 Σ3

S∗
1 A6 1104 Σ3 1130 Σ3

S2 A12 0114 Σ1 1002 Σ1

S∗
2 A1 1440 Σ1 1003 Σ1

S3 C3 1011 Σ2 1411 Σ2

S∗
3 C2 1101 Σ2 1141 Σ2

S4 A9 1014 Σ4 1310 Σ4

S∗
4 A4 1404 Σ4 0131 Σ4

properties of K1 and K2 are described in [5,6], although no geometric construc-
tions are given. The construction of K2 is given in [25,26]. Here we describe a
variant of the construction of the cap K1 using computer results.

The maximum number of points of K1 on an elliptic quadric Q is 14. There
exist many quadrics with this property. For example, consider Q with equation

2x2
0 + x2

1 + x1x2 + x2
2 + 2x2

3 = 0.

The points of K1 have a “symmetry property”: if the point A = (x, y, z, t)
belongs to the cap then so does the point A∗ = (t, z, y, x). Four points of the
cap with no zero coordinates have A = A∗; see Table 4. In the table the points
of K1 are noted in the column “� ” in compliance with the construction below
and in the column “[6]” in compliance with [6, p. 10] via the bold font.

The points of K1 are partitioned into subsets

P = {P1, P2, P3, P
∗
3 , P4, P

∗
4 },

T = {T1, T2, T3, T
∗
3 , T4, T

∗
4 },

S = {S1, S
∗
1 , S2, S

∗
2 , S3, S

∗
3 , S4, S

∗
4}.

Points of P are off the quadric Q. Points of T and S lie, respectively, on
tangents and bisecants of Q through P1. Points of Q on these bisecants not
contained in K1 are written in Table 4. Two bisecants of the quadric through
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Table 5 Properties of some complete caps in PG(3, q) with
boundary sizes

q Cap Stab. Stab. Intersecting Points on intersecting

group group planes planes

(order) orbits

5 K1 N16×S5(1920) 201 016, 320, 480, 640 203
3, 204

16, 206
12

7 K32
7 (192) 321 040, 260, 432, 596, 6160, 812 324

4, 325
15, 326

30, 328
3

8 K41
8 A4×Z2(24) 11, 42, 028, 128, 220, 324, 472,572, 123

2, 83
6, 124

8, 84
9, 124

10,

81, 122 6232, 772, 828, 95, 104 125
10, 205

12, 86
29, 126

30,

126
32, 86

44, 16
64, 127

10,207
12,8

7
18,

128
6, 88

7, 128
8, 409

1, 19
5, 1610

1 , 1210
2

8 K20
8,1 D5(10) 102 035, 1160, 290, 3140, 203

21, 204
20, 205

15

4100, 560

P1 have no points in K1. It is an important distinction between the construc-
tion of the cap K1 and Segre’s Construction A. The corresponding points of
Q are (0123), (1420) on the first bisecant and (0134), (1240) on the second.

The points P1, P2, P3, P
∗
3 , are coplanar as are P1, P2, P4, P

∗
4 . The line P1P2 is

external to Q. The sheaf of planes through P1P2 consists of planes τ1 and τ2

tangent to Q and secant planes Σ1,Σ2,Σ3, and Σ4. The column“π” of Table 4
gives the plane containing the corresponding point. Every secant plane meets
the cap in a conic and the quadric in another conic. Finally, {(0123), (1420)} ⊂
Σ4, {(0134), (1240)} ⊂ Σ3.

Some properties of the 20-cap K1, described in [6], are given in Table 5 where
the column “stab. group (order)” gives the structure of the stabilizer group.
The order of the group is written in brackets. The column “stab. group orbits”
notes the lengths of orbits of the stabilizer group with a subscript that is the
number of orbits of such length. In the column “intersecting planes” an entry
sn remarks that the number of s-secant planes is n. Finally, in the column
“points on intersecting planes” an entry ps

n says that the number of points,
every of which lie on n s-secant planes, is equal to p. For the structure of
groups we use the notation of [55, Table 2.3]. By [6, Proposition 7], the sta-
bilizer group of K1 is the semidirect product of an elementary abelian normal
subgroup N16 and a subgroup isomorphic to S5.

For any k-cap K in PG(n, q), let wi be the number of codewords with weight i
in the associated code A(K) and let hj denote the number of hyperplanes
in PG(n, q) meeting K in j ≥ 0 points. The following result is given in [52,
Theorem 4.1], [13,26]:

w0 = 1, wk−j = (q − 1)hj for 0 ≤ j < k. (25)

Using (25) and Table 5, the weight spectrum of the associated code A(K) can
be deduced.
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In [37] a complete (Tq + 2)-cap in PG(3, 7) has been obtained by computer;
denote it K32

7 . The list of points of K32
7 and the weight spectrum of the asso-

ciated code A(K32
7 ) can be found online, in Yves Edel’s homepage. However,

no geometric construction is given in [37]. Here we describe features of the
structure of the cap K32

7 using computer results. The stabilizer group of K32
7

has order 192, it acts transitively on the cap and is a subgroup of the stabilizer
group of the complete 20-cap K1 of PG(3, 5). The maximum number of points
of K32

7 on an elliptic quadric Q is equal to 24. An example of a quadric with
this property is Q : x2

0 + 3x0x1 + x2
1 + 6x2x3 = 0. Let S24 = K32

7 ∩ Q. The
stabilizer of the 24-set S24 has order 48, it has two orbits on the points of the
cap: S24 and the remaining 8 points of the cap outside the quadric. The secant
lines of the set S24 cover all the points of PG(3, 7) except the remaining 26
points on the quadric and the remaining 8 points of the cap outside Q.

The cap K1 in PG(3, 5) has a similar structure. It has 14 points on an elliptic
quadric, whose stabilizer is the same group of order 48 as the subset S24 of
K32

7 . The secants lines of the 14 points on the quadric cover all the points of
PG(3, 5) except the remaining 12 points on the quadric and the remaining 6
points of the cap.

This motivated a computer search in PG(3, q), q = 9, 11, 13, for complete caps
with a similar structure: a set of points on the elliptic quadric constituting the
orbit of a certain group and q + 1 points outside the quadric. In particular
all the subgroups of order 48 and some subgroups of order 24 of the stabilizer
group of the elliptic quadric have been considered. However, no example with
the required properties was found.

The following important property of K32
7 should be noted. Let S8 = K32

7 \S24

be the set of points K32
7 outside the quadric Q. Through every point of S8

there are 8 tangents to Q and 21 bisecants of Q [54,75]. For any point of S8,
the cap K32

7 contains 21 points on the bisecants and only three points on tan-
gents. So, five tangents through a point of S8 have no points in K32

7 . Recall
that, for the cap K1, two bisecants have no points in it.

By the above, it seems useful to consider a variant of Segre’s Construction
A when some tangents and/or bisecants through the point P off the elliptic
quadric Q do not contain any points of the cap constructed. Using this variant
one can try to obtain complete caps with new sizes.

For q �= 5 the only known example of a complete (Tq + 3)-cap is the 41-cap
in PG(3, 8) obtained in [23]. We denote it K41

8 . Similarly to [23,66] we write
F8 = {0, 1 = α0, 2 = α1, . . . , 7 = α6}, where α is a root of the polynomial
x3 + x + 1 generating the field F8.

The cap K41
8 contains four hyperovals; see Table 5. Let g

(j)
i be the j-th i-orbit

of the stabilizer group. Then K41
8 = {g

(1)
1 , g

(1)
4 , g

(2)
4 , g

(1)
8 , g

(1)
12 , g

(2)
12 }, where

g
(1)
1 = {(1, 3, 3, 3)}, g

(1)
4 = {(1, 1, 6, 2)1, (1, 3, 6, 3)2, (0, 1, 1, 6)3, (1, 7, 0, 4)4},

g
(2)
4 = {(1, 2, 0, 0)1, (1, 2, 7, 0)2, (1, 1, 7, 2)3, (1, 7, 3, 4)4},



48 A. A. Davydov et al. J. Geom.

g
(1)
8 = {(1, 3, 4, 4)1, (1, 7, 4, 1)2, (1, 1, 0, 1)3, (0, 1, 3, 5)4, (1, 0, 0, 4)1,

(1, 7, 3, 5)2, (1, 0, 6, 3)3, (1, 1, 6, 5)4},

g
(1)
12 = {(1, 2, 4, 5)1,2, (1, 0, 7, 2)1,2, (1, 3, 6, 0)1,3, (0, 1, 5, 4)1,3, (0, 1, 1, 5)1,4,

(1, 1, 7, 5)1,4, (1, 3, 1, 2)2,3, (1, 6, 1, 1)2,3, (1, 0, 6, 0)2,4, (1, 6, 3, 3)2,4,

(1, 0, 0, 0)3,4, (1, 6, 7, 3)3,4},

g
(2)
12 = {(0, 1, 3, 0), (1, 6, 7, 0), (1, 7, 7, 1), (1, 3, 1, 5), (0, 1, 4, 3), (1, 1, 2, 7),

(1, 4, 3, 4), (1, 7, 0, 5), (1, 1, 0, 7), (1, 0, 7, 1), (1, 6, 3, 0), (1, 2, 1, 7)}.

The superscript of a point indicates the order numbers of the hyperovals con-
taining it. Any two hyperovals meet in two points. Intersecting points of the
hyperovals form the 12-orbit g

(1)
12 . One can see the symmetric connections of

the hyperovals and the orbits.

The smallest known size of a complete cap in PG(3, 8) is 20 [66]. We obtained
three inequivalent complete 20-caps in PG(3, 8) with the stabilizer groups
D5,Z2,S3 of orders 10, 2, 6. The first cap, see Table 5, is K20

8,1 = {g
(1)
10 , g

(2)
10 }

where

g
(1)
10 = {(1, 6, 6, 7), (1, 6, 6, 5), (1, 2, 0, 5), (1, 2, 3, 2), (1, 2, 7, 0),

(1, 7, 6, 4), (1, 2, 2, 2), (1, 4, 6, 7), (1, 0, 2, 0), (1, 6, 5, 6)},

g
(2)
10 = {(1, 3, 5, 5), (1, 4, 5, 0), (0, 1, 4, 5), (1, 0, 0, 1), (1, 5, 0, 6),

(1, 3, 2, 2), (1, 4, 0, 7), (1, 0, 1, 2), (1, 1, 4, 7), (1, 6, 5, 4)}.

The cap K20
8,1 has the dihedral stabilizer group. It has been obtained using the

algorithm that joins orbits of the subgroup Z5 of PΓL(4, 8).

From (25) and Table 5, the associated codes A(K1) and A(K20
8,1) are optimal

as they have the greatest possible minimum distance [50].

6. On the spectrum of complete cap sizes in PG(n, q), n ≥ 4

In [79] a few families of complete k-caps in PG(4, q) are described with the
following parameters:

k = 2q2 + q, k = 2q2 + q + 5, n = 4, q > 2 even; (26)
k = 2q2 + 1, n = 4, q ≥ 3 odd; (27)

k = 2q2 + 2q + 1, n = 4, q > 3 odd. (28)

Table 6 gives sizes of the known complete caps in PG(n, q), n ≥ 4, q ≥ 3. We
used sizes and bounds from [9,10], [23, Table 2], [28,32–37,42], [43, Table 4.3],
[49–52], [57, Table 4.5], [66], [68, Table I], [75,79]; see also the relations (12),
(13), (26)–(28).
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Table 6 The sizes of the known complete k-caps in PG(n, q),
n ≥ 4, q ≥ 3

n q t2(n, q) Sizes k of the known m′
2(n, q) m2(n, q) References

complete caps with
t2(n, q) ≤ k ≤ m′

2(n, q)

4 3� 11 k = 11 and 19 20 [40,43,75,79]
16 ≤ k ≤ 19

4 4� 20 20 ≤ k ≤ 40 40 41 [10,11,23,33,36,42,43,68,
75,79]

4 5 21 ≤ 31 ≤ k ≤ 66 ≤ 88 �, [23,35–37,40,43,57,66,79]
4 7 29 ≤ 56 ≤ k ≤ 124 and ≤ 238 �, [23,35–37,40,43,57,66,79]

k = 126, 132
5 3 20 ≤ k = 22 and 48 56 �, [9,23,35,43,52,57,68,75]

26 ≤ k ≤ 48
5 4 31 ≤ 50 ≤ k ≤ 108 and ≤ 153 �, [23,35,43,49,50,57,66,75]

k = 112, 126
6 3 34 ≤ k = 44 and ≤ 136 �, [9,23,28,43,57,75]

46 ≤ k ≤ 103,
and k = 112

6 4 61 ≤ 114 ≤ k ≤ 288 ≤ 607 �, [23,34,35,43,52,57]
7 3 58 ≤ 88 ≤ k ≤ 238 and ≤ 404 �, [23,28,35,43,52,57,75]

243 ≤ k ≤ 248
8 3 100 ≤ 176 ≤ k ≤ 532 and ≤ 1208 �, [23,28,35,43,52,57,75]

k = 534
9 3 172 ≤ 352 ≤ k ≤ 1214 and ≤ 3247 �, [12,23,28,32,35,43,57,75]

k = 1216

In Table 6 we use the fact that in the ternary projective spaces the doubling
construction, leaving from a complete cap, gives rise to a new one:

Theorem 7. [28, Theorem 1] Let K ′ be a complete cap in PG(n, 3) and let
K1 = {(0, a) | a ∈ K ′} ∪ {(1, a) | a ∈ K ′}. Then K1 is a complete cap in
PG(n + 1, 3).

Corollary 1. The upper bound on the smallest size t2(n, 3) of a complete cap
in the ternary projective space PG(n, 3) satisfies

t2(n, 3) ≤ 11 · 2n−4, n ≥ 4. (29)

Proof. Use (n − 4)-fold doubling of an 11-cap in PG(4, 3). �
At the present time no caps in PG(n, 3) of size smaller than the bound in (29)
are known. The 11-cap in PG(4, 3) corresponds to the perfect ternary Golay
code [74].

The complete spectrum of possible sizes for complete caps in PG(4, 3) is given
in [40]; see also [43]. The result t2(4, 4) = 20 and a complete 21-cap in PG(4, 4)
are obtained in [10,11]. Together with the results of [23, Table 2] this provides
the completeness of the spectrum of sizes for complete caps in PG(4, 4).

For lower bounds on t2(n, q) we use (20) and tables in [23,43].
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A complete 20-cap in PG(4, 4) was obtained by T. Penttila and G. F. Royle
in 1995; see also [43,68].

The complete k-caps with k = 31 in PG(4, 5) and k = 50 in PG(5, 4) are
obtained in [66]. The complete 22-cap in PG(5, 3) is noted in [68, Table I].
The complete k-caps with k = 44 in PG(6, 3), k = 88 in PG(7, 3), k = 176
in PG(8, 3), and k = 352 in PG(9, 3) are written in [23, Table 2]. They come
from Corollary 1.

The exact values m2(4, 4) = 41 and m′
2(4, 4) = 40 are given by [33] and

[36]. The relation m2(5, 3) = 56 is provided by the Hill 56-cap in PG(5, 3)
[35,52], [57, Table 4.2(i)]. The results m′

2(5, 3) = 48 and m2(6, 3) ≤ 136 are
described in [9]. Complete k-caps with k = 248 in PG(7, 3), k = 524, 532 in
PG(8, 3), k = 1120 in PG(9, 3), k = 66 in PG(4, 5), and k = 132 in PG(4, 7),
are constructed in [35]. The Glynn complete 126-cap in PG(5, 4) is obtained
in [49]; another description is given in [35]. The complete 288-cap in PG(6, 4)
is described in [34], where the estimate m2(6, q) ≥ q4 + 2q2 is obtained; see
also [35, Table 4]. The complete 1216-cap in PG(9, 3) is constructed in [32].

The estimates m2(4, 5) ≤ 88 and m2(4, 7) ≤ 238 are obtained in [37]. The
following are also used:

m2(n, q) ≤ qm2(n − 1, q) − (q + 1), q > 2, n ≥ 4; (30)

m2(n, q) ≤ qn+1 n + 2
2(n + 1)2

, q > 2, n ≥ 3; (31)

see [52, Theorem 5.5], [57, Table 4.5] for (30) and [12] for (31).

Proposition 1. The following are upper bounds for m2(n, q):

(i) m2(5, 4) ≤ 153;
(ii) m2(6, 4) ≤ 607;
(iii) m2(7, 3) ≤ 404;
(iv) m2(8, 3) ≤ 1208;
(v) m2(9, 3) ≤ 3247.

Proof. By [50], a [154, 154 − 6, 4]4 code does not exist. So, m2(5, 4) ≤ 153. By
(30), from m2(5, 4) ≤ 153 we obtain m2(6, 4) ≤ 607 and from m2(6, 3) ≤ 136
we get m2(7, 3) ≤ 404, m2(8, 3) ≤ 1208. Finally, by (31) we obtain m2(9, 3) ≤
3247. �
The complete k-caps with k = 56 in PG(4, 7), k = 114 in PG(6, 4), and k = 534
in PG(8, 3) noted by the bold font in Table 6 are obtained by computer in this
work with the help of the randomized greedy algorithms [17,23]. So,

t2(4, 7) ≤ 56, t2(6, 4) ≤ 114, 534 ≤ m2(8, 3).

Also, by the greedy algorithms, many new sizes k for complete k-caps in the
region t2(n, q) ≤ k ≤ m′

2(n, q) were obtained:

k = 62 − 65 in PG(4, 5);
k = 114 − 124, 126 in PG(4, 7);
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Table 7 The sizes t2(3, q) of the known small complete caps
in PG(3, q)

q t2(3, q) t2(3, q) Ref. q t2(3, q) t2(3, q) Ref.
7 17 3q − 4 = 17 [13,66] 43 63 ≤ 3q + 25 = 153 �
8 14 ≤ 3q − 4 = 20 [66] 47 69 ≤ 3q + 28 = 169 �
9 15 ≤ 3q − 3 = 24 [66] 49 72 ≤ 3q + 33 = 180 �
11 18 ≤ 3q − 3 = 30 [66] 53 77 ≤ 3q + 36 = 195 �
13 21 ≤ 3q − 3 = 36 [25,26] 59 86 ≤ 3q + 43 = 220 �
16 25 ≤ 2q + 9 = 41 [68],Th. 6 61 89 ≤ 3q + 47 = 230 �
17 26 ≤ 3q = 51 [23] 64 93 ≤ 2q + 22 = 150 Th. 6
19 29 ≤ 3q + 1 = 58 [25,26] 67 97 ≤ 3q + 56 = 257 �
23 35 ≤ 3q + 3 = 72 [25,26] 71 103 ≤ 3q + 62 = 275 �
25 38 ≤ 3q + 6 = 81 � 73 106 ≤ 3q + 68 = 287 �
27 41 ≤ 3q + 8 = 89 � 79 114 ≤ 4q − 4 = 312 �
29 43 ≤ 3q + 9 = 96 � 81 117 ≤ 4q − 3 = 321 �
31 46 ≤ 3q + 11 = 104 � 83 120 ≤ 4q − 2 = 330 �
32 48 ≤ 2q + 14 = 78 Th. 6 89 128 ≤ 4q − 1 = 355 �
37 55 ≤ 3q + 17 = 128 � 97 140 ≤ 4q + 6 = 394 �
41 60 ≤ 3q + 22 = 145 � 128 ≤ 2q + 34 = 290 [48],Th. 6

k = 45 − 47 in PG(5, 3);
k = 47, 49, 51, 95 − 103 in PG(6, 3);
k = 255 − 287 in PG(6, 4);
k = 189 − 223, k = 225 − 238, k = 243 − 247 in PG(7, 3);
k = 381 − 447, k = 449 − 523, k = 525 − 531 in PG(8, 3);
k = 785 − 895, k = 897 − 1119, k = 1121 − 1214 in PG(9, 3).

See also [23, Table 2].

To obtain new computer results for relatively large caps in the spaces PG(4, 5),
PG(4, 7),PG(7, 3),PG(8, 3),PG(9, 3), we used the matrix representations of
the complete k-caps with k = 66, 132, 248, 532, 1216 given online, in Yves
Edel’s homepage. The shortened matrices were applied as starting points for
the greedy algorithms. Similarly, for PG(5, 3) we used the matrix of the Hill 56-
cap written in [35]; for PG(6, 3) we applied the matrix of the 112-cap obtained
by the doubling construction of Theorem 7; for PG(6, 4) we took the matrix
of the 288-cap described in [34]. Finally, in PG(6, 3) for new computer results
for small caps we used the twofold doubling 11-cap in PG(4, 3) written in [40].

7. Small caps in PG(n, q), n ≥ 3, q > 2

Tables 7 and 8 give sizes of the known small complete caps in PG(3, q) and
PG(n, q), n ≥ 4.
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Table 8 The sizes t2(n, q) of the known small complete caps
in PG(n, q)

n q t2(n, q) t2(n, q) Ref. n q t2(n, q) t2(n, q) Ref.
4 4 20 20 [10,11,68] 5 4 31 ≤ 50 [66]
4 5 21 ≤ 31 [66] 5 5 36 ≤ 82 �
4 7 29 ≤ 56 � 5 7 70 ≤ 174 �
4 8 33 ≤ 53 � 5 8 91 ≤ 181 �
4 9 39 ≤ 87 [23] 5 9 115 ≤ 302 �
4 11 52 ≤ 121 � 6 3 34 ≤ 44 [28]
4 13 67 ≤ 162 � 6 4 61 ≤ 114 �
4 16 91 ≤ 153 [20,21], (32) 6 5 80 ≤ 131 [28]
4 17 100 ≤ 255 � 6 7 121 ≤ 349 [28]
5 3 20 ≤ 22 [68] 6 8 256 ≤ 437 �

From Tables 3, 7 and [43, Table 3.1], the following result is obtained.

Theorem 8. In spaces PG(3, q),

t2(3, q) ≤ 3q for 2 ≤ q ≤ 17,

t2(3, q) < 4q for 2 ≤ q ≤ 89.

In Table 8 for q = 16 we use the complete k-caps in PG(n, q), q = 2h ≤ 215,
constructed in [20,21]. Their parameters are as follows:

k = bq

(
q

n−2
2 + q

n−4
2 + q

n−6
2 + · · · + q + 1

)
, n ≥ 4 even.

k = 2q
n−1

2 + bq

(
q

n−3
2 + q

n−5
2 + q

n−7
2 + · · · + q + 1

)
, n ≥ 5 odd.

(32)

Here bq is as in the following table, cf. Sect. 2:

log2 q 3 4 5 6 7 8 9 10 11 12 13 14 15
bq 6 9 14 22 34 55 86 124 201 307 461 665 993

For PG(n, 8), n = 4, 5, 6, we use the shortened matrices of the caps of (32) as
starting points for the greedy algorithms.

8. On the spectrum of sizes of binary complete caps

In the binary space PG(n, 2) we consider only k-caps with k ≤ 2n−1 since all
possible sizes of binary complete caps with k ≥ 2n−1 + 1 are known [29].

Theorem 9. [29, Theorem 1] In the space PG(n, 2), n ≥ 3, a complete k-cap,
with k ≥ 2n−1 + 1, has size k = 2n−1 + 2n−1−g for some g = 0, 2, 3, . . . , n − 1.
For each g = 0, 2, 3, . . . , n − 1, there exists a complete (2n−1 + 2n−1−g)-cap in
PG(n, 2). Also, every such complete cap can be formed by repeated application
of the doubling construction to a complete (2m−1 +1)-cap of PG(m, 2), m < n.
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Table 9 The sizes of the known complete k-caps in PG(n, 2),
k ≤ 2n−1

n t2(n, 2) Sizes k of the known small complete References
caps with t2(n, 2) ≤ k ≤ 2n−1

5� 13 13 [40,45]
6� 21 f(6) = 21 ≤ k ≤ 31, k �= 23, 30 [19,23,24,45,

58,80]
7 25 ≤ f(7) = 28 ≤ k ≤ 63 [16,19,23,24,

45,80]
8 34 ≤ f(8) = 43 ≤ k ≤ 127 [16,19,23,24,

45,80]
9 47 ≤ k = f(9) = 57 and 59 ≤ k ≤ 255 [16,19,23,24,

45,80]
10 65 ≤ k = f(10) = 89 and 91 ≤ k ≤ 511 [16,19,23,24,

45,80]
11 92 ≤ k = f(11) = 117, k = 121 and 123 ≤ k ≤ 1023 [16,19,23,24,

45,80]
12 129 ≤ k = f(12) = 181, k = 185 and 187 ≤ k ≤ 2047 [16,19,23,24,

45,80]

The structure and properties of complete (2m−1 + 1)-caps are studied in [14];
see also the references there and [29]. Numerous constructions of binary com-
plete caps of distinct sizes are given in [14,19,24,29,45,58,62,80]; see also the
references there. The smallest known complete k-caps in PG(n, 2), n ≥ 6, with
k = f(n) are constructed in [45]. Here

f(6) = 21, f(7) = 28,
f(2m) = 23 × 2m−3 − 3, m ≥ 4, (33)

f(2m − 1) = 15 × 2m−3 − 3, m ≥ 5.

In PG(n, 2), n = 2, 3, 4, complete k-caps with k ≤ 2n−1 do not exist. For n = 5,
there is only one such cap with k = 13; see [40,43,54] and the references there.

Table 9 updating [19, Tables 1, 3] gives the sizes of the known complete k-caps
in PG(n, 2), k ≤ 2n−1, n ≤ 12. For n = 6 completeness of the spectrum is
proved in [58]. A 59-cap in PG(9, 2) is obtained in [24].

In Table 9 the lower bounds on the length of linear codes with covering radius
R = 2 and codimension n + 1 [16] are taken as the lower bounds on t2(n, 2)
for 7 ≤ n ≤ 12. We use the fact that the dual code of a complete cap has
R = 2 [56].

The following are conjectures on sizes of binary complete caps.

Conjecture 2. [29, Remark 4], [19]: In the space PG(n, 2) a complete 2n−1-cap
does not exist.
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Conjecture 3. [19,23]: For n ≥ 7 in the space PG(n, 2) there exist complete
caps of all sizes k with f(n) ≤ k ≤ 2n−1 − 1, where f(n) is defined in (33).

Conjecture 4. For n ≥ 6 in the space PG(n, 2) the bound is t2(n, 2) = f(n).

By Table 9, Conjecture 2 is proved for n = 5, 6, Conjecture 3 holds for n = 7, 8,
and Conjecture 4 is proved for n = 6.
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[73] Pellegrino, G.: Sulle calotte complete, non ovaloidi, dello spazio PG(3, q), q dis-
pari. Rendiconti Circolo Matematico di Palermo Ser. II 47, 141–168 (1998)

[74] Pless, V.S., Huffman, W.C., Brualdi, R.A.: An introduction to algebraic codes.
In: Pless, V.S., Huffman, W.C., Brualdi, R.A., (eds.) Handbook of Coding
Theory, vol. 1, pp. 3–139. Elsevier, Amsterdam (1998)

[75] Segre, B.: Le geometrie di Galois. Ann. Mat. Pura Appl. 48, 1–97 (1959)

[76] Segre, B.: On complete caps and ovaloids in three-dimensional Galois spaces of
characteristic two. Acta Arith. 5, 315–332 (1959)

[77] Storme, L., Van Maldeghem, H.: Cyclic caps in PG(3, q). Geom. Dedicata 56,
271–284 (1995)



58 A. A. Davydov et al. J. Geom.
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