Learning Volatility of Discrete Time Series
Using Prediction with Expert Advice

Vladimir V. V’yugin

Institute for Information Transmission Problems, Russian Academy of Sciences,
Bol’shoi Karetnyi per. 19, Moscow GSP-4, 127994, Russia
vyugin@iitp.ru

Abstract. In this paper the method of prediction with expert advice is
applied for learning volatility of discrete time series. We construct arbi-
trage strategies (or experts) which suffer gain when “micro” and “macro”
volatilities of a time series differ. For merging different expert strategies
in a strategy of the learner, we use some modification of Kalai and Vem-
pala algorithm of following the perturbed leader where weights depend
on current gains of the experts. We consider the case when experts one-
step gains can be unbounded. New notion of a volume of a game v; is
introduced. We show that our algorithm has optimal performance in the
case when the one-step increments Av, = v, — v.—1 of the volume satisfy
Avy = o(ve) as t — oo.

1 Introduction

In this paper we construct arbitrage strategies which suffer gain when “micro”
and “macro” volatilities of a time series differ. For merging different expert
strategies in a strategy of the learner, we use methods of the theory of prediction
with expert advice.

Using Cheredito [2] results in mathematical finance, Vovk [I4] considered two
strategies which suffer gain when prices of a stock follow fractional Brownian
motion: the first strategy shows a large return in the case when volatility of the
time series is high, the second one shows a large return in the opposite case.

The main peculiarity of these arbitrage strategies is that their one-step gains
and losses can be unrestrictedly large. Also, there is no appropriate type of a
loss function for these strategies, and we are forced to consider general gains and
losses. We construct a learning algorithm merging online these strategies into a
one Learner’s strategy protected from these unbounded fluctuations as much as
possible.

Prediction with Expert Advice considered in this paper proceeds as follows.
A “pool” of expert strategies (or simply, experts) ¢ = 1,... N is given. We are
asked to perform sequential actions at times t = 1,2,...,T. At each time step
t, experts ¢ = 1,... N receive results of their actions in form of their gains or
losses st. In what follows we refer to si as to gains.

At the beginning of the step t Learner, observing cumulated gains si., | = s%+
...+ st | of all experts i = 1,... N, assigns non-negative weights w! (summing
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to 1) to each expert ¢ and suffers a gain equal to the weighted sum of experts
gains 5, = YN | wisl.

The cumulative gain of the learner on first 7" steps is equal to 5.7 = Zthl St.

This can be interpreted in probabilistic terms as follows. On each time step
t, Learner choose to follow an expert ¢ according to the internal distribution
P{I; =i} =wi, i=1,...N; at the end of step ¢ Learner receives the same gain
s% as the ith expert and suffers Learner’s cumulative gain s1.; = $1.4—1 + s%

Let E(st) denote the Learner’s expected one-step gain according to this ran-
domization; it coincides with the weighted sum s; of the experts gains. The
cumulative expected gain of our learning algorithm on first T steps is equal to
E(s1.1) = ZtT:1 E(st). Evidently, 1.7 = E(sy.7) for all T

The goal of the learner’s algorithm is to perform in terms of 1.7 = FE(s1.7)
almost as well as the best expert in hindsight in the long run.

In the traditional framework of prediction with expert advice, it is supposed
that one-step gains of experts are bounded, for example, 0 < si < 1 for all i and
t. We allow gains to be unbounded. We consider also the case when the notions
of loss and gain functions are not used.

In this paper we use the method of following the perturbed leader. This
method was discovered by Hannan [5]. Kalai and Vempala [7] rediscovered this
method and published a simple proof of the main result of Hannan. They called
the algorithm of this type FPL (Following the Perturbed Leader). Hutter and
Poland [6] presented a further developments of the FPL algorithm for count-
able class of experts, arbitrary weights and adaptive learning rate. Also, FPL
algorithm is usually considered for bounded one-step losses: 0 < si < 1 for all i
and ¢.

The similar results can be achieved by other aggregate strategies, like Weighted
Majority (WM) algorithm of Littlestone and Warmuth [8] or algorithm “hedge”
of Freund and Schapire [4]. The FPL algorithm has the same performance as the
WDM-type algorithms up to a factor v/2. A major advantage of the FPL algorithm
is that its analysis remains easy for an adaptive learning rate, in contrast to WM-
derivatives (see remark in [6]).

Most papers on prediction with expert advice either consider bounded losses
or assume the existence of a specific loss function. The setting allowing un-
bounded one-step losses (or gains) do not have wide coverage in literature; we
can only refer reader to [I], [I0], where polynomial bounds on one-step losses
were considered.

In this paper, we present some modification of Kalai and Vempala [7] algo-
rithm of following the perturbed leader (FPL) for the case of unrestrictedly large
one-step expert gains si € (—0o,+00) not bounded in advance. This algorithm
uses adaptive weights depending on past cumulative gains of the experts.

t

We introduce new notions of volume of a game v, = max; |s;| and scaled
j=1
fluctuation of the game fluc(t) = Av;/vs, where Avy = vy — vy for t > 1.

In Section 2] we present a game with two zero-sum experts which suffer gain
or loss when micro and macro volatilities of stock prices differ. These gains and
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losses cannot be bounded in advance. The notion of the volume of a game is
natural from this financial point of view.

In Section Bl we consider a more general problem - we consider a game with
N experts, where these experts suffer unbounded gains si € (—oo,+00). We
present some probabilistic learning algorithm merging the experts decisions and
prove that this algorithm is performed well under very broad assumptions.

In Section Ml we discuss a derandomized version this algorithm for the case of
two zero-sum experts with arbitrary one-step gains from Section 2l

We show in Theorem [l (Section [3) that if fluc(t) < (¢) for all ¢, where ()
is a non-increasing computable real function such that 0 < ~v(¢t) < 1 for all
t, then the algorithm of following the perturbed leader with adaptive weights
constructed in Section Bl has the performance

T
B(sir) > max sip—2V/6(1+IN) ;w»“mvt.

If v(t) — 0 as t — oo this algorithm is asymptotically consistent in a modified
sense

1 .
liminf — = ) > 1
iinf = E(syr — max s.p) 20, (1)

where s1.7 is the total gain of our algorithm on steps < T'.

Proposition [T of Section Bl shows that if the condition Avy = o(v;) is violated
the cumulative gain of any probabilistic prediction algorithm can be much less
than the gain of some expert of the pool.

2 Arbitrage Strategies

We consider a time series as a series of some stock prices. Then each expert from
the pool will represent a method of playing on the stock market.

Let K, M and T be positive integer numbers and let the time interval [0, KT
be divided on a large number KM of subintervals. Let also S = S(¢) be a
function representing a stock price at time ¢. Define a discrete time series of
stock prices

So =85(0),81 =S(T/(KM)), Sy =S2T/(KM))...,Skm = S(T). (2)
In this paper, volatility is an informal notion. We say that the sum

K-1

Z (Se+nyr — Sir)?

i=0
represents the macro volatility and the sum

KT-1

> (A8,

=0
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where AS; = S;41 — S;, i =1,... KT, represent the micro volatility of the time
series ([2)). In this paper for simplicity we consider the case K = 1.

Informally speaking, the first strategy will show a large return if (Sg—Sp)? >

T—1

> (AS;)?; the second one will show a large return when (Sy — Sp)? <
i=0

1

3" (AS;)2. There is an uncertainty domain for these strategies, i.e., the case
i=0

when both > and < do not hold[]

We consider the game between an investor and the market. The investor can
use the long and short selling. At beginning of time step ¢ Investor purchases the
number C} of shares of the stock by S;_1 each. At the end of trading period the
market discloses the price Sy;1 of the stock, and the investor incur his current

income or loss s; = CyAS; at the period t. We have the following equality

T-1
(St —S0)* = (Z ASy)? =
P
T-1 T-1
2(S; — So)AS; + S (ASy)?. 3)
t=0 t=0

The equality [B]) leads to the two strategies for investor which are represented
by two experts. At the beginning of step ¢ Experts 1 and 2 hold the number of
shares

Cy =20(S; — So), (4)
C‘t2 = _Ctlv (5)

where C' is an arbitrary positive constant.
1

These strategies at step ¢ earn the incomes s} = 2C(S;—Sy)AS; and s7 = —s;.
The strategy () earns in first 7" steps of the game the income

T-1
st = Y51 = 20((Sr = 50)* = 3_(AS)?),
t=1 t=1
The strategy (B]) earns in first 7 steps the income s3,;- = —s7 .
The number of shares C} in the strategy (@) or number of shares C? = —C} in
the strategy (B)) can be positive or negative. The one-step gains s} and s? = —s;

are unbounded and can be positive or negative: si € (—oco, +00).

! The idea of these strategies is based on the paper of Cheredito [2] (see also
Rogers [11], Delbaen and Schachermayer [3]) who have constructed arbitrage strate-
gies for a financial market that consists of money market account and a stock whose
price follows a fractional Brownian motion with drift or an exponential fractional
Brownian motion with drift. Vovk [I4] has reformulated these strategies for discrete
time. We use these strategies to define a mixed strategy which incur gain when
macro and micro volatilities of time series differ. There is no uncertainty domain for
continuous time.
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We analyze this game in the follow leader framework. We introduce Learner
that can choose between two strategies [{@)) and (&).

The following simple example of zero sum experts shows that even in the case
where one-step gains of experts are bounded Learner can perform much worse
than each expert: let the current gains of two experts on steps ¢t =0,1,...,6 be
3(1))1,2’3,4’5,6 =(1/2,-1,1,-1,1,—1,1) and 33)1,2’3,4’5,6 =(0,1,-1,1,—-1,1,-1).
Suppose that s§ = s = 0. The “Follow Leader” algorithm always chooses the
wrong prediction; its income is s1.¢ = —5.5.

We solve this problem in Section [3] using randomization of the experts cumu-
lative gains.

3 The Follow Perturbed Leader Algorithm with Adaptive
Weights

We consider a game of prediction with expert advice. Let at each step ¢ of the
game all N experts receive arbitrary one-step gains si € (—oo0, +00),i=1,... N,
and the cumulative gain of the ith expert after step t is equal to si,, = si., | +si.
A probabilistic learning algorithm of choosing an expert presents for any i the
probabilities P{I; = i} of following the ith expert given the cumulative gains
si.,_, of the experts i = 1,... N in hindsight.

Probabilistic algorithm of choosing an expert.
FORt=1,...T

Given past cumulative gains of the experts si., ; choose the expert i, where
i=1,...N, with probability P{I; = i}.

Receive the one-step gains at step ¢ of the expert si and suffer one-step gain
s¢ = st of the master algorithm.
ENDFOR

The performance of this probabilistic algorithm is measured in its expected
regret

E( max_sir —svr),

where the random variable s;.p is the cumulative gain of the master algorithm,
st.p, i =1,...N, are the cumulative gains of the expert algorithms, F is the
mathematical expectation.

In this section we explore asymptotic consistency of probabilistic learning
algorithms in case of unbounded one-step gains. A probabilistic algorithm is
called asymptotically consistent if

1 )
liminf —F(sy.7 — tn) > 0. 6
il Bl = max, sir) 2 ©)
Notice that then 0 < si < 1 all expert algorithms have total gain < T on
first T" steps. This is not true for the unbounded case, and there are no reasons
to divide the expected regret (6) on 7. We modify the definition (@) of the
normalized expected regret as follows. Define the volume of a game at step ¢
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¢
vy = Zmax|s§|.
(2
j=1

Evidently, v;_1 < v for all t > 1. Put vy = 0.
A probabilistic learning algorithm is called asymptotically consistent (in the
modified sense) in a game with N experts if

1 .
liminf —FE(s1.7 — ‘) > 0. 7
it DB = max, sior) 2 @
A game is called non-degenerate if v; — 0o as t — oo.

Denote Avy = vy — v4—1 for ¢ > 1. The number

fluc(t) = A0 _ maxi || (8)
Ut Ut
is called scaled fluctuation of the game at the step ¢ (put 0/0 = 0).
By definition 0 < fluc(t) <1 for all ¢ > 1.
The following simple proposition shows that any probabilistic learning algo-
rithm cannot be asymptotically optimal for some game such that fluc(t) 4 0 as
t — oo. For simplicity, we consider the case of two experts.

Proposition 1. For any probabilistic algorithm of choosing an expert and for
any € > 0 two experts exist such that

for all t, where s1.¢ is the cumulative gain of this algorithm.

Proof. Given a probabilistic algorithm of choosing an expert and e such that
0 < € < 1, define recursively one-step gains s} and s? of expert 1 and expert 2
at any step t = 1,2,... as follows. By s}, ; and s2.,_; denote the cumulative
gains of these experts incurred at steps < ¢ — 1; let v4_; be the corresponding
volume, where t = 1,2,....

Define vg = 1 and M; = 4v;_q /e for ¢t > 1.

For t > 1, define s; = 0 and s? = M, if P{I; = 1} > 3, and define s} = M,
and st2 = 0 otherwise. Let for t > 1, v; be the volume of the game.

Let s; be one-step gain of the master algorithm and s;.; be its cumulative
gain at step ¢ > 1. By definition for all ¢ > 1,

1
E(St) = S%P{It = 1} + S?P{It — 2} < §Mt-
Evidently, F(s11) = E(s1) and E(s1.1) = E(s1.4—1) + E(s;) for all t > 2. Then

E(s1:4) < 3(1+¢/2)M, for all t > 1. Evidently, vy = vs—1 + M; = My(1+ €/4)
and M; < maxsi,, for all ¢ > 1.
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Therefore, the normalized expected regret of the master algorithm is bounded
from below

%(1 — 6/2)Mt >

1
M0t 22079

—B(max s}, — s1.¢) >
Vt 7
for all £. A

Let £%,... &N be a sequence of i.i.d random variables distributed according to
the exponential law with the density p(x) = exp{—x}.

Let v(¢) be a non-increasing real function such that 0 < y(¢t) <1 for all ¢; for
example, y(t) = ¢t~°, where § > 0 and ¢ > 1. Define

1 In 1+In N
= |l1-=-—6__ d
oy ( o (1) an (9)

o= ()™ = [T ()2, (10)

for all ¢P
We consider an FPL algorithm with a variable learning rate
1
€ = y (11)
HtVt—1

where p; is defined by (I0) and the volume v;—; depends on experts actions on
steps < t. By definition vy > v;—1 and py < pg—q fort =1,2,.... Also, if () — 0
ast — oo then u; — 0 as t — oo.

We suppose without loss of generality that s{ = vy = 0 for all i and ey = oco.

The FPL algorithm is defined as follows:

FPL algorithm.
FORt=1,...T

Define I; = argmax;{si, ; + éfi}, where € is defined by () and i =
1,2,...N

Receive one-step gains s¢ for experts i = 1,..., N, and receve one-step gain
si* of the FPL algorithm.
ENDFOR

T
Let s1.p = > sft be the cumulative gain of the FPL algorithm.
i=1
The following theorem gives a bound for regret of the FPL algorithm. It
shows also that if the game is non-degenerate and Av; = o(v¢) as t — oo
with algorithmic bound then the FPL-algorithm with variable parameters pu; is

asymptotically consistent.

2 The choice of the optimal value of a; will be explained later. It will be obtained by
minimization of the corresponding member of the sum ([@0) below.
The definition (@) is invalid for v(t) = 1. In that follows for v(¢) = 1, we will use the
values (7(t))** and (y(t))'~** defined by (IQ).

3 If the maximum is achieved for more then one different i choose the minimal such i.
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Theorem 1. Let v(t) be a non-increasing computable real function such that
0<~(t) <1 and

fluc(t) < ~(¢) (12)

for all t. Then the expected gain of the FPL algorithm with variable learning rate
(I1) is satisfied

T
E(s1.7) > miaxs;T —2\/6(1+InN) > (v(t)"/* Av. (13)

for all T.
If the game is non-degenerate and v(t) — 0 as t — oo this algorithm is
asymptotically consistent

| i
11}1110%f EE(SLT —, Dnax_ si.p) > 0. (14)
Proof. The analysis of optimality of the FPL algorithm is based on an inter-
mediate predictor IFPL (Infeasible FPL).
IFPL algorithm.
FORt=1,...T
Define
1
6:& = (15)
MtV
where v; is the volume of the game at step ¢ and p; is defined by ([I0).
Also, define J; = argmax,{s,, + -¢'}.
Receive the one step gain 5,;] ¢ of the IFPL algorithm.
ENDFOR
The IFPL algorithm predicts under the knowledge of €, and si.,,, i =1,... N,
which may not be available at beginning of step ¢. Using unknown value of ¢}
and si,, is the main distinctive feature of our version of IFPL.
For any t we have

Iy = argmax;{s},_; + 6_51}7
¢

_ 1 . . 1
Jy = axgmas,{si,, + €'} = argmax, {sh,_y + 5+ €}
t t

The expected one-step and cumulated gains of the FPL and IFPL algorithms at
step t are denoted

Iy = E(sl*) and r, = E(s]"),
T T

li.r = th and .7 = ZT:&,
=1

= t=1
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respectively, where sft is the one-step gain of the FPL algorithm at step ¢ and
s;] t is the one-step gain of the IFPL algorithm, and E denotes the mathematical
expectation.

Lemma 1. The total expected gains of the FPL and IFPL algorithms satisfy the
inequality

T
e > rer — 6 (y(1)' ™ Aw, (16)
=1

for all T.
Proof. For any j = 1,...n and fixed reals cy,...cyn define
[shacs + i)
m; = max{sj.,_1 + —ci},
A

. 1 . ) 1

’

j = max{sy, + i} = max{sy, | + 5+ i}
i#£j [ i#£j €4

m

R 1 1., o JJ2 J2 1 .. s /
Let mj = 51,y + ¢ and mj = s1%_4 +5¢° + 7 Cia- By definition of mj
and since j; # j we have

) ) 1 )
[—— P J2 . J1 P
m; =S8y T8 + 6_/032 > 811 T p Cjr =

t t
i 1 11
S1:4—1+ e, O A . )=
t
1 1
N L 17
,’71]—’—(61/5 ft)cjl ( )

We compare conditional probabilities P{I; = j|¢' = ¢;,i # j} and P{J; = j|¢' =
Ci, i 7é .]}
The following chain of equalities and inequalities is valid:
P{I; = j|¢' = ciyi # 5} =
Psl+ € Zmyle =i # i} =
PE > e(m; — 1, 1)IE = civi# ) =
PLg > ei(mj — 51y 1) + (e — ) (my — 51, 1)IE" = cii # 5} =
. , . , . . 1 i i .
P{& > ex(my — s14-1) + (et — €)(s1h—1 — STu1 + acj1)|f =ci,i # j} = (18)
exp{—(et — 6;)(3{}:571 - ngt—l)} X (19)
j / j / 1 i . .
P{g 2z a(m; — st ) (e —a) el =ci# it 2 (20)

exp{—(e: — €)(s7h 1 — 51 1)} X

) ) ) 1 1 1 i ) )
P 2l = st bl = (5 - 1) o)+ @ d)rnle —eniz b= ()

€; €t
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exp{—(et — €)(s1ly_1 — s1._1) — €i57} X (22)

P& > e(m) — sl )€ =cii#jy = (23)
1 1 i j s }
expq — — S1h 1 — 81.41) — X
P{ (MtUt*1 utvt)( 1:t—1 1:t 1) L1ev;
i 1 i i . .
P{& > ——(s1,) —mjl¢’ = ci,i # j} >
Mt Ut

exp { Avy (sjl.:tfl - sjl.}t—l) _ Avt} % (24)

Mt Ut Vt—1 Mt Ut

P& > —(mj — s1,)|¢" = ci,i # j} =
Mt Ut

J1 _ g .
eXp{AUt (1+M)}P{Jt_lﬁl—ci,i#j}~ (25)

Mt Ut Vt—1

Here we have used twice, in (I8)-(I9) and in @ZI)-(22), the equality P{{ >
a+b} = e PP{¢ > a} for any random variable ¢ distributed according to the
exponential law. The equality 20)-(2I) follows from (I7) and e; > € for all ¢.
We have used in ([24)) the equality v; — v;—; = max; |si|.

The expression in the exponent ([28) is bounded

3%#1 - 3{:t71 <9 (26)
V-1 -
since S;r:l <1 for all t and <.
Therefore, we obtain
P{l, = jl¢' = ciyi # j} 2
3 AU i . .
exp{ -2 2 P = il = esi ) 2 (21)
e Ut
exp{=3(y(t)' "} P{J; = jl¢' = ci,i # j}. (28)
Since, the inequality ([28) holds for all ¢;, it also holds unconditionally
P{I; = j} > exp{=3(v(t))' "} P{J; = j}. (29)

forallt=1,2,...and j=1,...N.
Since s7 + Avy > 0 for all § and ¢, we obtain from (29))

(s] + Av))P(I, = j) >

M-

Il
-

lt + A’Ut = E(S{t + Avt) =
J

(s + Av))P(J; = j) =

M=

exp{-3(y(t))'~*}

J

exp{=3(y(t)" " H(E(s") + Avy) =
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exp{=3(y(t)' " }(re + Av;) >

(1= 3(() =) (ry + Avy) =

e + Avg — 3(y(£)) T (re + Avy) >

e + Avg — 6(y()) 7 Avy. (30)

In the last line of (B0) we have used the inequality |r;| < Awv,; for all ¢ and the
inequality exp{—3r} > 1 — 3r for all r.

Subtracting Av; from both sides of the inequality B0) and summing it by
t=1,...T, we obtain

T
iy > — 63 (y(1)' ™ Aw,

for all T. Lemma [l is proved. A
The following lemma gives a lower bound for the gain of the IFPL algorithm.

Lemma 2. The expected cumulative gain of the IFPL algorithm with the learn-
ing rate [I3) is bounded by

T
rir > maxst o, — (14+In N Z t))* Avy (31)
¢ t=1
for all T.

Proof. The proof is along the line of the proof from Hutter and Poland [6] with
an exception that now the sequence €} is not monotonic.

Let in this proof, s, = (s},...sY) be a vector of one-step gains and s;.; =
(s1.,,...5Y.,) be a vector of cumulative gains of the experts algorithms. Also,
let &€ = (¢1,...€N) be a vector whose coordinates are i.i.d according to the

exponential law random variables.
Recall that €, = 1/(usv:) and vy = 0, €9 = o0.
Define §1.; = s1.4 + ei,ﬁ for t = 1,2,.... Consider the one-step gains §; =
t

st + & (ei, — 6/1 ) for the moment. For any vector s and a unit vector d denote
t t—1

M(s) = argmaxye p{d - s},
where D = {(0,...1),...(1,...0)} is the set of N unit vectors of dimension N
and “” is the inner product of two vectors. We first show that

T

ZM(gl:t) “8¢ > M(S1r) - Sur (32)
=1

For T = 1 this is obvious. For the induction step from T'— 1 to T we need to
show that

M(81.7) - 57 > M(31.7) - S1.0 — M (81:7-1) - $1.7-1.
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This follows from 31.7 = §1.7—1 + S and
M(3y.7) - 517—1 < M(31:7-1) - S1:7—1-

We rewrite (32) as follows

T T
- - - _ 1 1
ZM(Sl:t) sy > M(81.1) - $1.0 — ZM(Sl:t) 23 <—, - = ) . (33)
t=1 t=1 & -1
By the definition of M we have
~ ~ £\
M(SlzT) *S1:T Z M(Sl:T) | ST+ ET -
T
I;leag)({d -s1r} + M(s1r) - Ea (34)
We have
T /1 1 T
(— - ,—) (1) - € =D (mevr — pu—1vr1) M (514 - . (35)
=1\ G-l t=1
We will use the inequality
0< B(M(814) -€) < B(M(€) - €) = E(max¢’) < 1+ N. (36)

The proof of this inequality uses an idea of Lemma 1 from [6]. We have for the
exponentially distributed random variables £*, i =1,... N,

P{m?xgi >a} = P{3i(¢' > a)} <Y P{¢' >a} = Nexp{—a}.  (37)

i=1
Since for any non-negative random variable 7, E(n) = TP{n > y}dy, by (37
0
we have E(max; ' —InN) = _OfoP{maxi E—InN >y}dy <
0
TNexp{—y —1In N}dy = 1. Therefore, E(max; ') <1+ 1InN.
0

By (B6]) the expectation of (B3] has the upper bound

T
ZE(M(§1::&) &) (peve — pre—1vp—1) < (1 +InN) ZHtAUt~
t=1 t=1

Here we have used the inequality py < py—1 for all ¢,
Since E(¢%) =1 for all 4, the expectation of the last term in (34)) is equal to

E (M(SLT) . %) = é = HTUT. (38)
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Combining bounds ([B33)-@8) and (38]), we obtain

T
rir =B (Z M(31) - st> >
T
maxsl 7+ prvr — (1+1InN) ZHtAUt >
max s§.p — (1 +1DN)ZMAU:&- (39)
=1
Lemma is proved. A.

We finish now the proof of the theorem.
The inequality (I6]) of Lemma [I and the inequality BI)) of Lemma [2] imply
the inequality

T
E(s17) > max sy — Do 6(y()' 7 + (L+ I N)(y(1))*) Ave. (40)

for all T'.

The optimal value ([@) of a; can be easily obtained by minimization of each
member of the sum (@) by ;. In this case u; is equal to ([I0) and Q) is
equivalent to (I3).

Let v(T) — 0 as T — oo and the game is non-degenerate, i.e., vp — 0o as

T — oco. We have Zle Avy = vy for all T. Then by Toeplitz lemma [13]

T
= (2\/6(1 +1nN)Z(~y(t))1/2Avt> -0

as T — oo. This limit and the inequality (I3)) imply the expected asymptotic
consistency ([d]). Theorem is proved. A

In [1] and [I0] polynomial bounds on one-step losses were considered. We also
present a bound of this type.

Corollary 1. Suppose that max; |s{| < ¢* for allt and and liminf;_ o 7% > 0,
where it = 1,...N and a, § are positive real numbers. Then

E(sy.7) > maxsi.p — O(v/(1 + 1nN))T1_%5+“

as T — oo, where y(t) = t=% and p; is defined by (I0).

4 Zero-Sum Game

In this section we derandomize the zero-sum game from Section 2l We interpret
the expected one-step gain F(s;) gain as the weighted average of one-step gains
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of experts strategies. In more detail, at each step ¢, Learner divide his investment
in proportion to the probabilities of expert strategies (@) and (Bl computed by
the FPL algorithm and suffers the gain

Gy = 2C(S) — So)(P{I = 1} — P{I; = 2}) AS,

at any step t, where C' is an arbitrary positive constant; G1.p = ZtT:1 Gy =
E(s1.7) is the Learner’s cumulative gain.

If the game satisfies |s}|/ S2'_, [s}| < ~(t) for all ¢ then by (3) we have the
lower bound

T
Grr > Istr| =8> (v(1)/?|s}]|
=1
for all T
Assume that y(t) = p for all t. Then Gy.p > |s}. | — 8u'/?vr for all T.

5 Conclusion

In this paper we study two different problems: the first of them is how use
the fractional Brownian motion of prices to suffer gain on financial market; the
second one consists in extending methods of the theory of prediction with expert
advice for the case when experts one-step gains are unbounded. Though these
problems look independent, the first of them serves as a motivating example to
study averaging strategies in case of unbounded gains and losses.

The FPL algorithm with variable learning rates is simple to implement and it
is bringing satisfactory experimental results when prices follow fractional Brow-
nian motion.

There are some open problems for further research. How to construct a de-
fensive strategy for Learner in sense of Shafer and Vovk’s book [12]? This means
that Learner starting with some initial capital never goes to debt and suffer a
gain when macro and micro volatilities differ. Also, a general problem is to de-
velop another strategies which suffer gain when prices follow fractional Brownian
motion.

In the theory of prediction with expert advice, it is useful to analyze the
performance of the well known algorithms (like WM) for the case of unbounded
gains and losses in terms of the volume of a game.

There is a gap between Proposition [l and Theorem [ since we assume in this
theorem that the game satisfies fluc(t) < v(¢) — 0, where ~(¢) is computable.
Does there exists an asymptotically consistent learning algorithm in case where
fluc(t) — 0 as t — oo with no computable upper bound?
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