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Consider the problem of coding for a source with compound side-
information &1 = (U, W1, W) whereld = {1,2}, W = {1,2.3,4}.
The SI sets for the two constituent source-side-information pairs of
random variables are as in Table I. This source is the dual of the channel
considered in Section I'V-C.

Observe that Si(a) N S2(b) # B,Va,b € U. The distinguisha-
bility graph for both source-side-information pairs is identical and is
the complete graph on I/, shown in Fig. 1(a), which we denote by
G. maxy Rw(Gr) = Rw(G) = 0 bit/channel use. However, given
any two sequences u” and u'", there exists a possible side-information
sequence w™ such that both (", w™) and (u'",w™) are observable
with probability greater than zero: at every coordinate i choose w;
from S1 (u;)NS2(u;). Thus, we can never reliably distinguish any pair
of source sequences based on the side-information, which implies that
the minimum asymptotic rate for this source is log 2 = 1 bit/sample,
which is consistent with Theorem 3 since G2 and G2 are edge free
graphs. Therefore, in general, R(Prrw,..w,,) is strictly greater than
maxy R(Py w, ). However, the minimum asymptotic rate is, somewhat
surprisingly, indeed max R(Frw, ) [11], [12] if Bob (but not Alice)
knows which of the M side-information sequences he is observing.

VI. THE COMPOUND CHANNEL: ASYMPTOTICALLY VANISHING
ERROR V. ZERO ERROR

We observe that there are a number of differences between the con-
ventional (asymptotically vanishing error) and zero-error scenarios.
First, the conventional capacity does not increase if the decoder has
side-information about the channel while the zero-error capacity does.
The difference arises because, even without side-information, the
decoder can almost reliably identify the channel in operation based on
the channel output, which yields C(€) = Cye.(€) in the conventional
case. However, if we require zero-error, almost reliable identification
is not sufficient and C°(€) < CY..(€), possibly with strict inequality.

The aforementioned phenomenon also leads to another difference: in
the conventional case, since the decoder can always effectively (almost
reliably) know the channel in operation, Cgec(€) < Conc(€). In the
zero-error case, this inequality holds often but not always. The excep-
tionis encountered when some G, 7, s # s’ in G(€) is the empty graph,
and no G5, s € S is empty. In this case, the encoder cannot convey
its knowledge to the decoder and o ( €) is zero while if the decoder
knew the channel in operation, transmission at nonzero rates would be
possible. Such a case arose in the example considered in Section IV.
Although C2.. < C9.. implies that C2,. = 0, in general, we could
have C°(€) < C3..(€) with neither quantity being zero. For example,
ifG = {G11,G12,G21, Go2} where G171 and Gas are both symmet-
rically directed complete graphs (edge set contains all ordered pairs of
distinct vertices) on K vertices and (712 and G2 are identical symmet-
rically directed graphs on K" vertices with a single pair of edges. From
the discussion in Section III, there exists a compound channel € whose
characteristic set of graphs G(€) = §. For this channel, C°(€) = 1
bit/channel use while CJ..(€) = log, K bits/channel use.
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Locally Optimal (Nonshortening) Linear Covering Codes
and Minimal Saturating Sets in Projective Spaces

Alexander A. Davydov, Giorgio Faina, Stefano Marcugini, and
Fernanda Pambianco

Abstract—A concept of locally optimal (LO) linear covering codes is in-
troduced in accordance with the concept of minimal saturating sets in pro-
jective spaces over finite fields. An LO code is nonshortening in the sense
that one cannot remove any column from a parity-check matrix without
increasing the code covering radius. Several g™ -concatenating construc-
tions of LO covering codes are described. Taking a starting LO code as a
“seed”, such constructions produce an infinite family of LO codes with the
same covering radius. The infinite families of LO codes are designed using
minimal saturating sets as starting codes. New upper bounds on the length
function are given. New extremal and classification problems for linear cov-
ering codes are formulated and investigated, in particular, the spectrum
of possible lengths of LO codes including the greatest possible length. The
complete computer classification of the minimal saturating sets in small ge-
ometries and of the corresponding LO codes is obtained.

Index Terms—Covering codes, covering density, covering radius, min-
imal saturating sets in projective geometry, nonshortening covering codes.

I. INTRODUCTION

We consider linear covering codes, saturating sets in the projective
spaces over finite fields, and connections between these objects. We
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introduce a new concept of locally optimal covering codes connected
with the concept of minimal saturating sets.

Let F, be the Galois field of ¢ elements and let F; = F;, \ {0}. A
g-ary linear code with codimension r has covering radius R if every
r-positional ¢g-ary column is equal to a linear combination of at most
R columns of a parity-check matrix of this code and R is the smallest
value with such property [1], [4], [17].

Let PG(v, q) be the v-dimensional projective space over F, [15],
[16]. For an integer ¢ with 0 < ¢ < v, a set of points S C PG(v, q) is
o -saturating if for any point € PG(v, ¢) there exist ¢+ 1 points in S
generating a subspace of PG(v, ¢) in which z lies and g is the smallest
value with such property [9]. The saturating sets are called “RR-span-
ning sets” in [2], “thick sets” in [3], “saturated sets” in [6], [20].

A p-saturating set S is called minimal if for every point P € S the
set S\ {P} is not p-saturating [3], [9], [18], [20].

Definition 1: A linear covering code is called locally optimal (LO)
if one cannot remove any column from the parity-check matrix of the
code without increasing the covering radius. An LO code can be called
also nonshortening in the sense mentioned.

Denote by [n, n — r, d], R a g-ary linear code of length n, codimen-
sion r, minimum distance d, and covering radius 1. In this notation
one may omit d and R. The length function /(r, R; ¢) is the smallest
length of an [n,n — 7], R code [2].

The points of a g-saturating n-set in PG(r — 1, ¢) can be considered
as columns of a parity-check matrix of an [n, n — ] R code with R =
o+ 1 [2], [5], [6], [9], [11], [14], [18]. Points of a minimal saturating
set form a parity-check matrix of an LO code.

The concept of LO covering codes essentially extends the region of
combinatorial investigations of linear codes. It allows us to introduce
new extremal and classification problems. For example, we propose to
study the maximal possible length m(r, R; ¢) of an [n,n — 7], R LO
code and the spectrum of possible lengths of LO codes. The known
extremal problems, e.g., the length function, also can be considered
effectively in the framework of LO codes.

In Section II, we consider new ¢ -concatenating constructions of
LO codes. These constructions take an LO code as a starting point and
produce an infinite family of LO codes of growing codimension with
the same covering radius and almost the same covering density as the
starting code. A parity-check matrix of a starting code is repeated ¢
times in a parity-check matrix of a new code. Constructions described
use ideas of works [4]-[6], [11] modifying them for LO codes.

In Section III, we consider new extremal problems connected with
the maximal possible length m(r, R; ¢) and the second greatest length
m'(r, R; q) of an [n,n — r], R LO code. We give here also new con-
structions of LO codes aimed at these problems.

In Section IV, we consider new classification problems connected
with the spectrum of possible lengths of LO codes. For ¢ < 137 we
give lengths n of [n,n — 3],2 LO codes known from literature and
obtained by computer in this work. With the help of computer we
obtained also the complete classification of [n,n — 7, d], R LO codes
for small r, ¢, R. To get the computer results mentioned we applied
geometrical methods treating parity-check matrices of LO codes as
minimal saturating sets. We propose also a geometrical construction
for LO codes. Then, using the computer results and the constructions
of Sections III as starting codes for ¢ -concatenating constructions
and for the geometrical construction, we design infinite families of
LO codes thereby showing ways for obtaining LO codes with distinct
lengths.

In Section V, we give new bounds on the length function. Using
the classification of Section IV we get a few new exact bounds. Ap-
plying geometrical computer approaches we found short [n, n — 4],3
LO codes, ¢ < 563, giving new upper bounds on (4, 3; ¢). We use
these codes as a starting point for a ¢" -concatenating construction and
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design an infinite family of LO codes improving upper bounds on the
length function I(3t + 1, 3;q).

Some results of this correspondence was represented without proofs
in [8].

II. ¢™-CONCATENATING CONSTRUCTIONS OF LOCALLY OPTIMAL
COVERING CODES

All matrices and columns below are g-ary. An element of Fm
written in a g-ary matrix denotes an rn-dimensional column that is
a g-ary representation of this element, and vice versa, we can treat a
g-ary m-dimensional column as an element of Fiym.

We can treat a matrix as the set of its columns.

The following lemma is evident.

Lemma 1: For ¢ > 2 an LO linear covering code always has the
minimum distance d > 3.

Further we consider only linear combinations of nonzero distinct
g-ary columns with nonzero g-ary coefficients. Such linear combina-
tions have the form L = ). ¢;h; where ¢; € F, h; € Fr,r > 1,
hi # hjifi # j.

Definition 2: Let H be a parity-check matrix of an [n, n —
code.

rlg R

i) Suppose that1 < v < R.If acolumn f € Fyr isequalto a
linear combination L of v columns from H then L is a gener-
ating ~v-combination for f.If the exact value of v is not impor-
tant one may say simply “a generating combination for f''. But
always, by definition, the number of summands of a generating
combination lies in the region 1, ..., R.

ii) A partition of the column set of the matrix H into nonempty
subsets is called an R-partition if for every column of F» there
is a generating combination from columns of H belonging to
distinct subsets.

iii) A partition of H into n one-element subsets is called trivial.

We give a general view of a ¢ -concatenating construction based
on the ideas of [4]-[6], [11]. Then we describe concrete variants taking
into consideration the local optimality.

Construction CC. We use a starting [no,no — ro]qR LO code Vg
with a parity-check matrix Hg = [h1hs2 ... hy,] where columns h; €
Fyro.Let m > 1 be an integer parameter. We suppose that Ho has
an R-partition Py to po subsets. For every column h; we assign an
indicator 3; € Fym so that if columns h; and h; belong to distinct
subsets of Py then 3; # ;. If h; and h; belong to the same subset
we may assign either 3; = 3; or 3; # [3; as well. We denote B =
{B1,B2,...,8n,}. Let A be a matrix with ro + Rm rows. The parity-
check matrix Hv of a new [n,n — (ro + Rm)], Rv code V has the
form

H, =[AB;y], By =[BB;...B,,] ¢))
h; h e hj
&1 & §qm
o /3]’51 /%EZ ce ,{fijm
B; = B3& 336 - Bigm 2)
BT BT B egm

where {517527 R 3&1’"} = qu,& = 0.
Let1 < 6 < R.If the zero ro-dimensional column has a generating
§-combination from columns of H belonging to distinct subsets of P

we say that to = 6. Else to = 0.
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We use the following notations: wm,,q = (¢ —1)/(¢— 1), Wy, is
a parity-check matrix of the [wm,, ¢, Wm,; — m];1 LO Hamming code,
0, is the zero matrix with k rows.

Construction CCy. Here R = 2, ¢ > po, B C F/m, ty = 0,
n = noq" + 2w 4

0., 0.,
A = Wm Om
0777, W’lﬂ,

Theorem 1: The code V' of Construction CCy has covering radius
Ry = 2.1tisan[n, n—(ro+2m)],2 LO code. Its parity-check matrix
H y; has a 2-partition into po subsets.

Proof: To prove Ry = 2 we show that an arbitrary nonzero
column C = (a,b1,bz) witha € Fyro, by, by € Fym, isequal to a
linear combination of at most two columns of Hy .

Casel) a = Z, L 8ihj, # 0, 51,80 € F, columns hy,, hj,

belong to dlstmct subsets of Po. We have

2
C= Z s,‘(h‘ji,m,j., /3‘]'1..77,;)
=1

where @; values are found from the equation system
2
Zsiwiﬁj‘i_l = by,
i=1
a=sih; #0,5 € F/.
We consider two variants.

C=si(hj,x1,85,21)+v(0,0,w),
C=sy(hjy, 21, B, 21) +0'(0,w',0),

Here, v,v' € Fy, w,w' € W,.

a=0.

Here (0,61,02) = vi(0,w,0) + v2(0,0,ws) where
vi,v2 € Fy, wi,wy € W,

Now we show that V' is an LO code. As the starting code V; is LO,
every column h; of H necessarily takes part in either Case 1 or Case 2.
If we remove a column (%, €, 3;€) from B; then there exist values of
by, bo for which the system of (3) gives z1 = £. Besides, for by = &s1,
by = €518, we have 1 = 2} = £ in Case 2. As result, the linear
combinations for C used in Cases 1 and 2 become impossible. So, all
columns of Bs; are essential.

Since 0 ¢ B the column (0,5,0), b # 0, can be represented only
as (0,0,0) = v(0,w,0), v € F/, w € W, Similarly, (0,0,0) =
v(0,0,w). So, we need also all columns of A.

We design a 2-partition Py of the matrix H . We partition the sub-
matrix By into po subsets corresponding to the 2-partition Pg. For
every j, all the columns of B; belong to the same subset of Pv-. It is
possible as above distinct columns of B; never take part in the same
linear combination for C. The columns of B; and B; belong to the
same subsets of Py if and only if columns h; and h; belong to the
same subsets of Py. Further, taking into account two variants of Case
2, we can inscribe the columns of the left part of A to some subset of
By, and columns of the right part of A to another subset of Bs,. [

w=1,2. 3)

Case 2)

xr = b] /S] .
T’l = bg/.‘?lﬁj’l.

Case 3)

Construction CCz. Here R = 2, ng > ¢™
=0,n = noq™ + W q

_ 0r0+777,
A= |: Wm :|

> po, B = Fym,

Theorem 2: The code V' of Construction CCs has covering radius
Ry = 2.1tisan [n, n— (ro+2m)],2 LO code. Its parity-check matrix
H v, has a 2-partition into 2po + 1 subsets.
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Proof: The condition B = Fi;m is possible since ny > ¢". One

can prove the theorem similarly to Theorem 1. In Case 3 for by # 0
the indicator 3; = b2/by always belongs to B = F,m. We put
(0,01,b2) = (hyy b1, 8ib1) — (h;, 0,0) including the situation by = ().
To get a 2-partition Py of the matrix H v/, in the beginning we parti-
tion By; into po subsets in the same manner as in Theorem 1 except for
inscribing columns of A. Then we partition every subset 7 obtained
into two subsets so that the first one consists of the columns (k;,0,0)
of all the submatrices B; belonging to 7 . The last subset of Py is A.0J

Construction CCz. Here R = 3, ¢ > po. B C Fym, ty = 0,
n = noq" + 3Wm 4

0., 0.,

0,
WYVL O‘HL OWL
A=
Om Wrn OTIL
0,, 0., W,

Theorem 3: The code V' of Construction CC3 has covering radius
Ry = 3.1tisan [n,n — (ro + 3m)],3 LO code.
Proof: We consider a nonzero column C = (a,by,bs,b3), a €
Fyro, b1,b2,b3 € Fym.
Case 1) a = S0 sih;, # 0,als; € F, all columns hj,
belong to distinct subsets of Pg.
We have

3
. 22
C= E si(}L]‘1,J'l‘,,/jj7wi,/3ji;lfi)

i=1
where «x; values are found from the linear system
3

au—1
E 523},

=1

=b., u=1,23. @)

Case2) a = Y., sihj, #0, 51,50 € FJ, columns hj,,hj,
belong to distinct subsets of Po.
We consider three variants with & = 1, 2, 3, respectively.
Forv, € Fy, gr € A, ,wy € W,,,, we have
C= Z s ( iy @ (L) . 5. m,(ik), ,{iimgk)) + Ve gk
2
Zsi;rgl“)/ﬁ’}:q =by, u= 'u,(ik) u(;') (5)
i=1
where {u{"), u{"} = {1.2,3}\ {k}.
g1 = (0"1U1./0,0), g2 = (0,0,102,0)./ g3 =
(0,0,0,ws3). In the kth variant we solve the system
of two equations and find ; (*) The systems for k = 1,3
can be solved always. If 82 = 82 the system for k = 2
has no solution.
Case3) a=s1h;, #0,51 € F,.

We con51der three varlants w1th k = 1,2, 3, respectively.
For v} M e F,, gg cAuwM e Wm,wehave

C=s (hmllk) 3; .r(k) 3 l(k))+,v5/c)gik>+vgk)ggk)
where 2\*) = b, [s1357!
q%” = (0,0, 11)&”,0), qz (0 0,0,mg]))
i = oi0). = (000,00
& = (o,wS‘”,o,o), s (0 0, wg‘”,o).

a=0.
For v; € Fy, w; € W, we have C = (0,01,b2,b3) =
v1(0,w1,0,0) + v2(0,0,w2,0) 4+ v3(0,0,0, ws).

Case 4)
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So, Ry = 3. Now we show that V' is an LO code. Every column
h; of Hq takes part in Case 1, or Case 2, or Case 3. If we remove a
column (h;, &, 3;€, 3125) from B; then there are by, b2, b3 for which
the system of (4) gives 21 = £. Besides, it can be shown that there exist
b1, b2, bs such that the systems of (5) give 417(11) = 45(12) = ‘L(lz) =¢.In
Case 3 we have ,r(lw =z ) (1%) = ¢if by = €51, b2 = E51065,,
bs = €31 6]21 . As result, the linear combinations for C used in Cases 1,
2, 3 become impossible. So, all columns of By; are essential.

For the variant of Case 4 we need all columns of A. In fact the only
other possibility is C = (0, b1, b2, b3) = v1g + v2(hs, x, B, Bia) —
v2(he,0,0,0), v; € Fy, 9 € A, 3¢ € B, x # 0. For a vector
(0,0,0,0), b # 0, such variant needs either 3y = 0 ¢ BorC =
v1(0,w,0,0). For vectors (0,0,5,0) or (0,0,0,b) it is possible only
C=uwu (0 0,w,0) or C = v1(0,0,0,w). So, we come back to the
variant of Case 4 and see again that all columns of A are necessary. [J

Construction CC4. Here R = 3,¢™ > po, B C Fym \{1},t0 = 3.
Besides, there exists a column h € Hy having the only generating
combination L = }, the indicator assigned to 7 is 3 = 0

0r0+777, 0r0+771
-A- = an Om . n = no (]m + 27—’J7n -
0., Wm

Theorem 4: The code V' of Construction CCy4 has covering radius
Ry = 3.1tisan [n,n — (ro + 3m), 3]43 LO code.

Proof: One can prove the theorem similarly to Theorem 3 consid-
ering a column C = (a, by, b2, b3), a € Fyro, b; € Fym. The situation
with @ # 0 and regarding the necessity of all the columns of By is
the same as in Theorem 3 without variants with columns of the form
(0,w,0,0). As to = 3, the case a = 0 is included in Case 1 of The-
orem 3. Therefore to prove the necessity of A we consider the case a =
sih.WeputC = sy (h,b1/51,0,0)+0:(0,0,w:,0)+v2(0,0,0,ws),
v; € Fy, w; € W,,,. If we do not use columns of A the only possible
variant is C = s1(h, £1,0,0) +v(ht, 22, Bea, f229) —v(he,0,0,0),
v € Fy, B € B,y #0.1f by = b3 then 3, = 1 ¢ B. So, the variant
without A is impossible. O

III. ON NEwW EXTREMAL PROBLEMS

We consider extremal problems connected with the maximal pos-
sible length m(r, R; q) of an [n, n —r], R LO code and with the second
greatest length m' (r, R; q).

We give the direct sum (DS) construction [1], [4, Sec. 3.2], [20,
Lemma 10] for LO codes.

Lemma 2: Let Hy and H- be the parity-check matrices of an
[n1,n1 — r1]gR1 LO code Vi and an [na, no — 72]4 R2 LO code V5,
respectively. Then the (r; + 72) X (n; + n2) matrix

_[H: | o,
H‘{o,. ’ H2:| ©)

T2
is a parity-check matrix of an [n1 + n2,n1 + n2 — (71 + r2)],R LO
code with R = R; + R».

Let I,,, be the identity matrix of the order m and let H* be a parity-
check matrix of an [n*, n* —7*]; R™ LO code. By Lemma 2, the matrix

@)

_ [Ir_g~
ni | o

Or_Rr*
0,-

is a parity-check matrix of an [n, n — r];R LO code with n = n* +
R-R'.r=r"+R-R".
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Construction of (7) is useful for distinct estimates. For example,
by (7)

m(r,Ryq) > m(r",R";¢q)+ R—- R"
m'(r,Riq) >m'(+*,R*;q)+ R— R" 8)

where the second inequality holds if m(r*, R*;q) # I(r*, R*; q).

Theorem 5: For the maximal possible length m(r, R;q) of an
[n,n — 7], R LO code it holds that

m(r,R;q) > My(r,R) = (qriRJrl -1)/(g—1)+R-1 (9

where 7 > R > 2,q > 2. For R = 2 and r = R, we have the
equalities m(r,2; q) = M,(r,2) and m(R, R; q) = M,(R, R).
Proof: Asm(r*,1;¢) = (¢" —1)/(q— 1), the inequality in (9)
follows from (8). The equality m(r, 2;q) = M,(r,2) is proved in [9,
Corollary 1] for minimal 1-saturating sets. O

Note that the complete classification in Section IV, Table II, and
Table 111, gives

m(r,3;q) = My(r,3) for r=4, g =2,3,4,T;
r=2>5,¢=2,3;
r=06, ¢=2.
m(r,4;q) = M,(r,4), for r=2>5 q=2,3,4;
r=206, ¢=2,3;
r=7,q¢=2.
m(R+1,R;5) = Ms(R+1,R) + 1, for R = 3, 4. (10)
By (8) and (10)
m(R+1,R:5) > Ms(R+1,R)+1=R+6, R>5. (1)

Let n..(t) be the smallest integer such that any [n, n — r, d]2 R code
with d > 3, n > n.(t), has R < t. Evidently, m(r, R;2) < n,(R).
Hence, the upper bounds on n,-(R) of [4, Ch. 18], [21] are valid also
for m(r, R; 2). Approaches of the works mentioned with some modi-
fications are useful for our goals. For example, similar to [21] we have.

Lemma 3: Ttholdsthatm(R+1, R;2) = Mo(R+1,R) = R+2.
Proof: A parity-check matrix of an [n, n — (R+ 1)]2 R LO code

can be represented in the form [Ir+ U] where U isan (R + 1) x ¢
matrix with ¢ > 1. The matrix U contains columns only with weight
2 or 3. Otherwise, if a column of weight 4 or greater is present in U,
the covering radius becomes to be equal to R — 1. It is sufficiently for
covering radius R to have in U one arbitrary column of weight 2 or 3.
So,t = 1. |

Definition 3: Let H = [h1hz ... hy] be a parity-check matrix of an
[n,n — r]42 code. Here hy € Fyr is a column. If a column f € Fyr
has the only generating combination ¢1 h;, + c2hi, = f, c1,¢2 € FY,
hiy s hi, € H, then {h;,, hi, } is called a critical pair of columns.

Construction A. Let Hy=[H, H] be a parity-check matrix of a
starting [no, no — rol,2 LO code Vy. Here H [hmh(’) h(’)]
anro X n; submatrix, j = 1,2, n; > 1, h“) € F;ro is a column. We
assume that the following condltlons hold.

a) Every column f € F,~ has a generating combination of the
form either clhm = for Llh(j) +eh? = f where ¢1,¢2 €
Fr,je{l, Z}k e{l,2,....,n;},ue{l,2,...,n2}.

b) Every column hg ? belongs to a critical pair of columns of the
form {hgl), hg))}‘ s €1{1,2,...,n1}.

c) Thereisacolumnh?' € H; Wthh has not a generating combi-
nation of the form clhm + eoh® = 1 where ci,e2 € F,
e {2}, kj e{1,2,...,n;},u € {1,2,...,n2}.
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Letm > 1 be an integer parameter. The parity-check matrix Hy of

anew [n,n — (ro + m)]qRv code V withn = (¢™ — 1)/(¢ — 1) +
n1 + ¢ no has the form
_ _ 07'0 Hl
=|[LK\K....K,,], L= |:an Om]
K® A%
K, = 12
51 EQ fqm ] ( )

where {&1,82,...,&m} =

Theorem 6: The code V' of Construction A is an [n, n— (ro+m)],2
LO code.
Proof: We consider a nonzero column C =
be Fym.Letv € Fy,w € Wi,

Fom, & =0,u=1,2,...,n2.

(a,b),a € Fyro,

Casel) a=0.
Here b # 0 and C = v(0,w). Another way is C =
(WP by — (1P, &1) as & = 0.

Case2) a # 0.

v (th) b/c). Another way
is C (h(z) &) +v(0,w), 5 #b/c.
i) Ifa=ch”,ce F thenC = c(hfV,0) forb = 0 or
C = c(h(sl),O) + v(0,w), for b # 0. For MY = ' such
way is the only, hence all columns of W, are necessary.
iii) If a # chu ? and a gﬁ Ch then, by the condition a), C =
cr(hy),0) + e (WD 1).
So, Ry = 2. We need all columns of the form (hg”,()) and
(hﬁ,”, &1) as Vg is an LO code. By the condition b), all columns of all
submatrices K, are necessary. ]

i) If a=ch?, ce F thenC

Construction B. Let {{1,&2, ...,
design a matrix with columns #;.

&t =F;, & =0,q9 > 3. We

1 10 0 ... 0
H = 0 0 1 1 e 1 = [h]hz - 'h17+1]' (13)
0| 1 & & ... &

Theorem 7: The matrix H of (13) is a parity-check matrix of a [¢ +
1,4 —2],2 LO code. All pairs of columns of the form {h1, h;}, ¢ > 2,
are critical.

Proof: We consider a nonzero column C = (a,b,c), a,b,c €
F,, putting v; € F;, v € {1,2}.

Case1) a=0.HereC =), vihy;,j; > 3.For~ = 2 the two
needed columns %, , h,,,_, ex1st asq > 3.
Case2) a # 0.

i) Leth=0.ThenC =) ] ,Ji <2.IfC ¢ {(v1,0,0),
(v2,0,v2)} we have v = 2 and the representation consid—
ered is unique. So, {1, h2} is a critical pair of columns.

ii) Letb,c # 0.Then C = ahy + bh;, b§;—1 = ¢, j > 3. For
a = ¢, b # 0, it is the only possibility. Changing b we see
that all pairs {1, h;}, j > 3, are critical.

iii) Ifb # 0, ¢ = 0, then the only possibility is C = ahy + bh;,
j>3,a+b-_1 =0. O

Corollary I: For the second greatest length m’ (3, 2; ¢) of an [r, n—
3],2 LO code it holds that
m'(3,2;q) = ¢+ 1,

q23. (14)

Remark 1: The geometrical forms of Construction B and Theorem 7
are given in [3, p. 116], [18, Theorem 3] without a proof. The geomet-
rical conclusion corresponding to Corollary 1 is written in [18, Corol-
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lary 3]. Theorem 7 here gives the matrix proof of the assertions of [3],
[18]. By the way, note that the proof of [9, Theorem 3] where similar
problems are considered is correct only for PG(2, ¢). Hence the asser-
tions of [9, Theorem 3, Corollary 2] are right only in PG(2, ¢).

Corollary 2: There exists an [, n—r],2 LO code withn = ¢" 7%+
T-D/(g-1)+1,r 23,423

Proof: As the matrix Hy of Construction A we use the matrix
of (13) putting ny = 1. From (13) and Theorem 7 it follows that the
conditions a)—c) of Construction A hold. O

(¢

Corollary 3: For the second greatest length m'(r, R;q) of an
[n,n — 7], R LO code we have

S|
AT ——
¢

m'(r,Riq) > T,(r.R) = ¢ (15)
where ¢ > 3, > R > 2. Forr
m'(3,2;q) = T,(3,2) holds. ‘

Proof: By Corollary 2, it holds that m/(r*,2;¢) > ¢ ~2 +
(qr*f‘g’ —1)/(¢— 1)+ 1. Then we use (8). The case r = 3, R = 2,
is considered in Corollary 1. O

= 3, R = 2, the equality

Note that the complete classification in Section IV, Table II and
Table 111, gives

m'(R+1,R;q)=T,(R+1,R), forR=23, ¢=3,4,7;
R=4, ¢=3,4.
m' (R+2,Riq)=T,(R+2,R), forR=3,4, q=3.
m' (R+1,R:5)=T5(R+1,R)+1, for R =3, 4. (16)
By (8) and (16), it holds that
m' (R+1,R5)>Ts(R+1,R)+1=R+5  R>3. (17

For binary LO codes, by results of [13] for complete caps and by (8)
and Theorem 5, we have

277 > (r,2:2) > 52771,

m'(r.R;2) > Oa(r,R)=5-2"""2 L R—2. (18)

By results of [12] for minimal 1-saturating sets and the complete clas-
sification in Section IV, Table II, and Table III, we have

m' (R+4,R;2) = 02(R+4,R), forR=2
m’(T,R:?) =02(r,R)+1, forr=R+2,R+3
R=234. (19)
By (8) and (19), it holds that
m'(r, R;2) > Os(r,R)+1, r=R+2,R+3, R > 2. (20)

IV. NEW CLASSIFICATION PROBLEMS. SPECTRUM OF POSSIBLE
LENGTHS OF LOCALLY OPTIMAL CODES

We consider classification problems connected with the spectrum
of possible lengths of LO codes. Constructions of Section III and of
[5], [6], [9], [14] advance these problems and give starting codes for
¢™ -concatenating constructions forming infinite code families.

For spectrum problems we can also use computer. We give exam-
ples of LO codes obtained as minimal saturating sets by geometrical
computer methods. These codes are interesting themselves and can be
applied as starting ones in ¢"*-concatenating constructions. They are
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TABLE 1

LENGTHS n OF THE KNOWN [n, n — 3]4,2 LO Copes WiTH . < ¢
q lengths n q lengths n
7. 6<n<7 61 | 20 <n <57
8. 6<n<8 64 | 19<n <61, n#20,21
9. 6<n<9 67 | 23<n <63
11. 7T<n<11 71 | 22<n <67
13. 8<n<13 73 | 24<n <69
16. 9<n<16 79 | 26 <n<T4
17 10<n<17 8l | 26<n< 76, n#T0
19 10<n <19 83 | 26<n<79, n#£ETLT2
23 10<n<23, n#11 | 8 | 28<n <84
25 12<n <25 97 | 29<n <91
27 12<n <26 101 | 30 < n <95, n # 86,87
29 13<n <28 103 | 30 <n <97
31 14 <n <30 107 | 31 <n <100, n # 94
32 | 13<n<3l 109 | 31 <n <102, n#95
37 16 <n <36 113 | 32 <n <106, n # 98,99
41 16 <n <39 121 | 32 <n <113, n # 103,107
43 16 <n <41 125 | 34 <n <117, n # 108 — 110
47 18 <n <45 127 | 35 <n <119, n # 110 — 113
49 18 <n <47 128 | 34 <n <120, n# 110 —115
53 18<n <50, n#19 |131 | 35 <n <123, n# 113,114
59 20 <n <56 137 | 36 <n <129, n # 108 — 120

useful also for estimates and exact answers in extremal and classifica-
tion problems.

For computer search, we use randomized greedy algorithms [9,
Sec. 6], [10], and a breadth-first algorithm [18, Sec. 3]. The first way is
convenient for large ¢ and for obtaining different sizes of geometrical
objects. The second approach has been applied to obtain classifications
of minimal saturating sets and to establish the smallest size of minimal
saturating sets.

In Table I, we give lengths of the known [n, n — 3],2 LO codes
with n < g¢. The codes with n = ¢ + 1,¢ + 2 always exist, see
Theorems 5 and 7. In Table I, we use results of [7], [9, Tables 2, 3, 4],
and computer search done in this work. The dot means that all possible
lengths n for the given ¢ are known. Besides, for ¢ = 3,4, 5 there are
only n = g+ 1,q + 2 [9, Table 2].

Note that, as complete caps are minimal 1-saturating sets, results
of works [7], [10], [12], [13], [15], [16] on possible sizes of complete
caps can be used for the problem of spectrum of possible lengths of
[n,n — r],2 LO codes and then with the help of (6), (7) for LO codes
with B > 3.

In Tables II and III, for small r, ¢, we give the complete classifica-
tion of [n,n — 7,d], R LO codes, R = 3, 4. In Table IV, we describe
the classification of [n, n — 7, d], R LO codes of the smallest possible
length, R = 3, 4. The codes are obtained by the geometrical computer
methods as minimal saturating sets. In the tables ¢ is the number of
distinct [n, n — r, d], R LO codes, “stabilizer group order” is the order
of the stabilizer group of the minimal saturating set corresponding to a
parity-check matrix of a code.

It should be noted that the stabilizer group connected with
parity-check matrix columns treated as points of the projective space
PG(r—1, q) is a subgroup of the full collineation group of PG(r —1, ¢).
A collineation of PG(v, q) is a bijective function that sends lines in
lines and preserves the incidences [15], [17, Sec.4, Appendix B]. It
implies that every subspace is mapped onto a subspace of the same
dimension. The fundamental theorem of projective geometry [15,
Sec. 2.1] states that the full collineation group of PG(wv, ¢) is equal to
PTL(v 4+ 1, q) that is the group of the collineations of the form o M
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where ¢ is an automorphism of the field Fi, and M is an invertible
(v + 1) x (v + 1) matrix over F,. Two sets of points S and S|
are equivalent if a collineation f exists such that f(S) = Si. The
stabilizer group of aset Sis G = {f € PT'L(v+ 1,¢)| f(S) = S}.

In Tables II-IV a stabilizer group order up to 24 has two indexes. The
superscript is the ordinal number of the structure of the group with such
order in [15, Table 2.3]. The subscript is the number of groups with the
same order and structure in our table, e.g., 123 notes two groups Ds.
The subscript of a group order greater than 24 is the number of groups
with the same order in our table, here the subscript “1” is not written. In
Table IV, for some R, ¢, r the smallest length of the LO code is found
but the values d and/or ¢ are not obtained.

By [9, Tables. 1, 2], [12], Tables I-1II, and Theorems 5 and 7 of this
correspondence, we have the following.

Theorem 8: It holds that

) ForR=22<¢g<16R=32<g¢g<T7andR =4,
2 < ¢ < 5, there exist [n,n — (R + 1)]4R LO codes of all
possible lengths 7 in the region I(7, R; q) < n < m(r, R; q).

ii) Forq=2,R=2,3,4r=R+2,R+3,andg =2, R =2,
r=R+4,andq = 3, R = 3,4, »r = R + 2, there are not
[n,n — r]q R LO codes of all possible lengths n in the region
(r,Ryq) < n < m(r,R;q).

Now we demonstrate using codes of Tables I-IV and Section III as
the starting LO codes in ¢""-concatenating constructions to obtain LO
codes of distinct lengths.

Example 1: We use Construction CCy. As the starting [ro,no —
3]42 code we take a code either of Table I with no < ¢ or of Theo-
rems 5, 7 with ng = ¢ + 2, ¢ 4+ 1. We apply the trivial 2-partition Py
and we obtain an infinite family of [n,n — r]; R LO codes V;,, with
parameters

R =2,
m > 1lifno < q,

r=3+2m, n=noq +2(¢" —1)/(¢g—1)
m > 2ifno > q. 21)
By Theorem 1, the parity-check matrix of the code V;, has a 2-par-
tition into no subsets. We use codes V., as a starting point for Con-
struction CCsz with m = m, and for every code V,,, we obtain a few
new LO codes Vi m, . By Theorem 2, the parity-check matrix of the
code V., m, has a 2-partition into 2no + 1 subsets. Now we use codes
Vin,m, as a starting point for Construction CCo with m = m and for
every code Vi, 1, We obtain new [n, n — 7], R LO codes with

R=2 r=34+2(m+ M)

n = noqnz-&-]\/f + (qu-‘rﬂ\/[ _ q]\/f _ 1)/(q _ 1) (22)
where M = my+mao,m > my > 2. m4+my > me >2,m > 2.
Similarly, applying Construction CC iteratively we obtain an infinite
chain of LO codes with parameters of the form (22). Now one can again
use Construction CC; taking codes of this chain as starting.

Example 2: By (13) and the Proof of Theorem 7, Py = {h},{h2},
{hs,ha}, {hs,..., hgy1} is a 2-partition of the matrix H for ¢ > 5.
As the starting code for Construction CC2 with m = 1 we take the
code with H of (13) and we obtain the [n,n — 3],2 LO code, n =
(¢> — 1)/(q — 1). By Theorem 2, the parity-check matrix of this code
has a 2-partition into nine subsets. Using Construction CCs iteratively
we obtain an infinite chain of [n, n — 7], R LO codes with

R=2 ¢>5 r=2m+1, n=("" —1)/(¢g—1). 23)
By Construction CC;, one can design an infinite family of LO codes
for every code of (23).
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TABLE 1I
COMPLETE CLASSIFICATION OF [, — 7, d];3 LO CODES FOR SMALL 1, ¢

q | r n d t stabilizer group order q | r n d t stabilizer group order
3 1 123
2141 5 ! 315(10] 3 3 123,168
4 1 244
5 1 120 3 7 42,83 247 64,192
25| 6 31511
6 1 720 2 72, 2880
25| 7 3 2 72, 144 315 12 3 2 247,216
3 1 336
2 (5] 9 315115 3 1 44928
4 1 1344
216 | 7 7 1 5040 414 5 5 1 240
3 1 720 X
2161 8 4141 6 3 1 36
5 1 144
3 2 144, 2160
216 9 3 1 1296 4147
4 2 336, 2160
3 1 123
3 1 144
26|10 54| 6 4 2 82,81
4 2 336, 1008
5 1 120
3 10 84,123 485,1925,384
1221, B2, T 3 82,165, 2412 32,
26| 11 1008, 4032, 8064 5104 | 7
—_— 4 2 244,480
4 3 48,1920,
3 1 102
2 16|12 514 | 8 3 1 3840
4 1 120
3 1 40320
26|17 5041 9 3 1 72
4 1 322560
A . 18 3 15 13,21,31,42 61,6%,97,36
slals| | | 1o Tl 14y, 219,41, 42, 63,123, 241,
54 72,216
174 | 1d,23,,35, 43,64, 84,93,
122,123,125, 169, 2410 36
3146 | 3 1 192 74| 8 | — 52073 C)p 7107 7
4 3 21,82 48
5 1 336
3 8 123,247, 36,485, 72, 3 38 11,2} 42 61,83, 122,
3|15 8 144,1152 7141 9 182,242,243 48,72, 144
4 3 42 81,123 4 1 2016
3 14 21,42 61,83, 165,247,
36,48, 72, 144, 288, 4608 Lol 1l
3|59 | — 71410 3 5 21,31,181,144, 24192
4 11 42,8%,123,24%, 247,485
384

Example 3: We use Construction CCs. As a starting code Vo we
take any [no, no — 7o, d]¢3 code of Tables II and IV with d > 4 and
use the trivial 3-partition. For d > 4 all 3-partitions have to = 0.
We put m > [log,(n0 + 1)]. For every starting code we obtain an
infinite family of LO codes. Taking as V5 an [no, no — 4, 4]73 code of
Table II we obtain three infinite families of [, n —r], R LO codes with
parameters

R=3, ¢=T,
no =17,8,9,

r=4+ 3m,
m > 2.

n=(2no+1)-7" =1)/2

Example 4: We use Construction CCy4. As a starting code Vy we
take an [ng, no — 70, 3]43 code of Tables Il and IV with a parity-check
matrix Ho such that there is a column » € H, having the only gen-
erating combination L = h. We use the trivial 3-partition. For d = 3

the trivial partition has ¢toc = 3. We put m > [log,(no + 1)]. For
every starting code we obtain an infinite family of LO codes. Using the
[6,2, 3]53 code of Table Il as V5 we obtain the family of [n,n — 7], R

LO codes with parameters

R=3, ¢q=5 r=443m, n=(13-5"-1)/2, m>2.
The following construction gives infinite families of LO codes in a

geometrical form.

Construction C. We consider a minimal 1-saturating set So in the
projective plane PG(2, ¢) such that all its points are placed on two lines
Iy and I3, i.e., So C {l1 Ulz} C PG(2,q). We suppose that at least
one point V' of PG(2, q) \ l2 is not saturated by So \ { P} for all points
P € So. We denote the point @ = Iy N2 and the subsets 5(()1)7 5(()2)
with S U S8 = So, 55 C 11, S C 1.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 12, DECEMBER 2005

4385

TABLE III
COMPLETE CLASSIFICATION OF [n, n — 7, d]44 LO CODES FOR SMALL 7, ¢
q | r n d t stabilizer group order q | r n d t stabilizer group order
3 1 36
215 6 316 8 4 2 192, 2304
4 1 48
4 1 192 3 12 247,48, 722,962, 144,
35| 6 5 1 240 3161 9 2885, 2304, 5760
6 1 720 4 2 83,16%
3 15 42,83,122,163, 16%, 32, 72
96,192, 2885, 1152, 18432
3157 3 1 1152 316]10 | — -
4 11 83,163,247, 48,
962,192, 1536
1 2
45| 6 > 720 3 16|11 3 3 247,32, 64
6 1 1440
3 7 165, 32, 962, 256, 768
45| 7 3 1 216 31612 4 2 144, 11520
5 432
2
451 8 3 864,19440 316113 3 2 96, 864
4 2 1008, 12960
515 6 6 1 720 316116 3 1 269568
3 ! 8 7 1 5040
515 7 4 3 322,48 2171 8
8 1 40320
5 1 480
3 2 720, 4320
5 42,1929, 2 4 1 2
s sl s 3 6 642, 1922, 256 o719 880
4 3 96, 384, 3480 5 1 144
6 1 1296
515 9 3 1 46080 27110 3 2 1728, 1296
515 | 10 3 1 288 2 | 7|11 3 ! 288
4 2 672, 1008
3 10 16%,247, 962, 192, 3842,
5 1 240
26| 7 2|7 12 2016, 4032, 8064
6 1 720 —_—
4 5 48,1536, 1920, 3840, 32256
2 144 1 203
216/ 8 3 2 o7 l13] ? 01
4 1 1152 4 1 120
5 |61 10 3 1 1008 o |7 | 18 3 1 120960
4 1 2688 4 1 645120
3161 7 7 1 5040

In a hyperplane PG(v — 1,q) of the projective space PG(v,q),
v > 3, we pass all possible lines L, Lo, ..., Lg through a point A €
PG(v—1,¢).Clearly, § = (¢*~*—1)/(g—1).Let L be aline through
points A and B where B € PG(v,q) \ PG(v — 1, q) and let 7; be a
plane through B and L;, i = 1,2,...,6. All planes 7; intersect at the
line L. In every plane m; we build a minimal 1-saturating set .S; with
the same structure as Sy so that the line L is /1, the line L; is I, and
the point A is a. We obtain the set S = Uf:1 S; with the cardinality
|51 = 18571 + 81567 if a & So. |S| = [S5”| + 6(1S57| — 1) if
a € So.

Theorem 9: The set S of Construction C is a minimal 1-saturating
set in PG(v, ¢), v > 3. The points of S form a parity-check matrix of
a[|S],]S] — (v + 1)],2 LO code.

Proof: As Ule 7; = PG(w,q) and every plane 7; is saturated
by the “own” 1-saturated set S;, the set S is l-saturated. To prove
minimality note that every bisecant of S covering the affine geometry
AG(v,q) = PG(v,q) \ PG(v — 1, q) is a line through two points K;
and M with K; € L;, M € L. Every such bisecant lies in the plane ;
and it is a bisecant of the set S;. So, in the geometry AG(v, ¢) the set
S has not other (“new”) bisecants than these belonging to the sets S;.

All new bisecants of .S through points of distinct sets .S; and .S; lie in
the hyperplane PG(v — 1, q). If we remove off an arbitrary point of S;
then at least one point V; of 7; \ L; becomes unsaturated by bisecants
of S;. But the point V; € AG(v, ¢) and it cannot be saturated by new
bisecants. So, all points of S are necessary. O

Example 5: Many codes from Table I have the structure convenient
for the set So of Construction C, e.g., the [12,9]172 LO code with the
parity-check matrix

1111 1 111111 1
0000 O |2578911 16
We treat h; as points of So. The columns A1, ..., hs belong to the first

line, the rest of points belong to the second one. Considering these lines
as l1,1> and I2, 11 we obtain two infinite families of [n,n — r],R LO
codes with parameters

R=2 g¢g=17, r>3
2

n=(7-17"2+73)/16, n=(5-17""24107)/16.
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TABLE IV
CLASSIFICATION OF [n, n — 7, d], R LO CODES OF THE SMALLEST LENGTH
R q r n d t stabilizer group order
3 3 11,21, 61
sl s lal - 4 19 15,24, 4%, 63,83
24%,245,168
5 1 184
13,25 41 42 82 82
319 4] 7 4 27 57 T T Tl
123,168, 40, 960
3 >1
3011 [4] 8 4 >1
5 >1
3 1 144
314|509 42,83 83, 16%,32, 48y,
4 21 96, 240, 360, 384, 672
315 [5]10
313 [6]11 3 8 123,724, 144, 432
4 1 184
47|57 -
5 3 42,2415
8 | 5 5 1 61
8 9 1 362880

Example 6: We treat columns of the parity-check matrix of [6, eq.
(30)] as points of the set Sy of Construction C and we obtain two infinite
families of [n, n — 7], R LO codes with parameters

R=2 gq=p°. r>3, n=p+(2p-1(¢ " =1)/(qg-1)
n=2p—14+p(¢" > =1)/(¢—1).

Example 7: As Sy of Construction C we use the set of (13) and
obtain [n, n — r], R LO codes with parameters

R=2, ¢>3, r>3 n=q >+1,
n=02¢"+¢ =2¢-1)/(¢g—-1).

To obtain LO codes of distinct lengths one can use also Construction
DS of (6) taking as Vi, V> codes from infinite families above, codes
from Tables I-V, the Hamming code.

V. NEW BOUNDS ON THE LENGTH FUNCTION
By Tables III and IV, we have new exact values, cf. [11, Table II],
[14, Table I], [19, p. 303]
1(5,3;4) =9,
1(5,4;4) =1(5,4;5) =6,

1(5,3;5) = 10, 1(4,3:11) =8
(5,4, 7)=1(5,48)=T.

In Table V, we used results of [11] and computer search done in
this correspondence. By computer, we found parity-check matrices of
[l4. 14 — 4,d]43 LO codes as minimal 2-saturating {,-sets in PG(3, q).
By [11], an [n, n — 4,d]43 LO code has d € {3,4,5} and its parity-
check matrix corresponds to a complete n-arc in PG(3,¢q) if d = 5 or
an incomplete n-cap if d = 4. In Table V the subscript indicates the
distance d of the code. Entries “3, 4, 5,” “3, 4, ... mean that distinct
types of 2-saturating sets give the same result. The dot indicates the
exact bounds with 1(4,3;¢) = I,. For all codes with d = 3 in the
parity-check matrix there is a column A having the only generating
combination L = h.

TABLE V
UPPER BOUNDS {4 ON THE LENGTH FUNCTION [(4, 3; ¢), ¢ < 563
q lq 4q lq q lq 4q lq
2 53,4. 81 174 227 2735 379 3335
3 54,5. 83 174 229 2735 383 3335
4 55. 89 1835 | 233 2735 | 389 334
5 63,4,5- 97 1935 239 2735 397 3435
7 73,4. 101 195 241 2835 | 401 3435
8 73,4,5- 103 195 243 2835 409 3435
9 7a. 107 194 251 2835 | 419 343
11 83,4,5. | 109 2035 | 256 2835 | 421 343
13 84,5 113 2035 257 2835 431 3535
16 93,45 121 204 263 2835 | 433 353
17 93,4,5 125 2135 | 269 2935 | 439 3535
19 94,5 127 2135 | 271 2935 | 443 3535
23 103,45 128 2135 277 2935 | 449 3535
25 11345 131 2135 | 281 2935 | 457 354
27 11345 137 2235 283 2935 | 461 3635
29 11345 139 2235 | 289 294 463 363
31 114 149 225 293 294 467 363
32 12345 151 224 307 3035 | 479 363
37 1245 157 2335 | 311 304 487 3635
41 13345 163 235 313 304 491 364
43 1345 167 2435 | 317 304 499 3735
47 14345 169 2435 331 3l3;5 503 3735
49 14345 173 2435 | 337 313 509 3735
53 15345 179 245 343 3l 512 375
59 15345 181 244 347 3235 | 521 374
61 154 191 2535 | 349 3235 | 523 383
64 16345 193 2535 | 353 3235 | 529 38;
67 163,45 197 2535 359 3235 541  38;5
71 1645 199 255 361 323 547 384
73 164 211 2635 | 367 324 557 395
79 1735 223 2735 | 373 3335 | 563 395

Many results of Table V are better than ones in [11, Tables II, III],
cf. [11, Theorem 2], and (24). Results for ¢ > 347 in Table V are new.
Many codes with d = 3 appear in Table V for the first time. Using
Table V, one can obtain new upper bounds.

Theorem 10: For the length function (4, 3; ¢) it holds that

1(473; Q) S bq \?/E:
by < 4.5 if ¢ < 343,

by < 4if q < 83
by < 5if g < 563. 24)

We denote by () the set of ¢ values for which in Table V there is
a code with d = 3. We use the [l,,l, — 4,3],3 codes of Table V
as the starting codes for Construction CC4. Then we apply the trivial
3-partition and put £ = m + 1. As result we obtain the infinite family
of [n,n — r,3]y R LO codes with parameters

R=3, r=3t+1,
t>2ifq > 8,

n=1lyg" "+ 20" = 1)/ (g = 1)
t>3ifq<7. ¢€Q

We compare codes of (25) with those of [11, egs. (10), (11)] where
the starting code length [, is denoted by n4 5. Always [, < ng 3. The
code length in (25) is smaller than that in [11] even if [, = n4,3. More-
over, from [11, Tables II, III] and Table V, it follows that for many ¢,
including ¢ € @), we have [, < ng 3. The restrictions for ¢ in (25) are
better. So, the codes of (25) give new upper bounds on the length func-
tion (3t + 1,3;¢9), ¢ € Q.

(25)
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If ¢ ¢ Q onecanuse[11,eq. (10)] changing 4,3 by [, from Table V.
By above, we again obtain new upper bounds on the length function
(3t + 1,3;q).

Finally, we can obtain a relatively good upper bounds on the length
function I(ry 4+ r2, Ry 4+ Ro; q) if in Construction DS of (6) the codes
Vi, V4 are taken from Tables I-V.
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Some Results for Linear Binary Codes With Minimum
Distance 5 and 6

Iliya Bouyukliev and Zlatko Varbanov

Abstract—We prove that a linear binary code with parameters
[34, 24, 5] does not exist. Also, we characterize some codes with min-
imum distance 5 and 6.

Index Terms—Algorithm, linear binary code, optimal code.

I. INTRODUCTION

Let FY)’ be the n-dimensional vector space over the Galois field F> =
GF(2). The Hamming distance between two vectors of F3' is defined
to be the number of coordinates in which they differ. A linear binary
[n, k, d]-code is a k-dimensional linear subspace of F3' with minimum
Hamming distance d. The weight of the vector c(wt(c)) is the number
of nonzero entries in c.

A central problem in coding theory is that of optimizing one of the
parameters n, k, and d for given values of the other two. Three versions
are as follows:

Problem 1: Find n2(k, d), the largest value of n for which a binary
[r, k, d]-code exists.

Problem 2: Find d2(n, k), the largest value of d for which a binary
[n, k, d]-code exists.

Problem 3: Find k2(n, d), the largest value of & for which a binary
[n, k, d]-code exists.

These three functions are closely connected.
A lower bound on n2 (%, d) is the Griesmer bound [6] given by

k—1
na(k,d) > go(k,d) =Y [d/2']. )
=0

For fixed k and sufficiently large d, the lower bound is achieved,
i.e., there is a constant Do (k) such that ny(k,d) = g2(k,d) for
d > Do(k) [1].

Bounds for d2(n, k) were presented in [4].

In this correspondence, we consider mostly k2(n,d). The exact
values of k2 (n, d) are known for d < 4 and ford = 5, n < 33. This is
the reason to consider the following problem: Are there linear binary
[34,24, 5] codes? This is the first open case for the function kz(n, d).
We know that k2(34,5) > 23.

We call the codes with parameters [n, k2(n, d), d] optimal. Another
important problem related to k2 (n, d) is

Problem 4: Characterize all binary [n, k2 (n,d), d] codes for given
values of n and d.

Manuscript received September 29, 2004; revised June 1, 2005. This work
was supported by the Bulgarian National Science Foundation under Grant
MM-1304/03. The material in this correspondence was presented in part at
Algebraic and Combinatorial Coding Theory (ACCT’04), Kranevo, Bulgaria.

1. Bouyukliev is with the Institute of Mathematics and Informatics, Bul-
garian Academy of Sciences, 5000 Veliko Tarnovo, Bulgaria (e-mail: iliya@
moi.math.bas.bg).

Z. Varbanov is with the Department of Mathematics and Informatics,
Veliko Tarnovo University, 5000 Veliko Tarnovo, Bulgaria (e-mail: vtgold@
yahoo.com).

Communicated by R. J. McEliece, Associate Editor for Coding Theory.

Digital Object Identifier 10.1109/TIT.2005.859296

0018-9448/$20.00 © 2005 IEEE



