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Consider the problem of coding for a source with compound side-
information 1 = (U;W1;W2)whereU = f1; 2g;W = f1; 2; 3; 4g.
The SI sets for the two constituent source-side-information pairs of
random variables are as in Table I. This source is the dual of the channel
considered in Section IV-C.

Observe that S1(a) \ S2(b) 6= ;;8a; b 2 U . The distinguisha-
bility graph for both source-side-information pairs is identical and is
the complete graph on U , shown in Fig. 1(a), which we denote by
G. maxk Rw(Gk) = Rw(G) = 0 bit/channel use. However, given
any two sequences un and u0n, there exists a possible side-information
sequence wn such that both (un; wn) and (u0n; wn) are observable
with probability greater than zero: at every coordinate i choose wi
from S1(ui)\S2(u

0

i). Thus, we can never reliably distinguish any pair
of source sequences based on the side-information, which implies that
the minimum asymptotic rate for this source is log 2 = 1 bit/sample,
which is consistent with Theorem 3 since G12 and G21 are edge free
graphs. Therefore, in general, R(PUW ...W ) is strictly greater than
maxk R(PUW ). However, theminimum asymptotic rate is, somewhat
surprisingly, indeed maxkR(PUW ) [11], [12] if Bob (but not Alice)
knows which of theM side-information sequences he is observing.

VI. THE COMPOUND CHANNEL: ASYMPTOTICALLY VANISHING

ERROR V. ZERO ERROR

We observe that there are a number of differences between the con-
ventional (asymptotically vanishing error) and zero-error scenarios.
First, the conventional capacity does not increase if the decoder has
side-information about the channel while the zero-error capacity does.
The difference arises because, even without side-information, the
decoder can almost reliably identify the channel in operation based on
the channel output, which yieldsC( ) = Cdec( ) in the conventional
case. However, if we require zero-error, almost reliable identification
is not sufficient andC0( ) � C0

dec( ), possibly with strict inequality.
The aforementioned phenomenon also leads to another difference: in

the conventional case, since the decoder can always effectively (almost
reliably) know the channel in operation, Cdec( ) � Cenc( ). In the
zero-error case, this inequality holds often but not always. The excep-
tion is encounteredwhen someGss ; s 6= s0 inG( ) is the emptygraph,
and no Gss; s 2 S is empty. In this case, the encoder cannot convey
its knowledge to the decoder and C0

enc( ) is zero while if the decoder
knew the channel in operation, transmission at nonzero rates would be
possible. Such a case arose in the example considered in Section IV.
Although C0

enc < C0

dec implies that C0

enc = 0, in general, we could
haveC0( ) < C0

dec( )with neither quantity being zero. For example,
if G = fG11; G12; G21; G22g where G11 and G22 are both symmet-
rically directed complete graphs (edge set contains all ordered pairs of
distinct vertices) onK vertices andG12 andG21 are identical symmet-
rically directed graphs onK vertices with a single pair of edges. From
the discussion in Section III, there exists a compound channel whose
characteristic set of graphs G( ) = G. For this channel, C0( ) = 1
bit/channel use while C0

dec( ) = log
2
K bits/channel use.
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Locally Optimal (Nonshortening) Linear Covering Codes
and Minimal Saturating Sets in Projective Spaces

Alexander A. Davydov, Giorgio Faina, Stefano Marcugini, and
Fernanda Pambianco

Abstract—A concept of locally optimal (LO) linear covering codes is in-
troduced in accordance with the concept of minimal saturating sets in pro-
jective spaces over finite fields. An LO code is nonshortening in the sense
that one cannot remove any column from a parity-check matrix without
increasing the code covering radius. Several -concatenating construc-
tions of LO covering codes are described. Taking a starting LO code as a
“seed”, such constructions produce an infinite family of LO codes with the
same covering radius. The infinite families of LO codes are designed using
minimal saturating sets as starting codes. New upper bounds on the length
function are given. New extremal and classification problems for linear cov-
ering codes are formulated and investigated, in particular, the spectrum
of possible lengths of LO codes including the greatest possible length. The
complete computer classification of the minimal saturating sets in small ge-
ometries and of the corresponding LO codes is obtained.

Index Terms—Covering codes, covering density, covering radius, min-
imal saturating sets in projective geometry, nonshortening covering codes.

I. INTRODUCTION

We consider linear covering codes, saturating sets in the projective
spaces over finite fields, and connections between these objects. We
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introduce a new concept of locally optimal covering codes connected
with the concept of minimal saturating sets.

Let Fq be the Galois field of q elements and let F �

q = Fq n f0g. A
q-ary linear code with codimension r has covering radius R if every
r-positional q-ary column is equal to a linear combination of at most
R columns of a parity-check matrix of this code and R is the smallest
value with such property [1], [4], [17].

Let PG(v; q) be the v-dimensional projective space over Fq [15],
[16]. For an integer % with 0 � % � v; a set of points S � PG(v; q) is
% -saturating if for any point x 2 PG(v; q) there exist %+1 points in S
generating a subspace of PG(v; q) in which x lies and % is the smallest
value with such property [9]. The saturating sets are called “R-span-
ning sets” in [2], “thick sets” in [3], “saturated sets” in [6], [20].

A %-saturating set S is called minimal if for every point P 2 S the
set S n fPg is not %-saturating [3], [9], [18], [20].

Definition 1: A linear covering code is called locally optimal (LO)
if one cannot remove any column from the parity-check matrix of the
code without increasing the covering radius. An LO code can be called
also nonshortening in the sense mentioned.

Denote by [n; n� r; d]qR a q-ary linear code of length n, codimen-
sion r, minimum distance d, and covering radius R. In this notation
one may omit d and R. The length function l(r;R; q) is the smallest
length of an [n; n � r]qR code [2].

The points of a %-saturating n-set in PG(r�1; q) can be considered
as columns of a parity-check matrix of an [n; n� r]qR code withR =
% + 1 [2], [5], [6], [9], [11], [14], [18]. Points of a minimal saturating
set form a parity-check matrix of an LO code.

The concept of LO covering codes essentially extends the region of
combinatorial investigations of linear codes. It allows us to introduce
new extremal and classification problems. For example, we propose to
study the maximal possible length m(r;R; q) of an [n; n � r]qR LO
code and the spectrum of possible lengths of LO codes. The known
extremal problems, e.g., the length function, also can be considered
effectively in the framework of LO codes.

In Section II, we consider new qm-concatenating constructions of
LO codes. These constructions take an LO code as a starting point and
produce an infinite family of LO codes of growing codimension with
the same covering radius and almost the same covering density as the
starting code. A parity-check matrix of a starting code is repeated qm

times in a parity-check matrix of a new code. Constructions described
use ideas of works [4]–[6], [11] modifying them for LO codes.

In Section III, we consider new extremal problems connected with
the maximal possible lengthm(r;R; q) and the second greatest length
m0(r;R; q) of an [n; n � r]qR LO code. We give here also new con-
structions of LO codes aimed at these problems.

In Section IV, we consider new classification problems connected
with the spectrum of possible lengths of LO codes. For q � 137 we
give lengths n of [n; n � 3]q2 LO codes known from literature and
obtained by computer in this work. With the help of computer we
obtained also the complete classification of [n; n� r; d]qR LO codes
for small r; q; R. To get the computer results mentioned we applied
geometrical methods treating parity-check matrices of LO codes as
minimal saturating sets. We propose also a geometrical construction
for LO codes. Then, using the computer results and the constructions
of Sections III as starting codes for qm-concatenating constructions
and for the geometrical construction, we design infinite families of
LO codes thereby showing ways for obtaining LO codes with distinct
lengths.

In Section V, we give new bounds on the length function. Using
the classification of Section IV we get a few new exact bounds. Ap-
plying geometrical computer approaches we found short [n; n � 4]q3
LO codes, q � 563, giving new upper bounds on l(4;3; q). We use
these codes as a starting point for a qm-concatenating construction and

design an infinite family of LO codes improving upper bounds on the
length function l(3t + 1; 3; q).
Some results of this correspondence was represented without proofs

in [8].

II. qm-CONCATENATING CONSTRUCTIONS OF LOCALLY OPTIMAL

COVERING CODES

All matrices and columns below are q-ary. An element of Fq
written in a q-ary matrix denotes an m-dimensional column that is
a q-ary representation of this element, and vice versa, we can treat a
q-arym-dimensional column as an element of Fq .

We can treat a matrix as the set of its columns.
The following lemma is evident.

Lemma 1: For q � 2 an LO linear covering code always has the
minimum distance d � 3.
Further we consider only linear combinations of nonzero distinct

q-ary columns with nonzero q-ary coefficients. Such linear combina-
tions have the form L =

i
cihi where ci 2 F �

q ; hi 2 F �

q ; r � 1;
hi 6= hj if i 6= j.

Definition 2: Let HHH be a parity-check matrix of an [n; n � r]qR
code.

i) Suppose that 1 �  � R. If a column f 2 Fq is equal to a
linear combination L of  columns from HHH then L is a gener-
ating -combination for f . If the exact value of  is not impor-
tant one may say simply “a generating combination for f 00. But
always, by definition, the number of summands of a generating
combination lies in the region 1; . . . ; R.

ii) A partition of the column set of the matrix HHH into nonempty
subsets is called anR-partition if for every column of F �

q there
is a generating combination from columns of HHH belonging to
distinct subsets.

iii) A partition ofHHH into n one-element subsets is called trivial.

We give a general view of a qm-concatenating construction based
on the ideas of [4]–[6], [11]. Then we describe concrete variants taking
into consideration the local optimality.

Construction CC.We use a starting [n0; n0 � r0]qR LO code V0
with a parity-check matrixHHH0 = [h1h2 . . . hn ] where columns hj 2
Fq . Let m � 1 be an integer parameter. We suppose that HHH0 has
an R-partition P0 to p0 subsets. For every column hj we assign an
indicator �j 2 Fq so that if columns hi and hj belong to distinct
subsets of P0 then �i 6= �j . If hi and hj belong to the same subset
we may assign either �i = �j or �i 6= �j as well. We denote B =
f�1; �2; . . . ; �n g. LetAAA be a matrix with r0+Rm rows. The parity-
check matrix HHHV of a new [n; n � (r0 + Rm)]qRV code V has the
form

HHHV = [AAABBB�]; BBB� = [BBB1BBB2 . . .BBBn ] (1)

BBBj =

hj hj � � � hj

�1 �2 � � � �q

�j�1 �j�2 � � � �j�q

�2j �1 �2j �2 � � � �2j �q

� � � � � � � � � � � �

�R�1j �1 �R�1j �2 � � � �R�1j �q

(2)

where f�1; �2; . . . ; �q g = Fq ; �1 = 0.
Let 1 � � � R. If the zero r0-dimensional column has a generating

�-combination from columns ofHHH0 belonging to distinct subsets ofP0

we say that t0 = �. Else t0 = 0.
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We use the following notations: wm;q = (qm � 1)=(q� 1); WWWm is
a parity-check matrix of the [wm;q; wm;q �m]q1 LO Hamming code,
0k is the zero matrix with k rows.

Construction CC1. Here R = 2; qm > p0; B � F �

q ; t0 = 0;
n = n0q

m + 2wm;q

AAA =

0r 0r

WWWm 0m

0m WWWm

:

Theorem 1: The code V of Construction CC1 has covering radius
RV = 2. It is an [n; n�(r0+2m)]q2LO code. Its parity-check matrix
HHHV has a 2-partition into p0 subsets.

Proof: To prove RV = 2 we show that an arbitrary nonzero
column C = (a; b1; b2) with a 2 Fq ; b1; b2 2 Fq , is equal to a
linear combination of at most two columns ofHHHV .

Case 1) a = 2
i=1 sihj 6= 0; s1; s2 2 F �

q ; columns hj ; hj
belong to distinct subsets of P0. We have

C =

2

i=1

si(hj ; xi; �j xi)

where xi values are found from the equation system
2

i=1

sixi�
u�1
j = bu; u = 1; 2: (3)

Case 2) a = s1hj 6= 0; s1 2 F �

q .
We consider two variants.

C = s1(hj ; x1; �j x1) + v(0; 0; w); x1 = b1=s1:

C = s1(hj ; x
0

1; �j x01) + v0(0; w0; 0); x01 = b2=s1�j :

Here, v; v0 2 Fq; w; w
0 2 WWWm.

Case 3) a = 0.
Here (0; b1; b2) = v1(0; w1; 0) + v2(0; 0; w2) where
v1; v2 2 Fq; w1; w2 2 WWWm.

Now we show that V is an LO code. As the starting code V0 is LO,
every columnhj ofHHH0 necessarily takes part in either Case 1 or Case 2.
If we remove a column (hj ; �; �j�) fromBBBj then there exist values of
b1; b2 for which the system of (3) gives x1 = �. Besides, for b1 = �s1;
b2 = �s1�j , we have x1 = x01 = � in Case 2. As result, the linear
combinations for C used in Cases 1 and 2 become impossible. So, all
columns of BBB� are essential.

Since 0 =2 B the column (0; b; 0); b 6= 0, can be represented only
as (0; b; 0) = v(0; w; 0); v 2 F �

q ; w 2 WWWm. Similarly, (0; 0; b) =
v(0; 0; w). So, we need also all columns of AAA.

We design a 2-partition PV of the matrixHHHV . We partition the sub-
matrix BBB� into p0 subsets corresponding to the 2-partition P0. For
every j, all the columns of BBBj belong to the same subset of PV . It is
possible as above distinct columns of BBBj never take part in the same
linear combination for C. The columns of BBBi and BBBj belong to the
same subsets of PV if and only if columns hi and hj belong to the
same subsets of P0. Further, taking into account two variants of Case
2, we can inscribe the columns of the left part of AAA to some subset of
BBB� and columns of the right part ofAAA to another subset ofBBB�.

Construction CC222. Here R = 2; n0 � qm � p0; B = Fq ;
t0 = 0; n = n0q

m + wm;q

AAA =
0r +m

WWWm

:

Theorem 2: The code V of Construction CC2 has covering radius
RV = 2. It is an [n; n�(r0+2m)]q2LO code. Its parity-check matrix
HHHV has a 2-partition into 2p0 + 1 subsets.

Proof: The condition B = Fq is possible since n0 � qm. One
can prove the theorem similarly to Theorem 1. In Case 3 for b1 6= 0
the indicator �i = b2=b1 always belongs to B = Fq . We put
(0; b1; b2) = (hi; b1; �ib1)� (hi; 0; 0) including the situation b2 = 0.
To get a 2-partitionPV of the matrixHHHV , in the beginning we parti-

tionBBB� into p0 subsets in the same manner as in Theorem 1 except for
inscribing columns of AAA. Then we partition every subset T obtained
into two subsets so that the first one consists of the columns (hi; 0; 0)
of all the submatricesBBBi belonging to T . The last subset ofPV isAAA.

Construction CC333. Here R = 3; qm > p0; B � F �

q ; t0 = 0;
n = n0q

m + 3wm;q

AAA =

0r 0r 0r

WWWm 0m 0m

0m WWWm 0m

0m 0m WWWm

:

Theorem 3: The code V of Construction CC3 has covering radius
RV = 3. It is an [n; n � (r0 + 3m)]q3 LO code.

Proof: We consider a nonzero column C = (a; b1; b2; b3); a 2
Fq ; b1; b2; b3 2 Fq .

Case 1) a = 3
i=1 sihj 6= 0, all si 2 F �

q , all columns hj
belong to distinct subsets of P0.
We have

C =

3

i=1

si(hj ; xi; �j xi; �
2
j xi)

where xi values are found from the linear system
3

i=1

sixi�
u�1
j = bu; u = 1; 2; 3: (4)

Case 2) a = 2
i=1 sihj 6= 0; s1; s2 2 F �

q , columns hj ; hj
belong to distinct subsets of P0.
We consider three variants with k = 1; 2; 3, respectively.
For vk 2 Fq; gk 2 AAA; ; wk 2WWWm, we have

C =

2

i=1

si hj ; x
(k)
i ; �j x

(k)
i ; �2j x

(k)
i + vkgk

2

i=1

six
(k)
i �u�1j = bu; u = u

(k)
1 ; u

(k)
2 (5)

where fu(k)1 ; u
(k)
2 g = f1; 2; 3g n fkg;

g1 = (0; w1; 0; 0); g2 = (0; 0; w2; 0); g3 =
(0; 0; 0; w3). In the kth variant we solve the system
of two equations and find x(k)i . The systems for k = 1; 3
can be solved always. If �2j = �2j the system for k = 2
has no solution.

Case 3) a = s1hj 6= 0; s1 2 F �

q .
We consider three variants with k = 1; 2; 3; respectively.
For v(k)t 2 Fq; g

(k)
t 2 AAA;w

(k)
s 2WWWm, we have

C = s1 hj ; x
(k)
1 ; �j x

(k)
1 ; �2j x

(k)
1 +v

(k)
1 g

(k)
1 +v

(k)
2 g

(k)
2

where x(k)1 = b1=s1�
k�1
j

g
(1)
1 = 0; 0; w

(1)
2 ; 0 ; g

(1)
2 = 0; 0; 0; w

(1)
3

g
(2)
1 = 0; w

(2)
1 ; 0; 0 ; g

(2)
2 = 0; 0; 0; w

(2)
3

g
(3)
1 = 0; w

(3)
1 ; 0; 0 ; g

(3)
2 = 0; 0; w

(3)
2 ; 0 :

Case 4) a = 0.
For vi 2 Fq; wi 2 WWWm, we have C = (0; b1; b2; b3) =
v1(0; w1; 0; 0) + v2(0; 0; w2; 0) + v3(0; 0; 0; w3).
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So, RV = 3. Now we show that V is an LO code. Every column
hj of HHH0 takes part in Case 1, or Case 2, or Case 3. If we remove a
column (hj ; �; �j�; �

2
j �) from BBBj then there are b1; b2; b3 for which

the system of (4) gives x1 = �. Besides, it can be shown that there exist
b1; b2; b3 such that the systems of (5) give x(1)1 = x

(2)
1 = x

(3)
1 = �. In

Case 3 we have x(1)1 = x
(2)
1 = x

(3)
1 = � if b1 = �s1; b2 = �s1�j ;

b3 = �s1�
2
j . As result, the linear combinations for C used in Cases 1,

2, 3 become impossible. So, all columns ofBBB� are essential.
For the variant of Case 4 we need all columns ofAAA. In fact the only

other possibility is C = (0; b1; b2; b3) = v1g + v2(ht; x; �tx; �
2
t x)�

v2(ht; 0; 0; 0); vi 2 Fq; g 2 AAA; �t 2 B; x 6= 0. For a vector
(0; b; 0; 0); b 6= 0, such variant needs either �t = 0 =2 B or C =
v1(0; w; 0; 0). For vectors (0; 0; b; 0) or (0; 0; 0; b) it is possible only
C = v1(0; 0; w; 0) or C = v1(0; 0; 0; w). So, we come back to the
variant of Case 4 and see again that all columns ofAAA are necessary.

ConstructionCC4. HereR = 3; qm > p0;B � Fq nf1g; t0 = 3.
Besides, there exists a column �h 2 HHH0 having the only generating
combination L = �h, the indicator assigned to �h is �� = 0

AAA =

0r +m 0r +m

WWWm 0m

0m WWWm

; n = n0q
m + 2wm;q:

Theorem 4: The code V of Construction CC4 has covering radius
RV = 3. It is an [n; n � (r0 + 3m); 3]q3 LO code.

Proof: One can prove the theorem similarly to Theorem 3 consid-
ering a column C = (a; b1; b2; b3); a 2 Fq ; bi 2 Fq . The situation
with a 6= 0 and regarding the necessity of all the columns of BBB� is
the same as in Theorem 3 without variants with columns of the form
(0; w; 0; 0). As t0 = 3, the case a = 0 is included in Case 1 of The-
orem 3. Therefore to prove the necessity ofAAAwe consider the case a =
s1�h. We put C = s1(�h; b1=s1; 0; 0)+v1(0; 0; w1; 0)+v2(0; 0; 0; w2);
vi 2 Fq; wi 2WWWm. If we do not use columns of AAA the only possible
variant is C = s1(�h; x1; 0; 0)+v(ht; x2; �tx2; �

2
t x2)�v(ht; 0; 0; 0);

v 2 F �

q ; �t 2 B; x2 6= 0. If b2 = b3 then �t = 1 =2 B. So, the variant
without AAA is impossible.

III. ON NEW EXTREMAL PROBLEMS

We consider extremal problems connected with the maximal pos-
sible lengthm(r;R; q) of an [n; n�r]qR LO code and with the second
greatest length m0(r;R; q).

We give the direct sum (DS) construction [1], [4, Sec. 3.2], [20,
Lemma 10] for LO codes.

Lemma 2: Let HHH1 and HHH2 be the parity-check matrices of an
[n1; n1 � r1]qR1 LO code V1 and an [n2; n2 � r2]qR2 LO code V2,
respectively. Then the (r1 + r2)� (n1 + n2) matrix

HHH =
HHH1 0r

0r HHH2
(6)

is a parity-check matrix of an [n1 + n2; n1 + n2 � (r1 + r2)]qR LO
code with R = R1 + R2.

Let IIIm be the identity matrix of the orderm and letHHH� be a parity-
check matrix of an [n�; n��r�]qR� LO code. By Lemma 2, the matrix

HHH =
IIIR�R 0R�R

0r HHH�
(7)

is a parity-check matrix of an [n; n � r]qR LO code with n = n� +
R � R�; r = r� + R � R�.

Construction of (7) is useful for distinct estimates. For example,
by (7)

m(r;R; q) � m(r�; R�; q) +R�R�

m0(r;R; q) � m0(r�; R�; q) +R�R� (8)

where the second inequality holds ifm(r�; R�; q) 6= l(r�; R�; q).

Theorem 5: For the maximal possible length m(r;R; q) of an
[n; n � r]qR LO code it holds that

m(r;R; q) �Mq(r;R) = (qr�R+1 � 1)=(q� 1) +R� 1 (9)

where r � R � 2; q � 2. For R = 2 and r = R, we have the
equalitiesm(r; 2; q) = Mq(r; 2) andm(R;R; q) = Mq(R;R).

Proof: Asm(r�; 1; q) = (qr �1)=(q�1), the inequality in (9)
follows from (8). The equalitym(r; 2; q) = Mq(r; 2) is proved in [9,
Corollary 1] for minimal 1-saturating sets.

Note that the complete classification in Section IV, Table II, and
Table III, gives

m(r; 3; q) = Mq(r; 3) for r = 4; q = 2; 3; 4; 7;

r = 5; q = 2; 3;

r = 6; q = 2:

m(r; 4; q) = Mq(r; 4); for r = 5; q = 2; 3; 4;

r = 6; q = 2; 3;

r = 7; q = 2:

m(R+ 1; R; 5) = M5(R+ 1; R) + 1; for R = 3; 4: (10)

By (8) and (10)

m(R+ 1; R; 5) �M5(R+ 1; R) + 1 = R+ 6; R � 5: (11)

Let nr(t) be the smallest integer such that any [n; n� r; d]2R code
with d � 3; n � nr(t), has R � t. Evidently, m(r;R; 2) � nr(R).
Hence, the upper bounds on nr(R) of [4, Ch. 18], [21] are valid also
for m(r;R; 2). Approaches of the works mentioned with some modi-
fications are useful for our goals. For example, similar to [21] we have.

Lemma 3: It holds thatm(R+1; R; 2) = M2(R+1; R) = R+2.
Proof: A parity-check matrix of an [n; n� (R+1)]2R LO code

can be represented in the form [IIIR+1UUU ] where UUU is an (R + 1) � t
matrix with t � 1. The matrix UUU contains columns only with weight
2 or 3. Otherwise, if a column of weight 4 or greater is present in UUU ,
the covering radius becomes to be equal to R� 1. It is sufficiently for
covering radius R to have in UUU one arbitrary column of weight 2 or 3.
So, t = 1.

Definition 3: LetHHH = [h1h2 . . .hn] be a parity-check matrix of an
[n; n � r]q2 code. Here hk 2 Fq is a column. If a column f 2 Fq
has the only generating combination c1hi + c2hi = f; c1; c2 2 F �

q ;
hi ; hi 2 HHH , then fhi ; hi g is called a critical pair of columns.

Construction A. Let HHH0===[H1H2] be a parity-check matrix of a
starting [n0; n0� r0]q2 LO code V0. HereHHHj = [h

(j)
1 h

(j)
2 . . .h

(j)
n ] is

an r0 � nj submatrix, j = 1; 2; nj � 1; h
(j)
t 2 Fq is a column. We

assume that the following conditions hold.

a) Every column f 2 Fq has a generating combination of the
form either c1h

(j)
k = f or c1h

(j)
k + c2h

(2)
u = f where c1; c2 2

F �

q ; j 2 f1; 2g; kj 2 f1; 2; . . . ; njg; u 2 f1; 2; . . . ; n2g.
b) Every column h(2)u belongs to a critical pair of columns of the

form fh
(1)
s ; h

(2)
u g; s 2 f1; 2; . . . ; n1g.

c) There is a column h0 2 HHH1 which has not a generating combi-
nation of the form c1h

(j)
k + c2h

(2)
u = h0 where c1; c2 2 F �

q ;

j 2 f1; 2g; kj 2 f1; 2; . . . ; njg; u 2 f1; 2; . . . ; n2g.
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Letm � 1 be an integer parameter. The parity-check matrixHHHV of
a new [n; n� (r0 +m)]qRV code V with n = (qm � 1)=(q � 1) +
n1 + qmn2 has the form

HHHV = [LLLKKK1KKK2 . . .KKKn ] ; LLL =
0r HHH1

WWWm 0m

KKKu =
h
(2)
u h

(2)
u . . . h

(2)
u

�1 �2 . . . �q
(12)

where f�1; �2; . . . ; �q g = Fq ; �1 = 0; u = 1; 2; . . . ; n2.

Theorem 6: The code V of Construction A is an [n; n�(r0+m)]q2
LO code.

Proof: We consider a nonzero column C = (a; b); a 2 Fq ;
b 2 Fq . Let v 2 F �

q ; w 2 WWWm.

Case 1) a = 0.
Here b 6= 0 and C = v(0; w). Another way is C =

(h
(2)
u ; b)� (h

(2)
u ; �1) as �1 = 0.

Case 2) a 6= 0.
i) If a = ch

(2)
u ; c 2 F �

q , then C = c(h
(2)
u ; b=c). Another way

is C = c(h
(2)
u ; �i) + v(0; w); �i 6= b=c.

ii) If a = ch
(1)
s ; c 2 F �

q , then C = c(h
(1)
s ; 0) for b = 0 or

C = c(h
(1)
s ; 0) + v(0; w), for b 6= 0. For h(1)s = h0 such

way is the only, hence all columns ofWWWm are necessary.
iii) If a 6= ch

(2)
u and a 6= ch

(1)
s then, by the condition a), C =

c1(h
(j)
k ; 0) + c2(h

(2)
u ; b).

So, RV = 2. We need all columns of the form (h
(1)
s ; 0) and

(h
(2)
u ; �1) as V0 is an LO code. By the condition b), all columns of all

submatricesKKKu are necessary.

Construction B. Let f�1; �2; . . . ; �qg = Fq; �1 = 0; q � 3. We
design a matrix with columns hi.

HHH =

1 1 0 0 . . . 0

0 0 1 1 . . . 1

0 1 �2 �3 . . . �q

= [h1h2 . . .hq+1]: (13)

Theorem 7: The matrixHHH of (13) is a parity-check matrix of a [q+
1; q�2]q2 LO code. All pairs of columns of the form fh1; hig; i � 2,
are critical.

Proof: We consider a nonzero column C = (a; b; c); a; b; c 2
Fq; putting vi 2 F �

q ;  2 f1; 2g.

Case 1) a = 0. Here C = 

i=1 vihj ; ji � 3. For  = 2 the two
needed columns hj ; hj exist as q � 3.

Case 2) a 6= 0.
i) Let b = 0. Then C = 

i=1 vihj ; ji � 2. If C =2 f(v1; 0; 0);
(v2; 0; v2)g we have  = 2 and the representation consid-
ered is unique. So, fh1; h2g is a critical pair of columns.

ii) Let b; c 6= 0. Then C = ah1 + bhj ; b�j�1 = c; j � 3. For
a = c; b 6= 0, it is the only possibility. Changing b we see
that all pairs fh1; hjg; j � 3, are critical.

iii) If b 6= 0; c = 0, then the only possibility is C = ah2 + bhj ;
j � 3; a+ b�j�1 = 0.

Corollary 1: For the second greatest lengthm0(3;2; q) of an [n; n�
3]q2 LO code it holds that

m0(3; 2; q) = q + 1; q � 3: (14)

Remark 1: The geometrical forms of Construction B and Theorem 7
are given in [3, p. 116], [18, Theorem 3] without a proof. The geomet-
rical conclusion corresponding to Corollary 1 is written in [18, Corol-

lary 3]. Theorem 7 here gives the matrix proof of the assertions of [3],
[18]. By the way, note that the proof of [9, Theorem 3] where similar
problems are considered is correct only for PG(2; q). Hence the asser-
tions of [9, Theorem 3, Corollary 2] are right only in PG(2; q).

Corollary 2: There exists an [n; n�r]q2 LO code with n = qr�2+
(qr�3 � 1)=(q � 1) + 1; r � 3; q � 3.

Proof: As the matrix HHH0 of Construction A we use the matrix
of (13) putting n1 = 1. From (13) and Theorem 7 it follows that the
conditions a)–c) of Construction A hold.

Corollary 3: For the second greatest length m0(r;R; q) of an
[n; n � r]qR LO code we have

m0(r;R; q) � Tq(r;R) = qr�R +
qr�R�1 � 1

q � 1
+R� 1 (15)

where q � 3; r > R � 2. For r = 3; R = 2, the equality
m0(3; 2; q) = Tq(3; 2) holds.

Proof: By Corollary 2, it holds that m0(r�; 2; q) � qr �2 +
(qr �3 � 1)=(q � 1) + 1. Then we use (8). The case r = 3; R = 2;
is considered in Corollary 1.

Note that the complete classification in Section IV, Table II and
Table III, gives

m0(R+ 1; R; q) = Tq(R+ 1; R); for R = 3; q = 3; 4; 7;

R = 4; q = 3; 4:

m0(R+ 2; R; q) = Tq(R+ 2; R); for R = 3; 4; q = 3:

m0(R+ 1; R; 5) = T5(R+ 1; R) + 1; for R = 3; 4: (16)

By (8) and (16), it holds that

m0(R+ 1; R; 5) � T5(R+ 1; R) + 1 = R+ 5; R � 3: (17)

For binary LO codes, by results of [13] for complete caps and by (8)
and Theorem 5, we have

2r�1 > m0(r; 2; 2) � 5 � 2r�4;

m0(r;R; 2) � �2(r;R) = 5 � 2r�R�2 +R� 2: (18)

By results of [12] for minimal 1-saturating sets and the complete clas-
sification in Section IV, Table II, and Table III, we have

m0(R+ 4; R; 2) = �2(R+ 4; R); for R = 2

m0(r;R; 2) = �2(r;R) + 1; for r = R+ 2; R+ 3

R = 2; 3; 4: (19)

By (8) and (19), it holds that

m0(r;R; 2) � �2(r;R)+1; r = R+2; R+3; R � 2: (20)

IV. NEW CLASSIFICATION PROBLEMS. SPECTRUM OF POSSIBLE
LENGTHS OF LOCALLY OPTIMAL CODES

We consider classification problems connected with the spectrum
of possible lengths of LO codes. Constructions of Section III and of
[5], [6], [9], [14] advance these problems and give starting codes for
qm-concatenating constructions forming infinite code families.
For spectrum problems we can also use computer. We give exam-

ples of LO codes obtained as minimal saturating sets by geometrical
computer methods. These codes are interesting themselves and can be
applied as starting ones in qm-concatenating constructions. They are
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TABLE I
LENGTHS n OF THE KNOWN [n; n � 3]q2 LO CODES WITH n � q

useful also for estimates and exact answers in extremal and classifica-
tion problems.

For computer search, we use randomized greedy algorithms [9,
Sec. 6], [10], and a breadth-first algorithm [18, Sec. 3]. The first way is
convenient for large q and for obtaining different sizes of geometrical
objects. The second approach has been applied to obtain classifications
of minimal saturating sets and to establish the smallest size of minimal
saturating sets.

In Table I, we give lengths of the known [n; n � 3]q2 LO codes
with n � q. The codes with n = q + 1; q + 2 always exist, see
Theorems 5 and 7. In Table I, we use results of [7], [9, Tables 2, 3, 4],
and computer search done in this work. The dot means that all possible
lengths n for the given q are known. Besides, for q = 3; 4; 5 there are
only n = q + 1; q + 2 [9, Table 2].

Note that, as complete caps are minimal 1-saturating sets, results
of works [7], [10], [12], [13], [15], [16] on possible sizes of complete
caps can be used for the problem of spectrum of possible lengths of
[n; n� r]q2 LO codes and then with the help of (6), (7) for LO codes
with R � 3.

In Tables II and III, for small r; q, we give the complete classifica-
tion of [n; n � r; d]qR LO codes, R = 3; 4. In Table IV, we describe
the classification of [n; n � r; d]qR LO codes of the smallest possible
length, R = 3; 4. The codes are obtained by the geometrical computer
methods as minimal saturating sets. In the tables t is the number of
distinct [n; n� r; d]qR LO codes, “stabilizer group order” is the order
of the stabilizer group of the minimal saturating set corresponding to a
parity-check matrix of a code.

It should be noted that the stabilizer group connected with
parity-check matrix columns treated as points of the projective space
PG(r�1; q) is a subgroup of the full collineation group of PG(r�1; q).
A collineation of PG(v; q) is a bijective function that sends lines in
lines and preserves the incidences [15], [17, Sec.4, Appendix B]. It
implies that every subspace is mapped onto a subspace of the same
dimension. The fundamental theorem of projective geometry [15,
Sec. 2.1] states that the full collineation group of PG(v; q) is equal to
P�L(v + 1; q) that is the group of the collineations of the form �M

where � is an automorphism of the field Fq and M is an invertible
(v + 1) � (v + 1) matrix over Fq . Two sets of points S and S1
are equivalent if a collineation f exists such that f(S) = S1. The
stabilizer group of a set S is G = ff 2 P�L(v+ 1; q) j f(S) = Sg.
In Tables II–IV a stabilizer group order up to 24 has two indexes. The

superscript is the ordinal number of the structure of the group with such
order in [15, Table 2.3]. The subscript is the number of groups with the
same order and structure in our table, e.g., 1232 notes two groups DDD6.
The subscript of a group order greater than 24 is the number of groups
with the same order in our table, here the subscript “1” is not written. In
Table IV, for some R; q; r the smallest length of the LO code is found
but the values d and/or t are not obtained.
By [9, Tables. 1, 2], [12], Tables I–III, and Theorems 5 and 7 of this

correspondence, we have the following.

Theorem 8: It holds that

i) For R = 2; 2 � q � 16; R = 3; 2 � q � 7, and R = 4;
2 � q � 5, there exist [n; n � (R + 1)]qR LO codes of all
possible lengths n in the region l(r;R; q) � n � m(r;R; q).

ii) For q = 2; R = 2; 3; 4; r = R+ 2; R+ 3, and q = 2; R = 2;
r = R + 4; and q = 3; R = 3; 4; r = R + 2, there are not
[n; n � r]qR LO codes of all possible lengths n in the region
l(r;R; q) � n � m(r;R; q).

Now we demonstrate using codes of Tables I–IV and Section III as
the starting LO codes in qm-concatenating constructions to obtain LO
codes of distinct lengths.

Example 1: We use Construction CC1. As the starting [n0; n0 �
3]q2 code we take a code either of Table I with n0 � q or of Theo-
rems 5, 7 with n0 = q + 2; q + 1. We apply the trivial 2-partition P0

and we obtain an infinite family of [n; n � r]qR LO codes Vm with
parameters

R = 2; r = 3 + 2m; n = n0q
m + 2(qm � 1)=(q � 1)

m � 1 if n0 < q; m � 2 if n0 � q: (21)

By Theorem 1, the parity-check matrix of the code Vm has a 2-par-
tition into n0 subsets. We use codes Vm as a starting point for Con-
struction CC2 with m = m1 and for every code Vm we obtain a few
new LO codes Vm;m . By Theorem 2, the parity-check matrix of the
code Vm;m has a 2-partition into 2n0 +1 subsets. Now we use codes
Vm;m as a starting point for Construction CC2 withm = m2 and for
every code Vm;m we obtain new [n; n� r]qR LO codes with

R = 2; r = 3 + 2(m+M)

n = n0q
m+M + (2qm+M � qM � 1)=(q� 1) (22)

whereM = m1 +m2; m � m1 � 2; m+m1 � m2 � 2; m � 2.
Similarly, applying Construction CC2 iteratively we obtain an infinite
chain of LO codes with parameters of the form (22). Now one can again
use Construction CC1 taking codes of this chain as starting.

Example 2: By (13) and the Proof of Theorem 7,P0 = fh1g; fh2g;
fh3; h4g; fh5; . . . ; hq+1g is a 2-partition of the matrixHHH for q � 5.
As the starting code for Construction CC2 with m = 1 we take the
code with HHH of (13) and we obtain the [n; n � 5]q2 LO code, n =
(q3 � 1)=(q� 1). By Theorem 2, the parity-check matrix of this code
has a 2-partition into nine subsets. Using Construction CC2 iteratively
we obtain an infinite chain of [n; n � r]qR LO codes with

R = 2; q � 5; r = 2m+ 1; n = (qm+1 � 1)=(q� 1): (23)

By Construction CC1, one can design an infinite family of LO codes
for every code of (23).
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TABLE II
COMPLETE CLASSIFICATION OF [n; n � r; d]q3 LO CODES FOR SMALL r; q

Example 3: We use Construction CC3. As a starting code V0 we
take any [n0; n0 � r0; d]q3 code of Tables II and IV with d � 4 and
use the trivial 3-partition. For d � 4 all 3-partitions have t0 = 0.
We put m � dlog

q
(n0 + 1)e. For every starting code we obtain an

infinite family of LO codes. Taking as V0 an [n0; n0 � 4; 4]73 code of
Table II we obtain three infinite families of [n; n�r]qR LO codes with
parameters

R = 3; q = 7; r = 4 + 3m; n = ((2n0 + 1) � 7m � 1)=2

n0 = 7; 8; 9; m � 2:

Example 4: We use Construction CC4. As a starting code V0 we
take an [n0; n0� r0; 3]q3 code of Tables II and IV with a parity-check
matrix HHH0 such that there is a column �h 2 HHH0 having the only gen-
erating combination L = �h. We use the trivial 3-partition. For d = 3

the trivial partition has t0 = 3. We put m � dlog
q
(n0 + 1)e. For

every starting code we obtain an infinite family of LO codes. Using the
[6; 2; 3]53 code of Table II as V0 we obtain the family of [n; n� r]qR
LO codes with parameters

R = 3; q = 5; r = 4+ 3m; n = (13 � 5m � 1)=2; m � 2:

The following construction gives infinite families of LO codes in a
geometrical form.

Construction C. We consider a minimal 1-saturating set S0 in the
projective plane PG(2; q) such that all its points are placed on two lines
l1 and l2, i.e., S0 � fl1 [ l2g � PG(2; q). We suppose that at least
one point V of PG(2; q)n l2 is not saturated by S0 n fPg for all points
P 2 S0. We denote the point a = l1 \ l2 and the subsets S(1)

0 ; S
(2)
0

with S(1)
0 [ S

(2)
0 = S0; S

(1)
0 � l1; S

(2)
0 � l2.
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TABLE III
COMPLETE CLASSIFICATION OF [n; n � r; d]q4 LO CODES FOR SMALL r; q

In a hyperplane PG(v � 1; q) of the projective space PG(v; q);
v � 3, we pass all possible lines L1; L2; . . . ; L� through a point A 2
PG(v�1; q). Clearly, � = (qv�1�1)=(q�1). LetL be a line through
points A and B where B 2 PG(v; q) n PG(v � 1; q) and let �i be a
plane through B and Li; i = 1; 2; . . . ; �. All planes �i intersect at the
line L. In every plane �i we build a minimal 1-saturating set Si with
the same structure as S0 so that the line L is l1, the line Li is l2, and
the point A is a. We obtain the set S = �

i=1 Si with the cardinality
jSj = jS

(1)
0 j + �jS

(2)
0 j if a =2 S0; jSj = jS

(1)
0 j + �(jS

(2)
0 j � 1) if

a 2 S0.

Theorem 9: The set S of Construction C is a minimal 1-saturating
set in PG(v; q); v � 3. The points of S form a parity-check matrix of
a [jSj; jSj � (v + 1)]q2 LO code.

Proof: As �

i=1 �i = PG(v; q) and every plane �i is saturated
by the “own” 1-saturated set Si, the set S is 1-saturated. To prove
minimality note that every bisecant of S covering the affine geometry
AG(v; q) = PG(v; q) n PG(v � 1; q) is a line through two points Ki

andM withKi 2 Li; M 2 L. Every such bisecant lies in the plane �i
and it is a bisecant of the set Si. So, in the geometry AG(v; q) the set
S has not other (“new”) bisecants than these belonging to the sets Si.

All new bisecants of S through points of distinct sets Si and Sj lie in
the hyperplane PG(v� 1; q). If we remove off an arbitrary point of Si

then at least one point Vi of �i nLi becomes unsaturated by bisecants
of Si. But the point Vi 2 AG(v; q) and it cannot be saturated by new
bisecants. So, all points of S are necessary.

Example 5: Many codes from Table I have the structure convenient
for the set S0 of Construction C, e.g., the [12; 9]172 LO code with the
parity-check matrix

HHH =

1 1 1 1 1 1 1 1 1 1 1 1

1 6 8 10 12 0 0 0 0 0 0 0

0 0 0 0 0 2 5 7 8 9 11 16

= [h1h2 . . . h12]:

We treat hi as points of S0. The columns h1; . . . ; h5 belong to the first
line, the rest of points belong to the second one. Considering these lines
as l1; l2 and l2; l1 we obtain two infinite families of [n; n � r]qR LO
codes with parameters

R = 2; q = 17; r � 3

n = (7 � 17r�2 + 73)=16; n = (5 � 17r�2 + 107)=16:
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TABLE IV
CLASSIFICATION OF [n; n� r; d]qR LO CODES OF THE SMALLEST LENGTH

Example 6: We treat columns of the parity-check matrix of [6, eq.
(30)] as points of the setS0 of ConstructionC andwe obtain two infinite
families of [n; n � r]qR LO codes with parameters

R = 2; q = p2; r � 3; n = p+ (2p� 1)(qr�2 � 1)=(q � 1)

n = 2p� 1 + p(qr�2 � 1)=(q� 1):

Example 7: As S0 of Construction C we use the set of (13) and
obtain [n; n � r]qR LO codes with parameters

R = 2; q � 3; r � 3; n = qr�2 + 1;

n = (2qr�2 + q2 � 2q � 1)=(q� 1):

To obtain LO codes of distinct lengths one can use also Construction
DS of (6) taking as V1; V2 codes from infinite families above, codes
from Tables I–V, the Hamming code.

V. NEW BOUNDS ON THE LENGTH FUNCTION

By Tables III and IV, we have new exact values, cf. [11, Table II],
[14, Table I], [19, p. 303]

l(5; 3; 4) = 9; l(5; 3; 5) = 10; l(4;3; 11) = 8

l(5;4; 4) = l(5;4; 5) = 6; l(5;4; 7) = l(5; 4; 8) = 7:

In Table V, we used results of [11] and computer search done in
this correspondence. By computer, we found parity-check matrices of
[lq; lq � 4; d]q3 LO codes as minimal 2-saturating lq-sets in PG(3; q).
By [11], an [n; n � 4; d]q3 LO code has d 2 f3; 4; 5g and its parity-
check matrix corresponds to a complete n-arc in PG(3; q) if d = 5 or
an incomplete n-cap if d = 4. In Table V the subscript indicates the
distance d of the code. Entries “3, 4, 5,” “3, 4, ”. . . mean that distinct
types of 2-saturating sets give the same result. The dot indicates the
exact bounds with l(4;3; q) = lq. For all codes with d = 3 in the
parity-check matrix there is a column �h having the only generating
combination L = �h.

TABLE V
UPPER BOUNDS lq ON THE LENGTH FUNCTION l(4;3; q); q � 563

Many results of Table V are better than ones in [11, Tables II, III],
cf. [11, Theorem 2], and (24). Results for q � 347 in Table V are new.
Many codes with d = 3 appear in Table V for the first time. Using
Table V, one can obtain new upper bounds.

Theorem 10: For the length function l(4;3; q) it holds that

l(4;3; q) � bq
p
q; bq � 4 if q � 83

bq � 4:5 if q � 343; bq � 5 if q � 563: (24)

We denote by Q the set of q values for which in Table V there is
a code with d = 3. We use the [lq; lq � 4; 3]q3 codes of Table V
as the starting codes for Construction CC4. Then we apply the trivial
3-partition and put t = m+ 1. As result we obtain the infinite family
of [n; n � r; 3]qR LO codes with parameters

R = 3; r = 3t+ 1; n = lqq
t�1 + 2(qt�1 � 1)=(q� 1)

t � 2 if q � 8; t � 3 if q � 7; q 2 Q: (25)

We compare codes of (25) with those of [11, eqs. (10), (11)] where
the starting code length lq is denoted by nq;3. Always lq � nq;3. The
code length in (25) is smaller than that in [11] even if lq = nq;3. More-
over, from [11, Tables II, III] and Table V, it follows that for many q,
including q 2 Q, we have lq < nq;3. The restrictions for t in (25) are
better. So, the codes of (25) give new upper bounds on the length func-
tion l(3t + 1; 3; q); q 2 Q.
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If q =2 Q one can use [11, eq. (10)] changing nq;3 by lq from Table V.
By above, we again obtain new upper bounds on the length function
l(3t + 1; 3; q).

Finally, we can obtain a relatively good upper bounds on the length
function l(r1 + r2; R1 +R2; q) if in Construction DS of (6) the codes
V1; V2 are taken from Tables I–V.
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Some Results for Linear Binary Codes With Minimum
Distance and

Iliya Bouyukliev and Zlatko Varbanov

Abstract—We prove that a linear binary code with parameters
[34 24 5] does not exist. Also, we characterize some codes with min-
imum distance 5 and 6.

Index Terms—Algorithm, linear binary code, optimal code.

I. INTRODUCTION

LetFn
2 be then-dimensional vector space over the Galois fieldF2 =

GF(2). The Hamming distance between two vectors of Fn
2 is defined

to be the number of coordinates in which they differ. A linear binary
[n; k; d]-code is a k-dimensional linear subspace of Fn

2 with minimum
Hamming distance d. The weight of the vector c(wt(c)) is the number
of nonzero entries in c.
A central problem in coding theory is that of optimizing one of the

parameters n; k, and d for given values of the other two. Three versions
are as follows:

Problem 1: Find n2(k; d), the largest value of n for which a binary
[n; k; d]-code exists.

Problem 2: Find d2(n; k), the largest value of d for which a binary
[n; k; d]-code exists.

Problem 3: Find k2(n; d), the largest value of k for which a binary
[n; k; d]-code exists.

These three functions are closely connected.
A lower bound on n2(k; d) is the Griesmer bound [6] given by

n2(k; d) � g2(k; d) =

k�1

i=0

dd=2ie: (1)

For fixed k and sufficiently large d, the lower bound is achieved,
i.e., there is a constant D0(k) such that n2(k; d) = g2(k; d) for
d�D0(k) [1].
Bounds for d2(n; k) were presented in [4].
In this correspondence, we consider mostly k2(n; d). The exact

values of k2(n; d) are known for d � 4 and for d = 5; n � 33. This is
the reason to consider the following problem: Are there linear binary
[34; 24; 5] codes? This is the first open case for the function k2(n; d).
We know that k2(34;5) � 23.
We call the codes with parameters [n; k2(n; d); d] optimal. Another

important problem related to k2(n; d) is

Problem 4: Characterize all binary [n; k2(n; d); d] codes for given
values of n and d.

Manuscript received September 29, 2004; revised June 1, 2005. This work
was supported by the Bulgarian National Science Foundation under Grant
MM-1304/03. The material in this correspondence was presented in part at
Algebraic and Combinatorial Coding Theory (ACCT’04), Kranevo, Bulgaria.

I. Bouyukliev is with the Institute of Mathematics and Informatics, Bul-
garian Academy of Sciences, 5000 Veliko Tarnovo, Bulgaria (e-mail: iliya@
moi.math.bas.bg).

Z. Varbanov is with the Department of Mathematics and Informatics,
Veliko Tarnovo University, 5000 Veliko Tarnovo, Bulgaria (e-mail: vtgold@
yahoo.com).

Communicated by R. J. McEliece, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2005.859296

0018-9448/$20.00 © 2005 IEEE


