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1. Introduction

In the binary projective space PG(n,2) k-caps are called large if k>2n−1 and small
if k ≤ 2n−1 [2,3]. In this paper we consider new constructions of small complete
caps.

A k-cap in PG(n,2) is a set of k points, no three of which are collinear. A k-cap
in PG(n,2) is called complete if it is not contained in a (k + 1)-cap of PG(n,2).
For an introduction to these geometric objects, see [10,11]. In a space PG(n,2) a
complete cap, points of which are treated as (n+ 1)-dimensional binary columns,
defines a parity check matrix of a binary linear code with codimension n+1, Ham-
ming distance d ≥ 4, and covering radius 2 [2,5,11]. The only case with d > 4 is
given by the complete 5-cap in PG(3,2) when d = 5. The codes mentioned are
called quasi-perfect if d =4 or perfect if d =5 [12].

Relatively many facts on large complete caps in PG(n,2) are known. For exam-
ple, in [5] all exact possible sizes and structure of complete k-caps with k >2n−1 +1
are obtained. Every such complete cap can be formed by repeated applying of the
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doubling construction to a “critical” complete (2m−1 +1)-cap of PG(m,2), m<n.

The structure and properties of critical caps are considered briefly in [1,3,5], and
deeply in [2] where problems of critical caps structure are solved in main.

But our knowledge on small complete caps seems to be insufficient, see, e.g., [3,
4,6–9,11,14]. In PG(n,2), n≥6, the smallest size and, in general, the spectrum of
possible sizes of small caps are unknown. Relatively a few constructions of small
complete caps are described in literature [3,4,9,14].

In this work we give some known results on small complete caps (Section 2) and
propose new constructions of those (Sections 3 and 4).

2. Some Known Results on Small Complete Caps

The doubling construction (DC) or Plotkin construction is described and used in
many works, see [1,4,5], and the references therein. From a complete k-cap in
PG(n,2) DC forms a complete 2k-cap in PG(n+1,2).

The black/white lift (BWL) construction proposed in [3] obtains, in the general
case, a number of new complete (2k −δi)-caps in PG(n+1,2) from an “old” com-
plete k-cap S in PG(n,2) under condition that S has certain properties connected
with points of PG(n,2)\S . The values of δi are positive, they can be distinct for
distinct new caps and depend on the structure of the cap S.

The papers [4] and [9] give two distinct constructions that obtain complete k-
caps in PG(n,2) with

k =2n+1−s +2s −3, n≥3, s =2,3, . . . , �(n+1)/2�. (1)

The construction of [9] uses methods from [13].
The smallest known complete k-caps in PG(n,2), n≥ 6, with k =f (n) are con-

structed in [9]. Here

f (6)=21, f (7)=28,

f (2m)=23×2m−3 −3, m≥4,

f (2m−1)=15×2m−3 −3, m≥5. (2)

For example, f (8)=43, f (9)=57, f (10)=89, f (11)=117, f (12)=181.

It is proved, see [7,8] and the references therein, that in PG(n,2) for n= 2,3,4
complete small caps do not exist and for n= 5 there are only small complete 13-
caps.

In the paper [14, Corrected version, Section 5, Propositions 7.1,8.1] the follow-
ing sizes k of complete k-caps in PG(n,2) are obtained:

k =2n−v + t (2v −2)+1, t =2,4,5, . . . ,2n−v−1, 2≤v ≤n−2, n≥4;
k =2n−v +3 ·2v −5, n≥2v +3;
k =2n−2 + t, t =5,9,11, . . . ,2n−2 +1 if n≥6, besides t =3,7 if n≥7;
2n−2 +8≤k ≤2n−1 −2, n≥6, k �=30 if n=6. (3)
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Table 1. The sizes of the known small complete caps in PG(n,2).

n Sizes k of the known complete caps with k ≤2n−1 References

5 k =13 [4,7–9,14]
6 21≤k ≤31, k �=23,30 [4,6,9,14]
7 28≤k ≤63 [4,6,9,14]
8 43≤k ≤127 [4,6,9,14]
9 60≤k ≤255, k =57 [4,6,9,14]

10 92≤k ≤511, k =89 [6,9,14]
11 133≤k ≤1023, k =117,125,126,129,130 [6,9,14]
12 196≤k ≤2047, k =181,189,190,193,194 [6,9,14]

In Table 1 known sizes of small complete caps in PG(n,2), 5≤n≤12, are writ-
ten. Table 1 uses relations (1–3), Construction DC, works [4,6–9,14, Corrected ver-
sion], in particular, computer results of [4,6].

In [5, Remark 4, 6] and [9, p. 222], the following conjectures are proposed:
Conjecture 1. [5]. In the space PG(n,2) a complete 2n−1-cap does not exist.
Conjecture 2. [6]. For n≥ 7 in the space PG(n,2) there exist complete caps of

all sizes k with f (n)≤k ≤2n−1 −1, where f (n) is defined in equation (2).
Conjecture 3. [9]. In PG(6,2) the smallest size of a complete cap is 21.

By equation (2) and Table 1, Conjecture 2 holds for n=7,8.

3. A Construction of Small Complete Caps

3.1. Spaces and Vectors

Let En+1,Gr,Gs,Dl, and Dm be spaces of binary (n + 1)-positional vectors with
dimensions n+1, r, s, l, and m, respectively, and let

En+1⊃Gr⊃Gs, En+1⊃Dl⊃Dm, Gr ∩Dl ={0}, r >s, l >m, r + l =n+1, (4)

where 0 is the zero (n + 1)-positional vector. The “main” space En+1 and all its
subspaces contain it. The asterisk denotes a space without the zero vector. We have
G∗

r ∩D∗
l =∅. A sum of two subsets A and B of En+1 is, as usually, A+B ={a +b :

a ∈A,b∈B}. Then Gr +Dl =En+1.

We put E∗
n+1 =PG(n,2). Points of PG(n,2) are vectors of E∗

n+1.

We denote Gs ={g0, g1, . . . , g2s−1}, Dm ={d0, d1, . . . , d2m−1}.
Let bi,j be a binary vector of length i that is the binary representation of a num-

ber j. If we are not interested in j we may write bi. Denote by 0t the zero matrix
(vector) with t rows (t positions) where “matrix” or “vector” are defined by con-
text. Moreover, by 0t we will write only zeroes “necessary” for points representa-
tion that we put in this paper. We represent points of Gr,Gs,Dl,Dm, in the fol-
lowing form:

(br0l−m0m)∈Gr, gu = (0r−sbs,u0l−m0m)∈Gs, u=0,1, . . . ,2s −1,

(0r−s0sbl)∈Dl, dv = (0r−s0s0l−mbm,v)∈Dm, v =0,1, . . . ,2m −1. (5)
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It should be emphasized that the formulas of equation (5) have been taken only for
definiteness of a matrix representation of our geometrical objects and for finding
a matrix form of needed caps Z, see below. In general, a representation of points
as elements of vector spaces can be arbitrary for constructions considered in this
paper.

Let g ∈G∗
s , d ∈D∗

m. Hence, g =ga, a �=0, d =dc, c �=0.

We can treat a point of PG(n,2) as a column of a matrix, a subset of PG(n,2)

as a matrix, and vice versa, we can consider a matrix as a set of points. We do
not change notation for such treatment.

We denote by Ĝr , Ĝs, D̂l, D̂m, the corresponding spaces without “necessary”
zeroes of the form 0l−m,0m,0r−s ,0s , see equation (5). So, Ĝf (resp., D̂f ) is the
f -dimensional space of binary f -positional vectors. We have br ∈ Ĝr , bs ∈ Ĝs,

bl ∈ D̂l, bm ∈ D̂m.

The spaces and points considered above can be represented in the matrix form,
for example, as follows, see equation (5),














Gr | Dl | Gs | g =ga | Dm | d =dc

Ĝr

|
|
|
|

0r−s

−−−
0s

|
|
|
|

0r−s

−−−
Ĝs

|
|
|
|

0r−s

−−−
bs,a

|
|
|
|

0r−s

−−−
0s

|
|
|
|

0r−s

−−−
0s

−−− | −−− | −−− | −−− | −−− | −−−
0l−m

−−−
0m

|
|
| D̂l

|
|
|

0l−m

−−−
0m

|
|
|

0l−m

−−−
0m

|
|
|

0l−m

−−−
D̂m

|
|
|

0l−m

−−−
bm,c














. (6)

3.2. Construction S

A point set H in PG(n,2) is defined as

H =G ∪D∪Z (7)

where G,D,Z, are point sets of PG(n,2) formed as follows

G =Gr\Gs +{d}, D=Dl\Dm +{g}, (8)

Z={z1, z2, . . . , zw}, zi=gji
+dki

, gji
∈G∗

s , dki
∈D∗

m, i=1,2, . . . ,w, w≥1. (9)

By equations (4),(8),(9),

H ⊂E∗
n+1, G ∩D=∅, G ∩Z=∅, D∩Z=∅. (10)

Obviously, the size k of the set H is

k = (2r −2s)+ (2l −2m)+w =2r +2l − (2s +2m −w)

=2r +2n+1−r − (2s +2m −w). (11)
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We introduce the set

M =G∗
s +D∗

m. (12)

By equation (9), Z ⊆M. The points of the set Z can be represented in the form,
see equations (5),(6),(9),

zi =gji
+dki

= (0r−sbs,ji
0l−mbm,ki

), ji �=0, ki �=0, i =1,2, . . . ,w. (13)

Now we represent the set H in the matrix form, see equations (5),(6),(13),

H =














G =Gr\Gs +{d} D=Dl\Dm +{g} Z={z1, z2, . . . , zw}

Ĝr\Ĝs
0r−s

− − − −
bs,a bs,a . . . bs,a

0r−s

− − − −
bs,j1 bs,j2 . . . bs,jw− − − − − − − − − − − −

0l−m 0l−m

− − − − D̂l\D̂m − − − −
bm,c bm,c . . . bm,c bm,k1 bm,k2 . . . bm,kw














. (14)

We introduce sets G(Z) and D(Z) and values g(Z) and d(Z) such that

G(Z)={gji
: zi =gji

+dki
, i =1,2, . . . ,w},

D(Z)={dki
: zi =gji

+dki
, i =1,2, . . . ,w}. (15)

g(Z)=
{

1 if g ∈G(Z)

0 if g /∈G(Z)
, d(Z)=

{
1 if d ∈D(Z)

0 if d /∈D(Z)
. (16)

Conditions on Z sufficient for H to be a complete cap.

A. Z∩ (Z+Z)=∅, i.e., Z is a cap.

B. M ⊆Z∪ (Z+Z), i.e., G∗
s +D∗

m ⊆Z∪ (Z+Z).

C. G(Z)∪{g}=G∗
s , D(Z)∪{d}=D∗

m.

D. r ≥ s +2−d(Z), l ≥m+2−g(Z).

In examples below boldface 0 denotes the zero from a region of “necessary”
zeroes connected with the representation of spaces and points taken in this paper,
see equations (5),(6),(13),(14).

Example 1. Let r = 3, s = 2, l = 4, m = 2, w = 6, g = g1 = (01b2,10202) = (0 01
00 00), d = d3 = (010202b2,3) = (0 00 00 11), and let Z={(g2 + d1), (g2 + d2),
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(g2 +d3), (g3 +d1), (g3 +d2), (g3 +d3)}. Then, see equation (14),

H =











1111 | 0000 0000 0000 | 000 000
0011 | 0000 0000 0000 | 111 111
0101 | 1111 1111 1111 | 000 111
− − | − − − − − − | − − − −
0000 | 0000 1111 1111 | 000 000
0000 | 1111 0000 1111 | 000 000
1111 | 0011 0011 0011 | 011 011
1111 | 0101 0101 0101 | 101 101











. (17)

The first 4 columns are points of Gr\Gs +{d}, the next 12 columns are Dl\Dm +
{g}, and the last 6 columns are Z. The form of Z will be explained later in Con-
struction Z2. By above, G(Z) = {g2, g3}, G(Z) ∪ {g} = G∗

s , g(Z) = 0 as g /∈ G(Z),

D(Z)={d1, d2, d3}=D∗
m, d(Z)= 1 as d ∈D(Z). So, the conditions C and D hold.

One can check directly that the conditions A and B hold too.

Theorem 1. Under conditions A−D the point set H in equation (7) is a complete
cap.

Proof. We show that H is a cap, i.e., H ∩ (H +H)=∅ and that the cap H is com-
plete, i.e., H ∪ (H +H)⊇E∗

n+1 =PG(n,2). By equation (7),

H +H = (G +G)∪ (D+D)∪ (Z+Z)∪ (G +D)∪ (G +Z)∪ (D+Z). (18)

By equations (4),(8),(9), and the condition A,

H ∩ (Z+Z)=∅. (19)

(a) Let

g(Z)=d(Z)=0, i.e., g /∈G(Z), d /∈D(Z). (20)

By equation (20) and the condition D, we have r ≥ s +2, l ≥m+2. Hence,

G +G =Gr, D+D=Dl. (21)

One can see in Example 1 the relation D+D=Dl where l =m+2. But in Exam-
ple 1 r = s + 1 and the relation G + G = Gr does not hold. So, for equation (21)
the conditions r ≥ s +2, l ≥m+2 are necessary.

Since Gr\Gs +{g}=Gr\Gs and Dl\Dm +{d}=Dl\Dm, again see Example 1, we
have

G +D=Gr\Gs +Dl\Dm. (22)

By equation (20) and the condition C, we have G(Z)=G∗
s \{g} and D(Z)=D∗

m\{d}.
Hence

G +Z=Gr\Gs +D∗
m\{d}, D+Z=Dl\Dm +G∗

s \{g}. (23)
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From equations (6),(7),(10),(18),(19),(21)–(23), it follows that H ∩ (H +H)=∅, i.e.,
H is a cap.

Taking into account the condition B one can see that H is a complete cap. In
fact,

H ∪ (H +H)⊇ (Gr\Gs +{d})∪ (Dl\Dm +{g})∪Gr ∪Dl ∪ (Gr\Gs +Dl\Dm)∪
(Gr\Gs +D∗

m\{d})∪ (Dl\Dm +G∗
s \{g})∪ (G∗

s +D∗
m).

Note that

(Gr\Gs +{d})∪ (Gr\Gs +D∗
m\{d})=Gr\Gs +D∗

m,

(Dl\Dm +{g})∪ (Dl\Dm +G∗
s \{g})=Dl\Dm +G∗

s ,

(Gr\Gs +D∗
m)∪ (Dl\Dm +G∗

s )∪ (Gr\Gs +Dl\Dm)= (Gr\Gs +D∗
l )∪

(Dl\Dm +G∗
r ),

(Gr\Gs +D∗
l )∪Dl = (Gr\G∗

s +D∗
l )∪{0n+1},

(Dl\Dm +G∗
r )∪Gr = (Dl\D∗

m +G∗
r )∪{0n+1},

where 0n+1 is the zero (n+1)-positional vector. Now we can write

H ∪ (H +H)⊇ (Gr\G∗
s +D∗

l )∪ (Dl\D∗
m +G∗

r )∪ (G∗
s +D∗

m)=E∗
n+1 =PG(n,2).

(b) Let

g(Z)=d(Z)=1, i.e., g ∈G(Z), d ∈D(Z). (24)

Hence r ≥ s +1, l ≥m+1, see the condition D.

The relation (22) holds in the case (b).
By equation (24) and the condition C, we have G(Z) = G∗

s and D(Z) = D∗
m.

Hence

G +Z=Gr\Gs +Dm\{d}, D+Z=Dl\Dm +Gs\{g}, (25)

cf. with equation (23). Note that 0n+1 ∈Dm\{d} and 0n+1 ∈Gs\{g}.
Now we consider situations connected with correlation between r and s, l and m.

In the beginning let r = s +1, l =m+1. Then

G +G =Gs, D+D=Dm. (26)

One can see in Example 1, where r = s + 1, the relation G + G = Gs. Again for
equation (26) the conditions r = s +1, l =m+1, are necessary.

Using equations (25),(26), similarly to the case (a) we see that H is a cap.
From equations (7),(12),(18),(22),(25),(26) and the conditions A and B it follows

that H is a complete cap. We have

(Gr\Gs +{d})∪ (Gr\Gs +Dm\{d})∪ (Dl\Dm +{g})∪ (Dl\Dm +Gs\{g})∪
(Gr\Gs +Dl\Dm)= (Gr\Gs +Dl)∪ (Dl\Dm +Gr),

Gs ∪Dm ∪ (G∗
s +D∗

m)=Gs +Dm.
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Hence

H ∪ (H +H)⊇ (Gr\Gs +Dl)∪ (Dl\Dm +Gr)∪ (Gs +Dm)⊇E∗
n+1 =PG(n,2).

Now let r ≥ s +2, l =m+1. Then

G +G =Gr, D+D=Dm, (27)

cf. with equations (21) and (26). We change equation (26) by (27) and again sim-
ilarly to the case (a) we see that H is a cap. Since Gs ⊂Gr the change mentioned
retains H as a complete cap.

Finally, for the situation r ≥ s +2, l ≥m+2, we obtain the relation (21) instead
of equations (26) or (27), and, as Gs ⊂Gr, Dm ⊂Dl, we see, by above, that H is
a complete cap.
(c) Let

g(Z)=1, d(Z)=0, i.e., g ∈G(Z), d /∈D(Z). (28)

Hence r ≥ s +2, l ≥m+1, see the condition D.

The relation (22) holds in the case (c).
By equation (28) and the condition C, we have G(Z)=G∗

s and D(Z)=D∗
m\{d}.

Hence

G +Z=Gr\Gs +D∗
m\{d}, D+Z=Dl\Dm +Gs\{g}, (29)

cf. with equations (23) and (25). Note that 0n+1 ∈Gs\{g}.
In the beginning we put r ≥ s +2, l =m+1. Then the relation (27) holds.
Similarly to the case (a) one can see that H is a cap.
From equations (7),(12),(18),(22),(27),(29) and the conditions A and B it fol-

lows that H is a complete cap. In fact,

(Gr\Gs +{d})∪ (Gr\Gs +D∗
m\{d})∪ (Dl\Dm +{g})∪ (Dl\Dm +Gs\{g})∪

(Gr\Gs +Dl\Dm)= (Gr\Gs +D∗
l )∪ (Dl\Dm +Gr),

Dm ∪ (G∗
s +D∗

m)= (Gs +D∗
m)∪{0n+1}.

Hence

H ∪ (H +H)⊇ (Gr\Gs +D∗
l )∪ (Dl\Dm +Gr)∪Gr ∪

(Gs +D∗
m)⊇E∗

n+1 =PG(n,2).

Now let r ≥ s +2, l ≥m+2. We obtain the relation (21) instead of (27), and, as
Dm ⊂Dl, we see, by above, that H is a complete cap.
(d) The case g(Z)=0, d(Z)=1, can be considered similarly to the previous cases.

�

Note that the condition A is necessary for a set H to be a cap. Without the con-
dition A the relation (19) does not hold. The conditions B,C, and D are needed
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for H to be a complete cap. In the proof without the term G∗
s + D∗

m connected
with the condition B the requirement H∪ (H+H)⊇E∗

n+1 does not hold. Similarly,
without the condition C the sets G +Z and D+Z do not have the form of equa-
tions (23),(25), or (29), without the condition D the sets G +G and D+D do not
have the form of equations (21),(26), or (27), and again the condition H ∪ (H +
H) ⊇ E∗

n+1 will not be true. Of course, we can put r ≥ s + 2, l ≥ m + 2, indepen-
dently of d(Z) and g(Z), but this does not allow us to get some sizes of caps.

4. Constructions of Caps Z

4.1. On Infinite Families of Small Complete Caps

We consider examples of distinct constructions of the cap Z. Every construction
generates infinite families of complete caps with distinct sizes since parameters r

and l (and therefore n= r + l −1) are bounded only from below. For the given con-
struction of Z the dimension n of the space PG(n,2), where the obtained cap H
lies, can tend to infinity. Moreover, for a fixed n every construction of Z generates
many distinct sizes of complete caps since n is a sum of r and l and, besides, there
exist parameters s and m which can change and which are bounded only from
below too. Finally, an iterative process, when complete caps obtained by Construc-
tion S are used to create new caps Z, also gives new families of sizes.

Of course, the set of constructions of Z described here is not complete. One can
form other constructions of Z and get new sizes of caps by Construction S.
Construction Z1

We put s =m= 1. Then G∗
s =G∗

1 ={g1}, g1 = (0r−1b1,10l−101), D∗
m =D∗

1 ={d1},
d1 = (0r−1010l−1b1,1), see equations (5),(6). Obviously, g =g1, d = d1, w = 1, Z =
{z1}, z1 =g +d, M ={g}+{d}, Z=M, G(Z)=G∗

1, D(Z)=D∗
1 , g(Z)=d(Z)=1,

see equation (16), r ≥ s +1, l ≥m+1. Since Z=M, the condition B holds. We have,
see equation (7),

H =G ∪D∪Z= (Gr\G1 +{d1})∪ (Dl\D1 +{g1})∪{z1}.

If r = l =3, we obtain n=5, k =13,

H =









001111 | 000000 | 0
110011 | 000000 | 0
010101 | 111111 | 1− − − | − − − | −
000000 | 001111 | 0
000000 | 110011 | 0
111111 | 010101 | 1









. (30)

By equation (11), the size k of the complete cap H ⊂ PG(n,2) containing the cap
Z of Construction Z1 is k =2r +2l −3=2r +2n+1−r −3, r ≥2, l ≥2, n≥ r +1. It is
easy to see that Construction S in the particular case with the cap Z of Construc-
tion Z1 gives the same complete cap as in [9, Theorem 3], cf. equation (1) and the
last formula for k.
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4.2. Modified Notation. Caps Z′
0 and Z′

Now we will construct the caps Z not considering “necessary” zeroes of the form
0r−s and 0l−m, see equations (5),(6),(13),(14).

We denote t = s + m − 1. Let Et+1 be the (t + 1)-dimensional space of binary
(t +1)-positional vectors. We put E∗

t+1 =PG(t,2).

In Et+1 we introduce vector subspaces G′
s ,D

′
m, a subset M ′ =G

′∗
s +D

′∗
m, and a

point set Z′, that are obtained from Gs,Dm,M, and Z by removing “necessary”
zeroes of the form 0r−s and 0l−m. Respectively we introduce points g′

u, d
′
v, g

′, d ′, z′.
Now, cf. equations (5),(9),(13),

G′
s ={g′

0, g
′
1, . . . , g′

2s−1}, g′
u = (bs,u0m), u=0,1, . . . ,2s −1,

D′
m ={d ′

0, d
′
1, . . . , d ′

2m−1}, d ′
v = (0sbm,v), v =0,1, . . . ,2m −1. (31)

Z′ = {z′
1, z

′
2, . . . , z′

w}⊂E∗
t+1,

z′ =g′
ji

+d ′
ki

= (bs,ji
bm,ki

), g′
ji

∈G
′∗
s , d ′

ki
∈D

′∗
m, i =1,2, . . . ,w. (32)

The functions G′(Z′),D′(Z′), g′(Z′), and d ′(Z′), are introduced similarly to equa-
tions (15),(16), with change zi by z′

i and so on, again cf. equations (5),(9),(13) with
equations (31),(32). Clearly, g′(Z′) = g(Z) and d ′(Z′) = d(Z). Finally, the condi-
tions A′,B′,C′,D′ are perfectly analogous to those A,B,C,D after an addition
of upper primes.

Clearly, Z and Z′ are in one-to-one correspondence and directly determine one
another.

By the condition A′, the point set Z′ is a cap in PG(t,2).
We will find a needed caps Z′ in a matrix form using a matrix form of a start-

ing complete cap Z′
0 in PG(t,2). We call an s-region (resp., an m-region) the first

s (resp., the last m) rows of matrices corresponding to Z′ and Z′
0.

If for Z′
0 the conditions A′,B′,C′,D′ hold we can put Z′ = Z′

0. To change
parameters or to provide the conditions A′,B′,C′,D′, we can form sums of rows
in Z′

0 (to support the condition C′) and remove columns from Z′
0 with s zeroes in

the s-region, of the form (bs,0bm), or with m zeroes in the m-region, of the form
(bsbm,0), because g′

ji
∈ G

′∗
s , d ′

ki
∈ D

′∗
m. Such columns can present in the beginning

of the process and can appear after summing rows in Z′
0. The removed columns

(points) do not belong to M ′ =G
′∗
s +D

′∗
m and therefore they are not required to be

saturated with respect to Z′. The operations mentioned preserve the property of
Z′

0 to be a cap. Hence the condition A′ always holds.

4.3. Using the Greatest Binary Complete Cap

In Constructions Z2 and Z3 as the starting complete cap Z′
0 we use the greatest

complete 2t -cap At in the space PG(t,2) that is the complement to some hyper-
plane L of PG(t,2), i.e., At consists of the affine space PG(t,2)\L, see [1,11]. In
the matrix form we can represent the cap At by a (t + 1)× 2t = (s +m)× 2s+m−1-
matrix such that the first row consists of 2s+m−1 ones, the other t = s +m−1 rows
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contain numbers 0,1, . . . ,2s+m−1 − 1 written as columns in the lexicographical
order. In Construction Z4 we modify the greatest complete 2t−1-cap At−1 ⊂PG(t −
1,2) to get the starting complete (2t−1 +1)-cap Z′

0 ⊂PG(t,2).

Remark 1. Every point of PG(t,2)\At lies on 2t−1 bisecants of the cap At . If we
remove j <2t−1 points from At to get a cap At,j then every point of PG(t,2)\At

lies at least on one bisecant of At,j , i.e., all points of PG(t,2)\At are saturated.

Let W be a matrix form of a point set in PG(f +p − 1,2) where f and p are
nonnegative integers, f +p≥3. Every (f +p)-positional column of W represents a
point of PG(f +p −1,2). We say that the matrix W has a property Uf,h if f ≥1
and the first f rows of W contain all distinct nonzero f -positional columns except
some h nonzero columns and furthermore the zero f -positional column is present
in these rows. If the zero f -positional column is absent the property is denoted by
U∗

f,h. Respectively we introduce properties Lp,h and L∗
p,h for the last p rows of the

matrix W.

Remark 2. Let parameters s and m are given. If a matrix form of a cap Z′ has
the property U∗

s,0 then G′(Z′)=G
′∗
s , the 1st part of the condition C′ holds, g′(Z′)=

1. To satisfy the 2nd part of the condition D′ we must put l ≥m+1. If Z′ has the
property U∗

s,1 then G′(Z′)=G
′∗
s \ {g′

i} with i �=0. To satisfy the 1st part of the con-
dition C′ one must take g′ =g′

i . For such g′ we have g′(Z′)=0. To satisfy the 2nd
part of the condition D′ we must put l ≥m+2. Respectively, for the property L∗

m,0
we have that D′(Z′)=D

′∗
m, the 2nd part of the condition C′ holds, d ′(Z′)= 1. To

satisfy the 1st part of the condition D′ one must put r ≥ s + 1. For the property
L∗

m,1 it holds that D′(Z′)=D
′∗
m \ {d ′

j }, j �= 0. To satisfy the 2nd part of the condi-
tion C′ one must take d ′ = d ′

j . For such d ′ we have d ′(Z′) = 0. To satisfy the 1st
part of the condition D′ we must put r ≥ s +2.

Construction Z2
We put s =2, m≥2, t ≥3, w=2m+1 −2. Obviously, the matrix At has the prop-

erties U∗
2,1 and Lm,0. From the matrix At we remove j =2 columns (b2,2bm,0) and

(b2,3bm,0) with m zeroes in the m-region. We put that the matrix obtained is Z′.
Clearly, G′(Z′) = {g′

2, g
′
3}, D′(Z′) = D

′∗
m. We take g′ = g′

1 = (b2,10m). Then G′(Z′) ∪
{g′}=G

′∗
s and g′(Z′)=0. Let d ′ = (02bm,v), v �=0. Then d ′(Z′)=1 as D′(Z′)=D

′∗
m.

We put r ≥s +1=3, l≥m+2≥4. Now the conditions C′ and D′ hold. Since 2t−1 ≥
4>j all points of PG(t,2)\At are saturated, see Remark 1. The removed two col-
umns (points) are not saturated but they do not belong to M ′. So, M ′ ⊂Z′ ∪ (Z′ +
Z′). The condition B′ holds. As an example with m=2, t =3, see the 3rd section
of the matrix in (17) without “necessary” boldface 0. By (11), the size k of the
complete cap H ⊂PG(n,2) obtained with the help of Z′ of Construction Z2 is

k =2r +2l +2m −6

=2r +2n+1−r +2m −6, r ≥3, m≥2, l ≥m+2, n≥ r +m+1. (33)
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Construction Z3
We put s ≥3, m≥2, t ≥4, w=2s+m−1 −2s−1 −2m−1. In the matrix At we add

the (s + 1)-th row to the 1st row. Now the matrix At has the properties Us,0 and
Lm,0. If s =m=3 we obtain the matrix









1111 0000 1111 0000 1111 0000 1111 0000
0000 0000 0000 0000 1111 1111 1111 1111
0000 0000 1111 1111 0000 0000 1111 1111−−− −−− −−− −−− −−− −−− −−− −−−
0000 1111 0000 1111 0000 1111 0000 1111
0011 0011 0011 0011 0011 0011 0011 0011
0101 0101 0101 0101 0101 0101 0101 0101









.

Then we remove 2m−1 columns with s zeroes in the s-region and 2s−1 columns
with m zeroes in the m-region. The removed columns have the form (bs,0bm,v), v=
2m−1,2m−1 + 1, . . . ,2m − 1, and (bs,ubm,0), u= 2s−1,2s−1 + 1, . . . ,2s − 1. As result
we obtain the matrix At,j with j =2m−1 +2s−1 and put Z′ =At,j . For s ≥3, m≥2,

we have 2t−1 =2s+m−2 >j =2m−1 +2s−1. Hence all points of PG(t,2)\At are satu-
rated, see Remark 1. Again, as in Construction Z2, the removed columns (points)
are not saturated but they do not belong to M ′ and the condition B′ holds. It is
easy to see that G′(Z′)=G

′∗
s , D′(Z′)=D

′∗
m. Therefore we need to assume r ≥ s +1,

l ≥m+ 1. By (11), the size k of the complete cap H ⊂ PG(n,2) obtained with the
help of Z′ of Construction Z3 is

k =2r +2l +2s+m−1 −3(2s−1 +2m−1)=2r +2n+1−r +2s+m−1 −3(2s−1 +2m−1),

s ≥ 3, m≥2, r ≥ s +1, l ≥m+1, n≥ r +m. (34)

Construction Z4
We put s ≥ 3, m ≥ 2, w = 2s+m−2 + 1, t = s + m − 1, take the complete 2t−1-

cap At−1 ⊂ PG(t − 1,2) and insert at the top a new row of 2s+m−2 zeroes. Then
we remove 2m−2 columns ti = (01bs−2,001bm−2,i ), i = 0,1, . . . ,2m−2 − 1, and 2s−2

columns uj = (01bs−2,j bm,0), j = 0,1, . . . ,2s−2 − 1. We put e = (11bs−2,0bm−1,01)

and insert the following 2m−2 + 2s−2 + 1 columns into the matrix: t ′i = e + ti , i =
0,1, . . . ,2m−2 − 1, u′

j = e +uj , j = 0,1, . . . ,2s−2 − 1, and e. We take the obtained
matrix as Z′

0 ⊂PG(t,2). If s =4, m=3, we have

Z′
0 =











00000 0000000 0000000 0000000 | 11 1111 | 1
11111 1111111 1111111 1111111 | 00 0000 | 1
00000 0000000 1111111 1111111 | 00 0011 | 0
00000 1111111 0000000 1111111 | 00 0101 | 0−−− −−−− −−−− −−−− | − −− | −
01111 0001111 0001111 0001111 | 00 0000 | 0
00011 0110011 0110011 0110011 | 11 0000 | 0
10101 1010101 1010101 1010101 | 10 1111 | 1











.

By construction, Z′
0 is a cap, e.g., e = ti + t ′i , but columns ti are removed. More-

over, Z′
0 is a complete cap. Columns of the form (00bs+m−2) are saturated since

for s ≥3, m≥2, we have 2s−2 +2m−2 <2s+m−3, see Remark 1. Columns (01bs+m−2)

either belong to Z′
0 or can be obtained as ti = e + t ′i , uj = e + u′

j . Columns
(10bs+m−2) either belong to Z′

0, see t ′i and u′
j , or can be obtained as f + e where
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f is a column from the left submatrix of Z′
0. Finally, columns (11bs+m−2) �= e can

be obtained as f + t ′i or f +u′
j .

Note that complete (2v +1)-caps of considered structure are described in [5, for-
mula (18)] and researched in [2, Section 4].

Now we add the (s +1)-th and the (s +2)-th rows of Z′
0 to the 1st and the 2nd

rows respectively and obtain the cap Z′ with the properties U∗
s,0 and L∗

m,0. If s =4,

m=3, then

Z′ =











01111 0001111 0001111 0001111 | 11 1111 | 1
11100 1001100 1001100 1001100 | 11 0000 | 1
00000 0000000 1111111 1111111 | 00 0011 | 0
00000 1111111 0000000 1111111 | 00 0101 | 0−−− −−−− −−−− −−−− | − −− | −
01111 0001111 0001111 0001111 | 00 0000 | 0
00011 0110011 0110011 0110011 | 11 0000 | 0
10101 1010101 1010101 1010101 | 10 1111 | 1











.

We put r ≥ s + 1, l ≥ m + 1, see Remark 2. All conditions A′,B′,C′,D′ hold. By
(11), the size k of the complete cap H ⊂PG(n,2) obtained with the help of Z′ of
Construction Z4 is

k =2r +2l +2s+m−2 +1−2s −2m =2r +2n+1−r +2s+m−2 +1−2s −2m,

s ≥ 3, m≥2, r ≥ s +1, l ≥m+1, n≥ r +m. (35)

4.4. Iterative Constructing of Z′

In Constructions Z5–Z9 we consider an iterative process when a complete cap H
obtained by Construction S is used to create the complete starting cap Z′

0. Sup-
pose by Construction S we got a family of complete k0-caps H0 with fixed param-
eters s0, m0, �0, cr , cl, so that

H0⊂PG(n0,2), n0=r0+l0−1, k0=2r0+2l0+�0, r0 ≥ s0+cr , l0 ≥m0+cl, (36)

where cr , cl ∈ {1,2}. By above, every complete cap obtained by Construction S
belongs to a family of such form. Changing parameters mentioned we obtain
another family. Distinct values of r0, l0 give distinct caps H0 of the same family.

By equations (7–9),(14), and the condition C, the complete cap H0 has the prop-
erties U∗

r0,0
and L∗

l0,0
. Hence we can put H0 =Z′ with s = r0, m= l0, G′(Z′)=G

′∗
s ,

D′(Z′)=D
′∗
m, w=k0. Taking into account that H0 is a complete cap, all conditions

A′,B′,C′ hold. In order to satisfy the condition D′ we put r ≥ s + 1 = r0 + 1, l ≥
m+1= l0 +1, and by Construction S we obtain a new complete cap H of the size
k=2r +2l −(2r0 +2l0 −k0)=2r +2l +�0. Comparing this k with k0 of equation (36)
we see that such a direct method does not yield new sizes. But applying the dou-
bling construction (DC) to H0 we can obtain a cap Z′

0 providing a new family of
sizes. It should be noted that we use DC only for obtaining Z′ and then we obtain
a new complete cap H by Construction S.
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Construction Z5
We apply DC to the complete cap H0 with parameters (36). To do this we repeat

the matrix H0 two times and insert at the top a new row consisting of sequences
of k0 zeroes and k0 ones [5]. We obtain a complete 2k0-cap Z′

0 in PG(n0 +1,2)=
PG(t,2) and put Z′ =Z′

0 with s = r0 +1, m= l0, w =2k0 =2r0+1 +2l0+1 +2�0, t =
r0 + l0. So,

Z′ =Z′
0 =

[ 00 . . .0 | 11 . . .1−−− | −−−
H0 | H0

]

. (37)

Since the cap H0 has the properties U∗
r0,0

and L∗
l0,0

, the cap Z′ has the properties
U∗

s,1 = U∗
r0+1,1 and L∗

m,0 = L∗
l0,0

. The (r0 + 1)-positional column (10 . . .0) is absent
in the first s = r0 +1 rows of Z′. This means one must take g′ =g′

2r0 = (bs,2r0 0m) /∈
G′(Z′). So, g′(Z′)=0. To satisfy the condition D′ we should put r ≥ s +2= r0 +3,

l ≥m+1= l0 +1, see Remark 2. Taking into account that Z′ is a complete cap, all
conditions A′,B′,C′,D′ hold. By equations (11),(36), the size k of the complete
cap H ⊂PG(n,2) obtained with the help of Z′ of Construction Z5 is

k=2r+2l+2l0+2�0=2r+2n+1−r+2l0+2�0, r ≥ r0+3, l ≥ l0+1, n≥ r+l0. (38)

Construction Z6
We proceed similarly to Construction Z5 but insert the new row at the bottom.

Then

Z′ =Z′
0 =

[ H0 | H0−−− | −−−
00 . . .0 | 11 . . .1

]

, (39)

s = r0, m = l0 + 1, w = 2k0, t = r0 + l0, r ≥ s + 1 = r0 + 1, l ≥ m + 2 = l0 + 3. The
size k of the complete cap H⊂PG(n,2) obtained with the help of Z′ of Construc-
tion Z6 is

k =2r +2l +2r0 +2�0

=2r +2n+1−r +2r0 +2�0, r ≥ r0 +1, l ≥ l0 +3, n≥ r + l0 +2. (40)

Construction Z7
Applying DC of equation (39) to the cap of equation (37) we obtain the com-

plete cap Z′
0 in PG(n0 +2,2)=PG(t,2), and again we put Z′ =Z′

0. We have

Z′ =Z′
0 =






00 . . .0 | 11 . . .1 | 00 . . .0 | 11 . . .1−−− | −−− | −−− | −−−
H0 | H0 | H0 | H0−−− | −−− | −−− | −−−

00 . . .0 | 00 . . .0 | 11 . . .1 | 11 . . .1




 , (41)

s = r0 + 1, m = l0 + 1, w = 4k0 = 2r0+2 + 2l0+2 + 4�0. Since the cap H0 has the
properties U∗

r0,0
and L∗

l0,0
, the cap Z′ has the properties U∗

s,1 =U∗
r0+1,1 and L∗

m,1 =
L∗

l0+1,1. The (r0 +1)-positional column (10 . . .0) is absent in the first s rows of Z′
and the (l0 +1)-positional column (0 . . .01) is absent in the last m rows. Hence one
must take g′ = (bs,2r0 0m) /∈G′(Z′), d ′ = (0sbm,1) /∈D′(Z′), and put r ≥ s +2 = r0 +3,
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l ≥m+2= l0 +3, cf. Construction Z5 and Remark 2. All conditions A′,B′,C′,D′
hold. By equations (11), (36), the size k of the complete cap H⊂PG(n,2) obtained
with the help of Z′ of Construction Z7 is

k =2r +2l +2r0+1 +2l0+1 +4�0 =2r +2n+1−r +2r0+1 +2l0+1 +4�0,

r ≥ r0 +3, l ≥ l0 +3, n≥ r + l0 +2. (42)

Construction Z8
We consider the complete cap Z′

0 ⊂ PG(n0 + 1,2) = PG(t,2) of equation (37).
Since H0 is a complete cap, every point of PG(t,2)\Z′

0 lies on at least two bise-
cants of Z′

0. Therefore if we remove one point from Z′
0 all points of PG(t,2)\Z′

0
are saturated.

We add the first row of equation (37) to the (m0 + 1)-th row from the bottom
and obtain another matrix form of Z′

0, say Z′
0,a

. The left part of equation (37)
does not change but in the region D of the right part exactly one column with l0
zeroes in the last l0 rows appears. Before it was the column (b1,1br0bl0,2m0 ). If H0
is taken from equation (30), where m0 =1, l0 =3, then

Z′
0,a =












000000 | 000000 | 0 | 111111 | 111111 | 1−−− | −−− | − | −−− | −−− | −
001111 | 000000 | 0 | 001111 | 000000 | 0
110011 | 000000 | 0 | 110011 | 000000 | 0
010101 | 111111 | 1 | 010101 | 111111 | 1−−− | −−− | − | −−− | −−− | −
000000 | 001111 | 0 | 000000 | 001111 | 0
000000 | 110011 | 0 | 111111 | 001100 | 1
111111 | 010101 | 1 | 111111 | 010101 | 1












, (43)

where boldface shows the values changed. If H0 is taken from equation (17), where
m0 =2, l0 =4, then the right (changed) part of Z′

0,a
has the form














1111 | 1111 1111 1111 | 111 111−− | −− −− −− | −− −−
1111 | 0000 0000 0000 | 000 000
0011 | 0000 0000 0000 | 111 111
0101 | 1111 1111 1111 | 000 111−− | −− −− −− | −− −−
0000 | 0000 1111 1111 | 000 000
1111 | 0000 1111 0000 | 111 111
1111 | 0011 0011 0011 | 011 011
1111 | 0101 0101 0101 | 101 101














. (44)

We remove the column with l0 zeroes in the last l0 rows and take the obtained
matrix as Z′. We put s = r0 + 1, m = l0, w = 2k0 − 1, cf. Construction Z5. The
cap Z′ has the properties U∗

s,1 and L∗
m,0, as in Construction Z5. Therefore r ≥

s +2= r0 +3, l ≥m+1= l0 +1. The removed column does not belong to M ′ and it
may fail to be saturated. All conditions A′,B′,C′,D′ hold. By equations (11),(36),
the size k of the complete cap H ⊂ PG(n,2) obtained with the help of Z′ of
Construction Z8 is

k =2r +2l +2l0 +2�0 −1=2r +2n+1−r +2l0 +2�0 −1,

r ≥ r0 +3, l ≥ l0 +1, n≥ r + l0. (45)
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Construction Z9
We use Z′

0 of equation (39) and add the last row to the (1+ l0 + s0 +1)-th row
from the bottom. Similarly to Construction Z8 we remove one column and obtain
Z′. By equations (11),(36 ), the size k of the complete cap H ⊂PG(n,2) obtained
with the help of Z′ of Construction Z9 is

k =2r +2l +2r0 +2�0 −1=2r +2n+1−r +2r0 +2�0 −1,

r ≥ r0 +1, l ≥ l0 +3, n≥ r + l0 +2. (46)

4.5. Using the Smallest Known Complete Caps

In Constructions Z10–Z12 as the starting complete caps Z′
0 we use the smallest

known complete f (n)-caps in PG(n,2), n≥ 7, with f (n) of equation (2), see [9].
In formulas of [9] we choose convenient parameters ei, eu, and so on, see below.
Construction Z10

As the starting complete cap Z′
0 with s =m= 4 we take the complete 28-cap in

PG(7,2) of [9, formula (51)]. The 28-th column of Z′
0 contains s zeroes in the s-

region. We add the sum of two last rows of Z′
0 to the 4-th row and obtain a com-

plete 28-cap Z′ for which all conditions A′,B′,C′ and the properties U∗
4,0,L

∗
4,0

hold. The reader can easy check this. To satisfy the condition D′ we must take
r ≥ s + 1 = 5, l ≥m+ 1 = 5. By equation (11), the size k of the complete cap H ⊂
PG(n,2) obtained with the help of Z′ of Construction Z10 is

k =2r +2l −4=2r +2n+1−r −4, r ≥5, l ≥5, n≥ r +4. (47)

Construction Z11
Here s = m = v ≥ 5, Z′ = Z′

0 = U2v, where U2v is the matrix of [9, formulas
(31),(39)–(42)] with ei �=0 in [9, formula (31)]. By formulas mentioned one can see
that U2v gives a complete (15 · 2v−3 − 3)-cap in PG(t,2)= PG(2v − 1,2) for which
all conditions A′,B′,C′ and the properties U∗

v,0,L
∗
v,0 hold. To satisfy the condi-

tion D′ we must take r ≥ s + 1 = v + 1 ≥ 6, l ≥m+ 1 = v + 1 ≥ 6. By equation (11),
the size k of the complete cap H ⊂PG(n,2) obtained with the help of Z′ of Con-
struction Z11 is

k =2r +2l −2v−3 −3

=2r +2n+1−r −2v−3 −3, v ≥5, r ≥v +1, l ≥v +1, n≥ r +v. (48)

Construction Z12
We put s = 4,m= 5. As starting complete cap Z′

0 we take the complete 43-cap
in PG(8,2) of [9, Theorem 5, Remark 2]. For Z′

0 in [9, formulas(31),(39)–(42),(50)]
we take β = (001), γ = (010), δ = (011), w1 =w2 =w3 = 1, ei = (0001), eu = (0001).
To get Z′ we change Z′

0 writing the 1st row as the last one in [9, formula (50)].
We obtain

Z′ =




1 45 67 32 3 2 32 2 32323 2 2 89ABCDEF 1111111111 1 1 1 1 1 1−− −−−− −−−− −−−− −−−−−−−−
3 55 66 82A4C6E B197F5D 11 1 1 1 1 1 1 0123456789ABCDEF
0 00 00 00 0 0 00 0 00000 0 0 00 0 0 0 0 0 0 1111111111 1 1 1 1 1 1



 . (49)
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where hexadecimal notation is used. As it is said in [9, Remark 2], we examined
by computer that Z′ is a complete cap. By equation (49), the matrix has the prop-
erties U∗

4,0 and L∗
5,0. So, the conditions A′,B′,C′ hold. To satisfy the condition

D′ one must take r ≥ s +1=5, l ≥m+1=6, see Remark 2 of this work. By equa-
tion (11), the size k of the complete cap H ⊂ PG(n,2) obtained with the help of
Z′ of Construction Z12 is

k =2r +2l −5=2r +2n+1−r −5, r ≥5, l ≥6, n≥ r +5. (50)

4.6. Computer Search for Caps Z′

We consider the situation when an infinity family of complete caps H is produced
by Construction S, see Section 4.1, and the only “starting” cap Z′ is found by
computer. We use the term “Construction Z13,i" when for given parameters s,m

we have found by computer a cap Z′
13,i

for which all conditions A′,B′,C′ and
the properties U∗

s,0, L∗
m,0 hold. Here i is the ordinal number. For all Constructions

Z13,i we put r ≥ s + 1 and l ≥ m + 1, see Remark 2. Therefore the condition D′
holds. We give caps Z′

13,i
in hexadecimal notation.

Constructions Z13,1 and Z13,2
We put s =m=3. We found by computer a 15-cap Z′

13,1 and a 16-cap Z′
13,2.

Z′
13,1 =

[11 22 3 444 55 6 7777− − − −− − − −−
15 26 1 134 37 4 3467

]

, Z′
13,2 =

[1111 22 33 44 55 66 77−− − − − − − −
1567 25 16 35 17 45 67

]

.

By (11), the size k of the complete cap H ⊂ PG(n,2) obtained with the help of
Z′

13,j
is

k =2r+2l+j−2=2r+2n+1−r+j−2, r ≥4, l ≥4, n≥ r+3, j =1,2. (51)

Constructions Z13,3,Z13,4, and Z13,5
Let s = 4, m= 3. We found by computer a 27-cap Z′

13,3, a 28-cap Z′
13,4, and a

29-cap Z′
13,5.

Z′
13,3 =

[ 11 2 33 4 555 66 77 8888 99 A B C D EE FF− − − − −− − − −− − − − − − −− −−
24 6 13 4 123 67 16 1467 17 3 3 1 1 4 5 3 4

]

,

Z′
13,4 =

[ 111 2 33 44 5 66 77 88 99 AAA B C DD EE FF−− − − − − − − − − −− − − − − −
126 3 46 24 7 25 15 16 26 1 3 7 4 7 3 7 2 6 2 5

]

,

Z′
13,5 =

[11 2 33 44 555 6 77 8 9 AA BBB CC DD EE FFF− − − − −− − − − − − −− − − − −−
45 7 16 45 457 7 16 1 7 2 3 1 2 3 1 6 1 7 2 3 1 2 3

]

.

By equation (11), the size k of the complete cap H ⊂PG(n,2) obtained with the
help of Z′

13,t
is

k =2r +2l + t =2r +2n+1−r + t, r ≥5, l ≥4, n≥ r +4, t =3,4,5. (52)
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Table 2. The sizes k <2n−1 of the small complete caps in PG(n,2) obtained by distinct constructions.

n k

5 131

6 211 222 24W · · ·29W 31W

7 280 291 302 3113,1 3213,2 334 35W 371 382 39W · · ·63W

8
430 451 462 4713,1 4813,2 494 502 5113,3 5213,4 5313,5 56D

0 57W 58D
1

60D
2 62D

13,1 63W 64D
13,2 66D

4 67W 691 70D
W 71W · · ·127W

9

570 6010 611 622 6313,1 6413,2 654 662 6713,3 687+1 6913,5 723 734

745+1 771 782 7913,1 8013,2 814 822 83W 8413,4 8513,5 86D
0 883 89W

90D
1 92D

2 94D
13,1 95W 96D

13,2 974 98D
4 100D

2 101W 102D
13,3 103W 104D

13,4
1054 106D

13,5 107W 1083 112D
0 113W 114D

W 116D
1 117W 119W 120D

2
124D

13,1 125W 126D
W 128D

13,2 131W 132D
4 1331 134D

W 135W · · ·255W

10

890 9112 9210 931 942 9513,1 9613,2 974 982 9913,3 1007+1 10113,5 1043

1054 1062 1078+2 1087+1 114D
0 120D

10 121W 122D
1 124D

2 126D
13,1 128D

13,2
1294 130D

4 132D
2 134D

13,3 135W 136D
7+1 138D

13,5 1411 1422 14313,1 144D
3

1458+4 146D
4 147W 148D

5+1 149W 1523 153W 154D
1 156D

2 158D
13,1 159W

160D
13,2 162D

4 163W 164D
2 165W 166D

W 168D
13,4 1694 1702 171W 172D

0
176D

3 177W 178D
W 180D

1 183W 184D
2 188D

13,1 189W 190D
W 191W 192D

13,2
194D

4 195W 196D
4 200D

2 201W 202D
W 204D

13,3 205W 206D
W 207W 208D

13,4
210D

4 2123 213W 214D
W 216D

3 219W 224D
0 225W 226D

W 228D
W 231W

232D
1 233W 234D

W 237W 238D
W 240D

2 243W 247W 248D
13,1 249W

250D
W 252D

W 255W 256D
13,2 259W 2611 262D

W 263W · · ·511W

11 1170 12111 12312 12410 1251 1262 12713,1 12813,2 1294 1302 13113,3

1327+1 13313,5 1363 1374 1382 1398+2 1405+2

12 1810 18511 18712 18810 1891 1902 19113,1 19213,2 1934 1942 19513,3

1967+1 19713,5 2003 2014 2022 2038+2 2045+2

4.7. Tables of Sizes of Small Complete Caps

We give Table 2 with examples of sizes of caps obtained by known and new con-
structions. The subscripts i ∈{1,2,3,4,10,11,12} and 13, j ∈{13,1 . . .13,5} indicate
Construction Zi and Z13,j , respectively. Sizes of equation (1) have the subscript
“1” as they can be generated by Construction Z1. The subscripts “0” and “W”
indicate, respectively, the known constructions of [9], see equation (2), and [14],
see equation (3). Finally, the subscript of the form u + i, u ∈ {5,6,7,8,9}, i ∈
{1,2,3,4,10,11,12}, denotes Construction Zu using a complete cap H0 obtained
with the help of Construction Zi . The superscript “D” indicates the doubling
construction used for the results defined by the subscript. Boldface notes sizes
obtained by new constructions and doubling of these new sizes.

For n ≤ 10 Table 2 is filled in the following order. First, all sizes of equa-
tions (1)–(3) and applying DC to them are written. We denote AW · · ·BW a region
of sizes described in [14], see equation (3). Some sizes into such regions can be
obtained also by DC. Then we consider the dimensions n in increasing order and
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Table 3. The updated table of sizes of the known small complete caps in PG(n,2).

n Sizes k of the known complete caps with k ≤2n−1 References

10 91≤k ≤511, k =89 [6,9,14],�
11 123≤k ≤1023, k =117,121 [6,9,14],�
12 187≤k ≤2047, k =181,185 [6,9,14],�

� - results of this work

for fixed n we list sizes generated by Constructions Z2–Z12 and Z13,i . Every new
size obtained is written in Table 2 together with applying DC to it. If the same
new size can be obtained by several Constructions Zi we note only one construc-
tion. For n=11,12 we give in Table 2 only relatively small sizes.

Using results written in Table 2 we can update Table 1 for n = 10,11,12, see
Table 3.
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13. T. Szönyi, Small complete arcs in Galois planes, Geometriae Dedicata, Vol. 18 (1985) pp. 161–172.



80 DAVYDOV, FAINA AND PAMBIANCO

14. D. L. Wehlau, Complete caps in projective space which are disjoint from a codimension 2
subspace, In A. Blokhuis, J. W. P. Hirschfeld, D. Jungnickel and J.A. Thas (eds), Developments
in Mathematics, Vol. 3, Finite Geometries, Kluwer Academic Publishers, Dordrecht (2001)
pp. 347–361. (Corrected version: www.mast.queensu.ca/�wehlau/pubs.html).


