Constructions of Small Complete Caps in Binary Projective Spaces

ALEXANDER A. DAVYDOV
adav@iitp.ru Institute for Information Transmission Problems, Russian Academy of Sciences, Bol'shoi Karetnyi per. 19, GSP-4, Moscow, 127994, Russia

GIORGIO FAINA
faina@dipmat.unipg.it
Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1, Perugia, 06123, Italy

FERNANDA PAMBIANCO fernanda@dipmat.unipg.it
Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1, Perugia, 06123, Italy

Communicated by: J. W. P. Hirschfeld
Received January 13, 2003; Revised March 3, 2004; Accepted July 23, 2004

Abstract

In the binary projective spaces $\operatorname{PG}(n, 2) k$-caps are called large if $k>2^{n-1}$ and small if $k \leq$ 2^{n-1}. In this paper we propose new constructions producing infinite families of small binary complete caps.

Keywords: binary caps, complete caps, projective space, small complete caps
AMS Classification: 51E21, 51E22, 94B05

1. Introduction

In the binary projective space $\operatorname{PG}(n, 2) k$-caps are called large if $k>2^{n-1}$ and small if $k \leq 2^{n-1}[2,3]$. In this paper we consider new constructions of small complete caps.

A k-cap in $\operatorname{PG}(n, 2)$ is a set of k points, no three of which are collinear. A k-cap in $\operatorname{PG}(n, 2)$ is called complete if it is not contained in a $(k+1)$-cap of $\operatorname{PG}(n, 2)$. For an introduction to these geometric objects, see $[10,11]$. In a space $\operatorname{PG}(n, 2)$ a complete cap, points of which are treated as $(n+1)$-dimensional binary columns, defines a parity check matrix of a binary linear code with codimension $n+1$, Hamming distance $d \geq 4$, and covering radius 2 [2,5,11]. The only case with $d>4$ is given by the complete 5 -cap in $\mathrm{PG}(3,2)$ when $d=5$. The codes mentioned are called quasi-perfect if $d=4$ or perfect if $d=5$ [12].

Relatively many facts on large complete caps in $\operatorname{PG}(n, 2)$ are known. For example, in [5] all exact possible sizes and structure of complete k-caps with $k>2^{n-1}+1$ are obtained. Every such complete cap can be formed by repeated applying of the
doubling construction to a "critical" complete $\left(2^{m-1}+1\right)$-cap of $\operatorname{PG}(m, 2), m<n$. The structure and properties of critical caps are considered briefly in $[1,3,5]$, and deeply in [2] where problems of critical caps structure are solved in main.

But our knowledge on small complete caps seems to be insufficient, see, e.g., [3, $4,6-9,11,14]$. In $\operatorname{PG}(n, 2), n \geq 6$, the smallest size and, in general, the spectrum of possible sizes of small caps are unknown. Relatively a few constructions of small complete caps are described in literature [3,4,9,14].

In this work we give some known results on small complete caps (Section 2) and propose new constructions of those (Sections 3 and 4).

2. Some Known Results on Small Complete Caps

The doubling construction (DC) or Plotkin construction is described and used in many works, see $[1,4,5]$, and the references therein. From a complete k-cap in $\mathrm{PG}(n, 2) \mathrm{DC}$ forms a complete $2 k$-cap in $\mathrm{PG}(n+1,2)$.

The black/white lift (BWL) construction proposed in [3] obtains, in the general case, a number of new complete $\left(2 k-\delta_{i}\right)$-caps in $\operatorname{PG}(n+1,2)$ from an "old" complete k-cap S in $\operatorname{PG}(n, 2)$ under condition that S has certain properties connected with points of $\operatorname{PG}(n, 2) \backslash S$. The values of δ_{i} are positive, they can be distinct for distinct new caps and depend on the structure of the cap S.

The papers [4] and [9] give two distinct constructions that obtain complete k caps in $\operatorname{PG}(n, 2)$ with

$$
\begin{equation*}
k=2^{n+1-s}+2^{s}-3, \quad n \geq 3, \quad s=2,3, \ldots,\lfloor(n+1) / 2\rfloor . \tag{1}
\end{equation*}
$$

The construction of [9] uses methods from [13].
The smallest known complete k-caps in $\operatorname{PG}(n, 2), n \geq 6$, with $k=f(n)$ are constructed in [9]. Here

$$
\begin{align*}
& f(6)=21, \quad f(7)=28, \\
& f(2 m)=23 \times 2^{m-3}-3, \quad m \geq 4 \\
& f(2 m-1)=15 \times 2^{m-3}-3, \quad m \geq 5 \tag{2}
\end{align*}
$$

For example, $f(8)=43, f(9)=57, f(10)=89, f(11)=117, f(12)=181$.
It is proved, see $[7,8]$ and the references therein, that in $\operatorname{PG}(n, 2)$ for $n=2,3,4$ complete small caps do not exist and for $n=5$ there are only small complete 13caps.

In the paper [14, Corrected version, Section 5, Propositions 7.1,8.1] the following sizes k of complete k-caps in $\operatorname{PG}(n, 2)$ are obtained:

$$
\begin{align*}
& k=2^{n-v}+t\left(2^{v}-2\right)+1, \quad t=2,4,5, \ldots, 2^{n-v-1}, \quad 2 \leq v \leq n-2, \quad n \geq 4 \\
& k=2^{n-v}+3 \cdot 2^{v}-5, \quad n \geq 2 v+3 ; \\
& k=2^{n-2}+t, \quad t=5,9,11, \ldots, 2^{n-2}+1 \text { if } n \geq 6, \quad \text { besides } t=3,7 \text { if } n \geq 7 \\
& 2^{n-2}+8 \leq k \leq 2^{n-1}-2, \quad n \geq 6, \quad k \neq 30 \text { if } n=6 . \tag{3}
\end{align*}
$$

Table 1. The sizes of the known small complete caps in $\operatorname{PG}(n, 2)$.

n	Sizes k of the known complete caps with $k \leq 2^{n-1}$	References
5	$k=13$	$[4,7-9,14]$
6	$21 \leq k \leq 31, k \neq 23,30$	$[4,6,9,14]$
7	$28 \leq k \leq 63$	$[4,6,9,14]$
8	$43 \leq k \leq 127$	$[4,6,9,14]$
9	$60 \leq k \leq 255, k=57$	$[4,6,9,14]$
10	$92 \leq k \leq 511, k=89$	$[6,9,14]$
11	$133 \leq k \leq 1023, k=117,125,126,129,130$	$[6,9,14]$
12	$196 \leq k \leq 2047, k=181,189,190,193,194$	$[6,9,14]$

In Table 1 known sizes of small complete caps in $\operatorname{PG}(n, 2), 5 \leq n \leq 12$, are written. Table 1 uses relations ($1-3$), Construction DC, works [4,6-9,14, Corrected version], in particular, computer results of $[4,6]$.

In [5, Remark 4, 6] and [9, p. 222], the following conjectures are proposed:
Conjecture 1. [5]. In the space $\operatorname{PG}(n, 2)$ a complete 2^{n-1}-cap does not exist.
Conjecture 2. [6]. For $n \geq 7$ in the space $\operatorname{PG}(n, 2)$ there exist complete caps of all sizes k with $f(n) \leq k \leq 2^{n-1}-1$, where $f(n)$ is defined in equation (2).

Conjecture 3. [9]. In $\operatorname{PG}(6,2)$ the smallest size of a complete cap is 21 .
By equation (2) and Table 1, Conjecture 2 holds for $n=7,8$.

3. A Construction of Small Complete Caps

3.1. Spaces and Vectors

Let $E_{n+1}, G_{r}, G_{s}, D_{l}$, and D_{m} be spaces of binary $(n+1)$-positional vectors with dimensions $n+1, r, s, l$, and m, respectively, and let

$$
\begin{equation*}
E_{n+1} \supset G_{r} \supset G_{s}, \quad E_{n+1} \supset D_{l} \supset D_{m}, \quad G_{r} \cap D_{l}=\{0\}, \quad r>s, \quad l>m, \quad r+l=n+1 \tag{4}
\end{equation*}
$$

where 0 is the zero $(n+1)$-positional vector. The "main" space E_{n+1} and all its subspaces contain it. The asterisk denotes a space without the zero vector. We have $G_{r}^{*} \cap D_{l}^{*}=\emptyset$. A sum of two subsets A and B of E_{n+1} is, as usually, $A+B=\{a+b$: $a \in A, b \in B\}$. Then $G_{r}+D_{l}=E_{n+1}$.

We put $E_{n+1}^{*}=\operatorname{PG}(n, 2)$. Points of $\operatorname{PG}(n, 2)$ are vectors of E_{n+1}^{*}.
We denote $G_{s}=\left\{g_{0}, g_{1}, \ldots, g_{2^{s}-1}\right\}, \quad D_{m}=\left\{d_{0}, d_{1}, \ldots, d_{2^{m}-1}\right\}$.
Let $b_{i, j}$ be a binary vector of length i that is the binary representation of a number j. If we are not interested in j we may write b_{i}. Denote by $\mathbf{0}^{t}$ the zero matrix (vector) with t rows (t positions) where "matrix" or "vector" are defined by context. Moreover, by $\mathbf{0}^{t}$ we will write only zeroes "necessary" for points representation that we put in this paper. We represent points of $G_{r}, G_{s}, D_{l}, D_{m}$, in the following form:

$$
\begin{align*}
& \left(b_{r} \mathbf{0}^{l-m} \mathbf{0}^{m}\right) \in G_{r}, \quad g_{u}=\left(\mathbf{0}^{r-s} b_{s, u} \mathbf{0}^{l-m} \mathbf{0}^{m}\right) \in G_{s}, \quad u=0,1, \ldots, 2^{s}-1 \\
& \left(\mathbf{0}^{r-s} \mathbf{0}^{s} b_{l}\right) \in D_{l}, \quad d_{v}=\left(\mathbf{0}^{r-s} \mathbf{0}^{s} \mathbf{0}^{l-m} b_{m, v}\right) \in D_{m}, \quad v=0,1, \ldots, 2^{m}-1 \tag{5}
\end{align*}
$$

It should be emphasized that the formulas of equation (5) have been taken only for definiteness of a matrix representation of our geometrical objects and for finding a matrix form of needed caps \mathbf{Z}, see below. In general, a representation of points as elements of vector spaces can be arbitrary for constructions considered in this paper.

Let $g \in G_{s}^{*}, d \in D_{m}^{*}$. Hence, $g=g_{a}, a \neq 0, d=d_{c}, c \neq 0$.
We can treat a point of $\operatorname{PG}(n, 2)$ as a column of a matrix, a subset of $\operatorname{PG}(n, 2)$ as a matrix, and vice versa, we can consider a matrix as a set of points. We do not change notation for such treatment.
We denote by $\widehat{G}_{r}, \widehat{G}_{s}, \widehat{D}_{l}, \widehat{D}_{m}$, the corresponding spaces without "necessary" zeroes of the form $\mathbf{0}^{l-m}, \mathbf{0}^{m}, \mathbf{0}^{r-s}, \boldsymbol{0}^{s}$, see equation (5). So, \widehat{G}_{f} (resp., \widehat{D}_{f}) is the f-dimensional space of binary f-positional vectors. We have $b_{r} \in \widehat{G}_{r}, b_{s} \in \widehat{G}_{s}$, $b_{l} \in \widehat{D}_{l}, \quad b_{m} \in \widehat{D}_{m}$.

The spaces and points considered above can be represented in the matrix form, for example, as follows, see equation (5),

$$
\left[\begin{array}{c|c|c|c|c|c}
G_{r} & D_{l} & G_{s} & \mid g=g_{a} & D_{m} & d=d_{c} \tag{6}\\
\hline \widehat{G}_{r} & \mathbf{0}^{r-s} & \mathbf{0}^{r-s} & \mathbf{0}^{r-s} & \mathbf{0}^{r-s} & \mathbf{0}^{r-s} \\
--- & \mathbf{0}^{s} & \widehat{G}_{s} & b_{s, a} & -\mathbf{0}^{s} & -\mathbf{0}^{s}- \\
\hdashline \mathbf{0}^{l-m} & --- & --- & --- & --- & --- \\
\hdashline-\widehat{0}_{l} & \mathbf{0}^{l-m}- & \mathbf{0}^{l-m} & \mathbf{0}^{l-m} & \mathbf{0}^{l-m} \\
\mathbf{0}^{m} & & \mathbf{0}^{m} & \mathbf{0}^{m} & \widehat{D}_{m} & b_{m, c}
\end{array}\right] .
$$

3.2. Construction S

A point set \mathbf{H} in $\operatorname{PG}(n, 2)$ is defined as

$$
\begin{equation*}
\mathbf{H}=\mathbf{G} \cup \mathbf{D} \cup \mathbf{Z} \tag{7}
\end{equation*}
$$

where $\mathbf{G}, \mathbf{D}, \mathbf{Z}$, are point sets of $\operatorname{PG}(n, 2)$ formed as follows

$$
\begin{equation*}
\mathbf{G}=G_{r} \backslash G_{s}+\{d\}, \quad \mathbf{D}=D_{l} \backslash D_{m}+\{g\}, \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{Z}=\left\{z_{1}, z_{2}, \ldots, z_{w}\right\}, \quad z_{i}=g_{j_{i}}+d_{k_{i}}, \quad g_{j_{i}} \in G_{s}^{*}, \quad d_{k_{i}} \in D_{m}^{*}, \quad i=1,2, \ldots, w, w \geq 1 \tag{9}
\end{equation*}
$$

By equations (4),(8),(9),

$$
\begin{equation*}
\mathbf{H} \subset E_{n+1}^{*}, \quad \mathbf{G} \cap \mathbf{D}=\emptyset, \quad \mathbf{G} \cap \mathbf{Z}=\emptyset, \quad \mathbf{D} \cap \mathbf{Z}=\emptyset \tag{10}
\end{equation*}
$$

Obviously, the size k of the set \mathbf{H} is

$$
\begin{align*}
k & =\left(2^{r}-2^{s}\right)+\left(2^{l}-2^{m}\right)+w=2^{r}+2^{l}-\left(2^{s}+2^{m}-w\right) \\
& =2^{r}+2^{n+1-r}-\left(2^{s}+2^{m}-w\right) . \tag{11}
\end{align*}
$$

We introduce the set

$$
\begin{equation*}
M=G_{s}^{*}+D_{m}^{*} \tag{12}
\end{equation*}
$$

By equation (9), $\mathbf{Z} \subseteq M$. The points of the set \mathbf{Z} can be represented in the form, see equations (5),(6),(9),

$$
\begin{equation*}
z_{i}=g_{j_{i}}+d_{k_{i}}=\left(\mathbf{0}^{r-s} b_{s, j_{i}} \boldsymbol{l}^{l-m} b_{m, k_{i}}\right), \quad j_{i} \neq 0, \quad k_{i} \neq 0, \quad i=1,2, \ldots, w . \tag{13}
\end{equation*}
$$

Now we represent the set \mathbf{H} in the matrix form, see equations (5),(6),(13),

$$
\mathbf{H}=\left[\begin{array}{c|c|c}
\mathbf{G}=G_{r} \backslash G_{s}+\{d\}\left|\mathbf{D}=D_{l} \backslash D_{m}+\{g\}\right| \mathbf{Z}=\left\{z_{1}, z_{2}, \ldots, z_{w}\right\} \tag{14}\\
\hline \widehat{G}_{r} \backslash \widehat{G}_{s} & \mathbf{0}^{r-s} & \mathbf{0}^{r-s}-- \\
--- & b_{s, a} b_{s, a} \ldots b_{s, a} & b_{s, j_{1}}----b_{s, j_{2}} \ldots b_{s, j_{w}} \\
-\mathbf{0}^{l-m} & ---- \\
---- & \widehat{D}_{l} \backslash \widehat{D}_{m} & b_{m, k_{1}}---- \\
b_{m, c} b_{m, k_{2}} \ldots b_{m, k_{w}}-m
\end{array}\right] .
$$

We introduce sets $G(\mathbf{Z})$ and $D(\mathbf{Z})$ and values $g(\mathbf{Z})$ and $d(\mathbf{Z})$ such that

$$
\begin{align*}
G(\mathbf{Z}) & =\left\{g_{j_{i}}: z_{i}=g_{j_{i}}+d_{k_{i}}, \quad i=1,2, \ldots, w\right\}, \\
D(\mathbf{Z}) & =\left\{d_{k_{i}}: z_{i}=g_{j_{i}}+d_{k_{i}}, \quad i=1,2, \ldots, w\right\} . \tag{15}
\end{align*}
$$

$$
g(\mathbf{Z})=\left\{\begin{array}{ll}
1 & \text { if } g \in G(\mathbf{Z}) \tag{16}\\
0 & \text { if } g \notin G(\mathbf{Z})
\end{array}, \quad d(\mathbf{Z})= \begin{cases}1 & \text { if } d \in D(\mathbf{Z}) \\
0 & \text { if } d \notin D(\mathbf{Z})\end{cases}\right.
$$

Conditions on \mathbf{Z} sufficient for \mathbf{H} to be a complete cap.
A. $\mathbf{Z} \cap(\mathbf{Z}+\mathbf{Z})=\emptyset$, i.e., \mathbf{Z} is a cap.
$\mathscr{B} . M \subseteq \mathbf{Z} \cup(\mathbf{Z}+\mathbf{Z})$, i.e., $G_{s}^{*}+D_{m}^{*} \subseteq \mathbf{Z} \cup(\mathbf{Z}+\mathbf{Z})$.
$\mathscr{C} . G(\mathbf{Z}) \cup\{g\}=G_{s}^{*}, \quad D(\mathbf{Z}) \cup\{d\}=D_{m}^{*}$.
D. $r \geq s+2-d(\mathbf{Z}), \quad l \geq m+2-g(\mathbf{Z})$.

In examples below boldface $\mathbf{0}$ denotes the zero from a region of "necessary" zeroes connected with the representation of spaces and points taken in this paper, see equations (5),(6),(13),(14).

Example 1. Let $r=3, s=2, l=4, m=2, w=6, g=g_{1}=\left(\mathbf{0}^{1} b_{2,1} \mathbf{0}^{2} \mathbf{0}^{2}\right)=(\mathbf{0} 01$ $\mathbf{0 0} \mathbf{0 0}), d=d_{3}=\left(\mathbf{0}^{1} \mathbf{0}^{2} \mathbf{0}^{2} b_{2,3}\right)=(\mathbf{0} 000011)$, and let $\mathbf{Z}=\left\{\left(g_{2}+d_{1}\right),\left(g_{2}+d_{2}\right)\right.$,
$\left.\left(g_{2}+d_{3}\right),\left(g_{3}+d_{1}\right),\left(g_{3}+d_{2}\right),\left(g_{3}+d_{3}\right)\right\}$. Then, see equation (14),

$$
\mathbf{H}=\left[\begin{array}{c|cccc|ccc}
1111 & \mathbf{0 0 0 0} & \mathbf{0 0 0 0} & \mathbf{0 0 0 0} & \mathbf{0 0 0} & \mathbf{0 0 0} \tag{17}\\
0011 & 0000 & 0000 & 0000 & 111 & 111 \\
0101 & 1111 & 1111 & 1111 & 000 & 111 \\
- & - & - & - & - & - & - & - \\
\mathbf{0 0 0 0} & 0000 & 1111 & 1111 & \mathbf{0 0 0} & \mathbf{0 0 0} \\
\mathbf{0 0 0 0} & 1111 & 0000 & 1111 & \mathbf{0 0 0 0} & \mathbf{0 0 0} \\
1111 & 0011 & 0011 & 0011 & 011 & 011 \\
1111 & 0101 & 0101 & 0101 & 101 & 101
\end{array}\right] .
$$

The first 4 columns are points of $G_{r} \backslash G_{s}+\{d\}$, the next 12 columns are $D_{l} \backslash D_{m}+$ $\{g\}$, and the last 6 columns are \mathbf{Z}. The form of \mathbf{Z} will be explained later in Construction Z_{2}. By above, $G(\mathbf{Z})=\left\{g_{2}, g_{3}\right\}, G(\mathbf{Z}) \cup\{g\}=G_{s}^{*}, g(\mathbf{Z})=0$ as $g \notin G(\mathbf{Z})$, $D(\mathbf{Z})=\left\{d_{1}, d_{2}, d_{3}\right\}=D_{m}^{*}, d(\mathbf{Z})=1$ as $d \in D(\mathbf{Z})$. So, the conditions \mathscr{C} and \mathscr{D} hold. One can check directly that the conditions \mathscr{A} and \mathscr{B} hold too.

Theorem 1. Under conditions $\mathscr{A}-D$ the point set \mathbf{H} in equation (7) is a complete cap.

Proof. We show that \mathbf{H} is a cap, i.e., $\mathbf{H} \cap(\mathbf{H}+\mathbf{H})=\emptyset$ and that the cap \mathbf{H} is complete, i.e., $\mathbf{H} \cup(\mathbf{H}+\mathbf{H}) \supseteq E_{n+1}^{*}=\operatorname{PG}(n, 2)$. By equation (7),

$$
\begin{equation*}
\mathbf{H}+\mathbf{H}=(\mathbf{G}+\mathbf{G}) \cup(\mathbf{D}+\mathbf{D}) \cup(\mathbf{Z}+\mathbf{Z}) \cup(\mathbf{G}+\mathbf{D}) \cup(\mathbf{G}+\mathbf{Z}) \cup(\mathbf{D}+\mathbf{Z}) . \tag{18}
\end{equation*}
$$

By equations (4),(8),(9), and the condition \mathscr{A},

$$
\begin{equation*}
\mathbf{H} \cap(\mathbf{Z}+\mathbf{Z})=\emptyset . \tag{19}
\end{equation*}
$$

(a) Let

$$
\begin{equation*}
g(\mathbf{Z})=d(\mathbf{Z})=0 \text {, i.e., } g \notin G(\mathbf{Z}), d \notin D(\mathbf{Z}) . \tag{20}
\end{equation*}
$$

By equation (20) and the condition \mathscr{D}, we have $r \geq s+2, \quad l \geq m+2$. Hence,

$$
\begin{equation*}
\mathbf{G}+\mathbf{G}=G_{r}, \quad \mathbf{D}+\mathbf{D}=D_{l} . \tag{21}
\end{equation*}
$$

One can see in Example 1 the relation $\mathbf{D}+\mathbf{D}=D_{l}$ where $l=m+2$. But in Example $1 r=s+1$ and the relation $\mathbf{G}+\mathbf{G}=G_{r}$ does not hold. So, for equation (21) the conditions $r \geq s+2, \quad l \geq m+2$ are necessary.

Since $G_{r} \backslash G_{s}+\{g\}=G_{r} \backslash G_{s}$ and $D_{l} \backslash D_{m}+\{d\}=D_{l} \backslash D_{m}$, again see Example 1, we have

$$
\begin{equation*}
\mathbf{G}+\mathbf{D}=G_{r} \backslash G_{s}+D_{l} \backslash D_{m} . \tag{22}
\end{equation*}
$$

By equation (20) and the condition \mathscr{C}, we have $G(\mathbf{Z})=G_{s}^{*} \backslash\{g\}$ and $D(\mathbf{Z})=D_{m}^{*} \backslash\{d\}$. Hence

$$
\begin{equation*}
\mathbf{G}+\mathbf{Z}=G_{r} \backslash G_{s}+D_{m}^{*} \backslash\{d\}, \quad \mathbf{D}+\mathbf{Z}=D_{l} \backslash D_{m}+G_{s}^{*} \backslash\{g\} . \tag{23}
\end{equation*}
$$

From equations (6),(7),(10),(18),(19),(21)-(23), it follows that $\mathbf{H} \cap(\mathbf{H}+\mathbf{H})=\emptyset$, i.e., \mathbf{H} is a cap.
Taking into account the condition \mathscr{B} one can see that \mathbf{H} is a complete cap. In fact,

$$
\begin{aligned}
& \mathbf{H} \cup(\mathbf{H}+\mathbf{H}) \supseteq\left(G_{r} \backslash G_{s}+\{d\}\right) \cup\left(D_{l} \backslash D_{m}+\{g\}\right) \cup G_{r} \cup D_{l} \cup\left(G_{r} \backslash G_{s}+D_{l} \backslash D_{m}\right) \cup \\
& \quad\left(G_{r} \backslash G_{s}+D_{m}^{*} \backslash\{d\}\right) \cup\left(D_{l} \backslash D_{m}+G_{s}^{*} \backslash\{g\}\right) \cup\left(G_{s}^{*}+D_{m}^{*}\right) .
\end{aligned}
$$

Note that

$$
\begin{array}{ll}
\left(G_{r} \backslash G_{s}+\{d\}\right) \cup\left(G_{r} \backslash G_{s}+D_{m}^{*} \backslash\{d\}\right)=G_{r} \backslash G_{s}+D_{m}^{*}, & \\
\left(D_{l} \backslash D_{m}+\{g\}\right) \cup\left(D_{l} \backslash D_{m}+G_{s}^{*} \backslash\{g\}\right)=D_{l} \backslash D_{m}+G_{s}^{*}, \\
\left(G_{r} \backslash G_{s}+D_{m}^{*}\right) \cup\left(D_{l} \backslash D_{m}+G_{s}^{*}\right) \cup\left(G_{r} \backslash G_{s}+D_{l} \backslash D_{m}\right)=\left(G_{r} \backslash G_{s}+D_{l}^{*}\right) \cup \\
& \left(D_{l} \backslash D_{m}+G_{r}^{*}\right), \\
\left(G_{r} \backslash G_{s}+D_{l}^{*}\right) \cup D_{l}=\left(G_{r} \backslash G_{s}^{*}+D_{l}^{*}\right) \cup\left\{0_{n+1}\right\}, & \\
\left(D_{l} \backslash D_{m}+G_{r}^{*}\right) \cup G_{r}=\left(D_{l} \backslash D_{m}^{*}+G_{r}^{*}\right) \cup\left\{0_{n+1}\right\},
\end{array}
$$

where 0_{n+1} is the zero $(n+1)$-positional vector. Now we can write

$$
\mathbf{H} \cup(\mathbf{H}+\mathbf{H}) \supseteq\left(G_{r} \backslash G_{s}^{*}+D_{l}^{*}\right) \cup\left(D_{l} \backslash D_{m}^{*}+G_{r}^{*}\right) \cup\left(G_{s}^{*}+D_{m}^{*}\right)=E_{n+1}^{*}=\operatorname{PG}(n, 2) .
$$

(b) Let
$g(\mathbf{Z})=d(\mathbf{Z})=1$, i.e., $g \in G(\mathbf{Z}), d \in D(\mathbf{Z})$.
Hence $r \geq s+1, \quad l \geq m+1$, see the condition \mathscr{D}.
The relation (22) holds in the case (b).
By equation (24) and the condition \mathscr{C}, we have $G(\mathbf{Z})=G_{s}^{*}$ and $D(\mathbf{Z})=D_{m}^{*}$. Hence

$$
\begin{equation*}
\mathbf{G}+\mathbf{Z}=G_{r} \backslash G_{s}+D_{m} \backslash\{d\}, \quad \mathbf{D}+\mathbf{Z}=D_{l} \backslash D_{m}+G_{s} \backslash\{g\}, \tag{25}
\end{equation*}
$$

cf. with equation (23). Note that $0_{n+1} \in D_{m} \backslash\{d\}$ and $0_{n+1} \in G_{s} \backslash\{g\}$.
Now we consider situations connected with correlation between r and s, l and m.
In the beginning let $r=s+1, \quad l=m+1$. Then

$$
\begin{equation*}
\mathbf{G}+\mathbf{G}=G_{s}, \quad \mathbf{D}+\mathbf{D}=D_{m} . \tag{26}
\end{equation*}
$$

One can see in Example 1, where $r=s+1$, the relation $\mathbf{G}+\mathbf{G}=G_{s}$. Again for equation (26) the conditions $r=s+1, \quad l=m+1$, are necessary.
Using equations (25),(26), similarly to the case (a) we see that \mathbf{H} is a cap.
From equations (7),(12),(18),(22),(25),(26) and the conditions \mathscr{A} and \mathscr{B} it follows that \mathbf{H} is a complete cap. We have

$$
\begin{aligned}
& \left(G_{r} \backslash G_{s}+\{d\}\right) \cup\left(G_{r} \backslash G_{s}+D_{m} \backslash\{d\}\right) \cup\left(D_{l} \backslash D_{m}+\{g\}\right) \cup\left(D_{l} \backslash D_{m}+G_{s} \backslash\{g\}\right) \cup \\
& \left(G_{r} \backslash G_{s}+D_{l} \backslash D_{m}\right)=\left(G_{r} \backslash G_{s}+D_{l}\right) \cup\left(D_{l} \backslash D_{m}+G_{r}\right) \\
& G_{s} \cup D_{m} \cup\left(G_{s}^{*}+D_{m}^{*}\right)=G_{s}+D_{m} .
\end{aligned}
$$

Hence

$$
\mathbf{H} \cup(\mathbf{H}+\mathbf{H}) \supseteq\left(G_{r} \backslash G_{s}+D_{l}\right) \cup\left(D_{l} \backslash D_{m}+G_{r}\right) \cup\left(G_{s}+D_{m}\right) \supseteq E_{n+1}^{*}=\operatorname{PG}(n, 2)
$$

Now let $r \geq s+2, l=m+1$. Then

$$
\begin{equation*}
\mathbf{G}+\mathbf{G}=G_{r}, \quad \mathbf{D}+\mathbf{D}=D_{m}, \tag{27}
\end{equation*}
$$

cf. with equations (21) and (26). We change equation (26) by (27) and again similarly to the case (a) we see that \mathbf{H} is a cap. Since $G_{s} \subset G_{r}$ the change mentioned retains \mathbf{H} as a complete cap.

Finally, for the situation $r \geq s+2, l \geq m+2$, we obtain the relation (21) instead of equations (26) or (27), and, as $G_{s} \subset G_{r}, D_{m} \subset D_{l}$, we see, by above, that \mathbf{H} is a complete cap.
(c) Let

$$
\begin{equation*}
g(\mathbf{Z})=1, d(\mathbf{Z})=0 \text {, i.e., } g \in G(\mathbf{Z}), d \notin D(\mathbf{Z}) . \tag{28}
\end{equation*}
$$

Hence $r \geq s+2, \quad l \geq m+1$, see the condition \mathscr{D}.
The relation (22) holds in the case (c).
By equation (28) and the condition \mathscr{C}, we have $G(\mathbf{Z})=G_{s}^{*}$ and $D(\mathbf{Z})=D_{m}^{*} \backslash\{d\}$.
Hence

$$
\begin{equation*}
\mathbf{G}+\mathbf{Z}=G_{r} \backslash G_{s}+D_{m}^{*} \backslash\{d\}, \quad \mathbf{D}+\mathbf{Z}=D_{l} \backslash D_{m}+G_{s} \backslash\{g\}, \tag{29}
\end{equation*}
$$

cf. with equations (23) and (25). Note that $0_{n+1} \in G_{s} \backslash\{g\}$.
In the beginning we put $r \geq s+2, l=m+1$. Then the relation (27) holds.
Similarly to the case (a) one can see that \mathbf{H} is a cap.
From equations (7),(12),(18),(22),(27),(29) and the conditions \mathscr{A} and \mathscr{B} it follows that \mathbf{H} is a complete cap. In fact,

$$
\begin{aligned}
& \left(G_{r} \backslash G_{s}+\{d\}\right) \cup\left(G_{r} \backslash G_{s}+D_{m}^{*} \backslash\{d\}\right) \cup\left(D_{l} \backslash D_{m}+\{g\}\right) \cup\left(D_{l} \backslash D_{m}+G_{s} \backslash\{g\}\right) \cup \\
& \quad\left(G_{r} \backslash G_{s}+D_{l} \backslash D_{m}\right)=\left(G_{r} \backslash G_{s}+D_{l}^{*}\right) \cup\left(D_{l} \backslash D_{m}+G_{r}\right), \\
& D_{m} \cup\left(G_{s}^{*}+D_{m}^{*}\right)=\left(G_{s}+D_{m}^{*}\right) \cup\left\{0_{n+1}\right\} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \mathbf{H} \cup(\mathbf{H}+\mathbf{H}) \supseteq\left(G_{r} \backslash G_{s}+D_{l}^{*}\right) \cup\left(D_{l} \backslash D_{m}+G_{r}\right) \cup G_{r} \cup \\
& \quad\left(G_{s}+D_{m}^{*}\right) \supseteq E_{n+1}^{*}=P G(n, 2) .
\end{aligned}
$$

Now let $r \geq s+2, l \geq m+2$. We obtain the relation (21) instead of (27), and, as $D_{m} \subset D_{l}$, we see, by above, that \mathbf{H} is a complete cap.
(d) The case $g(\mathbf{Z})=0, d(\mathbf{Z})=1$, can be considered similarly to the previous cases.

Note that the condition \mathscr{A} is necessary for a set \mathbf{H} to be a cap. Without the condition \mathscr{A} the relation (19) does not hold. The conditions \mathscr{B}, \mathscr{C}, and \mathscr{D} are needed
for \mathbf{H} to be a complete cap. In the proof without the term $G_{s}^{*}+D_{m}^{*}$ connected with the condition \mathscr{B} the requirement $\mathbf{H} \cup(\mathbf{H}+\mathbf{H}) \supseteq E_{n+1}^{*}$ does not hold. Similarly, without the condition \mathscr{C} the sets $\mathbf{G}+\mathbf{Z}$ and $\mathbf{D}+\mathbf{Z}$ do not have the form of equations (23),(25), or (29), without the condition \mathscr{D} the sets $\mathbf{G}+\mathbf{G}$ and $\mathbf{D}+\mathbf{D}$ do not have the form of equations (21),(26), or (27), and again the condition $\mathbf{H} \cup(\mathbf{H}+$ $\mathbf{H}) \supseteq E_{n+1}^{*}$ will not be true. Of course, we can put $r \geq s+2, l \geq m+2$, independently of $d(\mathbf{Z})$ and $g(\mathbf{Z})$, but this does not allow us to get some sizes of caps.

4. Constructions of Caps \mathbf{Z}

4.1. On Infinite Families of Small Complete Caps

We consider examples of distinct constructions of the cap Z. Every construction generates infinite families of complete caps with distinct sizes since parameters r and l (and therefore $n=r+l-1$) are bounded only from below. For the given construction of \mathbf{Z} the dimension n of the space $\operatorname{PG}(n, 2)$, where the obtained cap \mathbf{H} lies, can tend to infinity. Moreover, for a fixed n every construction of \mathbf{Z} generates many distinct sizes of complete caps since n is a sum of r and l and, besides, there exist parameters s and m which can change and which are bounded only from below too. Finally, an iterative process, when complete caps obtained by Construction S are used to create new caps \mathbf{Z}, also gives new families of sizes.

Of course, the set of constructions of \mathbf{Z} described here is not complete. One can form other constructions of \mathbf{Z} and get new sizes of caps by Construction S. Construction Z_{1}
We put $s=m=1$. Then $G_{s}^{*}=G_{1}^{*}=\left\{g_{1}\right\}, g_{1}=\left(\mathbf{0}^{r-1} b_{1,1} \mathbf{0}^{l-1} \mathbf{0}^{1}\right), \quad D_{m}^{*}=D_{1}^{*}=\left\{d_{1}\right\}$, $d_{1}=\left(\mathbf{0}^{r-1} \mathbf{0}^{1} \mathbf{0}^{l-1} b_{1,1}\right)$, see equations (5),(6). Obviously, $g=g_{1}, d=d_{1}, w=1, \quad \mathbf{Z}=$ $\left\{z_{1}\right\}, \quad z_{1}=g+d, \quad M=\{g\}+\{d\}, \mathbf{Z}=M, G(\mathbf{Z})=G_{1}^{*}, D(\mathbf{Z})=D_{1}^{*}, g(\mathbf{Z})=d(\mathbf{Z})=1$, see equation (16), $r \geq s+1, l \geq m+1$. Since $\mathbf{Z}=M$, the condition \mathscr{B} holds. We have, see equation (7),

$$
\mathbf{H}=\mathbf{G} \cup \mathbf{D} \cup \mathbf{Z}=\left(G_{r} \backslash G_{1}+\left\{d_{1}\right\}\right) \cup\left(D_{l} \backslash D_{1}+\left\{g_{1}\right\}\right) \cup\left\{z_{1}\right\} .
$$

If $r=l=3$, we obtain $n=5, k=13$,

$$
\mathbf{H}=\left[\begin{array}{c|c|c}
0011111 & \mathbf{0 0 0 0 0 0 0} & \mathbf{0} \tag{30}\\
110011 & \mathbf{0 0 0 0 0 0} & \mathbf{0} \\
010101 & 111111 & 1 \\
-\mathbf{0 0 0 0 0 0} & 00111 & \frac{\mathbf{0}}{\mathbf{0 0 0 0 0 0}} \\
111111 & 110011 & \mathbf{0} \\
110101 & 1
\end{array}\right] .
$$

By equation (11), the size k of the complete cap $\mathbf{H} \subset \mathrm{PG}(n, 2)$ containing the cap \mathbf{Z} of Construction \mathbf{Z}_{1} is $k=2^{r}+2^{l}-3=2^{r}+2^{n+1-r}-3, r \geq 2, l \geq 2, n \geq r+1$. It is easy to see that Construction S in the particular case with the cap \mathbf{Z} of Construction Z_{1} gives the same complete cap as in [9, Theorem 3], cf. equation (1) and the last formula for k.

4.2. Modified Notation. Caps Z_{0}^{\prime} and Z^{\prime}

Now we will construct the caps \mathbf{Z} not considering "necessary" zeroes of the form $\mathbf{0}^{r-s}$ and $\mathbf{0}^{l-m}$, see equations (5),(6),(13),(14).

We denote $t=s+m-1$. Let E_{t+1} be the $(t+1)$-dimensional space of binary $(t+1)$-positional vectors. We put $E_{t+1}^{*}=\operatorname{PG}(t, 2)$.

In E_{t+1} we introduce vector subspaces $G_{s}^{\prime}, D_{m}^{\prime}$, a subset $M^{\prime}=G_{s}^{*}+D_{m}^{\prime *}$, and a point set \mathbf{Z}^{\prime}, that are obtained from G_{s}, D_{m}, M, and \mathbf{Z} by removing "necessary" zeroes of the form $\mathbf{0}^{r-s}$ and $\mathbf{0}^{l-m}$. Respectively we introduce points $g_{u}^{\prime}, d_{v}^{\prime}, g^{\prime}, d^{\prime}, z^{\prime}$. Now, cf. equations (5),(9),(13),

$$
\begin{align*}
G_{s}^{\prime} & =\left\{g_{0}^{\prime}, g_{1}^{\prime}, \ldots, g_{2^{s}-1}^{\prime}\right\}, \quad g_{u}^{\prime}=\left(b_{s, u} \mathbf{0}^{m}\right), \quad u=0,1, \ldots, 2^{s}-1 \\
D_{m}^{\prime} & =\left\{d_{0}^{\prime}, d_{1}^{\prime}, \ldots, d_{2^{m}-1}^{\prime}\right\}, d_{v}^{\prime}=\left(\mathbf{0}^{s} b_{m, v}\right), \quad v=0,1, \ldots, 2^{m}-1 . \tag{31}\\
\mathbf{Z}^{\prime} & =\left\{z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{w}^{\prime}\right\} \subset E_{t+1}^{*}, \\
z^{\prime} & =g_{j_{i}}^{\prime}+d_{k_{i}}^{\prime}=\left(b_{s, j_{i}} b_{m, k_{i}}\right), \quad g_{j_{i}}^{\prime} \in G_{s}^{*}, \quad d_{k_{i}}^{\prime} \in D_{m}^{\prime *}, \quad i=1,2, \ldots, w . \tag{32}
\end{align*}
$$

The functions $G^{\prime}\left(\mathbf{Z}^{\prime}\right), D^{\prime}\left(\mathbf{Z}^{\prime}\right), g^{\prime}\left(\mathbf{Z}^{\prime}\right)$, and $d^{\prime}\left(\mathbf{Z}^{\prime}\right)$, are introduced similarly to equations (15),(16), with change z_{i} by z_{i}^{\prime} and so on, again cf. equations (5),(9),(13) with equations (31),(32). Clearly, $g^{\prime}\left(\mathbf{Z}^{\prime}\right)=g(\mathbf{Z})$ and $d^{\prime}\left(\mathbf{Z}^{\prime}\right)=d(\mathbf{Z})$. Finally, the conditions $\mathscr{A}^{\prime}, \mathscr{B}^{\prime}, \mathscr{C}^{\prime}, \mathscr{D}^{\prime}$ are perfectly analogous to those $\mathscr{A}, \mathscr{B}, \mathscr{C}, \mathscr{D}$ after an addition of upper primes.
Clearly, \mathbf{Z} and \mathbf{Z}^{\prime} are in one-to-one correspondence and directly determine one another.

By the condition \mathscr{A}^{\prime}, the point set \mathbf{Z}^{\prime} is a cap in $\operatorname{PG}(t, 2)$.
We will find a needed caps \mathbf{Z}^{\prime} in a matrix form using a matrix form of a starting complete cap \mathbf{Z}_{0}^{\prime} in $\operatorname{PG}(t, 2)$. We call an s-region (resp., an m-region) the first s (resp., the last m) rows of matrices corresponding to \mathbf{Z}^{\prime} and \mathbf{Z}_{0}^{\prime}.
If for \mathbf{Z}_{0}^{\prime} the conditions $\mathscr{A}^{\prime}, \mathscr{B}^{\prime}, \mathscr{C}^{\prime}, \mathscr{D}^{\prime}$ hold we can put $\mathbf{Z}^{\prime}=\mathbf{Z}_{0}^{\prime}$. To change parameters or to provide the conditions $\mathscr{A}^{\prime}, \mathscr{B}^{\prime}, \mathscr{C}^{\prime}, \mathscr{D}^{\prime}$, we can form sums of rows in \mathbf{Z}_{0}^{\prime} (to support the condition \mathscr{C}^{\prime}) and remove columns from \mathbf{Z}_{0}^{\prime} with s zeroes in the s-region, of the form $\left(b_{s, 0} b_{m}\right)$, or with m zeroes in the m-region, of the form $\left(b_{s} b_{m, 0}\right)$, because $g_{j_{i}}^{\prime} \in G_{s}^{\prime *}, d_{k_{i}}^{\prime} \in D_{m}^{\prime *}$. Such columns can present in the beginning of the process and can appear after summing rows in \mathbf{Z}_{0}^{\prime}. The removed columns (points) do not belong to $M^{\prime}=G_{s}^{\prime *}+D_{m}^{\prime *}$ and therefore they are not required to be saturated with respect to \mathbf{Z}^{\prime}. The operations mentioned preserve the property of \mathbf{Z}_{0}^{\prime} to be a cap. Hence the condition \mathscr{A}^{\prime} always holds.

4.3. Using the Greatest Binary Complete Cap

In Constructions Z_{2} and Z_{3} as the starting complete cap \mathbf{Z}_{0}^{\prime} we use the greatest complete 2^{t}-cap A_{t} in the space $\operatorname{PG}(t, 2)$ that is the complement to some hyperplane L of $\operatorname{PG}(t, 2)$, i.e., A_{t} consists of the affine space $\operatorname{PG}(t, 2) \backslash L$, see [1,11]. In the matrix form we can represent the cap A_{t} by a $(t+1) \times 2^{t}=(s+m) \times 2^{s+m-1}$ matrix such that the first row consists of 2^{s+m-1} ones, the other $t=s+m-1$ rows
contain numbers $0,1, \ldots, 2^{s+m-1}-1$ written as columns in the lexicographical order. In Construction Z_{4} we modify the greatest complete 2^{t-1}-cap $A_{t-1} \subset \mathrm{PG}(t-$ $1,2)$ to get the starting complete $\left(2^{t-1}+1\right)$-cap $\mathbf{Z}_{0}^{\prime} \subset \mathrm{PG}(t, 2)$.

Remark 1. Every point of $\operatorname{PG}(t, 2) \backslash A_{t}$ lies on 2^{t-1} bisecants of the cap A_{t}. If we remove $j<2^{t-1}$ points from A_{t} to get a cap $A_{t, j}$ then every point of $\operatorname{PG}(t, 2) \backslash A_{t}$ lies at least on one bisecant of $A_{t, j}$, i.e., all points of $\operatorname{PG}(t, 2) \backslash A_{t}$ are saturated.

Let W be a matrix form of a point set in $\operatorname{PG}(f+p-1,2)$ where f and p are nonnegative integers, $f+p \geq 3$. Every $(f+p)$-positional column of W represents a point of $\mathrm{PG}(f+p-1,2)$. We say that the matrix W has a property $U_{f, h}$ if $f \geq 1$ and the first f rows of W contain all distinct nonzero f-positional columns except some h nonzero columns and furthermore the zero f-positional column is present in these rows. If the zero f-positional column is absent the property is denoted by $U_{f, h}^{*}$. Respectively we introduce properties $L_{p, h}$ and $L_{p, h}^{*}$ for the last p rows of the matrix W.

Remark 2. Let parameters s and m are given. If a matrix form of a cap \mathbf{Z}^{\prime} has the property $U_{s, 0}^{*}$ then $G^{\prime}\left(\mathbf{Z}^{\prime}\right)=G_{s}^{* *}$, the 1st part of the condition \mathscr{C}^{\prime} holds, $g^{\prime}\left(\mathbf{Z}^{\prime}\right)=$ 1. To satisfy the 2 nd part of the condition \mathscr{D}^{\prime} we must put $l \geq m+1$. If \mathbf{Z}^{\prime} has the property $U_{s, 1}^{*}$ then $G^{\prime}\left(\mathbf{Z}^{\prime}\right)=G_{s}^{* *} \backslash\left\{g_{i}^{\prime}\right\}$ with $i \neq 0$. To satisfy the 1st part of the condition \mathscr{C}^{\prime} one must take $g^{\prime}=g_{i}^{\prime}$. For such g^{\prime} we have $g^{\prime}\left(\mathbf{Z}^{\prime}\right)=0$. To satisfy the 2nd part of the condition \mathscr{D}^{\prime} we must put $l \geq m+2$. Respectively, for the property $L_{m, 0}^{*}$ we have that $D^{\prime}\left(\mathbf{Z}^{\prime}\right)=D_{m}^{\prime *}$, the 2 nd part of the condition \mathscr{C}^{\prime} holds, $d^{\prime}\left(\mathbf{Z}^{\prime}\right)=1$. To satisfy the 1st part of the condition \mathscr{D}^{\prime} one must put $r \geq s+1$. For the property $L_{m, 1}^{*}$ it holds that $D^{\prime}\left(\mathbf{Z}^{\prime}\right)=D_{m}^{\prime *} \backslash\left\{d_{j}^{\prime}\right\}, j \neq 0$. To satisfy the 2 nd part of the condition \mathscr{C}^{\prime} one must take $d^{\prime}=d_{j}^{\prime}$. For such d^{\prime} we have $d^{\prime}\left(\mathbf{Z}^{\prime}\right)=0$. To satisfy the 1st part of the condition \mathscr{D}^{\prime} we must put $r \geq s+2$.

Construction Z_{2}

We put $s=2, m \geq 2, t \geq 3, w=2^{m+1}-2$. Obviously, the matrix A_{t} has the properties $U_{2,1}^{*}$ and $L_{m, 0}$. From the matrix A_{t} we remove $j=2$ columns ($b_{2,2} b_{m, 0}$) and $\left(b_{2,3} b_{m, 0}\right)$ with m zeroes in the m-region. We put that the matrix obtained is \mathbf{Z}^{\prime}. Clearly, $G^{\prime}\left(\mathbf{Z}^{\prime}\right)=\left\{g_{2}^{\prime}, g_{3}^{\prime}\right\}, D^{\prime}\left(\mathbf{Z}^{\prime}\right)=D_{m}^{\prime *}$. We take $g^{\prime}=g_{1}^{\prime}=\left(b_{2,1} \mathbf{0}^{m}\right)$. Then $G^{\prime}\left(\mathbf{Z}^{\prime}\right) \cup$ $\left\{g^{\prime}\right\}=G_{s}^{*}$ and $g^{\prime}\left(\mathbf{Z}^{\prime}\right)=0$. Let $d^{\prime}=\left(\mathbf{0}^{2} b_{m, v}\right), v \neq 0$. Then $d^{\prime}\left(\mathbf{Z}^{\prime}\right)=1$ as $D^{\prime}\left(\mathbf{Z}^{\prime}\right)=D_{m}^{\prime *}$. We put $r \geq s+1=3, l \geq m+2 \geq 4$. Now the conditions \mathscr{C}^{\prime} and \mathscr{D}^{\prime} hold. Since $2^{t-1} \geq$ $4>j$ all points of $\mathrm{PG}(t, 2) \backslash A_{t}$ are saturated, see Remark 1. The removed two columns (points) are not saturated but they do not belong to M^{\prime}. So, $M^{\prime} \subset \mathbf{Z}^{\prime} \cup\left(\mathbf{Z}^{\prime}+\right.$ $\left.\mathbf{Z}^{\prime}\right)$. The condition \mathscr{B}^{\prime} holds. As an example with $m=2, t=3$, see the 3rd section of the matrix in (17) without "necessary" boldface $\mathbf{0}$. By (11), the size k of the complete cap $\mathbf{H} \subset P G(n, 2)$ obtained with the help of \mathbf{Z}^{\prime} of Construction Z_{2} is

$$
\begin{align*}
k & =2^{r}+2^{l}+2^{m}-6 \\
& =2^{r}+2^{n+1-r}+2^{m}-6, \quad r \geq 3, \quad m \geq 2, \quad l \geq m+2, \quad n \geq r+m+1 . \tag{33}
\end{align*}
$$

Construction Z_{3}
We put $s \geq 3, \quad m \geq 2, \quad t \geq 4, \quad w=2^{s+m-1}-2^{s-1}-2^{m-1}$. In the matrix A_{t} we add the $(s+1)$-th row to the 1 st row. Now the matrix A_{t} has the properties $U_{s, 0}$ and $L_{m, 0}$. If $s=m=3$ we obtain the matrix

1111	0000	1111	0000	1111	0000	1111	0000
0000	0000	0000	0000	1111	1111	1111	1111
0000	0000	1111	1111	0000	0000	1111	1111
0000	1111	0000	1111	0000	1111	0000	1111
0011	0011	0011	0011	0011	0011	0011	0011
0101	0101	0101	0101	0101	0101	0101	0101

Then we remove 2^{m-1} columns with s zeroes in the s-region and 2^{s-1} columns with m zeroes in the m-region. The removed columns have the form $\left(b_{s, 0} b_{m, v}\right), v=$ $2^{m-1}, 2^{m-1}+1, \ldots, 2^{m}-1$, and $\left(b_{s, u} b_{m, 0}\right), u=2^{s-1}, 2^{s-1}+1, \ldots, 2^{s}-1$. As result we obtain the matrix $A_{t, j}$ with $j=2^{m-1}+2^{s-1}$ and put $\mathbf{Z}^{\prime}=A_{t, j}$. For $s \geq 3, m \geq 2$, we have $2^{t-1}=2^{s+m-2}>j=2^{m-1}+2^{s-1}$. Hence all points of $\operatorname{PG}(t, 2) \backslash A_{t}$ are saturated, see Remark 1. Again, as in Construction Z_{2}, the removed columns (points) are not saturated but they do not belong to M^{\prime} and the condition \mathscr{B}^{\prime} holds. It is easy to see that $G^{\prime}\left(\mathbf{Z}^{\prime}\right)=G_{s}^{\prime *}, D^{\prime}\left(\mathbf{Z}^{\prime}\right)=D_{m}^{\prime *}$. Therefore we need to assume $r \geq s+1$, $l \geq m+1$. By (11), the size k of the complete cap $\mathbf{H} \subset \operatorname{PG}(n, 2)$ obtained with the help of \mathbf{Z}^{\prime} of Construction Z_{3} is

$$
\begin{align*}
& k=2^{r}+2^{l}+2^{s+m-1}-3\left(2^{s-1}+2^{m-1}\right)=2^{r}+2^{n+1-r}+2^{s+m-1}-3\left(2^{s-1}+2^{m-1}\right), \\
& s \geq 3, \quad m \geq 2, \quad r \geq s+1, \quad l \geq m+1, \quad n \geq r+m . \tag{34}
\end{align*}
$$

Construction Z_{4}

We put $s \geq 3, \quad m \geq 2, w=2^{s+m-2}+1, t=s+m-1$, take the complete $2^{t-1}-$ cap $A_{t-1} \subset \mathrm{PG}(t-1,2)$ and insert at the top a new row of 2^{s+m-2} zeroes. Then we remove 2^{m-2} columns $t_{i}=\left(01 b_{s-2,0} 01 b_{m-2, i}\right), i=0,1, \ldots, 2^{m-2}-1$, and 2^{s-2} columns $u_{j}=\left(01 b_{s-2, j} b_{m, 0}\right), j=0,1, \ldots, 2^{s-2}-1$. We put $e=\left(11 b_{s-2,0} b_{m-1,0} 1\right)$ and insert the following $2^{m-2}+2^{s-2}+1$ columns into the matrix: $t_{i}^{\prime}=e+t_{i}, i=$ $0,1, \ldots, 2^{m-2}-1, u_{j}^{\prime}=e+u_{j}, j=0,1, \ldots, 2^{s-2}-1$, and e. We take the obtained matrix as $\mathbf{Z}_{0}^{\prime} \subset \operatorname{PG}(t, 2)$. If $s=4, m=3$, we have

$$
\mathbf{Z}_{0}^{\prime}=\left[\begin{array}{ccccccc|c}
00000 & 0000000 & 0000000 & 0000000 & 11 & 1111 & 1 \\
11111 & 1111111 & 111111 & 1111111 & 00 & 0000 & 1 \\
00000 & 0000000 & 1111111 & 1111111 & 00 & 0011 & 0 \\
00000 & 1111111 & 0000000 & 1111111 & 00 & 0101 & 0 \\
------ & ---- & ---- & - & -- & - \\
01111 & 0001111 & 0001111 & 0001111 & 00 & 0000 & 0 \\
00011 & 0110011 & 0110011 & 0110011 & 11 & 0000 & 0 \\
10101 & 1010101 & 1010101 & 1010101 & 10 & 1111 & 1
\end{array}\right] .
$$

By construction, \mathbf{Z}_{0}^{\prime} is a cap, e.g., $e=t_{i}+t_{i}^{\prime}$, but columns t_{i} are removed. Moreover, \mathbf{Z}_{0}^{\prime} is a complete cap. Columns of the form $\left(00 b_{s+m-2}\right)$ are saturated since for $s \geq 3, m \geq 2$, we have $2^{s-2}+2^{m-2}<2^{s+m-3}$, see Remark 1. Columns $\left(01 b_{s+m-2}\right)$ either belong to \mathbf{Z}_{0}^{\prime} or can be obtained as $t_{i}=e+t_{i}^{\prime}, u_{j}=e+u_{j}^{\prime}$. Columns $\left(10 b_{s+m-2}\right)$ either belong to \mathbf{Z}_{0}^{\prime}, see t_{i}^{\prime} and u_{j}^{\prime}, or can be obtained as $f+e$ where
f is a column from the left submatrix of \mathbf{Z}_{0}^{\prime}. Finally, columns $\left(11 b_{s+m-2}\right) \neq e$ can be obtained as $f+t_{i}^{\prime}$ or $f+u_{j}^{\prime}$.

Note that complete $\left(2^{v}+1\right)$-caps of considered structure are described in [5, formula (18)] and researched in [2, Section 4].

Now we add the $(s+1)$-th and the $(s+2)$-th rows of \mathbf{Z}_{0}^{\prime} to the 1 st and the 2 nd rows respectively and obtain the cap \mathbf{Z}^{\prime} with the properties $U_{s, 0}^{*}$ and $L_{m, 0}^{*}$. If $s=4$, $m=3$, then

We put $r \geq s+1, l \geq m+1$, see Remark 2. All conditions $\mathscr{A}^{\prime}, \mathscr{B}^{\prime}, \mathscr{C}^{\prime}, \mathscr{D}^{\prime}$ hold. By (11), the size k of the complete cap $\mathbf{H} \subset \operatorname{PG}(n, 2)$ obtained with the help of \mathbf{Z}^{\prime} of Construction Z_{4} is

$$
\begin{align*}
& k=2^{r}+2^{l}+2^{s+m-2}+1-2^{s}-2^{m}=2^{r}+2^{n+1-r}+2^{s+m-2}+1-2^{s}-2^{m}, \\
& s \geq 3, \quad m \geq 2, \quad r \geq s+1, \quad l \geq m+1, \quad n \geq r+m . \tag{35}
\end{align*}
$$

4.4. Iterative Constructing of Z^{\prime}

In Constructions $\mathrm{Z}_{5}-\mathrm{Z}_{9}$ we consider an iterative process when a complete cap \mathbf{H} obtained by Construction S is used to create the complete starting cap \mathbf{Z}_{0}^{\prime}. Suppose by Construction S we got a family of complete k_{0}-caps \mathbf{H}_{0} with fixed parameters $s_{0}, m_{0}, \Delta_{0}, c_{r}, c_{l}$, so that

$$
\begin{equation*}
\mathbf{H}_{0} \subset \mathrm{PG}\left(n_{0}, 2\right), n_{0}=r_{0}+l_{0}-1, \quad k_{0}=2^{r_{0}}+2^{l_{0}}+\Delta_{0}, r_{0} \geq s_{0}+c_{r}, l_{0} \geq m_{0}+c_{l}, \tag{36}
\end{equation*}
$$

where $c_{r}, c_{l} \in\{1,2\}$. By above, every complete cap obtained by Construction S belongs to a family of such form. Changing parameters mentioned we obtain another family. Distinct values of r_{0}, l_{0} give distinct caps \mathbf{H}_{0} of the same family.

By equations (7-9),(14), and the condition \mathscr{C}, the complete cap \mathbf{H}_{0} has the properties $U_{r_{0}, 0}^{*}$ and $L_{l_{0}, 0}^{*}$. Hence we can put $\mathbf{H}_{0}=\mathbf{Z}^{\prime}$ with $s=r_{0}, m=l_{0}, G^{\prime}\left(\mathbf{Z}^{\prime}\right)=G_{s}^{*}$, $D^{\prime}\left(\mathbf{Z}^{\prime}\right)=D_{m}^{\prime *}, w=k_{0}$. Taking into account that \mathbf{H}_{0} is a complete cap, all conditions $\mathscr{A}^{\prime}, \mathscr{B}^{\prime}, \mathscr{C}^{\prime}$ hold. In order to satisfy the condition \mathscr{D}^{\prime} we put $r \geq s+1=r_{0}+1, l \geq$ $m+1=l_{0}+1$, and by Construction S we obtain a new complete cap \mathbf{H} of the size $k=2^{r}+2^{l}-\left(2^{r_{0}}+2^{l_{0}}-k_{0}\right)=2^{r}+2^{l}+\Delta_{0}$. Comparing this k with k_{0} of equation (36) we see that such a direct method does not yield new sizes. But applying the doubling construction (DC) to \mathbf{H}_{0} we can obtain a cap \mathbf{Z}_{0}^{\prime} providing a new family of sizes. It should be noted that we use DC only for obtaining \mathbf{Z}^{\prime} and then we obtain a new complete cap \mathbf{H} by Construction \mathbf{S}.

Construction Z_{5}

We apply DC to the complete cap \mathbf{H}_{0} with parameters (36). To do this we repeat the matrix \mathbf{H}_{0} two times and insert at the top a new row consisting of sequences of k_{0} zeroes and k_{0} ones [5]. We obtain a complete $2 k_{0}$-cap \mathbf{Z}_{0}^{\prime} in $\operatorname{PG}\left(n_{0}+1,2\right)=$ $\operatorname{PG}(t, 2)$ and put $\mathbf{Z}^{\prime}=\mathbf{Z}_{0}^{\prime}$ with $s=r_{0}+1, m=l_{0}, w=2 k_{0}=2^{r_{0}+1}+2^{l_{0}+1}+2 \Delta_{0}, t=$ $r_{0}+l_{0}$. So,

$$
\mathbf{Z}^{\prime}=\mathbf{Z}_{0}^{\prime}=\left[\begin{array}{c|c}
00 \ldots 0 & 11 \ldots 1 \tag{37}\\
-\overline{\mathbf{H}}_{0} & -\overline{\mathbf{H}}_{0}
\end{array}\right] .
$$

Since the cap \mathbf{H}_{0} has the properties $U_{r_{0}, 0}^{*}$ and $L_{l_{0}, 0}^{*}$, the cap \mathbf{Z}^{\prime} has the properties $U_{s, 1}^{*}=U_{r_{0}+1,1}^{*}$ and $L_{m, 0}^{*}=L_{l_{0}, 0}^{*}$. The ($r_{0}+1$)-positional column $(10 \ldots 0)$ is absent in the first $s=r_{0}+1$ rows of \mathbf{Z}^{\prime}. This means one must take $g^{\prime}=g_{2^{r_{0}}}^{\prime}=\left(b_{s, 2^{r_{0}}} \mathbf{0}^{m}\right) \notin$ $G^{\prime}\left(\mathbf{Z}^{\prime}\right)$. So, $g^{\prime}\left(\mathbf{Z}^{\prime}\right)=0$. To satisfy the condition \mathscr{D}^{\prime} we should put $r \geq s+2=r_{0}+3$, $l \geq m+1=l_{0}+1$, see Remark 2. Taking into account that \mathbf{Z}^{\prime} is a complete cap, all conditions $\mathscr{A}^{\prime}, \mathscr{B}^{\prime}, \mathscr{C}^{\prime}, \mathscr{D}^{\prime}$ hold. By equations (11),(36), the size k of the complete cap $\mathbf{H} \subset \mathrm{PG}(n, 2)$ obtained with the help of \mathbf{Z}^{\prime} of Construction Z_{5} is

$$
\begin{equation*}
k=2^{r}+2^{l}+2^{l_{0}}+2 \Delta_{0}=2^{r}+2^{n+1-r}+2^{l_{0}}+2 \Delta_{0}, \quad r \geq r_{0}+3, \quad l \geq l_{0}+1, \quad n \geq r+l_{0} . \tag{38}
\end{equation*}
$$

Construction Z_{6}

We proceed similarly to Construction Z_{5} but insert the new row at the bottom. Then

$$
\mathbf{Z}^{\prime}=\mathbf{Z}_{0}^{\prime}=\left[\begin{array}{c:c}
\mathbf{H}_{0} & \mathbf{H}_{0} \tag{39}\\
\hdashline 00 \ldots 0 & 11 \ldots .
\end{array}\right]
$$

$s=r_{0}, m=l_{0}+1, w=2 k_{0}, t=r_{0}+l_{0}, r \geq s+1=r_{0}+1, l \geq m+2=l_{0}+3$. The size k of the complete cap $\mathbf{H} \subset \mathrm{PG}(n, 2)$ obtained with the help of \mathbf{Z}^{\prime} of Construction Z_{6} is

$$
\begin{align*}
k & =2^{r}+2^{l}+2^{r_{0}}+2 \Delta_{0} \\
& =2^{r}+2^{n+1-r}+2^{r_{0}}+2 \Delta_{0}, \quad r \geq r_{0}+1, \quad l \geq l_{0}+3, \quad n \geq r+l_{0}+2 . \tag{40}
\end{align*}
$$

Construction Z_{7}
Applying DC of equation (39) to the cap of equation (37) we obtain the complete cap \mathbf{Z}_{0}^{\prime} in $\operatorname{PG}\left(n_{0}+2,2\right)=\operatorname{PG}(t, 2)$, and again we put $\mathbf{Z}^{\prime}=\mathbf{Z}_{0}^{\prime}$. We have
$s=r_{0}+1, m=l_{0}+1, w=4 k_{0}=2^{r_{0}+2}+2^{l_{0}+2}+4 \Delta_{0}$. Since the cap \mathbf{H}_{0} has the properties $U_{r_{0}, 0}^{*}$ and $L_{l_{0}, 0}^{*}$, the cap \mathbf{Z}^{\prime} has the properties $U_{s, 1}^{*}=U_{r_{0}+1,1}^{*}$ and $L_{m, 1}^{*}=$ $L_{l_{0}+1,1}^{*}$. The $\left(r_{0}+1\right)$-positional column $(10 \ldots 0)$ is absent in the first s rows of \mathbf{Z}^{\prime} and the $\left(l_{0}+1\right)$-positional column $(0 \ldots 01)$ is absent in the last m rows. Hence one must take $g^{\prime}=\left(b_{s, 2^{r} 0} \mathbf{0}^{m}\right) \notin G^{\prime}\left(\mathbf{Z}^{\prime}\right), d^{\prime}=\left(\mathbf{0}^{s} b_{m, 1}\right) \notin D^{\prime}\left(\mathbf{Z}^{\prime}\right)$, and put $r \geq s+2=r_{0}+3$,
$l \geq m+2=l_{0}+3$, cf. Construction Z_{5} and Remark 2. All conditions $\mathscr{A}^{\prime}, \mathscr{B}^{\prime}, \mathscr{C}^{\prime}, \mathscr{D}^{\prime}$ hold. By equations (11), (36), the size k of the complete cap $\mathbf{H} \subset \operatorname{PG}(n, 2)$ obtained with the help of \mathbf{Z}^{\prime} of Construction Z_{7} is

$$
\begin{align*}
& k=2^{r}+2^{l}+2^{r_{0}+1}+2^{l_{0}+1}+4 \Delta_{0}=2^{r}+2^{n+1-r}+2^{r_{0}+1}+2^{l_{0}+1}+4 \Delta_{0} \\
& r \geq r_{0}+3, \quad l \geq l_{0}+3, \quad n \geq r+l_{0}+2 \tag{42}
\end{align*}
$$

Construction Z_{8}
We consider the complete cap $\mathbf{Z}_{0}^{\prime} \subset \mathrm{PG}\left(n_{0}+1,2\right)=\mathrm{PG}(t, 2)$ of equation (37). Since \mathbf{H}_{0} is a complete cap, every point of $\operatorname{PG}(t, 2) \backslash \mathbf{Z}_{0}^{\prime}$ lies on at least two bisecants of \mathbf{Z}_{0}^{\prime}. Therefore if we remove one point from \mathbf{Z}_{0}^{\prime} all points of $\operatorname{PG}(t, 2) \backslash \mathbf{Z}_{0}^{\prime}$ are saturated.

We add the first row of equation (37) to the $\left(m_{0}+1\right)$-th row from the bottom and obtain another matrix form of \mathbf{Z}_{0}^{\prime}, say $\mathbf{Z}_{0, a}^{\prime}$. The left part of equation (37) does not change but in the region \mathbf{D} of the right part exactly one column with l_{0} zeroes in the last l_{0} rows appears. Before it was the column ($b_{1,1} b_{r_{0}} b_{l_{0}, 2^{m_{0}}}$). If \mathbf{H}_{0} is taken from equation (30), where $m_{0}=1, l_{0}=3$, then

$$
\mathbf{Z}_{0, a}^{\prime}=\left[\begin{array}{c|c|c|c|c|c}
000000 & 000000 & 0 & 111111 & 1111111 & 1 \tag{43}\\
---- & --- & \frac{1}{-} & -- & -- & \frac{1}{0} \\
001111 & 000000 & 0 & 001111 & 000000 & 0 \\
110011 & 000000 & 0 & 110011 & 000000 & 0 \\
010101 & 111111 & 1 & 010101 & 111111 & 1 \\
--- & --- & --- & --- & - \\
000000 & 001111 & 0 & 000000 & 001111 & 0 \\
000000 & 110011 & 0 & \mathbf{1 1 1 1 1 1} & \mathbf{0 0 1 1 0 0} & \mathbf{1} \\
111111 & 010101 & 1 & 111111 & 010101 & 1
\end{array}\right],
$$

where boldface shows the values changed. If \mathbf{H}_{0} is taken from equation (17), where $m_{0}=2, l_{0}=4$, then the right (changed) part of $\mathbf{Z}_{0, a}^{\prime}$ has the form
$\left[\begin{array}{c|cccc|ccc}1111 & 1111 & 1111 & 1111 & 111 & 111 \\ -- & -- & -- & -- & -- & -- \\ 1111 & 0000 & 0000 & 0000 & 000 & 000 \\ 0011 & 0000 & 0000 & 0000 & 111 & 111 \\ 0101 & 1111 & 1111 & 1111 & 000 & 111 \\ -- & - & - & - & - & -- \\ 0000 & 0000 & 1111 & 1111 & 000 & 000 \\ 1111 & \mathbf{0 0 0 0} & 1111 & 0000 & \mathbf{1 1 1} & 111 \\ 1111 & 0011 & 0011 & 0011 & 011 & 011 \\ 1111 & 0101 & 0101 & 0101 & 101 & 101\end{array}\right]$.

We remove the column with l_{0} zeroes in the last l_{0} rows and take the obtained matrix as \mathbf{Z}^{\prime}. We put $s=r_{0}+1, m=l_{0}, w=2 k_{0}-1$, cf. Construction Z_{5}. The cap \mathbf{Z}^{\prime} has the properties $U_{s, 1}^{*}$ and $L_{m, 0}^{*}$, as in Construction \mathbf{Z}_{5}. Therefore $r \geq$ $s+2=r_{0}+3, l \geq m+1=l_{0}+1$. The removed column does not belong to M^{\prime} and it may fail to be saturated. All conditions $\mathscr{A}^{\prime}, \mathscr{B}^{\prime}, \mathscr{C}^{\prime}, \mathscr{D}^{\prime}$ hold. By equations (11),(36), the size k of the complete cap $\mathbf{H} \subset \operatorname{PG}(n, 2)$ obtained with the help of \mathbf{Z}^{\prime} of Construction Z_{8} is

$$
\begin{align*}
& k=2^{r}+2^{l}+2^{l_{0}}+2 \Delta_{0}-1=2^{r}+2^{n+1-r}+2^{l_{0}}+2 \Delta_{0}-1, \\
& r \geq r_{0}+3, \quad l \geq l_{0}+1, \quad n \geq r+l_{0} . \tag{45}
\end{align*}
$$

Construction Z_{9}
We use \mathbf{Z}_{0}^{\prime} of equation (39) and add the last row to the $\left(1+l_{0}+s_{0}+1\right)$-th row from the bottom. Similarly to Construction Z_{8} we remove one column and obtain \mathbf{Z}^{\prime}. By equations (11),(36), the size k of the complete cap $\mathbf{H} \subset \mathrm{PG}(n, 2)$ obtained with the help of \mathbf{Z}^{\prime} of Construction Z_{9} is

$$
\begin{align*}
& k=2^{r}+2^{l}+2^{r_{0}}+2 \Delta_{0}-1=2^{r}+2^{n+1-r}+2^{r_{0}}+2 \Delta_{0}-1, \\
& r \geq r_{0}+1, \quad l \geq l_{0}+3, \quad n \geq r+l_{0}+2 \tag{46}
\end{align*}
$$

4.5. Using the Smallest Known Complete Caps

In Constructions $Z_{10}-Z_{12}$ as the starting complete caps \mathbf{Z}_{0}^{\prime} we use the smallest known complete $f(n)$-caps in $\operatorname{PG}(n, 2), n \geq 7$, with $f(n)$ of equation (2), see [9]. In formulas of [9] we choose convenient parameters e_{i}, e_{u}, and so on, see below. Construction Z_{10}

As the starting complete cap \mathbf{Z}_{0}^{\prime} with $s=m=4$ we take the complete 28-cap in $\operatorname{PG}(7,2)$ of $[9$, formula (51$)]$. The 28 -th column of \mathbf{Z}_{0}^{\prime} contains s zeroes in the s region. We add the sum of two last rows of \mathbf{Z}_{0}^{\prime} to the 4 -th row and obtain a complete 28 -cap \mathbf{Z}^{\prime} for which all conditions $\mathscr{A}^{\prime}, \mathscr{B}^{\prime}, \mathscr{C}^{\prime}$ and the properties $U_{4,0}^{*}, L_{4,0}^{*}$ hold. The reader can easy check this. To satisfy the condition \mathscr{D}^{\prime} we must take $r \geq s+1=5, l \geq m+1=5$. By equation (11), the size k of the complete cap $\mathbf{H} \subset$ $\operatorname{PG}(n, 2)$ obtained with the help of \mathbf{Z}^{\prime} of Construction \mathbf{Z}_{10} is

$$
\begin{equation*}
k=2^{r}+2^{l}-4=2^{r}+2^{n+1-r}-4, \quad r \geq 5, \quad l \geq 5, \quad n \geq r+4 . \tag{47}
\end{equation*}
$$

Construction Z_{11}
Here $s=m=v \geq 5, \mathbf{Z}^{\prime}=\mathbf{Z}_{0}^{\prime}=U^{2 v}$, where $U^{2 v}$ is the matrix of [9, formulas (31),(39)-(42)] with $e_{i} \neq 0$ in [9, formula (31)]. By formulas mentioned one can see that $U^{2 v}$ gives a complete $\left(15 \cdot 2^{v-3}-3\right)$-cap in $\mathrm{PG}(t, 2)=\mathrm{PG}(2 v-1,2)$ for which all conditions $\mathscr{A}^{\prime}, \mathscr{B}^{\prime}, \mathscr{C}^{\prime}$ and the properties $U_{v, 0}^{*}, L_{v, 0}^{*}$ hold. To satisfy the condition \mathscr{D}^{\prime} we must take $r \geq s+1=v+1 \geq 6, l \geq m+1=v+1 \geq 6$. By equation (11), the size k of the complete cap $\mathbf{H} \subset \operatorname{PG}(n, 2)$ obtained with the help of \mathbf{Z}^{\prime} of Construction Z_{11} is

$$
\begin{align*}
k & =2^{r}+2^{l}-2^{v-3}-3 \\
& =2^{r}+2^{n+1-r}-2^{v-3}-3, \quad v \geq 5, r \geq v+1, \quad l \geq v+1, n \geq r+v . \tag{48}
\end{align*}
$$

Construction Z_{12}
We put $s=4, m=5$. As starting complete cap \mathbf{Z}_{0}^{\prime} we take the complete 43-cap in $\operatorname{PG}(8,2)$ of [9, Theorem 5, Remark 2]. For \mathbf{Z}_{0}^{\prime} in [9, formulas(31),(39)-(42),(50)] we take $\beta=(001), \gamma=(010), \delta=(011), w_{1}=w_{2}=w_{3}=1, e_{i}=(0001), e_{u}=(0001)$. To get \mathbf{Z}^{\prime} we change \mathbf{Z}_{0}^{\prime} writing the 1 st row as the last one in [9, formula (50)]. We obtain
where hexadecimal notation is used. As it is said in [9, Remark 2], we examined by computer that \mathbf{Z}^{\prime} is a complete cap. By equation (49), the matrix has the properties $U_{4,0}^{*}$ and $L_{5,0}^{*}$. So, the conditions $\mathscr{A}^{\prime}, \mathscr{B}^{\prime}, \mathscr{C}^{\prime}$ hold. To satisfy the condition \mathscr{D}^{\prime} one must take $r \geq s+1=5, l \geq m+1=6$, see Remark 2 of this work. By equation (11), the size k of the complete cap $\mathbf{H} \subset \operatorname{PG}(n, 2)$ obtained with the help of \mathbf{Z}^{\prime} of Construction Z_{12} is

$$
\begin{equation*}
k=2^{r}+2^{l}-5=2^{r}+2^{n+1-r}-5, \quad r \geq 5, \quad l \geq 6, n \geq r+5 . \tag{50}
\end{equation*}
$$

4.6. Computer Search for Caps Z^{\prime}

We consider the situation when an infinity family of complete caps \mathbf{H} is produced by Construction S, see Section 4.1, and the only "starting" cap \mathbf{Z}^{\prime} is found by computer. We use the term "Construction $\mathrm{Z}_{13, i}$ " when for given parameters s, m we have found by computer a cap $\mathbf{Z}_{13, i}^{\prime}$ for which all conditions $\mathscr{A}^{\prime}, \mathscr{B}^{\prime}, \mathscr{C}^{\prime}$ and the properties $U_{s, 0}^{*}, L_{m, 0}^{*}$ hold. Here i is the ordinal number. For all Constructions $\mathrm{Z}_{13, i}$ we put $r \geq s+1$ and $l \geq m+1$, see Remark 2. Therefore the condition \mathscr{D}^{\prime} holds. We give caps $\mathbf{Z}_{13, i}^{\prime}$ in hexadecimal notation.
Constructions $Z_{13,1}$ and $Z_{13,2}$
We put $s=m=3$. We found by computer a 15 -cap $\mathbf{Z}_{13,1}^{\prime}$ and a 16 -cap $\mathbf{Z}_{13,2}^{\prime}$.

By (11), the size k of the complete cap $\mathbf{H} \subset \operatorname{PG}(n, 2)$ obtained with the help of $\mathbf{Z}_{13, j}^{\prime}$ is

$$
\begin{equation*}
k=2^{r}+2^{l}+j-2=2^{r}+2^{n+1-r}+j-2, \quad r \geq 4, \quad l \geq 4, \quad n \geq r+3, \quad j=1,2 \tag{51}
\end{equation*}
$$

Constructions $\mathrm{Z}_{13,3}, \mathrm{Z}_{13,4}$, and $\mathrm{Z}_{13,5}$
Let $s=4, m=3$. We found by computer a 27 -cap $\mathbf{Z}_{13,3}^{\prime}$, a 28 -cap $\mathbf{Z}_{13,4}^{\prime}$, and a 29-cap $\mathbf{Z}_{13,5}^{\prime}$.

By equation (11), the size k of the complete cap $\mathbf{H} \subset P G(n, 2)$ obtained with the help of $\mathbf{Z}_{13, t}^{\prime}$ is

$$
\begin{equation*}
k=2^{r}+2^{l}+t=2^{r}+2^{n+1-r}+t, \quad r \geq 5, \quad l \geq 4, \quad n \geq r+4, \quad t=3,4,5 . \tag{52}
\end{equation*}
$$

Table 2. The sizes $k<2^{n-1}$ of the small complete caps in $\operatorname{PG}(n, 2)$ obtained by distinct constructions.

4.7. Tables of Sizes of Small Complete Caps

We give Table 2 with examples of sizes of caps obtained by known and new constructions. The subscripts $i \in\{1,2,3,4,10,11,12\}$ and $13, j \in\{13,1 \ldots 13,5\}$ indicate Construction Z_{i} and $Z_{13, j}$, respectively. Sizes of equation (1) have the subscript " 1 " as they can be generated by Construction Z_{1}. The subscripts " 0 " and " W " indicate, respectively, the known constructions of [9], see equation (2), and [14], see equation (3). Finally, the subscript of the form $u+i, u \in\{5,6,7,8,9\}, i \in$ $\{1,2,3,4,10,11,12\}$, denotes Construction Z_{u} using a complete cap \mathbf{H}_{0} obtained with the help of Construction Z_{i}. The superscript " D " indicates the doubling construction used for the results defined by the subscript. Boldface notes sizes obtained by new constructions and doubling of these new sizes.

For $n \leq 10$ Table 2 is filled in the following order. First, all sizes of equations (1)-(3) and applying DC to them are written. We denote $A_{W} \cdots B_{W}$ a region of sizes described in [14], see equation (3). Some sizes into such regions can be obtained also by DC. Then we consider the dimensions n in increasing order and

Table 3. The updated table of sizes of the known small complete caps in $\operatorname{PG}(n, 2)$.

n	Sizes k of the known complete caps with $k \leq 2^{n-1}$	References
10	$91 \leq k \leq 511, k=89$	$[6,9,14], \star$
11	$123 \leq k \leq 1023, k=117,121$	$[6,9,14], \star$
12	$187 \leq k \leq 2047, k=181,185$	$[6,9,14], \star$

* - results of this work
for fixed n we list sizes generated by Constructions $Z_{2}-Z_{12}$ and $Z_{13, i}$. Every new size obtained is written in Table 2 together with applying DC to it. If the same new size can be obtained by several Constructions Z_{i} we note only one construction. For $n=11,12$ we give in Table 2 only relatively small sizes.

Using results written in Table 2 we can update Table 1 for $n=10,11,12$, see Table 3.

Acknowledgment

The authors thank the anonymous referees for their details and useful comments.

References

1. A. A. Bruen, L. Haddad and D. L. Wehlau, Binary codes and caps, Journal of Combinatorial Designs, Vol. 6, No. 4 (1998) pp. 275-284.
2. A. A. Bruen and D. L. Wehlau, Long binary linear codes and large caps in projective space, Designs, Codes and Cryptography, Vol. 17, No. 1 (1999) pp. 37-60.
3. A. A. Bruen and D. L. Wehlau, New codes from Old; a new geometric construction, Journal of Combinatorial Theory, Series A, Vol. 94, No. 2 (2001) pp. 196-202.
4. W. E. Clark and J. Pedersen, Sum-free sets in vector spaces over GF(2), Journal of Combinatorial Theory, Series A, Vol. 61, No. 2 (1992) pp. 222-229.
5. A. A. Davydov and L. M. Tombak, Quasi-perfect linear binary codes with distance 4 and complete caps in projective geometry, Problems of Information Transmission, Vol. 25, No. 4 (1989) pp. 265-275.
6. A. A. Davydov, S. Marcugini and F. Pambianco, Complete caps in projective spaces $\operatorname{PG}(n, q)$, Journal of Geometry, Vol. 80 (2004) pp. 23-30.
7. G. Faina, S. Marcugini, A. Milani and F. Pambianco, The sizes k of the complete k-caps in $\operatorname{PG}(n, q)$, for small q and $3 \leq n \leq 5$, Ars Combinatoria, Vol. 50 (1998) pp. 235-243.
8. G. Faina and F. Pambianco, On the spectrum of the values k for which a complete k-cap in $\operatorname{PG}(n, q)$ exists, Journal of Geometry, Vol. 62, No. 1 (1998) pp. 84-98.
9. E. M. Gabidulin, A. A. Davydov and L. M. Tombak, Codes with covering radius 2 and other new covering codes, IEEE Transactions on Information Theory, Vol. 37, No. 1 (1991) pp. 219-224.
10. J. W. P. Hirschfeld, Projective Geometries over Finite Fields, 2nd ed. Clarendon, Oxford (1998).
11. J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory, and finite projective spaces: update 2001, In A. Blokhuis, J. W. P. Hirschfeld, D. Jungnickel and J. A. Thas (eds), Developments in Mathematics, Vol. 3, Finite Geometries, Kluwer Academic Publishers, Dordrecht (2001) pp. 201-246.
12. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Part I. North-Holland, Amsterdam (1977).
13. T. Szönyi, Small complete arcs in Galois planes, Geometriae Dedicata, Vol. 18 (1985) pp. 161-172.
14. D. L. Wehlau, Complete caps in projective space which are disjoint from a codimension 2 subspace, In A. Blokhuis, J. W. P. Hirschfeld, D. Jungnickel and J.A. Thas (eds), Developments in Mathematics, Vol. 3, Finite Geometries, Kluwer Academic Publishers, Dordrecht (2001) pp. 347-361. (Corrected version: www.mast.queensu.ca/~wehlau/pubs.html).
