Constructions of Small Complete Caps in Binary Projective Spaces

ALEXANDER A. DAVYDOV adav@iitp.ru Institute for Information Transmission Problems, Russian Academy of Sciences, Bol'shoi Karetnvi per. 19, GSP-4, Moscow, 127994, Russia

GIORGIO FAINA

faina@dipmat.unipg.it Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1, Perugia, 06123, Italy

FERNANDA PAMBIANCO fernanda@dipmat.unipg.it Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1, Perugia, 06123. Italy

Communicated by: J. W. P. Hirschfeld

Received January 13, 2003; Revised March 3, 2004; Accepted July 23, 2004

Abstract. In the binary projective spaces PG(n, 2) k-caps are called *large* if $k > 2^{n-1}$ and *small* if $k \le 2^{n-1}$ 2^{n-1} . In this paper we propose new constructions producing infinite families of small binary complete caps.

Keywords: binary caps, complete caps, projective space, small complete caps

AMS Classification: 51E21, 51E22, 94B05

1. Introduction

In the binary projective space PG(n, 2) k-caps are called *large* if $k > 2^{n-1}$ and *small* if $k \le 2^{n-1}$ [2,3]. In this paper we consider new constructions of small complete caps.

A k-cap in PG(n, 2) is a set of k points, no three of which are collinear. A k-cap in PG(n, 2) is called complete if it is not contained in a (k+1)-cap of PG(n, 2). For an introduction to these geometric objects, see [10,11]. In a space PG(n, 2) a complete cap, points of which are treated as (n + 1)-dimensional binary columns, defines a parity check matrix of a binary linear code with codimension n+1, Hamming distance $d \ge 4$, and covering radius 2 [2,5,11]. The only case with d > 4 is given by the complete 5-cap in PG(3, 2) when d = 5. The codes mentioned are called quasi-perfect if d = 4 or perfect if d = 5 [12].

Relatively many facts on large complete caps in PG(n, 2) are known. For example, in [5] all exact possible sizes and structure of complete k-caps with $k > 2^{n-1} + 1$ are obtained. Every such complete cap can be formed by repeated applying of the doubling construction to a "critical" complete $(2^{m-1}+1)$ -cap of PG(m, 2), m < n. The structure and properties of critical caps are considered briefly in [1,3,5], and deeply in [2] where problems of critical caps structure are solved in main.

But our knowledge on small complete caps seems to be insufficient, see, e.g., [3, 4, 6–9, 11, 14]. In PG(n, 2), $n \ge 6$, the smallest size and, in general, the spectrum of possible sizes of small caps are unknown. Relatively a few constructions of small complete caps are described in literature [3, 4, 9, 14].

In this work we give some known results on small complete caps (Section 2) and propose new constructions of those (Sections 3 and 4).

2. Some Known Results on Small Complete Caps

The doubling construction (DC) or Plotkin construction is described and used in many works, see [1,4,5], and the references therein. From a complete k-cap in PG(n, 2) DC forms a complete 2k-cap in PG(n + 1, 2).

The black/white lift (BWL) construction proposed in [3] obtains, in the general case, a number of new complete $(2k - \delta_i)$ -caps in PG(n + 1, 2) from an "old" complete k-cap S in PG(n, 2) under condition that S has certain properties connected with points of PG $(n, 2) \setminus S$. The values of δ_i are positive, they can be distinct for distinct new caps and depend on the structure of the cap S.

The papers [4] and [9] give two distinct constructions that obtain complete k-caps in PG(n, 2) with

$$k = 2^{n+1-s} + 2^s - 3, \quad n \ge 3, \quad s = 2, 3, \dots, \lfloor (n+1)/2 \rfloor.$$
 (1)

The construction of [9] uses methods from [13].

The smallest known complete k-caps in PG(n, 2), $n \ge 6$, with k = f(n) are constructed in [9]. Here

$$f(6) = 21, \quad f(7) = 28,$$

$$f(2m) = 23 \times 2^{m-3} - 3, \quad m \ge 4,$$

$$f(2m-1) = 15 \times 2^{m-3} - 3, \quad m \ge 5.$$
(2)

For example, f(8) = 43, f(9) = 57, f(10) = 89, f(11) = 117, f(12) = 181.

It is proved, see [7,8] and the references therein, that in PG(n, 2) for n = 2, 3, 4 complete small caps do not exist and for n = 5 there are only small complete 13-caps.

In the paper [14, Corrected version, Section 5, Propositions 7.1,8.1] the following sizes k of complete k-caps in PG(n, 2) are obtained:

$$k = 2^{n-v} + t(2^{v} - 2) + 1, \quad t = 2, 4, 5, \dots, 2^{n-v-1}, \quad 2 \le v \le n-2, \quad n \ge 4;$$

$$k = 2^{n-v} + 3 \cdot 2^{v} - 5, \quad n \ge 2v + 3;$$

$$k = 2^{n-2} + t, \quad t = 5, 9, 11, \dots, 2^{n-2} + 1 \text{ if } n \ge 6, \text{ besides } t = 3, 7 \text{ if } n \ge 7;$$

$$2^{n-2} + 8 \le k \le 2^{n-1} - 2, \quad n \ge 6, \quad k \ne 30 \text{ if } n = 6.$$
(3)

Table 1. The sizes of the known small complete caps in PG(n, 2).

n	Sizes k of the known complete caps with $k \le 2^{n-1}$	References
5	<i>k</i> = 13	[4,7–9,14]
6	$21 \le k \le 31, \ k \ne 23, 30$	[4, 6, 9, 14]
7	$28 \le k \le 63$	[4, 6, 9, 14]
8	$43 \le k \le 127$	[4, 6, 9, 14]
9	$60 \le k \le 255, k = 57$	[4, 6, 9, 14]
10	$92 \le k \le 511, \ k = 89$	[6,9,14]
11	$133 \le k \le 1023, k = 117, 125, 126, 129, 130$	[6,9,14]
12	$196 \le k \le 2047, k = 181, 189, 190, 193, 194$	[6,9,14]

In Table 1 known sizes of small complete caps in PG(n, 2), $5 \le n \le 12$, are written. Table 1 uses relations (1–3), Construction DC, works [4,6–9,14, Corrected version], in particular, computer results of [4,6].

In [5, Remark 4, 6] and [9, p. 222], the following conjectures are proposed:

Conjecture 1. [5]. In the space PG(n, 2) a complete 2^{n-1} -cap does not exist. Conjecture 2. [6]. For $n \ge 7$ in the space PG(n, 2) there exist complete caps of all sizes k with $f(n) \le k \le 2^{n-1} - 1$, where f(n) is defined in equation (2).

Conjecture 3. [9]. In PG(6, 2) the smallest size of a complete cap is 21. By equation (2) and Table 1, Conjecture 2 holds for n = 7, 8.

3. A Construction of Small Complete Caps

3.1. Spaces and Vectors

Let E_{n+1}, G_r, G_s, D_l , and D_m be spaces of binary (n+1)-positional vectors with dimensions n+1, r, s, l, and m, respectively, and let

$$E_{n+1} \supset G_r \supset G_s, E_{n+1} \supset D_l \supset D_m, G_r \cap D_l = \{0\}, r > s, l > m, r+l = n+1, (4)$$

where 0 is the zero (n + 1)-positional vector. The "main" space E_{n+1} and all its subspaces contain it. The asterisk denotes a space without the zero vector. We have $G_r^* \cap D_l^* = \emptyset$. A sum of two subsets A and B of E_{n+1} is, as usually, $A + B = \{a + b: a \}$ $a \in A, b \in B$ }. Then $G_r + D_l = E_{n+1}$. We put $E_{n+1}^* = PG(n, 2)$. Points of PG(n, 2) are vectors of E_{n+1}^* .

We denote $G_s = \{g_0, g_1, \dots, g_{2^s-1}\}, D_m = \{d_0, d_1, \dots, d_{2^m-1}\}.$

Let $b_{i,i}$ be a binary vector of length *i* that is the binary representation of a number j. If we are not interested in j we may write b_i . Denote by 0^t the zero matrix (vector) with t rows (t positions) where "matrix" or "vector" are defined by context. Moreover, by 0^t we will write only zeroes "necessary" for points representation that we put in this paper. We represent points of G_r, G_s, D_l, D_m , in the following form:

$$(b_r \mathbf{0}^{l-m} \mathbf{0}^m) \in G_r, \quad g_u = (\mathbf{0}^{r-s} b_{s,u} \mathbf{0}^{l-m} \mathbf{0}^m) \in G_s, \quad u = 0, 1, \dots, 2^s - 1, (\mathbf{0}^{r-s} \mathbf{0}^s b_l) \in D_l, \quad d_v = (\mathbf{0}^{r-s} \mathbf{0}^s \mathbf{0}^{l-m} b_{m,v}) \in D_m, \quad v = 0, 1, \dots, 2^m - 1.$$
(5)

It should be emphasized that the formulas of equation (5) have been taken only for definiteness of a matrix representation of our geometrical objects and for finding a matrix form of needed caps Z, see below. In general, a representation of points as elements of vector spaces can be arbitrary for constructions considered in this paper.

Let $g \in G_s^*$, $d \in D_m^*$. Hence, $g = g_a$, $a \neq 0$, $d = d_c$, $c \neq 0$.

We can treat a point of PG(n, 2) as a column of a matrix, a subset of PG(n, 2) as a matrix, and vice versa, we can consider a matrix as a set of points. We do not change notation for such treatment.

We denote by $\widehat{G}_r, \widehat{G}_s, \widehat{D}_l, \widehat{D}_m$, the corresponding spaces without "necessary" zeroes of the form $\mathbf{0}^{l-m}, \mathbf{0}^m, \mathbf{0}^{r-s}, \mathbf{0}^s$, see equation (5). So, \widehat{G}_f (resp., \widehat{D}_f) is the f-dimensional space of binary f-positional vectors. We have $b_r \in \widehat{G}_r$, $b_s \in \widehat{G}_s$, $b_l \in \widehat{D}_l$, $b_m \in \widehat{D}_m$.

The spaces and points considered above can be represented in the matrix form, for example, as follows, see equation (5),

$$\begin{bmatrix} G_r & D_l & G_s & g = g_a & D_m & d = d_c \\ \hline \widehat{G}_r & --- & --- & --- & --- & 0^{r-s} \\ 0^s & \widehat{G}_s & b_{s,a} & 0^s & 0^s \\ ---- & --- & --- & --- & --- & --- \\ 0^{l-m} & \widehat{D}_l & 0^{l-m} & 0^{l-m} & 0^{l-m} \\ 0^m & \widehat{D}_m & 0^m & \widehat{D}_m & b_{m,c} \end{bmatrix}.$$
(6)

3.2. Construction S

A point set **H** in PG(n, 2) is defined as

$$\mathbf{H} = \mathbf{G} \cup \mathbf{D} \cup \mathbf{Z} \tag{7}$$

where G, D, Z, are point sets of PG(n, 2) formed as follows

$$\mathbf{G} = G_r \setminus G_s + \{d\}, \quad \mathbf{D} = D_l \setminus D_m + \{g\}, \tag{8}$$

$$\mathbf{Z} = \{z_1, z_2, \dots, z_w\}, \ z_i = g_{j_i} + d_{k_i}, \ g_{j_i} \in G_s^*, \ d_{k_i} \in D_m^*, \ i = 1, 2, \dots, w, \ w \ge 1.$$
(9)

By equations (4),(8),(9),

$$\mathbf{H} \subset E_{n+1}^*, \quad \mathbf{G} \cap \mathbf{D} = \emptyset, \quad \mathbf{G} \cap \mathbf{Z} = \emptyset, \quad \mathbf{D} \cap \mathbf{Z} = \emptyset.$$
(10)

Obviously, the size k of the set **H** is

$$k = (2^{r} - 2^{s}) + (2^{l} - 2^{m}) + w = 2^{r} + 2^{l} - (2^{s} + 2^{m} - w)$$

= 2^r + 2^{n+1-r} - (2^s + 2^m - w). (11)

We introduce the set

$$M = G_s^* + D_m^*. (12)$$

By equation (9), $\mathbb{Z} \subseteq M$. The points of the set \mathbb{Z} can be represented in the form, see equations (5),(6),(9),

$$z_i = g_{j_i} + d_{k_i} = (\mathbf{0}^{r-s} b_{s,j_i} \mathbf{0}^{l-m} b_{m,k_i}), \quad j_i \neq 0, \ k_i \neq 0, \ i = 1, 2, \dots, w.$$
(13)

Now we represent the set H in the matrix form, see equations (5),(6),(13),

$$\mathbf{H} = \begin{bmatrix} \mathbf{G} = G_r \setminus G_s + \{d\} | \mathbf{D} = D_l \setminus D_m + \{g\} | \mathbf{Z} = \{z_1, z_2, \dots, z_w\} \\ \hline \widehat{G}_r \setminus \widehat{G}_s & \mathbf{0}^{r-s} & \mathbf{0}^{r-s} \\ \hline ---- & b_{s,a} & b_{s,a} \dots & b_{s,a} \\ \hline \mathbf{0}^{l-m} & \mathbf{0}^{l-m} & \mathbf{0}^{l-m} \\ \hline \mathbf{0}_{m,c} & \mathbf{b}_{m,c} \dots & \mathbf{b}_{m,c} \\ \end{bmatrix} .$$
(14)

We introduce sets $G(\mathbf{Z})$ and $D(\mathbf{Z})$ and values $g(\mathbf{Z})$ and $d(\mathbf{Z})$ such that

$$G(\mathbf{Z}) = \{g_{j_i} : z_i = g_{j_i} + d_{k_i}, i = 1, 2, \dots, w\},\$$

$$D(\mathbf{Z}) = \{d_{k_i} : z_i = g_{j_i} + d_{k_i}, i = 1, 2, \dots, w\}.$$
 (15)

$$g(\mathbf{Z}) = \begin{cases} 1 & \text{if } g \in G(\mathbf{Z}) \\ 0 & \text{if } g \notin G(\mathbf{Z}) \end{cases}, \quad d(\mathbf{Z}) = \begin{cases} 1 & \text{if } d \in D(\mathbf{Z}) \\ 0 & \text{if } d \notin D(\mathbf{Z}) \end{cases}.$$
(16)

Conditions on Z sufficient for H to be a complete cap.

 $\mathcal{A}. \ \mathbf{Z} \cap (\mathbf{Z} + \mathbf{Z}) = \emptyset, \text{ i.e., } \mathbf{Z} \text{ is a cap.}$ $\mathcal{B}. \ M \subseteq \mathbf{Z} \cup (\mathbf{Z} + \mathbf{Z}), \text{ i.e., } G_s^* + D_m^* \subseteq \mathbf{Z} \cup (\mathbf{Z} + \mathbf{Z}).$ $\mathcal{C}. \ G(\mathbf{Z}) \cup \{g\} = G_s^*, \quad D(\mathbf{Z}) \cup \{d\} = D_m^*.$ $\mathcal{D}. \ r \ge s + 2 - d(\mathbf{Z}), \quad l \ge m + 2 - g(\mathbf{Z}).$

In examples below boldface 0 denotes the zero from a region of "necessary" zeroes connected with the representation of spaces and points taken in this paper, see equations (5),(6),(13),(14).

EXAMPLE 1. Let r = 3, s = 2, l = 4, m = 2, w = 6, $g = g_1 = (\mathbf{0}^1 b_{2,1} \mathbf{0}^2 \mathbf{0}^2) = (\mathbf{0} \ 01 \ \mathbf{00} \ \mathbf{00})$, $d = d_3 = (\mathbf{0}^1 \mathbf{0}^2 \mathbf{0}^2 b_{2,3}) = (\mathbf{0} \ \mathbf{00} \ \mathbf{00} \ 11)$, and let $\mathbf{Z} = \{(g_2 + d_1), (g_2 + d_2), (g_3 + d_3), (g_3 + d_3),$

 $(g_2+d_3), (g_3+d_1), (g_3+d_2), (g_3+d_3)$. Then, see equation (14),

$$\mathbf{H} = \begin{bmatrix} 1111 & | & 0000 & 0000 & 0000 & | & 000 & 000 \\ 0011 & | & 0000 & 0000 & | & 111 & 111 \\ 0101 & | & 1111 & 1111 & | & 000 & 111 \\ - & - & - & - & - & - & - \\ 0000 & | & 0000 & 1111 & 1111 & 0000 & 000 \\ 0000 & | & 1111 & 0000 & 1111 & | & 000 & 000 \\ 0000 & | & 1111 & 0001 & 1011 & | & 011 & 011 \\ 1111 & | & 0011 & 0011 & 0011 & | & 101 & 101 \\ 1111 & | & 0101 & 0101 & 0101 & | & 101 & 101 \end{bmatrix} .$$
(17)

The first 4 columns are points of $G_r \setminus G_s + \{d\}$, the next 12 columns are $D_l \setminus D_m + \{g\}$, and the last 6 columns are **Z**. The form of **Z** will be explained later in Construction Z₂. By above, $G(\mathbf{Z}) = \{g_2, g_3\}$, $G(\mathbf{Z}) \cup \{g\} = G_s^*$, $g(\mathbf{Z}) = 0$ as $g \notin G(\mathbf{Z})$, $D(\mathbf{Z}) = \{d_1, d_2, d_3\} = D_m^*$, $d(\mathbf{Z}) = 1$ as $d \in D(\mathbf{Z})$. So, the conditions \mathscr{C} and \mathscr{D} hold. One can check directly that the conditions \mathscr{A} and \mathscr{B} hold too.

THEOREM 1. Under conditions $\mathcal{A} - D$ the point set **H** in equation (7) is a complete cap.

Proof. We show that **H** is a cap, i.e., $\mathbf{H} \cap (\mathbf{H} + \mathbf{H}) = \emptyset$ and that the cap **H** is complete, i.e., $\mathbf{H} \cup (\mathbf{H} + \mathbf{H}) \supseteq E_{n+1}^* = \mathbf{PG}(n, 2)$. By equation (7),

$$\mathbf{H} + \mathbf{H} = (\mathbf{G} + \mathbf{G}) \cup (\mathbf{D} + \mathbf{D}) \cup (\mathbf{Z} + \mathbf{Z}) \cup (\mathbf{G} + \mathbf{D}) \cup (\mathbf{G} + \mathbf{Z}) \cup (\mathbf{D} + \mathbf{Z}).$$
(18)

By equations (4),(8),(9), and the condition \mathcal{A} ,

$$\mathbf{H} \cap (\mathbf{Z} + \mathbf{Z}) = \emptyset. \tag{19}$$

(a) Let

$$g(\mathbf{Z}) = d(\mathbf{Z}) = 0, \text{ i.e., } g \notin G(\mathbf{Z}), \ d \notin D(\mathbf{Z}).$$

$$(20)$$

By equation (20) and the condition \mathcal{D} , we have $r \ge s+2$, $l \ge m+2$. Hence,

$$\mathbf{G} + \mathbf{G} = G_r, \quad \mathbf{D} + \mathbf{D} = D_l. \tag{21}$$

One can see in Example 1 the relation $\mathbf{D} + \mathbf{D} = D_l$ where l = m + 2. But in Example 1 r = s + 1 and the relation $\mathbf{G} + \mathbf{G} = G_r$ does not hold. So, for equation (21) the conditions $r \ge s + 2$, $l \ge m + 2$ are necessary.

Since $G_r \setminus G_s + \{g\} = G_r \setminus G_s$ and $D_l \setminus D_m + \{d\} = D_l \setminus D_m$, again see Example 1, we have

$$\mathbf{G} + \mathbf{D} = G_r \setminus G_s + D_l \setminus D_m. \tag{22}$$

By equation (20) and the condition \mathscr{C} , we have $G(\mathbb{Z}) = G_s^* \setminus \{g\}$ and $D(\mathbb{Z}) = D_m^* \setminus \{d\}$. Hence

$$\mathbf{G} + \mathbf{Z} = G_r \setminus G_s + D_m^* \setminus \{d\}, \quad \mathbf{D} + \mathbf{Z} = D_l \setminus D_m + G_s^* \setminus \{g\}.$$
(23)

From equations (6),(7),(10),(18),(19),(21)–(23), it follows that $\mathbf{H} \cap (\mathbf{H} + \mathbf{H}) = \emptyset$, i.e., **H** is a cap.

Taking into account the condition $\mathcal B$ one can see that H is a complete cap. In fact,

 $\mathbf{H} \cup (\mathbf{H} + \mathbf{H}) \supseteq (G_r \setminus G_s + \{d\}) \cup (D_l \setminus D_m + \{g\}) \cup G_r \cup D_l \cup (G_r \setminus G_s + D_l \setminus D_m) \cup (G_r \setminus G_s + D_m^* \setminus \{d\}) \cup (D_l \setminus D_m + G_s^* \setminus \{g\}) \cup (G_s^* + D_m^*).$

Note that

$$\begin{aligned} (G_r \setminus G_s + \{d\}) \cup (G_r \setminus G_s + D_m^* \setminus \{d\}) &= G_r \setminus G_s + D_m^*, \\ (D_l \setminus D_m + \{g\}) \cup (D_l \setminus D_m + G_s^* \setminus \{g\}) &= D_l \setminus D_m + G_s^*, \\ (G_r \setminus G_s + D_m^*) \cup (D_l \setminus D_m + G_s^*) \cup (G_r \setminus G_s + D_l \setminus D_m) &= (G_r \setminus G_s + D_l^*) \cup \\ (D_l \setminus D_m + G_r^*), \\ (G_r \setminus G_s + D_l^*) \cup D_l &= (G_r \setminus G_s^* + D_l^*) \cup \{0_{n+1}\}, \\ (D_l \setminus D_m + G_r^*) \cup G_r &= (D_l \setminus D_m^* + G_r^*) \cup \{0_{n+1}\}, \end{aligned}$$

where 0_{n+1} is the zero (n+1)-positional vector. Now we can write

$$\mathbf{H} \cup (\mathbf{H} + \mathbf{H}) \supseteq (G_r \setminus G_s^* + D_l^*) \cup (D_l \setminus D_m^* + G_r^*) \cup (G_s^* + D_m^*) = E_{n+1}^* = \mathbf{PG}(n, 2).$$

(b) Let

$$g(\mathbf{Z}) = d(\mathbf{Z}) = 1$$
, i.e., $g \in G(\mathbf{Z})$, $d \in D(\mathbf{Z})$. (24)

Hence $r \ge s+1$, $l \ge m+1$, see the condition \mathcal{D} .

The relation (22) holds in the case (b).

By equation (24) and the condition \mathscr{C} , we have $G(\mathbb{Z}) = G_s^*$ and $D(\mathbb{Z}) = D_m^*$. Hence

$$\mathbf{G} + \mathbf{Z} = G_r \setminus G_s + D_m \setminus \{d\}, \quad \mathbf{D} + \mathbf{Z} = D_l \setminus D_m + G_s \setminus \{g\},$$
(25)

cf. with equation (23). Note that $0_{n+1} \in D_m \setminus \{d\}$ and $0_{n+1} \in G_s \setminus \{g\}$. Now we consider situations connected with correlation between *r* and *s*, *l* and *m*.

In the beginning let r = s + 1, l = m + 1. Then

$$\mathbf{G} + \mathbf{G} = G_s, \quad \mathbf{D} + \mathbf{D} = D_m. \tag{26}$$

One can see in Example 1, where r = s + 1, the relation $\mathbf{G} + \mathbf{G} = G_s$. Again for equation (26) the conditions r = s + 1, l = m + 1, are necessary.

Using equations (25),(26), similarly to the case (a) we see that H is a cap.

From equations (7),(12),(18),(22),(25),(26) and the conditions \mathscr{A} and \mathscr{B} it follows that **H** is a complete cap. We have

$$(G_r \setminus G_s + \{d\}) \cup (G_r \setminus G_s + D_m \setminus \{d\}) \cup (D_l \setminus D_m + \{g\}) \cup (D_l \setminus D_m + G_s \setminus \{g\}) \cup (G_r \setminus G_s + D_l \setminus D_m) = (G_r \setminus G_s + D_l) \cup (D_l \setminus D_m + G_r),$$

$$G_s \cup D_m \cup (G_s^* + D_m^*) = G_s + D_m.$$

Hence

$$\mathbf{H} \cup (\mathbf{H} + \mathbf{H}) \supseteq (G_r \setminus G_s + D_l) \cup (D_l \setminus D_m + G_r) \cup (G_s + D_m) \supseteq E_{n+1}^* = \mathbf{PG}(n, 2).$$

Now let $r \ge s+2$, l = m+1. Then

$$\mathbf{G} + \mathbf{G} = G_r, \quad \mathbf{D} + \mathbf{D} = D_m, \tag{27}$$

cf. with equations (21) and (26). We change equation (26) by (27) and again similarly to the case (a) we see that **H** is a cap. Since $G_s \subset G_r$ the change mentioned retains **H** as a complete cap.

Finally, for the situation $r \ge s + 2$, $l \ge m + 2$, we obtain the relation (21) instead of equations (26) or (27), and, as $G_s \subset G_r$, $D_m \subset D_l$, we see, by above, that **H** is a complete cap.

(c) Let

$$g(\mathbf{Z}) = 1, \ d(\mathbf{Z}) = 0, \ \text{i.e.}, \ g \in G(\mathbf{Z}), \ d \notin D(\mathbf{Z}).$$
 (28)

Hence $r \ge s+2$, $l \ge m+1$, see the condition \mathcal{D} .

The relation (22) holds in the case (c).

By equation (28) and the condition \mathscr{C} , we have $G(\mathbf{Z}) = G_s^*$ and $D(\mathbf{Z}) = D_m^* \setminus \{d\}$. Hence

$$\mathbf{G} + \mathbf{Z} = G_r \setminus G_s + D_m^* \setminus \{d\}, \quad \mathbf{D} + \mathbf{Z} = D_l \setminus D_m + G_s \setminus \{g\},$$
(29)

cf. with equations (23) and (25). Note that $0_{n+1} \in G_s \setminus \{g\}$.

In the beginning we put $r \ge s+2$, l = m+1. Then the relation (27) holds. Similarly to the case (a) one can see that **H** is a cap.

From equations (7),(12),(18),(22),(27),(29) and the conditions \mathscr{A} and \mathscr{B} it follows that **H** is a complete cap. In fact,

$$(G_r \setminus G_s + \{d\}) \cup (G_r \setminus G_s + D_m^* \setminus \{d\}) \cup (D_l \setminus D_m + \{g\}) \cup (D_l \setminus D_m + G_s \setminus \{g\}) \cup (G_r \setminus G_s + D_l \setminus D_m) = (G_r \setminus G_s + D_l^*) \cup (D_l \setminus D_m + G_r),$$

$$D_m \cup (G_s^* + D_m^*) = (G_s + D_m^*) \cup \{0_{n+1}\}.$$

Hence

$$\mathbf{H} \cup (\mathbf{H} + \mathbf{H}) \supseteq (G_r \setminus G_s + D_l^*) \cup (D_l \setminus D_m + G_r) \cup G_r \cup (G_s + D_m^*) \supseteq E_{n+1}^* = PG(n, 2).$$

Now let $r \ge s + 2$, $l \ge m + 2$. We obtain the relation (21) instead of (27), and, as $D_m \subset D_l$, we see, by above, that **H** is a complete cap.

(d) The case $g(\mathbf{Z}) = 0$, $d(\mathbf{Z}) = 1$, can be considered similarly to the previous cases.

Note that the condition \mathscr{A} is necessary for a set **H** to be a cap. Without the condition \mathscr{A} the relation (19) does not hold. The conditions \mathscr{B}, \mathscr{C} , and \mathscr{D} are needed

for **H** to be a complete cap. In the proof without the term $G_s^* + D_m^*$ connected with the condition \mathscr{B} the requirement $\mathbf{H} \cup (\mathbf{H} + \mathbf{H}) \supseteq E_{n+1}^*$ does not hold. Similarly, without the condition \mathscr{C} the sets $\mathbf{G} + \mathbf{Z}$ and $\mathbf{D} + \mathbf{Z}$ do not have the form of equations (23),(25), or (29), without the condition \mathscr{D} the sets $\mathbf{G} + \mathbf{G}$ and $\mathbf{D} + \mathbf{D}$ do not have the form of equations (21),(26), or (27), and again the condition $\mathbf{H} \cup (\mathbf{H} + \mathbf{H}) \supseteq E_{n+1}^*$ will not be true. Of course, we can put $r \ge s + 2$, $l \ge m + 2$, independently of $d(\mathbf{Z})$ and $g(\mathbf{Z})$, but this does not allow us to get some sizes of caps.

4. Constructions of Caps Z

4.1. On Infinite Families of Small Complete Caps

We consider examples of distinct constructions of the cap Z. Every construction generates infinite families of complete caps with distinct sizes since parameters rand l (and therefore n=r+l-1) are bounded only from below. For the given construction of Z the dimension n of the space PG(n, 2), where the obtained cap H lies, can tend to infinity. Moreover, for a fixed n every construction of Z generates many distinct sizes of complete caps since n is a sum of r and l and, besides, there exist parameters s and m which can change and which are bounded only from below too. Finally, an iterative process, when complete caps obtained by Construction S are used to create new caps Z, also gives new families of sizes.

Of course, the set of constructions of Z described here is not complete. One can form other constructions of Z and get new sizes of caps by Construction S. Construction Z_1

We put s = m = 1. Then $G_s^* = G_1^* = \{g_1\}$, $g_1 = (\mathbf{0}^{r-1}b_{1,1}\mathbf{0}^{l-1}\mathbf{0}^1)$, $D_m^* = D_1^* = \{d_1\}$, $d_1 = (\mathbf{0}^{r-1}\mathbf{0}^{1}\mathbf{0}^{l-1}b_{1,1})$, see equations (5),(6). Obviously, $g = g_1$, $d = d_1$, w = 1, $\mathbf{Z} = \{z_1\}$, $z_1 = g + d$, $M = \{g\} + \{d\}$, $\mathbf{Z} = M$, $G(\mathbf{Z}) = G_1^*$, $D(\mathbf{Z}) = D_1^*$, $g(\mathbf{Z}) = d(\mathbf{Z}) = 1$, see equation (16), $r \ge s + 1$, $l \ge m + 1$. Since $\mathbf{Z} = M$, the condition \mathcal{B} holds. We have, see equation (7),

$$\mathbf{H} = \mathbf{G} \cup \mathbf{D} \cup \mathbf{Z} = (G_r \setminus G_1 + \{d_1\}) \cup (D_l \setminus D_1 + \{g_1\}) \cup \{z_1\}.$$

If r = l = 3, we obtain n = 5, k = 13,

	- 001111 110011 010101	000000 000000 111111	0 0 1	. (30)
H=	000000 000000 111111	001111 110011 010101	0 0 1	. (50)

By equation (11), the size k of the complete cap $\mathbf{H} \subset \mathbf{PG}(n, 2)$ containing the cap \mathbf{Z} of Construction Z_1 is $k = 2^r + 2^l - 3 = 2^r + 2^{n+1-r} - 3$, $r \ge 2$, $l \ge 2$, $n \ge r+1$. It is easy to see that Construction S in the particular case with the cap \mathbf{Z} of Construction Z_1 gives the same complete cap as in [9, Theorem 3], cf. equation (1) and the last formula for k.

4.2. Modified Notation. Caps Z'_0 and Z'

Now we will construct the caps **Z** not considering "necessary" zeroes of the form $\mathbf{0}^{r-s}$ and $\mathbf{0}^{l-m}$, see equations (5),(6),(13),(14).

We denote t = s + m - 1. Let E_{t+1} be the (t + 1)-dimensional space of binary (t+1)-positional vectors. We put $E_{t+1}^* = PG(t, 2)$.

In E_{t+1} we introduce vector subspaces G'_s , D'_m , a subset $M' = G'^*_s + D'^*_m$, and a point set \mathbf{Z}' , that are obtained from G_s , D_m , M, and \mathbf{Z} by removing "necessary" zeroes of the form $\mathbf{0}^{r-s}$ and $\mathbf{0}^{l-m}$. Respectively we introduce points g'_u , d'_v , g', d', z'. Now, cf. equations (5),(9),(13),

$$G'_{s} = \{g'_{0}, g'_{1}, \dots, g'_{2^{s}-1}\}, g'_{u} = (b_{s,u}\mathbf{0}^{m}), u = 0, 1, \dots, 2^{s}-1, D'_{m} = \{d'_{0}, d'_{1}, \dots, d'_{2^{m}-1}\}, d'_{v} = (\mathbf{0}^{s}b_{m,v}), v = 0, 1, \dots, 2^{m}-1.$$
(31)
$$\mathbf{Z}' = \{z'_{1}, z'_{2}, \dots, z'_{m}\} \subset E^{*}_{t+1},$$

$$z' = g'_{j_i} + d'_{k_i} = (b_{s,j_i} b_{m,k_i}), \quad g'_{j_i} \in G'^*_s, \quad d'_{k_i} \in D'^*_m, \quad i = 1, 2, \dots, w.$$
(32)

The functions $G'(\mathbf{Z}')$, $D'(\mathbf{Z}')$, $g'(\mathbf{Z}')$, and $d'(\mathbf{Z}')$, are introduced similarly to equations (15),(16), with change z_i by z'_i and so on, again cf. equations (5),(9),(13) with equations (31),(32). Clearly, $g'(\mathbf{Z}') = g(\mathbf{Z})$ and $d'(\mathbf{Z}') = d(\mathbf{Z})$. Finally, the conditions $\mathscr{A}', \mathscr{B}', \mathscr{C}', \mathscr{D}'$ are perfectly analogous to those $\mathscr{A}, \mathscr{B}, \mathscr{C}, \mathscr{D}$ after an addition of upper primes.

Clearly, Z and Z' are in one-to-one correspondence and directly determine one another.

By the condition \mathscr{A}' , the point set Z' is a cap in PG(t, 2).

We will find a needed caps \mathbf{Z}' in a matrix form using a matrix form of a *starting* complete cap \mathbf{Z}'_0 in PG(t, 2). We call an *s*-region (resp., an *m*-region) the first *s* (resp., the last *m*) rows of matrices corresponding to \mathbf{Z}' and \mathbf{Z}'_0 .

If for \mathbf{Z}'_0 the conditions $\mathscr{A}', \mathscr{B}', \mathscr{C}', \mathscr{D}'$ hold we can put $\mathbf{Z}' = \mathbf{Z}'_0$. To change parameters or to provide the conditions $\mathscr{A}', \mathscr{B}', \mathscr{C}', \mathscr{D}'$, we can form sums of rows in \mathbf{Z}'_0 (to support the condition \mathscr{C}') and remove columns from \mathbf{Z}'_0 with *s* zeroes in the *s*-region, of the form $(b_{s,0}b_m)$, or with *m* zeroes in the *m*-region, of the form $(b_s b_{m,0})$, because $g'_{j_i} \in G'^*_s, d'_{k_i} \in D'^*_m$. Such columns can present in the beginning of the process and can appear after summing rows in \mathbf{Z}'_0 . The removed columns (points) do not belong to $M' = G'^*_s + D'^*_m$ and therefore they are not required to be saturated with respect to \mathbf{Z}' . The operations mentioned preserve the property of \mathbf{Z}'_0 to be a cap. Hence the condition \mathscr{A}' always holds.

4.3. Using the Greatest Binary Complete Cap

In Constructions Z_2 and Z_3 as the starting complete cap Z'_0 we use the greatest complete 2^t -cap A_t in the space PG(t, 2) that is the complement to some hyperplane L of PG(t, 2), i.e., A_t consists of the affine space $PG(t, 2) \setminus L$, see [1,11]. In the matrix form we can represent the cap A_t by a $(t+1) \times 2^t = (s+m) \times 2^{s+m-1}$ -matrix such that the first row consists of 2^{s+m-1} ones, the other t = s + m - 1 rows

contain numbers $0, 1, ..., 2^{s+m-1} - 1$ written as columns in the lexicographical order. In Construction \mathbb{Z}_4 we modify the greatest complete 2^{t-1} -cap $A_{t-1} \subset \operatorname{PG}(t-1,2)$ to get the starting complete $(2^{t-1}+1)$ -cap $\mathbb{Z}'_0 \subset \operatorname{PG}(t,2)$.

Remark 1. Every point of $PG(t, 2) \setminus A_t$ lies on 2^{t-1} bisecants of the cap A_t . If we remove $j < 2^{t-1}$ points from A_t to get a cap $A_{t,j}$ then every point of $PG(t, 2) \setminus A_t$ lies at least on one bisecant of $A_{t,j}$, i.e., all points of $PG(t, 2) \setminus A_t$ are saturated.

Let W be a matrix form of a point set in PG(f + p - 1, 2) where f and p are nonnegative integers, $f + p \ge 3$. Every (f + p)-positional column of W represents a point of PG(f + p - 1, 2). We say that the matrix W has a property $U_{f,h}$ if $f \ge 1$ and the first f rows of W contain all distinct nonzero f-positional columns except some h nonzero columns and furthermore the zero f-positional column is present in these rows. If the zero f-positional column is absent the property is denoted by $U_{f,h}^*$. Respectively we introduce properties $L_{p,h}$ and $L_{p,h}^*$ for the last p rows of the matrix W.

Remark 2. Let parameters s and m are given. If a matrix form of a cap Z' has the property $U_{s,0}^*$ then $G'(\mathbf{Z}') = G_s'^*$, the 1st part of the condition \mathscr{C}' holds, $g'(\mathbf{Z}') =$ 1. To satisfy the 2nd part of the condition \mathscr{D}' we must put $l \ge m+1$. If Z' has the property $U_{s,1}^*$ then $G'(\mathbf{Z}') = G_s'^* \setminus \{g_i'\}$ with $i \ne 0$. To satisfy the 1st part of the condition \mathscr{C}' one must take $g' = g_i'$. For such g' we have $g'(\mathbf{Z}') = 0$. To satisfy the 2nd part of the condition \mathscr{D}' we must put $l \ge m+2$. Respectively, for the property $L_{m,0}^*$ we have that $D'(\mathbf{Z}') = D_m'^*$, the 2nd part of the condition \mathscr{C}' holds, $d'(\mathbf{Z}') = 1$. To satisfy the 1st part of the condition \mathscr{D}' one must put $r \ge s+1$. For the property $L_{m,1}^*$ it holds that $D'(\mathbf{Z}') = D_m'^* \setminus \{d_j'\}$, $j \ne 0$. To satisfy the 2nd part of the condition \mathscr{C}' one must take $d' = d_j'$. For such d' we have $d'(\mathbf{Z}') = 0$. To satisfy the 1st part of the condition \mathscr{D}' we must put $r \ge s+2$.

Construction Z₂

We put s = 2, $m \ge 2$, $t \ge 3$, $w = 2^{m+1} - 2$. Obviously, the matrix A_t has the properties $U_{2,1}^*$ and $L_{m,0}$. From the matrix A_t we remove j = 2 columns $(b_{2,2}b_{m,0})$ and $(b_{2,3}b_{m,0})$ with m zeroes in the m-region. We put that the matrix obtained is \mathbf{Z}' . Clearly, $G'(\mathbf{Z}') = \{g'_2, g'_3\}$, $D'(\mathbf{Z}') = D'^*_m$. We take $g' = g'_1 = (b_{2,1}\mathbf{0}^m)$. Then $G'(\mathbf{Z}') \cup \{g'\} = G'^*_s$ and $g'(\mathbf{Z}') = 0$. Let $d' = (\mathbf{0}^2 b_{m,v}), v \ne 0$. Then $d'(\mathbf{Z}') = 1$ as $D'(\mathbf{Z}') = D'^*_m$. We put $r \ge s + 1 = 3$, $l \ge m + 2 \ge 4$. Now the conditions \mathscr{C}' and \mathscr{D}' hold. Since $2^{t-1} \ge 4 > j$ all points of PG $(t, 2) \setminus A_t$ are saturated, see Remark 1. The removed two columns (points) are not saturated but they do not belong to M'. So, $M' \subset \mathbf{Z}' \cup (\mathbf{Z}' + \mathbf{Z}')$. The condition \mathscr{B}' holds. As an example with m = 2, t = 3, see the 3rd section of the matrix in (17) without "necessary" boldface $\mathbf{0}$. By (11), the size k of the complete cap $\mathbf{H} \subset PG(n, 2)$ obtained with the help of \mathbf{Z}' of Construction Z_2 is

$$k = 2^{r} + 2^{l} + 2^{m} - 6$$

= 2^r + 2^{n+1-r} + 2^m - 6, r ≥ 3, m ≥ 2, l ≥ m + 2, n ≥ r + m + 1. (33)

Construction Z₃

We put $s \ge 3$, $m \ge 2$, $t \ge 4$, $w = 2^{s+m-1} - 2^{s-1} - 2^{m-1}$. In the matrix A_t we add the (s+1)-th row to the 1st row. Now the matrix A_t has the properties $U_{s,0}$ and $L_{m,0}$. If s = m = 3 we obtain the matrix

$\begin{bmatrix} 1111\\0000\\0000 \end{bmatrix}$		0000	0000	1111	1111	1111	1111	
0011	$\begin{array}{c} 1111\\ 0011\\ 0101 \end{array}$	0011	0011	0011	0011	0011		•

Then we remove 2^{m-1} columns with *s* zeroes in the *s*-region and 2^{s-1} columns with *m* zeroes in the *m*-region. The removed columns have the form $(b_{s,0}b_{m,v})$, $v = 2^{m-1}, 2^{m-1} + 1, \ldots, 2^m - 1$, and $(b_{s,u}b_{m,0})$, $u = 2^{s-1}, 2^{s-1} + 1, \ldots, 2^s - 1$. As result we obtain the matrix $A_{t,j}$ with $j = 2^{m-1} + 2^{s-1}$ and put $\mathbf{Z}' = A_{t,j}$. For $s \ge 3$, $m \ge 2$, we have $2^{t-1} = 2^{s+m-2} > j = 2^{m-1} + 2^{s-1}$. Hence all points of $PG(t, 2) \setminus A_t$ are saturated, see Remark 1. Again, as in Construction \mathbb{Z}_2 , the removed columns (points) are not saturated but they do not belong to M' and the condition \mathscr{B}' holds. It is easy to see that $G'(\mathbf{Z}') = G'^*_s$, $D'(\mathbf{Z}') = D'^*_m$. Therefore we need to assume $r \ge s+1$, $l \ge m+1$. By (11), the size k of the complete cap $\mathbf{H} \subset PG(n, 2)$ obtained with the help of \mathbf{Z}' of Construction \mathbb{Z}_3 is

$$k = 2^{r} + 2^{l} + 2^{s+m-1} - 3(2^{s-1} + 2^{m-1}) = 2^{r} + 2^{n+1-r} + 2^{s+m-1} - 3(2^{s-1} + 2^{m-1}),$$

$$s \ge 3, \quad m \ge 2, \quad r \ge s+1, \quad l \ge m+1, \quad n \ge r+m.$$
(34)

Construction Z₄

We put $s \ge 3$, $m \ge 2$, $w = 2^{s+m-2} + 1$, t = s + m - 1, take the complete 2^{t-1} cap $A_{t-1} \subset PG(t-1,2)$ and insert at the top a new row of 2^{s+m-2} zeroes. Then we remove 2^{m-2} columns $t_i = (01b_{s-2,0}01b_{m-2,i})$, $i = 0, 1, \ldots, 2^{m-2} - 1$, and 2^{s-2} columns $u_j = (01b_{s-2,j}b_{m,0})$, $j = 0, 1, \ldots, 2^{s-2} - 1$. We put $e = (11b_{s-2,0}b_{m-1,0}1)$ and insert the following $2^{m-2} + 2^{s-2} + 1$ columns into the matrix: $t'_i = e + t_i$, $i = 0, 1, \ldots, 2^{m-2} - 1$, $u'_j = e + u_j$, $j = 0, 1, \ldots, 2^{s-2} - 1$, and e. We take the obtained matrix as $\mathbf{Z}'_0 \subset PG(t, 2)$. If s = 4, m = 3, we have

	11111 00000	$\frac{11111111}{0000000}$	$\frac{11111111}{111111111111111111111111111$	$\begin{array}{c} 0000000\\ 1111111\\ 111111\\ 111111\\ 1111111\end{array}$	00	0000 0011	1	
$\mathbf{Z}_0' =$	$\begin{bmatrix}\\ 01111\\ 00011 \end{bmatrix}$	 0001111 0110011	 0001111 0110011	0001111 0110011 1010101		$ \begin{array}{c} \\ 0000 \\ 0000 \end{array} $	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$	•

By construction, \mathbf{Z}'_0 is a cap, e.g., $e = t_i + t'_i$, but columns t_i are removed. Moreover, \mathbf{Z}'_0 is a complete cap. Columns of the form $(00b_{s+m-2})$ are saturated since for $s \ge 3$, $m \ge 2$, we have $2^{s-2} + 2^{m-2} < 2^{s+m-3}$, see Remark 1. Columns $(01b_{s+m-2})$ either belong to \mathbf{Z}'_0 or can be obtained as $t_i = e + t'_i$, $u_j = e + u'_j$. Columns $(10b_{s+m-2})$ either belong to \mathbf{Z}'_0 , see t'_i and u'_j , or can be obtained as f + e where f is a column from the left submatrix of \mathbb{Z}'_0 . Finally, columns $(11b_{s+m-2}) \neq e$ can be obtained as $f + t'_i$ or $f + u'_i$.

Note that complete $(2^{\nu} + 1)$ -caps of considered structure are described in [5, formula (18)] and researched in [2, Section 4].

Now we add the (s+1)-th and the (s+2)-th rows of \mathbb{Z}'_0 to the 1st and the 2nd rows respectively and obtain the cap \mathbb{Z}' with the properties $U^*_{s,0}$ and $L^*_{m,0}$. If s=4, m=3, then

$\mathbf{Z}' =$	11100	$\begin{array}{c} 1001100 \\ 0000000 \end{array}$	$1001100 \\ 1111111$	$\begin{array}{c} 0001111\\ 1001100\\ 1111111\\ 111111 \end{array}$	11 00	$\begin{array}{c} 0000\\ 0011 \end{array}$	$\begin{array}{c}1\\1\\0\\0\end{array}$	
	00011	0110011		0001111 0110011 1010101			$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$	

We put $r \ge s+1$, $l \ge m+1$, see Remark 2. All conditions $\mathscr{A}', \mathscr{B}', \mathscr{C}', \mathscr{D}'$ hold. By (11), the size k of the complete cap $\mathbf{H} \subset \mathrm{PG}(n, 2)$ obtained with the help of \mathbf{Z}' of Construction \mathbb{Z}_4 is

$$k = 2^{r} + 2^{l} + 2^{s+m-2} + 1 - 2^{s} - 2^{m} = 2^{r} + 2^{n+1-r} + 2^{s+m-2} + 1 - 2^{s} - 2^{m},$$

$$s \ge 3, \quad m \ge 2, \quad r \ge s+1, \quad l \ge m+1, \quad n \ge r+m.$$
(35)

4.4. Iterative Constructing of Z'

In Constructions Z_5 - Z_9 we consider an iterative process when a complete cap **H** obtained by Construction S is used to create the complete starting cap Z'_0 . Suppose by Construction S we got a family of complete k_0 -caps H_0 with fixed parameters s_0 , m_0 , Δ_0 , c_r , c_l , so that

$$\mathbf{H}_{0} \subset \mathbf{PG}(n_{0}, 2), \ n_{0} = r_{0} + l_{0} - 1, \ k_{0} = 2^{r_{0}} + 2^{l_{0}} + \Delta_{0}, \ r_{0} \ge s_{0} + c_{r}, \ l_{0} \ge m_{0} + c_{l},$$
(36)

where $c_r, c_l \in \{1, 2\}$. By above, every complete cap obtained by Construction S belongs to a family of such form. Changing parameters mentioned we obtain another family. Distinct values of r_0 , l_0 give distinct caps \mathbf{H}_0 of the same family.

By equations (7–9),(14), and the condition \mathscr{C} , the complete cap \mathbf{H}_0 has the properties $U_{r_0,0}^*$ and $L_{l_0,0}^*$. Hence we can put $\mathbf{H}_0 = \mathbf{Z}'$ with $s = r_0$, $m = l_0$, $G'(\mathbf{Z}') = G_s^{/*}$, $D'(\mathbf{Z}') = D''_m$, $w = k_0$. Taking into account that \mathbf{H}_0 is a *complete* cap, all conditions $\mathscr{A}', \mathscr{B}', \mathscr{C}'$ hold. In order to satisfy the condition \mathscr{D}' we put $r \ge s + 1 = r_0 + 1$, $l \ge m + 1 = l_0 + 1$, and by Construction S we obtain a new complete cap \mathbf{H} of the size $k = 2^r + 2^l - (2^{r_0} + 2^{l_0} - k_0) = 2^r + 2^l + \Delta_0$. Comparing this k with k_0 of equation (36) we see that such a direct method does not yield new sizes. But applying the doubling construction (DC) to \mathbf{H}_0 we can obtain a cap \mathbf{Z}'_0 providing a new family of sizes. It should be noted that we use DC only for obtaining \mathbf{Z}' and then we obtain a new complete cap \mathbf{H} by Construction S.

Construction Z₅

We apply DC to the complete cap \mathbf{H}_0 with parameters (36). To do this we repeat the matrix \mathbf{H}_0 two times and insert at the top a new row consisting of sequences of k_0 zeroes and k_0 ones [5]. We obtain a complete $2k_0$ -cap \mathbf{Z}'_0 in PG $(n_0 + 1, 2) =$ PG(t, 2) and put $\mathbf{Z}' = \mathbf{Z}'_0$ with $s = r_0 + 1$, $m = l_0$, $w = 2k_0 = 2^{r_0+1} + 2^{l_0+1} + 2\Delta_0$, $t = r_0 + l_0$. So,

$$\mathbf{Z}' = \mathbf{Z}'_0 = \begin{bmatrix} 00\dots0\\ -\frac{1}{\mathbf{H}_0} & | & \frac{11\dots1}{\mathbf{H}_0} \end{bmatrix}.$$
(37)

Since the cap \mathbf{H}_0 has the properties $U_{r_0,0}^*$ and $L_{l_0,0}^*$, the cap \mathbf{Z}' has the properties $U_{s,1}^* = U_{r_0+1,1}^*$ and $L_{m,0}^* = L_{l_0,0}^*$. The $(r_0 + 1)$ -positional column (10...0) is absent in the first $s = r_0 + 1$ rows of \mathbf{Z}' . This means one must take $g' = g'_{2^{r_0}} = (b_{s,2^{r_0}}\mathbf{0}^m) \notin G'(\mathbf{Z}')$. So, $g'(\mathbf{Z}') = 0$. To satisfy the condition \mathscr{D}' we should put $r \ge s + 2 = r_0 + 3$, $l \ge m + 1 = l_0 + 1$, see Remark 2. Taking into account that \mathbf{Z}' is a *complete* cap, all conditions $\mathscr{A}', \mathscr{B}', \mathscr{C}', \mathscr{D}'$ hold. By equations (11),(36), the size k of the complete cap $\mathbf{H} \subset \mathbf{PG}(n, 2)$ obtained with the help of \mathbf{Z}' of Construction \mathbf{Z}_5 is

$$k = 2^{r} + 2^{l} + 2^{l_0} + 2\Delta_0 = 2^{r} + 2^{n+1-r} + 2^{l_0} + 2\Delta_0, \quad r \ge r_0 + 3, \quad l \ge l_0 + 1, \quad n \ge r + l_0.$$
(38)

Construction Z₆

We proceed similarly to Construction Z_5 but insert the new row at the bottom. Then

$$\mathbf{Z}' = \mathbf{Z}'_0 = \begin{bmatrix} \mathbf{H}_0 & | & \mathbf{H}_0 \\ 0 & \dots & 0 & | & \mathbf{1} \\ 1 & \dots & 1 \end{bmatrix},$$
(39)

 $s = r_0$, $m = l_0 + 1$, $w = 2k_0$, $t = r_0 + l_0$, $r \ge s + 1 = r_0 + 1$, $l \ge m + 2 = l_0 + 3$. The size k of the complete cap $\mathbf{H} \subset \mathbf{PG}(n, 2)$ obtained with the help of \mathbf{Z}' of Construction Z_6 is

$$k = 2^{r} + 2^{l} + 2^{r_{0}} + 2\Delta_{0}$$

= 2^r + 2^{n+1-r} + 2^{r_{0}} + 2\Delta_{0}, r \ge r_{0} + 1, l \ge l_{0} + 3, n \ge r + l_{0} + 2. (40)

Construction Z₇

Applying DC of equation (39) to the cap of equation (37) we obtain the complete cap \mathbf{Z}'_0 in $PG(n_0+2, 2) = PG(t, 2)$, and again we put $\mathbf{Z}' = \mathbf{Z}'_0$. We have

$$\mathbf{Z}' = \mathbf{Z}'_0 = \begin{bmatrix} 00 \dots 0 & | & 11 \dots 1 & | & 00 \dots 0 & | & 11 \dots 1 \\ \mathbf{H}_0 & | & \mathbf{H}_0 & | & \mathbf{H}_0 & | & \mathbf{H}_0 \\ 00 \dots 0 & | & 00 \dots 0 & | & 11 \dots 1 & | & 11 \dots 1 \end{bmatrix},$$
(41)

 $s = r_0 + 1$, $m = l_0 + 1$, $w = 4k_0 = 2^{r_0+2} + 2^{l_0+2} + 4\Delta_0$. Since the cap \mathbf{H}_0 has the properties $U^*_{r_0,0}$ and $L^*_{l_0,0}$, the cap \mathbf{Z}' has the properties $U^*_{s,1} = U^*_{r_0+1,1}$ and $L^*_{m,1} = L^*_{l_0+1,1}$. The $(r_0 + 1)$ -positional column (10...0) is absent in the first *s* rows of \mathbf{Z}' and the $(l_0 + 1)$ -positional column (0...01) is absent in the last *m* rows. Hence one must take $g' = (b_{s,2''}\mathbf{0}^m) \notin G'(\mathbf{Z}')$, $d' = (\mathbf{0}^s b_{m,1}) \notin D'(\mathbf{Z}')$, and put $r \ge s + 2 = r_0 + 3$,

 $l \ge m+2=l_0+3$, cf. Construction Z₅ and Remark 2. All conditions $\mathscr{A}', \mathscr{B}', \mathscr{C}', \mathscr{D}'$ hold. By equations (11), (36), the size k of the complete cap $\mathbf{H} \subset PG(n, 2)$ obtained with the help of \mathbf{Z}' of Construction Z₇ is

$$k = 2^{r} + 2^{l} + 2^{r_{0}+1} + 2^{l_{0}+1} + 4\Delta_{0} = 2^{r} + 2^{n+1-r} + 2^{r_{0}+1} + 2^{l_{0}+1} + 4\Delta_{0},$$

$$r \ge r_{0} + 3, \quad l \ge l_{0} + 3, \quad n \ge r + l_{0} + 2.$$
(42)

Construction Z_8

We consider the complete cap $\mathbf{Z}'_0 \subset PG(n_0 + 1, 2) = PG(t, 2)$ of equation (37). Since \mathbf{H}_0 is a complete cap, every point of $PG(t, 2) \setminus \mathbf{Z}'_0$ lies on at least two bisecants of \mathbf{Z}'_0 . Therefore if we remove one point from \mathbf{Z}'_0 all points of $PG(t, 2) \setminus \mathbf{Z}'_0$ are saturated.

We add the first row of equation (37) to the $(m_0 + 1)$ -th row from the bottom and obtain another matrix form of \mathbf{Z}'_0 , say $\mathbf{Z}'_{0,a}$. The left part of equation (37) does not change but in the region **D** of the right part exactly one column with l_0 zeroes in the last l_0 rows appears. Before it was the column $(b_{1,1}b_{r_0}b_{l_0,2^{m_0}})$. If \mathbf{H}_0 is taken from equation (30), where $m_0 = 1$, $l_0 = 3$, then

where boldface shows the values changed. If \mathbf{H}_0 is taken from equation (17), where $m_0=2$, $l_0=4$, then the right (changed) part of $\mathbf{Z}'_{0,a}$ has the form

$$\begin{bmatrix} 11111 & 11111 & 11111 & 1111 & 1111 \\ 1111 & 0000 & 0000 & 0000 & 0000 \\ 0011 & 00000 & 0000 & 0000 & 111 & 111 \\ 0101 & 11111 & 11111 & 0000 & 1111 \\ 00000 & 00000 & 1111 & 1111 & 0000 & 1111 \\ 00000 & 00000 & 1111 & 1111 & 0000 & 0000 \\ 1111 & 00000 & 1111 & 0000 & 1111 & 1111 \\ 1111 & 00000 & 1111 & 0011 & 011 & 011 \\ 1111 & 0101 & 0011 & 0011 & 101 & 101 \\ 1111 & 0101 & 0101 & 0101 & 101 & 101 \end{bmatrix}.$$

$$(44)$$

We remove the column with l_0 zeroes in the last l_0 rows and take the obtained matrix as \mathbf{Z}' . We put $s = r_0 + 1$, $m = l_0$, $w = 2k_0 - 1$, cf. Construction Z_5 . The cap \mathbf{Z}' has the properties $U_{s,1}^*$ and $L_{m,0}^*$, as in Construction Z_5 . Therefore $r \ge$ $s+2=r_0+3$, $l \ge m+1=l_0+1$. The removed column does not belong to M' and it may fail to be saturated. All conditions $\mathscr{A}', \mathscr{B}', \mathscr{C}', \mathscr{D}'$ hold. By equations (11),(36), the size k of the complete cap $\mathbf{H} \subset PG(n, 2)$ obtained with the help of \mathbf{Z}' of Construction Z_8 is

$$k = 2^{r} + 2^{l} + 2^{l_{0}} + 2\Delta_{0} - 1 = 2^{r} + 2^{n+1-r} + 2^{l_{0}} + 2\Delta_{0} - 1,$$

$$r \ge r_{0} + 3, \quad l \ge l_{0} + 1, \quad n \ge r + l_{0}.$$
(45)

Construction Z₉

We use \mathbf{Z}'_0 of equation (39) and add the last row to the $(1+l_0+s_0+1)$ -th row from the bottom. Similarly to Construction Z_8 we remove one column and obtain \mathbf{Z}' . By equations (11),(36), the size k of the complete cap $\mathbf{H} \subset PG(n, 2)$ obtained with the help of \mathbf{Z}' of Construction Z_9 is

$$k = 2^{r} + 2^{l} + 2^{r_{0}} + 2\Delta_{0} - 1 = 2^{r} + 2^{n+1-r} + 2^{r_{0}} + 2\Delta_{0} - 1,$$

$$r \ge r_{0} + 1, \quad l \ge l_{0} + 3, \quad n \ge r + l_{0} + 2.$$
(46)

4.5. Using the Smallest Known Complete Caps

In Constructions $Z_{10}-Z_{12}$ as the starting complete caps Z'_0 we use the smallest known complete f(n)-caps in PG(n, 2), $n \ge 7$, with f(n) of equation (2), see [9]. In formulas of [9] we choose convenient parameters e_i , e_u , and so on, see below. Construction Z_{10}

As the starting complete cap \mathbf{Z}'_0 with s = m = 4 we take the complete 28-cap in PG(7, 2) of [9, formula (51)]. The 28-th column of \mathbf{Z}'_0 contains *s* zeroes in the *s*-region. We add the sum of two last rows of \mathbf{Z}'_0 to the 4-th row and obtain a complete 28-cap \mathbf{Z}' for which all conditions $\mathscr{A}', \mathscr{B}', \mathscr{C}'$ and the properties $U^*_{4,0}, L^*_{4,0}$ hold. The reader can easy check this. To satisfy the condition \mathscr{D}' we must take $r \ge s + 1 = 5$, $l \ge m + 1 = 5$. By equation (11), the size *k* of the complete cap $\mathbf{H} \subset \mathbf{PG}(n, 2)$ obtained with the help of \mathbf{Z}' of Construction \mathbf{Z}_{10} is

$$k = 2^{r} + 2^{l} - 4 = 2^{r} + 2^{n+1-r} - 4, \quad r \ge 5, \quad l \ge 5, \quad n \ge r+4.$$
(47)

Construction Z₁₁

Here $s = m = v \ge 5$, $\mathbf{Z}' = \mathbf{Z}'_0 = U^{2v}$, where U^{2v} is the matrix of [9, formulas (31),(39)–(42)] with $e_i \ne 0$ in [9, formula (31)]. By formulas mentioned one can see that U^{2v} gives a complete $(15 \cdot 2^{v-3} - 3)$ -cap in PG(t, 2) = PG(2v - 1, 2) for which all conditions $\mathscr{A}', \mathscr{B}', \mathscr{C}'$ and the properties $U^*_{v,0}, L^*_{v,0}$ hold. To satisfy the condition \mathscr{D}' we must take $r \ge s + 1 = v + 1 \ge 6, l \ge m + 1 = v + 1 \ge 6$. By equation (11), the size k of the complete cap $\mathbf{H} \subset PG(n, 2)$ obtained with the help of \mathbf{Z}' of Construction \mathbf{Z}_{11} is

$$k = 2^{r} + 2^{l} - 2^{v-3} - 3$$

= 2^r + 2^{n+1-r} - 2^{v-3} - 3, v \ge 5, r \ge v + 1, l \ge v + 1, n \ge r + v. (48)

Construction Z_{12}

We put s = 4, m = 5. As starting complete cap \mathbf{Z}'_0 we take the complete 43-cap in PG(8, 2) of [9, Theorem 5, Remark 2]. For \mathbf{Z}'_0 in [9, formulas(31),(39)–(42),(50)] we take $\beta = (001), \ \gamma = (010), \ \delta = (011), \ w_1 = w_2 = w_3 = 1, \ e_i = (0001), \ e_u = (0001)$. To get \mathbf{Z}' we change \mathbf{Z}'_0 writing the 1st row as the last one in [9, formula (50)]. We obtain

where hexadecimal notation is used. As it is said in [9, Remark 2], we examined by computer that \mathbf{Z}' is a complete cap. By equation (49), the matrix has the properties $U_{4,0}^*$ and $L_{5,0}^*$. So, the conditions $\mathscr{A}', \mathscr{B}', \mathscr{C}'$ hold. To satisfy the condition \mathscr{D}' one must take $r \ge s + 1 = 5$, $l \ge m + 1 = 6$, see Remark 2 of this work. By equation (11), the size k of the complete cap $\mathbf{H} \subset \mathrm{PG}(n, 2)$ obtained with the help of \mathbf{Z}' of Construction Z_{12} is

$$k = 2^{r} + 2^{l} - 5 = 2^{r} + 2^{n+1-r} - 5, \quad r \ge 5, \ l \ge 6, \ n \ge r+5.$$
(50)

4.6. Computer Search for Caps Z'

We consider the situation when an infinity family of complete caps **H** is produced by Construction S, see Section 4.1, and the only "starting" cap **Z**' is found by computer. We use the term "Construction $Z_{13,i}$ " when for given parameters s, mwe have found by computer a cap $\mathbf{Z}'_{13,i}$ for which all conditions $\mathscr{A}', \mathscr{B}', \mathscr{C}'$ and the properties $U^*_{s,0}$, $L^*_{m,0}$ hold. Here *i* is the ordinal number. For all Constructions $Z_{13,i}$ we put $r \ge s + 1$ and $l \ge m + 1$, see Remark 2. Therefore the condition \mathscr{D}' holds. We give caps $\mathbf{Z}'_{13,i}$ in hexadecimal notation.

Constructions $Z_{13,1}$ and $Z_{13,2}$

We put s = m = 3. We found by computer a 15-cap $\mathbf{Z}'_{13,1}$ and a 16-cap $\mathbf{Z}'_{13,2}$.

$$\mathbf{Z}'_{13,1} = \begin{bmatrix} \frac{11}{22} & \frac{2}{3} & \frac{444}{134} & \frac{55}{37} & \frac{6}{4} & \frac{7777}{16} \\ \frac{15}{26} & \frac{1}{134} & \frac{37}{37} & \frac{4}{3467} \end{bmatrix}, \quad \mathbf{Z}'_{13,2} = \begin{bmatrix} \frac{1111}{122} & \frac{2}{33} & \frac{44}{55} & \frac{55}{66} & \frac{677}{7} \\ \frac{1567}{1567} & \frac{25}{16} & \frac{16}{35} & \frac{17}{17} & \frac{45}{5} & \frac{67}{7} \end{bmatrix}.$$

By (11), the size k of the complete cap $\mathbf{H} \subset PG(n, 2)$ obtained with the help of $\mathbf{Z}'_{13,i}$ is

$$k = 2^{r} + 2^{l} + j - 2 = 2^{r} + 2^{n+1-r} + j - 2, \quad r \ge 4, \quad l \ge 4, \quad n \ge r+3, \quad j = 1, 2.$$
(51)

Constructions $Z_{13,3}$, $Z_{13,4}$, and $Z_{13,5}$

Let s = 4, m = 3. We found by computer a 27-cap $Z'_{13,3}$, a 28-cap $Z'_{13,4}$, and a 29-cap $Z'_{13,5}$.

$$\mathbf{Z}'_{13,3} = \begin{bmatrix} \frac{11}{24} & \frac{2}{6} & \frac{33}{13} & \frac{4}{4} & \frac{555}{123} & \frac{66}{77} & \frac{77}{16} & \frac{8888}{1467} & \frac{99}{17} & \frac{A}{3} & \frac{B}{3} & \frac{C}{1} & \frac{D}{1} & \frac{EE}{45} & \frac{FF}{34} \end{bmatrix},$$
$$\mathbf{Z}'_{13,4} = \begin{bmatrix} \frac{111}{126} & \frac{2}{3} & \frac{33}{46} & \frac{44}{24} & \frac{5}{7} & \frac{66}{25} & \frac{77}{15} & \frac{88}{16} & \frac{99}{26} & \frac{AAA}{13} & \frac{B}{7} & \frac{C}{3} & \frac{DD}{7} & \frac{EE}{3} & \frac{FF}{34} \end{bmatrix},$$
$$\mathbf{Z}'_{13,5} = \begin{bmatrix} \frac{11}{126} & \frac{2}{3} & \frac{33}{46} & \frac{44}{24} & \frac{555}{7} & \frac{6}{77} & \frac{77}{16} & \frac{8}{1} & \frac{9}{7} & \frac{AAA}{23} & \frac{BBB}{123} & \frac{C}{10} & \frac{DD}{17} & \frac{EE}{3} & \frac{FF}{34} \end{bmatrix},$$

By equation (11), the size k of the complete cap $\mathbf{H} \subset PG(n, 2)$ obtained with the help of $\mathbf{Z}'_{13,t}$ is

$$k = 2^{r} + 2^{l} + t = 2^{r} + 2^{n+1-r} + t, \quad r \ge 5, \ l \ge 4, \ n \ge r+4, \ t = 3, 4, 5.$$
(52)

Table 2. The sizes $k < 2^{n-1}$ of the small complete caps in PG(n, 2) obtained by distinct constructions.

n	k
5	131
6	$21_1 \ 22_2 \ 24_W \cdots 29_W \ 31_W$
7	$28_0 \ 29_1 \ 30_2 \ 31_{13,1} \ 32_{13,2} \ 33_4 \ 35_W \ 37_1 \ 38_2 \ 39_W \cdots 63_W$
8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
9	$57_{0} \ 60_{10} \ 61_{1} \ 62_{2} \ 63_{13,1} \ 64_{13,2} \ 65_{4} \ 66_{2} \ 67_{13,3} \ 68_{7+1} \ 69_{13,5} \ 72_{3} \ 73_{4}$ $74_{5+1} \ 77_{1} \ 78_{2} \ 79_{13,1} \ 80_{13,2} \ 81_{4} \ 82_{2} \ 83_{W} \ 84_{13,4} \ 85_{13,5} \ 86_{0}^{D} \ 88_{3} \ 89_{W}$ $90_{1}^{D} \ 92_{2}^{D} \ 94_{13,1}^{D} \ 95_{W} \ 96_{13,2}^{D} \ 97_{4} \ 98_{4}^{D} \ 100_{2}^{D} \ 101_{W} \ 102_{13,3}^{D} \ 103_{W} \ 104_{13,4}^{D}$ $105_{4} \ 106_{13,5}^{D} \ 107_{W} \ 108_{3} \ 112_{0}^{D} \ 113_{W} \ 114_{W}^{D} \ 116_{1}^{D} \ 117_{W} \ 119_{W} \ 120_{2}^{D}$ $124_{13,1}^{D} \ 125_{W} \ 126_{W}^{D} \ 128_{13,2}^{D} \ 131_{W} \ 132_{4}^{D} \ 133_{1} \ 134_{W}^{D} \ 135_{W} \cdots 255_{W}$
10	
11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
12	$181_0 \ 185_{11} \ 187_{12} \ 188_{10} \ 189_1 \ 190_2 \ 191_{13,1} \ 192_{13,2} \ 193_4 \ 194_2 \ 195_{13,3} \\ 196_{7+1} \ 197_{13,5} \ 200_3 \ 201_4 \ 202_2 \ 203_{8+2} \ 204_{5+2} \\$

4.7. Tables of Sizes of Small Complete Caps

We give Table 2 with examples of sizes of caps obtained by known and new constructions. The subscripts $i \in \{1, 2, 3, 4, 10, 11, 12\}$ and $13, j \in \{13, 1..., 13, 5\}$ indicate Construction Z_i and $Z_{13,j}$, respectively. Sizes of equation (1) have the subscript "1" as they can be generated by Construction Z_1 . The subscripts "0" and "W" indicate, respectively, the known constructions of [9], see equation (2), and [14], see equation (3). Finally, the subscript of the form u + i, $u \in \{5, 6, 7, 8, 9\}$, $i \in \{1, 2, 3, 4, 10, 11, 12\}$, denotes Construction Z_u using a complete cap H_0 obtained with the help of Construction Z_i . The superscript "D" indicates the doubling construction used for the results defined by the subscript. Boldface notes sizes obtained by new constructions and doubling of these new sizes.

For $n \le 10$ Table 2 is filled in the following order. First, all sizes of equations (1)–(3) and applying DC to them are written. We denote $A_W \cdots B_W$ a region of sizes described in [14], see equation (3). Some sizes into such regions can be obtained also by DC. Then we consider the dimensions n in increasing order and

Table 3. The updated table of sizes of the known small complete caps in PG(n, 2).

n	Sizes k of the known complete caps with $k \le 2^{n-1}$	References
10	$91 \le k \le 511, \ k = 89$	[6,9,14],*
11	$123 \le k \le 1023, \ k = 117, 121$	[6,9,14],*
12	$187 \le k \le 2047, \ k = 181, 185$	[6,9,14],*

 \star - results of this work

for fixed *n* we list sizes generated by Constructions Z_2-Z_{12} and $Z_{13,i}$. Every new size obtained is written in Table 2 together with applying DC to it. If the same new size can be obtained by several Constructions Z_i we note only one construction. For n = 11, 12 we give in Table 2 only relatively small sizes.

Using results written in Table 2 we can update Table 1 for n = 10, 11, 12, see Table 3.

Acknowledgment

The authors thank the anonymous referees for their details and useful comments.

References

- 1. A. A. Bruen, L. Haddad and D. L. Wehlau, Binary codes and caps, *Journal of Combinatorial Designs*, Vol. 6, No. 4 (1998) pp. 275–284.
- A. A. Bruen and D. L. Wehlau, Long binary linear codes and large caps in projective space, Designs, Codes and Cryptography, Vol. 17, No. 1 (1999) pp. 37–60.
- 3. A. A. Bruen and D. L. Wehlau, New codes from Old; a new geometric construction, *Journal of Combinatorial Theory, Series A*, Vol. 94, No. 2 (2001) pp. 196–202.
- 4. W. E. Clark and J. Pedersen, Sum-free sets in vector spaces over *GF*(2), *Journal of Combinatorial Theory, Series A*, Vol. 61, No. 2 (1992) pp. 222–229.
- A. A. Davydov and L. M. Tombak, Quasi-perfect linear binary codes with distance 4 and complete caps in projective geometry, *Problems of Information Transmission*, Vol. 25, No. 4 (1989) pp. 265–275.
- A. A. Davydov, S. Marcugini and F. Pambianco, Complete caps in projective spaces PG(n, q), Journal of Geometry, Vol. 80 (2004) pp. 23–30.
- 7. G. Faina, S. Marcugini, A. Milani and F. Pambianco, The sizes k of the complete k-caps in PG(n, q), for small q and $3 \le n \le 5$, Ars Combinatoria, Vol. 50 (1998) pp. 235–243.
- 8. G. Faina and F. Pambianco, On the spectrum of the values k for which a complete k-cap in PG(n, q) exists, *Journal of Geometry*, Vol. 62, No. 1 (1998) pp. 84–98.
- 9. E. M. Gabidulin, A. A. Davydov and L. M. Tombak, Codes with covering radius 2 and other new covering codes, *IEEE Transactions on Information Theory*, Vol. 37, No. 1 (1991) pp. 219–224.
- 10. J. W. P. Hirschfeld, Projective Geometries over Finite Fields, 2nd ed. Clarendon, Oxford (1998).
- J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory, and finite projective spaces: update 2001, In A. Blokhuis, J. W. P. Hirschfeld, D. Jungnickel and J. A. Thas (eds), *Developments in Mathematics*, Vol. 3, *Finite Geometries*, Kluwer Academic Publishers, Dordrecht (2001) pp. 201–246.
- 12. F. J. MacWilliams and N. J. A. Sloane, *The Theory of Error-Correcting Codes*, Part I. North-Holland, Amsterdam (1977).
- 13. T. Szönyi, Small complete arcs in Galois planes, Geometriae Dedicata, Vol. 18 (1985) pp. 161-172.

DAVYDOV, FAINA AND PAMBIANCO

 D. L. Wehlau, Complete caps in projective space which are disjoint from a codimension 2 subspace, In A. Blokhuis, J. W. P. Hirschfeld, D. Jungnickel and J.A. Thas (eds), *Developments* in Mathematics, Vol. 3, *Finite Geometries*, Kluwer Academic Publishers, Dordrecht (2001) pp. 347–361. (Corrected version: www.mast.queensu.ca/~wehlau/pubs.html).