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Additional parameters in inverse monodromy problems

I. V. V’yugin and R.R. Gontsov

Abstract. Several inverse problems of the analytic theory of differential
equations are considered: an estimate of the number of extra singular
points occurring in the construction of a Fuchsian equation for an arbitrary
(for instance, reducible) monodromy representation is found; an estimate of
the Poincaré rank of the unique non-Fuchsian singularity of the regular linear
system constructed for an arbitrary monodromy representation is obtained;
the problem of the meromorphic reduction to polynomial form of a linear
system in the neighbourhood of an irregular singularity is investigated (which
is related to the reduction of a linear system to a Birkhoff standard form).

Bibliography: 12 titles.

§ 1. Introduction

Consider a linear differential equation

dpy

dzp
+ b1(z)

dp−1y

dzp−1
+ · · ·+ bp(z)y = 0 (1)

of order p with coefficients b1(z), . . . , bp(z) meromorphic on the Riemann sphere C
and holomorphic outside the set of singular points a1, . . . , an.

By the monodromy representation or the monodromy of this equation we mean
the representation

χ : π1(C \ {a1, . . . , an}, z0) → GL(p, C) (2)

of the fundamental group of the space C \ {a1, . . . , an} in the space of non-singular
complex matrices of order p defined as follows. In the neighbourhood of a non-
singular point z0 we consider a basis (y1(z), . . . , yp(z)) in the solution space of equa-
tion (1). Analytic continuation of the functions y1(z), . . . , yp(z) along an arbitrary
loop γ outgoing from z0 and lying in C\{a1, . . . , an} transforms the basis (y1, . . . , yp)
into an (in general different) basis (ỹ1, . . . , ỹp). The two bases are related by means
of a non-singular transition matrix Gγ corresponding to the loop γ:

(y1, . . . , yp) = (ỹ1, . . . , ỹp)Gγ .
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The map [γ] 7→ Gγ (which depends only on the homotopy class [γ] of the loop γ)
defines the representation χ. By the monodromy matrix of equation (1) at a singular
point ai (with respect to the basis (y1, . . . , yp)) we mean the matrix Gi correspond-
ing to a simple loop γi encircling ai, so that Gi = χ([γi]).

A singular point ai of equation (1) is said to be Fuchsian if the coefficient bj(z)
has at this point a pole of order j or lower (j = 1, . . . , p). By Fuchs’s theorem
(see [1]) a singular point ai is Fuchsian if and only if it is regular (that is, each
solution has at most power growth in the neighbourhood of ai). Equation (1) is
said to be Fuchsian if all its singular points are Fuchsian.

The problem of the construction of Fuchsian equation (1) with prescribed singu-
lar points a1, . . . , an and prescribed monodromy representation (2) has a negative
solution in the general case because the number of parameters determining the
equation is less than the number of parameters determining the set of representa-
tions χ (see [2], [1]). Hence in the construction of a Fuchsian equation there arise
extra ‘apparent ’ singular points (at which the coefficients of the equation are singu-
lar, but its solutions are holomorphic). If the representation (2) is irreducible, then
an expression for the smallest possible number of such singular points has been
obtained by Bolibrukh [2]. In the present paper we consider the case of a reducible
representation.

Alongside equation (1) one can consider a linear system

dy

dz
= B(z)y, y(z) ∈ Cp, (3)

of p equations with matrix B(z) meromorphic on the Riemann sphere and holo-
morphic outside the points a1, . . . , an. One defines the monodromy representation
of this system in the same way as for equation (1); one merely needs to consider in
place of the row (y1, . . . , yp) a fundamental matrix Y (z) the columns of which form
a basis in the solution space of the system.

A singular point ai of the system (3) is said to be Fuchsian if the matrix B(z)
has a simple pole at this point. A Fuchsian singular point of a linear system is
always regular, although a regular singularity is not necessarily Fuchsian (see [1]).
A system (3) is said to be Fuchsian if all its singular points are Fuchsian.

Similarly to scalar equation (1) the problem of the construction of a Fuchsian
system (3) with prescribed singular points a1, . . . , an and prescribed monodromy
representation (2) (which is called the Riemann–Hilbert problem) has a negative
solution in the general case (see [1]–[3]). One knows various sufficient conditions
for the affirmative solution of this problem (one such condition is the irreducibility
of the representation (2)).

A method of the solution of problems related to the Riemann–Hilbert problem
has been developed by Bolibrukh; its idea is as follows. From the representation (2)
one constructs over the Riemann sphere a family F of holomorphic vector bundles
of rank p with logarithmic connections having the prescribed singular points and
the prescribed monodromy. Recall that one defines a bundle F of rank p by a set
{Ui} of neighbourhoods covering the sphere and a set {gij} of gluing cocycles, holo-
morphically invertible matrices of order p defined on the non-empty intersections
Ui∩Uj (so that gij(z) is holomorphic in Ui∩Uj and det gij(z) does not vanish there),
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with the following properties:
(1) gij(z) = g−1

ji (z);
(2) gij(z)gjk(z)gki(z) ≡ I if Ui ∩ Uj ∩ Uk 6= ∅.

A connection ∇ is defined by a set {ωi} of local matrix-valued differential 1-forms
(ωi is defined in Ui) satisfying in the intersections Ui∩Uj 6= ∅ the gluing conditions

ωi = (dgij)g−1
ij + gijω

jg−1
ij . (4)

The connection defines locally the system dy = ωiy. The monodromy of the con-
nection (similarly to the monodromy of the system (3)) describes the branching
pattern of solutions of these local systems after analytic continuation along closed
paths encircling the singular points. A connection ∇ is said to be logarithmic
(Fuchsian) if all singularities of the forms ωi are first-order poles. The Riemann–
Hilbert problem for a fixed representation (2) is solved in the affirmative if some
bundle in the family F turns out to be holomorphically trivial (because then one
can take for the cocycles gij the identity matrices and, in view of gluing condi-
tion (4), the connection ∇ defines a Fuchsian system with monodromy (2) on the
entire Riemann sphere).

The Birkhoff–Grothendieck theorem states that each holomorphic vector bun-
dle F of rank p on the Riemann sphere is equivalent to a bundle with the following
description:

(U0 = C, U∞ = C \ {0}, g0∞ = zK), K = diag(k1, . . . , kp),

where {kj}, k1 > · · · > kp, is a system of integers called the splitting type of the
bundle F .

Let γ̃min(χ) be the following quantity:

γ̃min(χ) = min
F∈F

(k1 − kp),

which is defined for an arbitrary representation χ.
The main results of §§ 3, 4 of the present paper are as follows.

Theorem 1. The quantity γ̃min(χ) has the following estimate:

γ̃min(χ) 6 (p− 1)(n− 1).

The Poincaré rank of a singular point of the system (3) is by definition one
less than the order of the pole of the matrix B(z) at this point (for instance, the
Poincaré rank of a Fuchsian singularity is zero).

Although we have pointed out already that the Riemann–Hilbert problem has a
negative solution in the general case, by Plemelj’s theorem (see [1], [3]), for a fixed
representation (2) one can construct a system (3) that is Fuchsian at all points but
one, at which it is regular; and we present here an estimate for the Poincaré rank
of the regular singularity of the so-constructed system.

Corollary 1. Each representation (2) can be realized as the monodromy represen-
tation of a system (3) that is Fuchsian at all points but one, at which it is regular,
such that its Poincaré rank at this point is at most (n− 1)(p− 1).
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Theorem 2. For an arbitrary representation (2) there exists Fuchsian equation (1)
with fixed monodromy such that the number m of extra apparent singular points of
this equation satisfies the inequality

m 6
(n + 1)p(p− 1)

2
+ 1.

In our § 5, which is mostly of an independent nature, we study questions related
to the problem of the meromorphic transformation of a system of linear differential
equations into a Birkhoff standard form.

§ 2. Proof of Deligne’s lemma

If the monodromy representation of a system (3) is irreducible, then one can
associate with this system a linear differential equation

1
W (u1, . . . , up)

det


u1 . . . up y

du1

dz
. . .

dup

dz

dy

dz
. . . . . . . . . . . . . . . . . . . . . . .
dpu1

dzp
. . .

dpup

dzp

dpy

dzp

 = 0 (5)

of the form (1) with respect to an unknown function y(z), where u1, . . . , up are the
entries in an arbitrary row of a fundamental matrix of the system and W (u1, . . . , up)
is their Wronskian. One easily demonstrates that the entries in an arbitrary row
of a fundamental matrix of a system (3) with irreducible monodromy are linearly
independent, therefore the functions u1, . . . , up form a basis in the solution space of
the above equation and its monodromy coincides with that of the system. In this
case the extra apparent singular points of equation (5) are zeros of the Wronskian
W (u1, . . . , up), which is not identically zero under the above assumptions.

In the case when the monodromy representation of the system (3) is reducible
one cannot in general proceed to an equation in the above-described fashion. For
instance, if the matrix B(z) of the system is diagonal, then the entries in each row
of an arbitrary fundamental matrix of this system are linearly dependent. However,
there exists another method of passing from the system to a scalar equation with
the same monodromy, which is based on a result usually called Deligne’s lemma
([4], Lemma II.1.3). We present here an analytic proof of this lemma (stated in [4]
in algebraic terms).

We say that a transformation ỹ = Γ(z)y of the system (3) is meromorphically
invertible if its matrix Γ(z) is meromorphic and det Γ(z) 6≡ 0. Such a transformation
takes the system (3) to another system

dỹ

dz
= B̃(z)ỹ (6)

with matrix of coefficients

B̃(z) = ΓB(z)Γ−1 +
dΓ
dz

Γ−1. (7)
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Lemma 1 (Deligne [4]). For each system (3) there exists a transformation ỹ=Γ(z)y
meromorphically invertible on the Riemann sphere that takes it to a system (6), (7)
with matrix of coefficients B̃(z) of the following form :

B̃(z) =


0 1 0

. . . . . .
0 0 1
−bp . . . . . . −b1

 , (8)

where b1(z), . . . , bp(z) are meromorphic functions.

Proof (based on Exercise 7 in [5], § 1.1). We consider a p-dimensional row vector
t0(z) with polynomials of degree p − 1 as components and express t0(z) in the
following form:

t0(z) = α0 + α1(z − z0) +
1
2

α2(z − z0)2 + · · ·+ 1
(p− 1)!

αp−1(z − z0)p−1,

where z0 is a point distinct from the singular points of the system (3). Next, we
define the meromorphic vector-valued functions t1(z), . . . , tp(z) on the Riemann
sphere by the formulae

tj+1 =
dtj
dz

+ tjB(z), j = 0, . . . , p− 1. (9)

Consider the matrix Γ(z) with rows t0(z), . . . , tp−1(z). Let C be a constant non-
singular matrix of order p with rows c0, . . . , cp−1. We claim that we can select the
vector t0(z) such that Γ(z0) = C, that is, det Γ(z) 6≡ 0. To this end we set

t0(z0) = α0 = c0,

t1(z0) = α1 + α0B(z0) = c1, that is, α1 = c1 − c0B(z0).

In the general case

tj(z0) = αj + Fj(α0, α1, . . . , αj−1) = cj ,

where Fj(α0, α1, . . . , αj−1) is an already known vector, that is,

αj = cj − Fj(α0, α1, . . . , αj−1), j = 1, . . . , p− 1.

We see that we have selected the coefficients αj of the polynomial t0(z) such that
the corresponding matrix Γ(z) is meromorphically invertible on the entire Riemann
sphere. Consider the vector-valued function b(z) = (bp(z), . . . , b1(z)) such that

tp(z) = −b(z)Γ(z)

and consider the corresponding matrix

B̃(z) =


0 1 0

. . . . . .
0 0 1
−bp . . . . . . −b1

 .
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It follows by (9) that
dΓ
dz

= B̃Γ− ΓB,

therefore the transformation ỹ = Γ(z)y takes (3) to a system with matrix of coeffi-
cients

ΓBΓ−1 +
dΓ
dz

Γ−1 = ΓBΓ−1 + B̃ − ΓBΓ−1 = B̃

of the required form. The proof of Lemma 1 is complete.

Alongside singular points a1, . . . , an of the original system (3), the system (6), (7)
has singularities at the zeros z1, . . . , zm of the function det Γ(z) (not contributing
to the monodromy). We shall assume that one singular point of the system (3) (for
instance, an) is at infinity (otherwise we could use a linear fractional transformation
ζ = 1/(z − an) of the Riemann sphere taking the singular points a1, . . . , an−1, an

to singular points b1 = 1/(a1−an), . . . , bn−1 = 1/(an−1−an), bn = ∞ of the same
Poincaré ranks).

One readily sees that the first component of a solution of the system (6) with
matrix of coefficients B̃(z) of the form (8) is a solution of an equation of the form (1)
with singular points a1, . . . , an and extra apparent singularities z1, . . . , zm. Hence
one can take for a basis in the solution space of this equation the components
u1, . . . , up of the first row of a fundamental matrix Y (z) of the system (6). The
functions u1, . . . , up are linearly independent since the matrix Y (z) has the following
form:

Y (z) =


u1 . . . up

du1

dz
. . .

dup

dz
. . . . . . . . . . . . . . . . . . . . . .
dp−1u1

dzp−1
. . .

dp−1up

dzp−1


and the linear dependence of the functions u1, . . . , up would imply the linear depen-
dence of the columns of the matrix Y (z). Thus, the monodromy of the equation
so constructed coincides with the monodromy of the system (6) and therefore of
the system (3) (recall that the monodromy matrices of the constructed equations
at the additional singular points are equal to the identity). Moreover, it follows
from Fuchs’s theorem that if all singularities of (3) are regular, then the resulting
equation is Fuchsian. We now find an estimate for the number m of its apparent
singularities z1, . . . , zm.

We write the Laurent series of the matrix of coefficients B(z) of the system (3)
in a neighbourhood of ai 6= ∞ in the following form:

B(z) =
Bi
−ri−1

(z − ai)ri+1
+ · · ·+

Bi
−1

z − ai
+ Bi

0 + · · · , Bi
−ri−1 6= 0

(as concerns the neighbourhood of an = ∞, the principal part of the Laurent series
of the matrix B(z) is a polynomial of degree rn − 1), where ri is the Poincaré
rank of the system at the singular point ai.

The function det Γ(z) (in Lemma 1) has zeros and poles at z1, . . . , zm, a1, . . . ,
an = ∞.
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It follows by formulae (9) that in the neighbourhood of the point ai 6= ∞ the
(vector-valued) function tj(z) has the following representation:

tj(z) =
1

(z − ai)j(ri+1)
t̃j(z), j = 0, . . . , p− 1,

where t̃j(z) is a holomorphic function in the neighbourhood of ai, therefore

Γ(z) = diag
(
1, (z − ai)−(ri+1), . . . , (z − ai)−(p−1)(ri+1)

)
Γ̃(z),

where Γ̃(z) is a holomorphic matrix in the neighbourhood of ai. Hence

ordai
det Γ(z) > −p(p− 1)

2
(ri + 1), i = 1, . . . , n− 1.

At the same time, in the neighbourhood of infinity the matrix B(z) has the following
representation:

B(z) = zrn−1B0(z),

where B0(z) is a matrix holomorphic in this neighbourhood. Hence the function
tj(z) has in this neighbourhood the following expression:

tj(z) = zp−1+j(rn−1)t̃j(z), j = 0, . . . , p− 1,

where t̃j(z) is a holomorphic function in the neighbourhood of infinity. Then

Γ(z) = diag
(
zp−1, zp−1+(rn−1), . . . , zp−1+(p−1)(rn−1)

)
Γ̃(z),

where Γ̃(z) is a matrix holomorphic in the neighbourhood of infinity. Consequently,

ordan det Γ(z) > −p(p− 1)− p(p− 1)
2

(rn − 1) = −p(p− 1)
2

(rn + 1).

Let di be the order of the zero of det Γ(z) at zi. Then

0 =
m∑

i=1

di +
n∑

i=1

ordai
det Γ(z) >

m∑
i=1

di −
( n∑

i=1

ri + n

)
p(p− 1)

2
,

so that

m 6
m∑

i=1

di 6

( n∑
i=1

ri + n

)
p(p− 1)

2
.

We have thus established the following auxiliary result.

Lemma 2. For an arbitrary system (3) one can construct a scalar equation (1)
with the same monodromy such that the number m of its apparent singularities
satisfies the inequality

m 6
(R + n)p(p− 1)

2
,

where R =
∑n

i=1 ri is the sum of the Poincaré ranks of singular points of the system.
Moreover, if the system has only regular singularities, then the resulting equation
is Fuchsian.
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§ 3. Holomorphic bundles and regular systems

In this section we prove Theorem 1. Consider a family of holomorphic vector
bundles FΛ on the Riemann sphere with logarithmic connections ∇Λ having the
prescribed monodromy (2). The method of constructing the family F has been
explained in detail by Bolibrukh (see [1], [3]). We recall here only the central
points of this construction.

Each bundle FΛ is defined by a system Λ = {Λ1, . . . ,Λn} of admissible matri-
ces Λi (diagonal matrices with integer entries λj

i forming a non-increasing sequence
λj

i > λj+1
i , j = 1, . . . , p − 1) and has the following coordinate description. One

covers the sphere by a system O1, . . . , On of small neighbourhoods of the points
a1, . . . , an and a set {Uα} complementing {Oi}. For each non-empty intersection
Oi ∩ Uα one can express the gluing cocycle giα(z) in the following form:

giα(z) = (z − ai)Λi(z − ai)EiS−1
i ,

where

Ei =
1

2πi
ln(S−1

i GiSi)

is an upper-triangular matrix with eigenvalues ρj
i such that

0 6 Re ρj
i < 1, j = 1, . . . , p, (10)

and Si is a non-singular constant matrix reducing the monodromy matrix Gi to
upper-triangular form.

For non-empty intersections Oi∩Uα∩Uβ the cocycle giβ(z) is an analytic contin-
uation of the cocycle giα(z) and gαβ(z) ≡ const. Strictly speaking, FΛ depends also
on the system S = {S1, . . . , Sn} of matrices Si reducing the monodromy matrices Gi

to upper-triangular form. Hence, in view of this connection, one should denote
elements of F by FΛ,S , but we require in what follows only their dependence on
the system Λ and mean by FΛ the bundle constructed for the fixed system Λ and
some system S.

The connection ∇Λ is defined by the forms ωα trivial in Uα and by the forms ωΛi

that have the following expressions in the neighbourhoods Oi:

ωΛi =
(
Λi + (z − ai)ΛiEi(z − ai)−Λi

) dz

z − ai
(11)

(it follows from the definition of an admissible matrix Λi and the upper-triangular
matrix Ei that z = ai is a first-order pole of the form ωΛi). One easily verifies
that the forms ωΛi , ωα and ωα, ωβ satisfy gluing conditions (4) on the non-empty
intersections Oi ∩ Uα and Uα ∩ Uβ .

Definition 1. One calls the eigenvalues βj
i = λj

i +ρj
i of the matrix Λi+Ei exponents

of the connection ∇Λ at the point z = ai.

It follows from the expression (11) for the connection form ωΛi that at a Fuchsian
point z = ai exponents are eigenvalues of the residue matrix resai

ωΛi .
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As already pointed out in the introduction, a logarithmic connection on a trivial
bundle defines a Fuchsian system (3). On the other hand, in the case of the holomor-
phic bundle FΛ of splitting type (k1, . . . , kp), for which we consider the equivalent
coordinate description(

U1 = C, U∞ = C \ {a1}, g1∞ = (z − a1)K
)
, K = diag(k1, . . . , kp),

the logarithmic connection ∇Λ defines a system (3) that is Fuchsian at all points
but one (z = a1), at which it is regular, and the fundamental matrix Y1(z) has the
following form in the neighbourhood of this point:

Y1(z) = (z − a1)−KV1(z)(z − a1)Λ1(z − a1)E1 , (12)

where V1(z) is a holomorphically invertible matrix in a neighbourhood of a1. As
regards the neighbourhoods of the other (Fuchsian) singularities ai, there exist in
these neighbourhoods fundamental matrices Yi(z) of the following form:

Yi(z) = Vi(z)(z − ai)Λi(z − ai)Ei , (13)

where Vi(z) is holomorphically invertible in a neighbourhood of ai (see [1], [3] for
details).

Definition 2. The degree deg FΛ of a bundle FΛ is the quantity

deg FΛ =
n∑

i=1

resai
trωΛi =

n∑
i=1

p∑
j=1

βj
i .

The degree of a bundle is an integer equal to the sum of the coefficients ki of
the splitting type of this bundle. This can be demonstrated as follows. Consider
a system (3) with form ω = B(z) dz corresponding to the connection ∇Λ. One
sees from the expressions (12), (13) for the fundamental matrix Y1(z) and the
other fundamental matrices Yi(z) of this system and also from Liouville’s formula
d ln detYi(z) = trω that

resa1 trω = resa1

(
− trK

z − a1
dz +

d det V1

det V1
+

tr(Λ1 + E1)
z − a1

dz

)
= − trK + tr(Λ1 + E1),

resai
trω = resai

(
d det Vi

detVi
+

tr(Λi + Ei)
z − ai

dz

)
= tr(Λi + Ei)

(the differential forms d detVi/ det Vi are holomorphic at the corresponding
points ai). By the theorem on the sum of the residues

n∑
i=1

resai
trω = 0,

that is,
n∑

i=1

tr(Λi + Ei)− trK = 0
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and

deg FΛ =
n∑

i=1

tr(Λi + Ei) = trK.

Bolibrukh showed that for the splitting type of the bundle FΛ ∈ F constructed
from the irreducible representation (2) one has the inequalities

ki − ki+1 6 n− 2, i = 1, . . . , p− 1

(see [1], [3]). On this basis we prove the following result, one consequence of which
is Theorem 1.

Proposition 1. Consider a bundle FΛ ∈ F with logarithmic connection ∇Λ

the exponents of which satisfy the condition 0 6 Re βj
i < M , M ∈ N. Then the

following inequalities hold for the splitting type of this bundle:

ki − ki+1 6 nM − 1, i = 1, . . . , p− 1.

Proof. We consider two separate cases.
Case 1. For the splitting type of the bundle FΛ one has the inequalities

ki − ki+1 6 n− 2, i = 1, . . . , p− 1.

Since M ∈ N, the required result is in this case a direct consequence of these
relations.
Case 2. For some l one has kl−kl+1 > n−1. In this case we claim that kl−kl+1 6
nM − 1.

We show first that the bundle FΛ has a subbundle F 1 of rank l stabilized by the
connection ∇Λ and of splitting type (k1, . . . , kl). In terms of the coordinate descrip-
tion of the (FΛ,∇Λ) the existence of such a subbundle means that the cocycles gij

and the forms ωi have the block upper-triangular form:

gij =
(

g1
ij ∗
0 g2

ij

)
, ωi =

(
ω1

i ∗
0 ω2

i

)
,

with all the blocks g1
ij and ω1

i of size l × l. In that case the forms ω1
i define a

restriction ∇1 of the connection ∇Λ to the subbundle F 1.
Consider the system (3) with regular singular point a1 and Fuchsian singular-

ities a2, . . . , an corresponding to the connection ∇Λ. The form ω′ = B(z) dz of
the coefficients of this system has simple poles in O∞ = C \ {a1}, and in the
neighbourhood O1 of the point a1 it has the following form:

ω′ = (dY1)Y −1
1 = − K

z − a1
dz + (z − a1)−Kω(z − a1)K , (14)

where the form ω has a logarithmic singularity at the point a1. This follows from
the form (12) of the fundamental matrix of this system in the neighbourhood
of the point z = a1:

Y1(z) = (z − a1)−KV1(z)(z − a1)Λ1(z − a1)E1 .
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Recall that the matrix V1(z) is holomorphically invertible at the point a1 and the
set of diagonal elements of the matrix K coincides with the splitting type of
the bundle FΛ.

By (14) the entries ω′mj and ωmj of the matrix-valued differential 1-forms ω′

and ω are connected for m 6= j by the equality

ω′mj = (z − a1)−km+kj ωmj ;

orda1 ωmj > −1. By assumption kl − kl+1 > n − 2 for some l, therefore we have
kj − km > n − 2 for j 6 l, m > l. Hence the orders orda1 ω′mj at the point a1

of the differential forms ω′mj with indicated indices are greater than n− 3, whereas
the sum of the orders ordai ω′mj at the singular points distinct from a1 is at least
−n + 1 (since the form ω′ has logarithmic singularities at these points). We thus
obtain for meromorphic forms ω′mj with indicated indices on the Riemann sphere
that the sum of their orders over all singularities and zeros is greater than −2,
although this sum is known to be −2 for a non-trivial differential form (the degree
of the canonical divisor; see [6], § 17). Hence these forms (as well as the ωmj) are
identically equal to zero, so that the forms ω′ and ω are block upper triangular:

ω′ =
(

ω1 ∗
0 ω2

)
, ω =

(
ω1

0 ∗
0 ω2

0

)
, (15)

where the matrix-valued forms ω1 and ω1
0 have size l×l and satisfy (in view of (14))

the gluing condition

ω1 = − K1

z − a1
dz + (z − a1)−K1

ω1
0(z − a1)K1

, (16)

where K1 = diag(k1, . . . , kl).
Thus the vector bundle FΛ has an equivalent coordinate description(

O1, O∞ = C \ {a1}, g1∞ = (z − a1)K
)
, K = diag(k1, . . . , kp),

and the logarithmic connection ∇Λ is defined in the neighbourhoods O1 and O∞
by forms ω, ω′ of the structure (15) satisfying gluing condition (14). Hence the
bundle FΛ has a subbundle F 1 of rank l with connection ∇1 defined in the neigh-
bourhoods O1 and O∞ by the forms ω1

0 , ω1 satisfying gluing condition (16). By
construction the connection ∇Λ stabilizes the subbundle F 1 and coincides on it
with the connection ∇1, and the splitting type of the subbundle F 1 is equal to
(k1, . . . , kl).

Assume that kl − kl+1 > nM . Then for the mean value of the exponents 1βj
i of

the connection ∇1 (which are the eigenvalues of the matrices resa1 ω1
0 and resai ω1)

on the subbundle F 1 we have the lower bound

1
ln

n∑
i=1

l∑
j=1

1βj
i =

deg F 1

ln
=

k1 + · · ·+ kl

ln
>

kl+1

n
+ M,

while for the mean value of the other exponents 2βj
i (the eigenvalues of the matrices

resa1 ω2
0 and resai

ω2) we have the upper bound

1
(p− l)n

n∑
i=1

p−l∑
j=1

2βj
i =

deg F − deg F 1

(p− l)n
=

kl+1 + · · ·+ kp

(p− l)n
6

kl+1

n
.
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Hence the mean value of the exponents 1βj
i is larger by M at least than the mean

value of the exponents 2βj
i , while by the hypothesis the real parts of all the expo-

nents of the connection ∇Λ are strictly less than M . We arrive at a contradiction,
therefore kl − kl+1 6 nM − 1 for each l. The proof of Proposition 1 is complete.

Proof of Theorem 1. It is sufficient to consider the canonical bundle F 0 correspond-
ing to the system Λ = {0, . . . , 0} of zero matrices. In that case the exponents βj

i of
the connection ∇0 satisfy, in view of (10), the condition

0 6 Re βj
i = Re ρj

i < 1.

Then it follows by Proposition 1 that for the coefficients k0
i of the splitting type of

the bundle F 0 we have the inequalities

k0
i − k0

i+1 6 n− 1, i = 1, . . . , p− 1.

Hence

γ̃min(χ) = min
FΛ

(k1 − kp) 6 k0
1 − k0

p =
p−1∑
i=1

(k0
i − k0

i+1) 6 (n− 1)(p− 1).

The proof of Theorem 1 is complete.

Proof of Corollary 1. Consider the canonical bundle F 0 with logarithmic connec-
tion ∇0 constructed from the representation (2). It has splitting type (k0

1, . . . , k
0
p)

with k0
1 − k0

p 6 (n− 1)(p− 1) (see the proof of Theorem 1). Corresponding to the
connection ∇0 is a system (3) with regular singularity at a1 and Fuchsian singu-
larities at a2, . . . , an that has the prescribed monodromy (2). For an estimate of
the Poincaré rank r1 at the singular point a1 recall that the form ω′ = B(z) dz
of the coefficients of this system has the structure (14) in the neighbourhood of a1:

ω′ = − K0

z − a1
dz + (z − a1)−K0

ω(z − a1)K0
,

where K0 = diag(k0
1, . . . , k

0
p) and the form ω has a simple pole at a1. Hence the

order of the pole of the matrix elements of the form ω′ at this point is at most
k0
1 − k0

p + 1 and therefore r1 6 k0
1 − k0

p 6 (n− 1)(p− 1). The proof of Corollary 1
is complete.

We point out that for the dimension p = 3 (the lowest dimension in which there
exists a counterexample in the Riemann–Hilbert problem) one has a better estimate
of the Poincaré rank r1 of the regular singularity of the system constructed from
the representation (2):

r1 6
[n

2

]
− 1,

where [x] is the integer part of the quantity x ([2], Corollary 2.3.3). Moreover,
for p = 3 there exist representations for which one cannot construct a similar
system of lower Poincaré rank r1 (see [2], Proposition 2.2.4, the proof of Theo-
rem 2.3.3, and Corollary 2.3.2), so that the non-sharp estimate of Corollary 1 is
not completely pointless (there exist representations (2) from which one cannot
construct a system (3) with regular singularities and of low Poincaré rank at the
unique non-Fuchsian singular point).
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§ 4. Additional singularities of a Fuchsian equation

Consider the family F of holomorphic vector bundles FΛ with logarithmic con-
nections ∇Λ constructed from the representation (2). By the Fuchsian weight of
the bundle FΛ ∈ F we mean the quantity

γ(FΛ) =
p∑

i=1

(k1 − ki),

where (k1, . . . , kp) is the splitting type of the bundle FΛ.
The function γ : F → N ∪ {0} is bounded if and only if the representation (2)

is irreducible ([2], Theorem 4.2.1). Moreover, for the splitting type of an arbi-
trary bundle FΛ ∈ F constructed from an irreducible representation one has the
inequalities

ki − ki+1 6 n− 2, i = 1, . . . , p− 1,

and for such a representation one can define the quantity

γmax(χ) = max
FΛ∈F

γ(FΛ) 6
(n− 2)p(p− 1)

2
,

which is called the maximum Fuchsian weight of the irreducible representation χ.
The smallest possible number m0 of extra apparent singular points arising in the

construction of Fuchsian equation (1) from the irreducible representation (2) can
be expressed by the following formula ([2], Theorem 4.4.1):

m0 =
(n− 2)p(p− 1)

2
− γmax(χ). (17)

This question was earlier considered also in [7], where one can find an upper estimate
of the quantity m0 in the case when the monodromy representation is irreducible
and one of the monodromy matrices Gi is diagonalizable (in that paper the authors
considered equations on a compact Riemann surface of arbitrary genus).

Proof of Theorem 2. It follows from Plemelj’s theorem (see also [1]) that each
representation (2) can be realized by a Fuchsian system with an extra apparent
singularity. We now discuss this in greater detail.

Consider a holomorphic vector bundle FΛ with logarithmic connection ∇Λ con-
structed from the representation χ∗ obtained from (2) by the addition of an extra
singular point an+1 with identity monodromy matrix.

Corresponding to the connection ∇Λ is a system (3) with Fuchsian singularities
a1, . . . , an and regular singularity an+1 that has the prescribed monodromy χ∗. In
the neighbourhood of z = an+1 the fundamental matrix Y (z) of this system
has the form (12):

Y (z) = (z − an+1)−KV (z)(z − an+1)Λn+1 ,

where K is an integer diagonal matrix and V (z) a holomorphically invertible matrix
in this neighbourhood (En+1 = 0 because Gn+1 = I).
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By Bolibrukh’s rearrangement lemma ([2], Lemma 4.1.3) there exists a matrix
Γ(z) holomorphically invertible outside the point an+1 and a matrix U(z) holomor-
phically invertible in a neighbourhood of an+1 such that

Γ(z)(z − an+1)−KV (z) = U(z)(z − an+1)
eK ,

where K̃ is an integer diagonal matrix with entries that are a rearrangement of the
diagonal entries of the matrix −K. Then the transformation y′ = Γ(z)y takes
the above system to another system for which a1, . . . , an remain Fuchsian sin-
gularities (the matrix Γ(z) is holomorphically invertible in the neighbourhood of
these points), while in the neighbourhood of z = an+1 its fundamental matrix
Y ′(z) = Γ(z)Y (z) has the following form:

Y ′(z) = U(z)(z − an+1)
eK(z − an+1)Λn+1 = U(z)(z − an+1)

eK+Λn+1 .

Thus, the point an+1 is also Fuchsian for the transformed system because the
coefficient matrix

B′(z) =
dY ′

dz
Y ′−1 =

dU

dz
U−1 + U

K̃ + Λn+1

z − an+1
U−1

has a simple pole at this point. Furthermore, all the solutions of the so-constructed
system are single-valued meromorphic functions in the neighbourhood of z = an+1

and the sum R of the Poincaré ranks of the singular points is equal to zero.
Using Lemma 2 we now construct a Fuchsian differential equation with

monodromy χ∗ such that the number m of apparent singular points satisfies the
inequality

m 6
(n + 1)p(p− 1)

2
.

Bearing in mind that z = an+1 is also an apparent singularity of the so-constructed
equation with respect to originally prescribed singular points a1, . . . , an we obtain
the required estimate. (It is assumed in the definition of an apparent singularity
that solutions of the equation are single-valued holomorphic in its neighbourhood,
and we only know so far that they are meromorphic. However, after the transfor-
mation y′ = (z − an+1)Ny of the unknown function y(z), where N is the highest
order of the pole at an+1 of the solutions of the constructed equation, we obtain a
Fuchsian equation with the same singularities and monodromy that now has holo-
morphic solutions in the neighbourhood of z = an+1.) The proof of Theorem 2 is
complete.

In the case of a representation (2) for which the Riemann–Hilbert problem has
an affirmative solution, the estimate of above-proved Theorem 2 can be refined in
a natural way to m 6 np(p − 1)/2 (because the representation is realized by a
Fuchsian system with prescribed singularities a1, . . . , an). In particular, one can
obtain this estimate for an irreducible representation χ, which is weaker than (17).
Hence one cannot earnestly call Theorem 2 a generalization of relation (17) to the
case of an arbitrary representation; it is rather a supplement to this relation.
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§ 5. Meromorphic reduction of a linear system

The problem of the transformation of a system of linear differential equations in
the neighbourhood of an irregular (that is, not a regular) singularity to a Birkhoff
standard form reads as follows (the singular point is normally put at infinity).

Consider a system

z
dy

dz
= C(z)y, C(z) =

r∑
n=−∞

Cnzn, (18)

of p linear differential equations in a neighbourhood O∞ = {z ∈ C : |z| > R} of an
irregular singularity ∞ of Poincaré rank r (Cr 6= 0).

A linear transformation
ỹ = Γ(z)y (19)

takes (18) to the system

z
dỹ

dz
= C̃(z)ỹ, C̃(z) = z

dΓ
dz

Γ−1 + ΓC(z)Γ−1. (20)

One chooses (19) to be either analytic (with Γ(z) holomorphically invertible in O∞),
so that one speaks about the analytic equivalence of the systems (18) and (20),
or meromorphic (the matrix Γ(z) is meromorphically invertible in O∞), when one
speaks about the meromorphic equivalence of these systems. An analytic trans-
formation does not change the Poincaré rank of the original system, whereas a
meromorphic one can increase or decrease the Poincaré rank.

If the matrix C̃(z) of the transformed system (20) has the polynomial form

C̃(z) = C̃r′zr′
+ · · ·+ C̃0, C̃r′ 6= 0, (21)

and r′ 6 r, then one says that the system (20), (21) is a Birkhoff standard form of
the original system (18).

An analytic transformation of a linear system to a Birkhoff standard form is not
always possible: a counterexample was discovered by Gantmakher (see [8]).

We say that a system (18) is reducible if it can be reduced by a transforma-
tion (19) to a system (20) with block upper-triangular matrix of coefficients C̃(z):

C̃(z) =
(

C ′ ∗
0 C ′′

)
(22)

(irrespective of whether the transformation is analytic or meromorphic: one can
show that if a system (18) is reduced to the form (22) by a meromorphic transfor-
mation, then it can also be reduced to a similar block upper-triangular form by a
holomorphic transformation). Otherwise we say that the system (18) is irreducible.

One sufficient condition for the reduction of a linear system to a Birkhoff stan-
dard form by an analytic transformation is due to Bolibrukh: if a system (18) is
irreducible, then it can be analytically transformed into a Birkhoff standard form
(see [2], [1], [3]).

The question of the existence of a meromorphic transformation of a linear system
to the Birkhoff standard form is not yet resolved. As is known, this question has an
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affirmative answer in dimensions p = 2 and p = 3; one also knows various conditions
for an affirmative solution in an arbitrary dimension p (one can learn details from
Balser’s survey [9]).

Using meromorphic transformations (19) one can always reduce the system (18)
to the polynomial form (20), (21) (of higher Poincaré rank r′ though). In this
section we obtain an estimate for r′. We shall consider only reducible systems
(since one can always transform analytically an irreducible system to a Birkhoff
standard form).

We can assume that the matrix C(z) of the coefficients of the system (18) has a
block upper-triangular form:

C(z) =

C1(z) ∗ ∗

0
. . . ∗

0 0 Cm(z)

 , (23)

where C1, . . . , Cm are irreducible blocks of sizes p1, . . . , pm, respectively, 2 6 m 6 p.
By [10] this system has a formal fundamental matrix Ŷ (z) of the following form:

Ŷ (z) = F̂ (z)zLeQ(z), (24)

where F̂ (z) is a formal (matrix) Laurent series (in 1/z) of block upper-triangular
form (23) with finite principal part such that det F̂ (z) is distinct from the zero series;
L is a constant block upper-triangular matrix of the form (23) such that the real
parts of the eigenvalues of L lie in the half-open interval [0, 1); Q(z) is a diagonal
matrix with polynomials of z1/s on the diagonal (for some positive integer s) of
degree at most r (with respect to z).

The formal substitution of the matrix Ŷ (z) in the system (18) makes it a correct
identity (although the series F̂ (z) can have an empty convergence annulus).

For a further discussion we require the following technical result.

Lemma 3. One can transform the system (18), (23) by means of a meromorphic
transformation (19) into a system (20) of a similar block upper-triangular form
of Poincaré rank at most r and with formal fundamental matrix (24), where the
formal Laurent series F̂ (z) is replaced by

Ŵ (z) =
∞∑

n=0

Wnz−n,

which is an invertible (in the sense that det W0 6= 0) formal Taylor series in 1/z.

Proof. By an analogue of Sauvage’s lemma (see [11]) for formal series, one obtains

U(z)F̂ (z) = zDŴ (z),

where U(z) is an upper-triangular (matrix) polynomial of z and 1/z (detU(z) ≡ 1),
D is a diagonal integer matrix, Ŵ (z) is a formal invertible (matrix) Taylor series
in 1/z (of the block upper-triangular form (23) because Ŵ (z) = z−DU(z)F̂ (z)).
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The required meromorphic transformation is defined by the upper-triangular matrix
Γ(z) = z−DU(z).

The Poincaré rank of the transformed system is equal to the Poincaré rank of
the system with fundamental matrix Y (z) = zLeQ(z) (because the formal analytic
transformation ỹ = Ŵ−1(z)y does not change the Poincaré rank) and the coefficient
matrix

C ′(z) = z
dY

dz
Y −1 = z

d

dz
(zLeQ(z))e−Q(z)z−L = L + zL

(
z

dQ

dz

)
z−L.

The (generally speaking, fractional) degree of the polynomial z dQ/dz is at most r,
and the real parts of the eigenvalues of L lie in the half-open interval [0, 1), therefore
the leading power in the expansion of the matrix C ′(z) is strictly less than r + 1.
However, C ′(z) contains only integer powers of z, so that this degree is at most r.
The proof of Lemma 3 is complete.

One can study the problem of the reduction of a linear system to the Birkhoff
standard form, similarly to the Riemann–Hilbert problem, by means of the theory of
holomorphic bundles with connections (see [1], [3]). We shall use the main methods
of these papers for the proof of the following result.

Theorem 3. Using a meromorphic transformation (19) one can transform the sys-
tem (18), (23) into a system (20) with matrix of coefficients C̃(z) having the poly-
nomial form (21), where

r′ 6 1 + r max
16j6m

pj .

Proof. Consider the fundamental matrix Y (z) of the system (18) having the same
block upper-triangular form as the matrix (23) of the coefficients of the system.
Then

Y (z) = T (z)zE ,

where

T (z) =

T 1(z) ∗ ∗

0
. . . ∗

0 0 Tm(z)

 , E =
1

2πi
lnG =

E1 ∗ ∗

0
. . . ∗

0 0 Em

 . (25)

The matrix T (z) is single-valued and holomorphically invertible in O∞ \ {∞}, G is
the monodromy matrix of the system (18) (with respect to the basis of the columns
of Y (z)), and the eigenvalues ρj of the matrix E satisfy the condition

0 6 Re ρj < 1, j = 1, . . . , p.

From the system (18) we construct over the Riemann sphere a holomorphic
vector bundle F with coordinate description F = (O∞, O0 = C, g∞0 = T (z)).
The matrix-valued differential 1-forms

ω0 =
E

z
dz, ω∞ =

C(z)
z

dz,
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defined in the neighbourhoods O0 and O∞, respectively, define a connection ∇ in
the bundle F because in the intersection O0 ∩O∞ = O∞ \ {∞} they satisfy gluing
condition (4):

ω∞ =
C(z)

z
dz = (dY )Y −1 = (dT )T−1 +T

(
E

z
dz

)
T−1 = (dg∞0)g−1

∞0 +g∞0ω0g
−1
∞0.

It follows from the form (25) of the cocycle g∞0(z) = T (z) that the bundle F
has a family of subbundles 0 = F 0 ⊂ F 1 ⊂ · · · ⊂ Fm = F ,

F j/F j−1 =
(
O∞, O0 = C, gj

∞0 = T j(z)
)
, j = 1, . . . ,m.

The matrix-valued differential 1-forms ωj
0 = (Ej/z) dz and ωj

∞ = (Cj(z)/z) dz,
which are defined in O0 and O∞, respectively, define a connection ∇j in the
quotient bundle F j/F j−1 constructed from the irreducible system z dy/dz = Cj(z)y
of size pj . For the splitting type (kj

1, . . . , k
j
pj

) of this bundle we have the inequalities

0 6 kj
i − kj

i+1 6 r, i = 1, . . . , pj − 1 (26)

([2], Proposition 4.5.1, see also [1], [3]).
In view of Lemma 3, we can assume that the formal fundamental matrix Ŷ (z)

of the system (18), (23) has the form

Ŷ (z) = Ŵ (z)zLeQ(z),

where Ŵ (z) is an invertible (matrix-valued) formal Taylor series (in 1/z) of the
block upper-triangular form (23), and the matrices L and Q(z) = diag(Q1(z), . . . ,
Qm(z)) are the same as in (24). Hence the formal fundamental matrices Ŷ j(z) of
the systems z dy/dz = Cj(z)y have the following representations:

Ŷ j(z) = Ŵ j(z)zLj

eQj(z), j = 1, . . . ,m

(we denote by Ŵ j(z) and Lj the diagonal blocks of the matrices Ŵ (z) and L,
respectively).

It follows now by Liouville’s formula d ln det Ŷ j(z) = trωj
∞ that

res∞ trωj
∞ = res∞

(
d det Ŵ j

det Ŵ j
+

trLj

z
dz + d trQj

)
= − trLj .

Hence
pj∑

i=1

kj
i = deg F j/F j−1 = res0 trωj

0 + res∞ trωj
∞ = tr Ej − trLj ,

and since the real parts of the eigenvalues of the matrices Ej and Lj lie in [0, 1), it
follows that

− pj <

pj∑
i=1

kj
i < pj , j = 1, . . . ,m. (27)
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Inequalities (26) and (27) yield

−pj − 1
2

r − 1 < kj
pj

6 · · · 6 kj
1 <

pj − 1
2

r + 1, j = 1, . . . ,m.

We have thus obtained for the coefficients kj
i of the splitting type of each bundle

F j/F j−1 the common estimate

|kj
i | < 1 +

r

2
(

max
16j6m

pj − 1
)
. (28)

By the definition of equivalent vector bundles, for the cocycle gj
∞0(z) of the

bundle F j/F j−1 we have the matrix relation

Hj
∞(z)gj

∞0(z) = z−Kj Hj
0(z), j = 1, . . . ,m,

where Kj = diag(kj
1, . . . , k

j
pj

) and Hj
∞ and Hj

0 are matrices holomorphically invert-
ible in O∞ and O0, respectively. Denoting by H∞(z) the block diagonal matrix
H∞ = diag(H1

∞, . . . ,Hm
∞) we obtain

H∞g∞0 =

z−K1H1
0 ∗ ∗

0
. . . ∗

0 0 z−KmHm
0

 = z−Kg′∞0, (29)

where K = diag(K1, . . . ,Km), g′∞0(z) is a cocycle holomorphically invertible in
O∞ \ {∞} and equivalent to the identity cocycle, which means that one can trans-
form the matrix g′∞0 into the identity matrix by multiplication by a holomorphically
invertible matrix in O∞ on the left and by a holomorphically invertible matrix in O0

on the right. We can demonstrate this as follows.
Let H0(z) be the block diagonal matrix

H0 = diag(H1
0 , . . . ,Hm

0 ).

Then

g′∞0H
−1
0 =

1 ∗ ∗

0
. . . ∗

0 0 1

 .

We now explain by the example of a matrix of size p = 2 that the upper-triangular
cocycle

g̃∞0(z) =
(

1 a
0 1

)
is equivalent to the identity cocycle. A holomorphic function a(z) in O∞ ∩O0 can
be represented as a sum a(z) = a−(z) + a+(z) of a holomorphic function a−(z)
in O∞ and a holomorphic function a+(z) in O0. Hence(

1 −a−

0 1

) (
1 a
0 1

) (
1 −a+

0 1

)
=

(
1 a+

0 1

) (
1 −a+

0 1

)
=

(
1 0
0 1

)
.
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As regards the case of an upper-triangular cocycle g̃∞0(z) of arbitrary size p with
ones on the main diagonal, one acts in a similar fashion, multiplying on the left
by upper-triangular matrices with ones on the main diagonal that are holomorphic
in O∞, multiplying on the right by upper-triangular matrices with ones on the
diagonal holomorphic in O0, and transforming the columns of g̃∞0 one after another
into the corresponding columns of the identity matrix.

Thus, we obtain for the cocycle g′∞0(z) the factorization

g′∞0(z) = G∞(z)G0(z),

where G∞ and G0 are block upper-triangular matrices (23) holomorphically invert-
ible in O∞ and O0, respectively. Hence by (29),

G−1
∞ zKH∞g∞0 = G0.

This matrix relation means that there exists a linear system

z
dy

dz
= C ′(z)y, (30)

on the entire Riemann sphere with just two singular points, 0 and ∞, that is ana-
lytically equivalent in O0 = C to the system dy = ω0y (so that 0 is a Fuchsian
singularity of (30), and therefore the matrix C ′(z) is holomorphic in C) and mero-
morphically equivalent in O∞ to the system dy = ω∞y, that is, to the original
system (18). The meromorphic equivalence in O∞ is defined by means of a linear
transformation with matrix Γ(z) = G−1

∞ zKH∞, which is therefore a composite of
three transformations, the first and the third of which do not change the Poincaré
rank at ∞. Thus, the Poincaré rank r′ of the system (30) at ∞ is equal to the
Poincaré rank of the system obtained from (18) by the linear transformation with
matrix Γ2(z) = zK . The matrix C ′′(z) of coefficients of such a system has the form

C ′′(z) = K + zKC(z)z−K ,

therefore r′ = r+maxi,j |ki−kj | (where the ki are diagonal entries of the matrix K).
By the estimate (28),

|ki − kj | 6 1 + r
(

max
16j6m

pj − 1
)
,

therefore C ′(z) is a polynomial of degree

r′ 6 1 + r max
16j6m

pj .

The proof of Theorem 3 is complete.

Corollary 2 (Bruno [12]). The system (18) with upper-triangular matrix of coeffi-
cients can be reduced by a meromorphic transformation (19) to a Birkhoff standard
form, which is also upper triangular.

Proof. Since the matrix C(z) of the coefficients of (18) is upper triangular, it follows
that max16j6m pj = 1 and it follows by the estimate (28) that K (from the previous
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theorem) is the zero matrix. Thus, one reduces the upper-triangular system (18)
to the polynomial form (21) by means of a meromorphic transformation (19) with
upper-triangular matrix Γ(z) = G−1

∞ H∞Γ1 not increasing the Poincaré rank
(Γ1 is the upper-triangular matrix from Lemma 3, H∞ is a diagonal matrix, and
G∞ is the upper-triangular matrix from the previous theorem). The proof of
Corollary 2 is complete.
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