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Linear Codes With Covering Radius , and Saturating
Sets in Projective Geometry

Alexander A. Davydov, Stefano Marcugini, and Fernanda Pambianco

Abstract—Infinite families of linear codes with covering radius = 2,
3 and codimension + 1 are constructed on the base of starting codes
with codimension 3 and 4. Parity-check matrices of the starting codes are
treated as saturating sets in projective geometry that are obtained by com-
puter search using projective properties of objects. Upper bounds on the
length function and on the smallest sizes of saturating sets are given.

Index Terms—Covering codes, covering density, covering radius, satu-
rating sets in projective geometry.

I. INTRODUCTION

We consider covering codes, saturating sets in the projective geom-
etry, and connections between these objects.

Let Fq be the Galois field of q elements. A q-ary linear code with
codimension r has covering radius R if every r-positional q-ary
column is equal to a linear combination ofR columns of a parity-check
matrix of this code and R is the smallest value with such property. For
an introduction to coverings of vector spaces over finite fields and to
the concept of code covering radius, see [3].

Let PG (v; q) be the v-dimensional projective space over Fq . For
an introduction to such spaces and the geometrical objects therein, see
[14], [15]. We say that a set of points S � PG (v; q) is % -saturating if
for any point x 2 PG (v; q) there exist % + 1 points in S generating a
subspace of PG (v; q) in which x lies and % is the smallest value with
such property, cf. [4, Definition 1.1], [8], [11]. In [2], saturating sets
are called “R-spanning sets.”

A %-saturating set of n points is called minimal if it does not contain
a %-saturating set of n � 1 points [8].

Denote by [n; n�r]qR a q-ary linear code of length n, codimension
r, and covering radiusR. An [n; n�r]qR code with minimum distance
d is denoted by [n; n � r; d]qR. The points of a %-saturating n-set in
PG (r� 1; q) can be considered as r-dimensional columns of a parity-
check matrix of an [n; n�r]qR code withR = %+1[2], [4], [8], [11].

This work is devoted to infinite families of codes with covering ra-
dius R = 2, 3 and codimension r = Rt + 1. The families are con-
structed on the base of “short” [n; n � 3]q2 and [n; n � 4]q3 codes
which are used as starting codes in qm-concatenating constructions. To
get these codes, we obtain “small” 1-saturating sets in PG (2; q) and
2-saturating sets in PG (3; q) and then we treat them as parity-check
matrices of the needed short codes. Saturating sets are obtained by com-
puter search using their geometrical properties. We apply computer re-
sults of [8], [11] and new ones obtained in this work.

The qm-concatenating constructions [3]–[5], [10], [13] take a code
of covering radiusRwith small codimension as a starting code and pro-
duce an infinite family of codes with the same covering radius and with
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almost the same covering density. A parity-check matrix of a starting
code is repeated qm times in a parity-check matrix of a new code.
The length function l(r;R; q) is the smallest length of an [n; n �

r]qR code [2]. Tables of upper bounds on l(r; 2; q), r � 24, are pub-
lished in [10] for q = 3, 5, in [12] for q = 4, in [13] for q = 7. Tables
of upper bounds on l(r; 3; 3), r � 24, are given in [4], see also [1].
For R = 2, q � 8 and R = 3, q � 4, a number of general results

are described in [4], [5], [13]. Good infinite code families withR = 2,
r = 2t + 1, q = p2, and R = 2, 3, r = tR, q � 7, are given in [5],
[13]. But results with relatively good parameters for R = 2, q � 8,
q 6= p2, and R = 3, q � 4, with r = tR + 1 have not been obtained
yet (in general, the case r = tR + 1 is harder than tR). This work in
part fills this gap for some ranges of q. We obtained infinite families of
[n; n�(2t+1)]q2 codes for 7 � q � 859, q = 907; 1009; 1109;1163;
and [n; n � (3t + 1)]q3 codes for 4 � q � 343, q = 401, 499, and
q = p3. When code length tends to infinity, covering density of new
families is bounded from above by constants. New families withR = 2
have code length and covering density smaller than known ones. For
R = 3, r = 3t+ 1, we do not know corresponding families described
in the literature. Finally, the new code families can be treated as infinite
families of saturating sets.
Denote by k(v; q; %) the smallest possible size of a %-saturating set

in the geometry PG (v; q). Obviously, l(r;R; q) = k(r�1; q; R�1):
Small saturating sets described in this work give upper bounds on
k(2; q; 1), k(3; q; 2), and, therefore, on l(3;2; q), l(4;3; q).
A linear code with R � d � 2 can be called nonlengthening since

one cannot add any column to a parity-check matrix without reducing
the code distance d. Nonlengthening [n; n�3; 4]q2 quasi-perfect min-
imum-distance separable (MDS) [3] codes correspond to complete arcs
in PG (2; q), their short variants have been widely studied [7], [14],
[15]. Nonlengthening [n; n � 4; 5]q3 quasi-perfect MDS codes corre-
spond to complete arcs in PG (3; q) [15]. But our knowledge on short
[n; n � 4; 5]q3 codes or on small complete arcs in PG (3; q) is insuf-
ficient [15]. In the process of finding small 2-saturating sets we ob-
tained small complete arcs (i.e., short [n; n � 4; 5]q3 MDS codes) for
all spaces PG (3; q) considered in this correspondence. For q � 9, we
showed by computer that these arcs and codes have the smallest pos-
sible sizes.
In Section II, upper bounds on k(2; q; 1) = l(3;2; q) are given.With

the use of these bounds, infinite families of [n; n�(2t+1)]q2 codes are
constructed. In Section III, upper bounds on k(3; q; 2) = l(4;3; q) are
obtained. In Section IV, a qm-concatenating construction is described
and infinite families of [n; n � (3t + 1)]q3 codes are formed on the
basis of this construction and the bounds of Section III. The Appendix
gives the classification of some minimal 2-saturating sets in PG (3; q).
The classification is obtained in the process of forming the required
saturating sets and has independent importance.

II. FAMILIES OF CODES WITH COVERING RADIUS 2 AND

CODIMENSION 2t + 1

At first, we consider small 1-saturating sets in PG (2; q). Let
l(r;R; q) and k(v; q; %) be the smallest known values of l(r;R; q)
and k(v; q; %). Evidently, l(r;R; q) = k(r � 1; q; R � 1). Values
of k(2; q; 1) for 3 � q � 587 are given in [8, Tables 1, 4].
For 593 � q � 809, we can consider the table in [7] with the
smallest known sizes of complete arcs in PG (2; q) as such arcs are
minimal 1-saturating sets [8]. In this work, for 593 � q � 859,
q = 907;1009; 1109;1163; by computer search [6] we obtained
minimal 1-saturating sets with smaller sizes than arcs of [7]. So, sets
of [6] for q � 593 give values of k(2; q; 1) = l(3;2; q), see Table I.
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TABLE I
NEW UPPER BOUNDS l = l(3; 2; q) ON THE LENGTH FUNCTION

l(3;2; q) FOR q � 593

For q = p2, we apply [4, Theorem 5.2]. In [6] randomized greedy
algorithms [7], [8] are used.

Using [8, Tables 1, 4] and Table I of this work, one can obtain
(counting 3

p
q and 4

p
q) the following result.

Theorem 1: Let Q2 = f907; 1009;1109; 1163g. For l(3;2; q) =
k(2; q; 1) it holds that

l(3;2; q) � aq
p
q; aq < 3; if 2 � q � 109

aq < 4; if 113 � q � 859; q 2 Q2: (1)

In [5, Example 6] under the condition that there exists a starting
[nq; nq � 3]q2 code with nq < q, an infinite family of [n; n � r]q2
codes is designed with parameters

R =2; r = 2t� 1; t = 4; 6 and t � 8; nq < q

n =nqq
t�2 + 2qt�3; if 2nq � q + 1

n =nqq
t�2 + 2qt�3 + qt�4; if 2nq > q + 1: (2)

By [8, Tables 1, 4] and Table I, there are [nq;2; nq;2 � 3]q2 codesWq

where nq;2 = l(3;2; q) = aq
p
q < q, the estimates of aq are given

by (1), 2nq;2 � q + 1 if 19 � q � 859, q 2 Q2, 2nq;2 > q + 1 if
7 � q � 17. So, we may use results of (2) takingWq as the starting
codes. We change r = 2t � 1 by r = 2t + 1 and obtain the infinite
families A1, A2 of [n; n � r]q2 codes with parameters

R =2; r = 2t+ 1; t = 3; 5 and t � 7; nq;2 = aq
p
q < q

A1:n =nq;2q
t�1 + 2qt�2; 19 � q � 859 and q 2 Q2 (3)

A2:n =nq;2q
t�1 + 2qt�2 + qt�3; 7 � q � 17: (4)

Let

�q(n;R;C) =

R

i=0

(q � 1)i
n

i
qr(C)

be the covering density of an [n; n� r(C)]qR code C . For an infinite
family Aj consisting of [n; n � r(Aj;n)]qR codes Aj;n we consider
the value

�q(R;Aj) = lim inf
n!1

�q(n;R;Aj;n):

In �q(R;Aj) one may omit Aj .
By (1), (3), and (4), we can obtain the estimates �q(2;Aj) <

n2q;2=2q = a2q=2, j = 1, 2, i.e.,

�q(2;A1) � �q(2;A2) < 4:5; if 7 � q � 109

�q(2;A1) < 8; if 113 � q � 859; q 2 Q2:

So, in the infinite familiesA1,A2 with 7 � q � 859, q 2 Q2, the cov-
ering density is bounded from above by constants, e.g., �593(2;A1) �
6:8, �701(2;A1) � 7:1.

In [5, Example 6] for q 6= p2, the densities

�q(2) � (q + 4 + 6q�1 � 11q�3)=8

for q odd, and

�q(2) � (q + 6 + 9q�1 � 4q�2)=8

for q even, are given. Densities from [5] depend on q and are essentially
greater than those in this work, e.g., by [5], �593(2) � 74, �701(2) �
88.

III. SMALL 2-SATURATING SETS IN PG (3; q) AND STARTING CODES

WITH R = 3

An n-arc in a space PG (3; q) is a set of n points, no four of which
are coplanar [15]. An n-arc is called complete if it is not contained in
an (n+ 1)-arc. A complete arc in PG (3; q) is a minimal 2-saturating
set [8]. A cap is a set of points, no three of which are collinear [14],
[15]. We call a set of typeC a 2-saturating set in PG (3; q) that is a cap
but not an arc since it contains four coplanar points. Finally, we call a
usual set a 2-saturating set in PG (3; q) that is neither a cap nor an arc
since it contains three collinear points.
So, to find small 2-saturating sets in PG (3; q) we should research

three directions: complete arcs, sets of type C , and usual sets. Points
of a 2-saturating set in PG (3; q) treated as four-dimensional columns
form a parity-check matrix of an [n; n � 4; 3]q3 code for a usual set,
an [n; n � 4; 4]q3 code for a set of type C , and an [n; n � 4; 5]q3
quasi-perfect MDS code for a complete arc.
Let t(3; q) be the smallest size of a complete arc in PG (3; q). Denote

by n(4; q) the smallest length of a nonlengthening [n; n�4; 5]q3MDS
code, see Introduction. Let t(3; q) and n(4; q) be the smallest known
values of t(3; q) and n(4; q). Obviously, t(3; q) = n(4; q), and

l(4;3; q) = k(3; q; 2) � t(3; q) = n(4; q) � t(3; q) = n(4; q):

In [11] for q � 16, a table of k(3; q; 2) is given without notes on
the corresponding code distances. Therefore, we performed a com-
puter search [9] by the three directions mentioned for 2 � q � 59.
We again applied randomized greedy algorithms, see [7], [8]. Besides,
other approaches close to [7], [8], [17] were used. For small q, exhaus-
tive algorithms based on backtracking have been applied. To reduce the
search space, equivalence properties among sets of points of PG (3; q)
have been exploited. To find interesting examples for greater values of
q we used a backtracking algorithm that works with sets of points of
PG (3; q) consisting of orbits of special subgroups of the collineation
group P�L(4; q).
The results of computer search of [9] for q � 59 are summarized

in Table II. Besides, some results having independent importance
are given in the Appendix. In Table II, we denote t = t(3; q),
l = l(4;3; q). Subscripts indicate the minimum distance d of corre-
sponding [l(4;3; q); l(4;3; q)�4; d]q3 codes. Entries “3; 4; 5,” “3; 4,”
“4; 5” mean that distinct types of 2-saturating sets give the same
result. The point indicates the exact bounds with l(4;3; q) = l(4;3; q)
or t(3; q) = t(3; q). Bounds with l(4;3; q) = l(4;3; q) are known by
[16], quoted in [11], and confirmed by exhaustive computer search in
this work [9], see the Appendix. Bounds with t(3; q) = t(3; q) are
obtained in this work, again see the Appendix.
Let Q3 = f401;499g. For 61 � q � 343, q 2 Q3, a computer

search is executed in [9] only for complete arcs to save computer time.
In this case, t(3; q) = l(4;3; q). The results are summarized in Table III
where l = l(4;3; q) = t(3; q) and all code distances d = 5. Note that
all 2-saturating sets used for determining values in Tables II and III are
minimal.
Using Tables II and III one can obtain (counting 4

p
q and 5

p
q) the

following.
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TABLE II
UPPER BOUNDS l = l(4; 3; q) ON THE LENGTH FUNCTION l(4;3; q)

FOR q � 59

TABLE III
UPPER BOUNDS l = l(4;3; q) ON THE LENGTH FUNCTION l(4;3; q)

FOR q � 61

Theorem 2: For l(4;3; q) = k(3; q; 2) and t(3; q) = n(4; q) it
holds that

l(4; 3; q) � bq
p
q; bq < 4; if 4 � q � 59

bq < 5; if 61 � q � 343; q 2 Q3

t(3; q) � cq
p
q; cq < 4; if 4 � q � 59; q 6= 7

cq < 5; if q = 7; 61 � q � 343; q 2 Q3: (5)

IV. FAMILIES OF CODES WITH COVERING RADIUS 3 AND

CODIMENSION 3t + 1

All matrices and columns below are q-ary. An element of Fq
written in a q-ary matrix denotes an m-dimensional column vector
that is a q-ary representation of this element, and vice versa, we can
treat anm-dimensional column vector as an element of Fq .

We give a qm-concatenating construction based on the ideas of [4,
Theorem 3.1].We use an [n0; n0�r0]q3 starting code V0 with a parity-
check matrix HHH0 = [f1f2 � � � fn ] where columns fj 2 Fq . Let
m � 1 be an integer such that qm � 1 � n0. The parity-check matrix
HHH of a new code V contains r0 + 3m rows and has the form

HHH = [AAA BBB1 BBB2 . . . BBBn ] (6)

where AAA and BBBj are matrices which we now define.
Let 0v be the zeromatrix with v rows. Denote byWWWm a parity-check

matrix of the [wm;q; wm;q�m]q1Hamming code withwm;q = (qm�

1)=(q � 1). Let TTT 2m be a parity-check matrix of a [t2m;q; t2m;q �
2m]q2 code V2m. Then

AAA =

0
r

0
r

WWWm 0
m

0
2m TTT 2m

:

We denote f�1; �2; . . . ; �q g = Fq , �j 2 F �

q , j = 1; 2; . . . ; n0,
F �

q = Fq nf0g. We put �i 6= �j when i 6= j (it is possible since
qm � 1 � n0). Then

BBBj =

fj fj � � � fj
�1 �2 � � � �q
�j�1 �j�2 � � � �j�q
�2j �1 �2j �2 � � � �2j �q

; j = 1; 2; . . . ; n0:

Theorem 3: The matrix HHH of (6) is a parity-check matrix of an
[n; n�r]q3 codeV with covering radius 3 and parametersn = qmn0+
wm;q + t2m;q, r = r0 + 3m.

Proof: We prove that the code V has covering radius 3. We show
that any arbitrary nonzero column (a; b; c; d) 2 Fq Fq Fq Fq can
be represented by a linear combination of at most three columns of
HHH: Since the starting code V0 has covering radius 3, we always have
a = sfi+ tfj +ufk with distinct i; j; k and s; t; u 2 Fq . We consider
four cases.
Case 1) s 6= 0, t 6= 0, u 6= 0. We find the values of �x, �y , �z from

the equation system

s�x + t�y + u�z = b

s�i�x + t�j�y + u�k�z = c

s�2i �x + t�2j �y + u�2k�z = d

the determinant of which

stu(�j � �i)(�k � �i)(�k � �j) 6= 0

since �i 6= �j if i 6= j. As a result

(a; b; c; d) = s(fi; �x; �i�x; �
2

i �x)

+ t(fj ; �y; �j�y; �
2

j �y) + u(fk; �z ; �k�z ; �
2

k�z):

Case 2) s 6= 0, t 6= 0, u = 0. We find the values of �x, �y from the
system

s�i�x + t�j�y = c

s�2i �x + t�2j �y = d:

The determinant st�i�j(�j � �i) 6= 0 as �i, �j 2 F �

q ,
�i 6= �j . If b = s�x + t�y then

(a; b; c; d) = s(fi; �x; �i�x; �
2

i �x) + t(fj; �y; �j�y; �
2

j �y):

Else to get bwe add to the linear combination for (a; b; c; d)
one column of the left submatrix of AAA with some q-ary
coefficient.

Case 3) s 6= 0, t = u = 0. We find �x putting s�x = b. If
c = s�i�x and d = s�2i �x then

(a; b; c; d) = s(fi; �x; �i�x; �
2

i �x):

Else, to get c and d we add to the linear combination for
(a; b; c; d) one or two columns from the right submatrix of
AAA with some q-ary coefficients.

Case 4) s = t = u = 0. Hence a = 0. By the direct sum construc-
tion [3], the last 3m rows of AAA are a parity-check matrix
of a code with covering radius 3 and (0; b; c; d) is a linear
combination of at most three columns ofAAA.
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TABLE IV
ALL SIZES k OF MINIMAL 2-SATURATING k-SETS IN PG (3; q) AND

VALUES OF Nd
q;k

TABLE V
CLASSIFICATION OF THE SMALLEST MINIMAL 2 -SATURATING k -SETS

IN PG (3; q)

As the codes V2m one can use results of [5, Example 5], [13] where
by qm-concatenating constructions infinity families of [t2m;q; t2m;q�
2m]q2 codes are obtained with parameters

R =2; t2m;q = 2qm�1 + qm�2;

if m = 2; 3; 5 and m � 7; q = 7; 8 and q � 11 (7)

R =2; t2m;q = 2qm�1 + qm�2 + qm�3;

if m = 3; 5; 8; 9 and m � 11; q = 4; 5; 9: (8)

Let there exist an [nq;3; nq;3 � 4]q3 code with nq;3 � qM � 1:We
can use it as the starting code V0 for Theorem 3, put m � M , and
obtain an infinite family of [n; n � r]q3 codes with

R =3; r = 3(m+ 1) + 1; n = nq;3q
m +

qm � 1

q � 1
+ t2m;q

nq;3 � qM � 1;m �M: (9)

By Tables II and III, there exist [nq;3; nq;3 � 4]q3 codes Kq where
nq;3 = l(4;3; q) = bq

p
q, the estimates of bq are given by (5), nq;3 �

q�1 if 8 � q � 343, q 2 Q3, nq;3 � q2�1 if 4 � q � 7. The codes
Kq can be used as the starting codes V0 for Theorem 3. We substitute
(7) and (8) into (9), change 3(m + 1) by 3t, and obtain the infinite
families A3, A4 of [n; n � r]q3 codes with parameters

A3:R =3; r = 3t+ 1; t = 3; 4; 6 and t � 8;

q =7; 8 and 11 � q � 343; q 2 Q3;

n = nq;3 q
t�1 + 3qt�2 + 2qt�3 +

qt�3 � 1

q � 1
(10)

A4:R =3; r = 3t+ 1; t = 4; 6; 9; 10 and t � 12;

q =4; 5; 9;

n = nq;3 q
t�1 + 3qt�2 + 2qt�3 + 2qt�4 +

qt�4 � 1

q � 1
: (11)

TABLE VI
CLASSIFICATION OF THE GREATEST MINIMAL 2 -SATURATING k -SETS

IN PG (3; q)

By (5), (10), and (11), we can get the estimates

�q(3;A3) � �q(3;A4) < n3q;3=6q = b3q=6

i.e.,

�q(3;A3) � �q(3;A4) < 11; if 4 � q � 59

�q(3;A3) < 21; if 61 � q � 343; q 2 Q3:

Let q = p3. As the code V0 for Theorem 3 we take the [6p � 2;
6p� 6]q3 code based on [11, Theorem 6]. As V2m we use codes of (7)
and obtain the infinite code family A5 with

A5:R =3; r = 3t+ 1; t = 3; 4; 6 and t � 8;

q = p3; vq = 6p� 2; �q(3;A5) < v3q=6q < 36;

n = vqq
t�1 + 3qt�2 + 2qt�3 + (qt�3 � 1)=(q� 1):

So, for the infinite families A3, A4 with 4 � q � 343, q 2 Q3,
and A5 with q = p3 the covering density is bounded from above by
constants.

APPENDIX

We give results on the classification of minimal 2-saturating sets in
PG (3; q). Let d 2 f3; 4; 5g be the distance of a [k; k � 4; d]q3 code
obtained when points of a 2-saturating k-set are treated as columns of
a parity-check matrix, see Section III. By Nd

q;k we denote in PG (3; q)
the number of projectively distinct minimal 2-saturating k-sets corre-
sponding to a [k; k � 4; d]q3 code.
In the 2-saturating sets written in tables, similarly to [7], [8], [11], we

represent elements ofFq as follows. If q is prime,Fq=f0; 1; . . . ; q�1g
and we operate on these elements modulo q. If q is a power of a prime,
we denote

Fq = f0; 1 = �0; 2 = �1; . . . ; q � 1 = �q�2g
where � is a primitive element. For q = 4 we use the polynomial
x2 + x + 1.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 3, MARCH 2004 541

TABLE VII
SIZES k OF THE SMALLEST MINIMAL k -SATURATING k -SETS IN PG (3; q)
AND THE NUMBERS Nd

q;k OF PROJECTIVELY DISTINCT SETS, q = 7; 8; 9

All 2-saturating sets in tables have 0001; 0010; 0100;1000 as the
first four points. We denote by li (resp., �i) the number of lines (resp.,
planes) having i intersections with the given set. “Order of stab.” means
the order of stabilizer group for the given set.

Contents of Tables IV–VII are given in their captions, for Ta-
bles IV–VI we have q � 5.
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Linear Codes From Narrow Ray Class Groups of
Algebraic Curves

Chaoping Xing

Abstract—By employing the narrow ray class groups of algebraic curves
and the Hurwitz genus formula, we construct a class of linear codes over
prime fields with reasonable parameters. In particular, we obtain some new
codes compared with Brouwer’s table [1].

Index Terms—Class number, codes, curves, divisors, ray class group.

I. INTRODUCTION

Since the discovery of the Goppa geometry codes [4], various
constructions of codes from algebraic curves and varieties have been
studied [11], [2], [6], [14]–[16]. In terms of asymptotic results, the
constructions by Goppa [4], Katsman–Tsfasman [11], Vlăduţ [13],
Elkies [3], and Xing [14] are quite powerful and interesting. However,
not every construction achieving the asymptotically good codes is also
powerful for codes with finite parameters or over small alphabets.
Because of this, researchers have been looking for other constructions
based on algebraic curves to obtain good codes with finite parameters
(see [2], [6], [15], [16]).
In this correspondence, we make use of the narrow ray class groups

to give a construction of linear codes over prime fields. It turns out that
the codes have reasonable parameters and some new codes are found.

II. CONSTRUCTIONS

Before proceeding to our construction, we introduce narrow ray class
groups of algebraic curves.
When we speak of an algebraic curve over the finite field FFF q , we al-

ways mean a smooth, projective, absolutely irreducible algebraic curve
defined over FFF q . If X is such a curve, simply denoted by X =FFF q , then
we write g(X ) for the genus ofX . A point ofX is calledFFF q-rational if
it has homogeneous coordinates which all belong toFFF q . LetN(X=FFF q)
denote the number of FFF q-rational points of X=FFF q . According to the
Weil bound

N(X ) � q + 1 + 2g(X )
p
q

the following definition makes sense.
For any prime power q and any integer g � 0, put

Nq(g) := maxN(X=FFF q);

where the maximum is extended over all curvesX=FFF q with g(X ) = g.
We fix an FFF q-rational point P of X=FFF q . Then every element in the

divisor class group C`(X=FFF q) ofX=FFF q can be represented as a divisor
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