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Linear Codes With Covering Radius 2, 3 and Saturating
Sets in Projective Geometry

Alexander A. Davydov, Stefano Marcugini, and Fernanda Pambianco

Abstract—Infinite families of linear codes with covering radius R = 2,
3 and codimension t R 4 1 are constructed on the base of starting codes
with codimension 3 and 4. Parity-check matrices of the starting codes are
treated as saturating sets in projective geometry that are obtained by com-
puter search using projective properties of objects. Upper bounds on the
length function and on the smallest sizes of saturating sets are given.

Index Terms—Covering codes, covering density, covering radius, satu-
rating sets in projective geometry.

I. INTRODUCTION

We consider covering codes, saturating sets in the projective geom-
etry, and connections between these objects.

Let F, be the Galois field of ¢ elements. A g-ary linear code with
codimension 7 has covering radius R if every r-positional g-ary
column is equal to a linear combination of I? columns of a parity-check
matrix of this code and R is the smallest value with such property. For
an introduction to coverings of vector spaces over finite fields and to
the concept of code covering radius, see [3].

Let PG (v, ¢) be the v-dimensional projective space over F;,. For
an introduction to such spaces and the geometrical objects therein, see
[14], [15]. We say that a set of points S C PG (v, q) is ¢ -saturating if
for any point # € PG (v, ¢) there exist ¢ + 1 points in S generating a
subspace of PG (v, ¢) in which x lies and g is the smallest value with
such property, cf. [4, Definition 1.1], [8], [11]. In [2], saturating sets
are called “R-spanning sets.”

A p-saturating set of n points is called minimal if it does not contain
a p-saturating set of n — 1 points [8].

Denote by [n, n —r]4 R a ¢g-ary linear code of length n, codimension
r, and covering radius R. An [n, n—r], R code with minimum distance
d is denoted by [n,n — r,d],R. The points of a g-saturating n-set in
PG (r — 1, q) can be considered as r-dimensional columns of a parity-
check matrix of an [n, n — 7], R code with R = o+ 1[2], [4], [8], [11].

This work is devoted to infinite families of codes with covering ra-
dius R = 2, 3 and codimension » = Rt + 1. The families are con-
structed on the base of “short” [n,n — 3|42 and [n,n — 4],3 codes
which are used as starting codes in ¢™ -concatenating constructions. To
get these codes, we obtain “small” 1-saturating sets in PG (2, ¢) and
2-saturating sets in PG (3, ¢) and then we treat them as parity-check
matrices of the needed short codes. Saturating sets are obtained by com-
puter search using their geometrical properties. We apply computer re-
sults of [8], [11] and new ones obtained in this work.

The ¢"" -concatenating constructions [3]-[5], [10], [13] take a code
of covering radius R with small codimension as a starting code and pro-
duce an infinite family of codes with the same covering radius and with
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almost the same covering density. A parity-check matrix of a starting
code is repeated ¢™" times in a parity-check matrix of a new code.

The length function I(r, R; q) is the smallest length of an [n,n —
r]q R code [2]. Tables of upper bounds on I(r,2; ¢), 7 < 24, are pub-
lished in [10] for ¢ = 3, 5, in [12] for ¢ = 4, in [13] for ¢ = 7. Tables
of upper bounds on I(r, 3; 3), r < 24, are given in [4], see also [1].

For R = 2,9 > 8and R = 3, ¢ > 4, a number of general results
are described in [4], [5], [13]. Good infinite code families with R = 2,
r=2t+1,q=p*,and R=2,3,7 = tR, ¢ > 7, are given in [5],
[13]. But results with relatively good parameters for R = 2, ¢ > 8,
q# p*, and R = 3, ¢ > 4, with » = tR + 1 have not been obtained
yet (in general, the case » = tR + 1 is harder than ¢t R). This work in
part fills this gap for some ranges of ¢. We obtained infinite families of
[n, n—(2t+1)]42 codesfor 7 < ¢ < 839,¢ = 907,1009,1109,1163,
and [n,n — (3t 4+ 1)],3 codes for 4 < ¢ < 343, ¢ = 401, 499, and
¢ = p®. When code length tends to infinity, covering density of new
families is bounded from above by constants. New families with R = 2
have code length and covering density smaller than known ones. For
R = 3,r = 3t + 1, we do not know corresponding families described
in the literature. Finally, the new code families can be treated as infinite
families of saturating sets.

Denote by k(v, ¢, o) the smallest possible size of a g-saturating set
in the geometry PG (v, ¢). Obviously, I(r, R;q) = k(r—1,¢4, R—1).
Small saturating sets described in this work give upper bounds on
k(2,q,1), k(3,¢,2), and, therefore, on (3,2; q), 1(4,3; q).

A linear code with R < d — 2 can be called nonlengthening since
one cannot add any column to a parity-check matrix without reducing
the code distance d. Nonlengthening [r, n — 3, 4],2 quasi-perfect min-
imum-distance separable (MDS) [3] codes correspond to complete arcs
in PG (2, ¢), their short variants have been widely studied [7], [14],
[15]. Nonlengthening [n, n — 4, 5],3 quasi-perfect MDS codes corre-
spond to complete arcs in PG (3, ¢) [15]. But our knowledge on short
[n,n — 4,5],3 codes or on small complete arcs in PG (3, ¢) is insuf-
ficient [15]. In the process of finding small 2-saturating sets we ob-
tained small complete arcs (i.e., short [, n — 4, 5],3 MDS codes) for
all spaces PG (3, ¢) considered in this correspondence. For ¢ < 9, we
showed by computer that these arcs and codes have the smallest pos-
sible sizes.

In Section II, upper bounds on k(2, ¢, 1) = 1(3, 2; ¢) are given. With
the use of these bounds, infinite families of [n, n —(2¢+1)],2 codes are
constructed. In Section III, upper bounds on %(3, ¢, 2) = 1(4, 3; ¢) are
obtained. In Section IV, a ¢ -concatenating construction is described
and infinite families of [n,n — (3¢ 4+ 1)],3 codes are formed on the
basis of this construction and the bounds of Section III. The Appendix
gives the classification of some minimal 2-saturating sets in PG (3, ¢).
The classification is obtained in the process of forming the required
saturating sets and has independent importance.

II. FAMILIES OF CODES WITH COVERING RADIUS 2 AND
CODIMENSION 2t + 1

At first, we consider small 1-saturating sets in PG(2,q). Let
I(r,R;q) and k(v,q, 0) be the smallest known values of I(r, R; q)
and k(v, ¢, o). Evidently, I(r, R;q) = k(r — 1,¢q, R — 1). Values
of k(2,q,1) for 3 < ¢ < 587 are given in [8, Tables 1, 4].
For 593 < ¢ < 809, we can consider the table in [7] with the
smallest known sizes of complete arcs in PG (2, ¢) as such arcs are
minimal 1-saturating sets [8]. In this work, for 593 < ¢ < 859,

= 907,1009, 1109, 1163, by computer search [6] we obtained
minimal 1-saturating sets with smaller sizes than arcs of [7]. So, sets
of [6] for ¢ > 593 give values of k(2,¢,1) = 1(3,2;¢), see Table L.
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_ TABLE 1
NEW UPPER BOUNDS I = I(3,2;¢) ON THE LENGTH FUNCTION
1(3,2;q)FoR ¢ > 593

q 1 q 1 q 1 q 1 q 1
593 90 | 643 95 | 709 101 | 769 106 839 111
599 91 | 647 95 | 719 102 | 773 106 853 113
601 91 | 653 9 | 727 102 | 787 107 857 113
607 91 | 659 9 | 729 80 | 797 108 859 113
613 92 | 661 9 | 733 102 | 809 109 907 117
617 92 | 673 98 | 739 103 | 811 110 [ 1009 124
619 92 | 677 98 | 743 104 | 821 110 | 1109 132
625 74 | 683 99 | 751 105 | 823 110 | 1163 135
631 94 | 691 99 | 757 105 | 827 110
641 95| 701 100 | 761 105 | 829 110

For ¢ = p?, we apply [4, Theorem 5.2]. In [6] randomized greedy
algorithms [7], [8] are used.

Using [8, Tables 1, 4] and Table I of this work, one can obtain
(counting 3,/q and 4,/q) the following result.

Theorem 1: Let Q2 = {907,1009,1109,1163}. For1(3,2;¢q) =
k(2,4,1) it holds that
1(3,2;9) < ag/q,  aq <3,

aq <4,

if2 < ¢ < 109

if113< ¢ <839, ¢ € Qs. (1)

In [5, Example 6] under the condition that there exists a starting
[rg,ng — 3]42 code with n, < g, an infinite family of [n,n — r],2
codes is designed with parameters

R=2, r=2t—-1, t=4,6andt>8, n,<gq
n = n,,,q"_2 + 2qt_3, if2n, <g¢+1
n = n,qq"_2 +2¢"7F 441, if 2ny > ¢+ 1. 2)
By [8, Tables 1, 4] and Table I, there are [ng,2,nq,2 — 3]42 codes W,
where ng 2 = 1(3,2;¢q) = aq,/q < g, the estimates of a, are given
by (1), 2nge < g+ 1if19 < ¢ < 859,9 € Q2,2n,52 > ¢+ 1if
7 < ¢ < 17. So, we may use results of (2) taking W, as the starting
codes. We change » = 2t — 1 by r = 2t 4 1 and obtain the infinite
families A1, Ay of [n,n — r],2 codes with parameters
R=2 r=2t+1, t=3,5andt>7, ngo=uaq/q<¢q
Avin=ng2q"™ +2¢"77, 19< ¢ <859 and g € Qo (3)
Apin=ng0q™" +2¢"2 4477, T< g < 1T )
Let

R
pg(n, R,C) = ;(q 1y (/;) /qr(C)

be the covering density of an [n, n — 7(C')]4 R code C'. For an infinite
family A; consisting of [n,n — r(A;j )] R codes A; , we consider
the value

(R, Aj) = liminf pig (n, R, Ajin).

In 7, (R, A;j) one may omit Aj.
By (1), (3), and (4), we can obtain the estimates 77, (2, 4;) <
neof2¢ =a./2,j =1,2,ie,
7, (2, A) R i, (2, As) <45, i 7 < q <109
ﬁq(Z,.A1)<8, if 113 < ¢ <839, ¢ € Qo.
So, in the infinite families A, A2 with 7 < ¢ < 859, g € ()2, the cov-

ering density is bounded from above by constants, e.g., fi5g5 (2, A1) =
6'8’ ﬁ701(2> A] ) ~ 7.1.
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In [5, Example 6] for ¢ # p?, the densities
f,(2) = (q+4+6¢"" —11¢7%)/8
for ¢ odd, and
,(2) = (g +6+9¢" —4g%)/8

for ¢ even, are given. Densities from [5] depend on ¢ and are essentially
greater than those in this work, e.g., by [5], T595(2) = 74, 70, (2) =
88.

III. SMALL 2-SATURATING SETS IN PG (3, ¢) AND STARTING CODES
WITH R = 3

An n-arc in a space PG (3, ¢) is a set of n points, no four of which
are coplanar [15]. An n-arc is called complete if it is not contained in
an (n + 1)-arc. A complete arc in PG (3, ¢) is a minimal 2-saturating
set [8]. A cap is a set of points, no three of which are collinear [14],
[15]. We call a set of type C' a 2-saturating set in PG (3, q) that is a cap
but not an arc since it contains four coplanar points. Finally, we call a
usual set a 2-saturating set in PG (3, ¢) that is neither a cap nor an arc
since it contains three collinear points.

So, to find small 2-saturating sets in PG (3, ¢) we should research
three directions: complete arcs, sets of type C, and usual sets. Points
of a 2-saturating set in PG (3, ¢) treated as four-dimensional columns
form a parity-check matrix of an [, n — 4, 3],3 code for a usual set,
an [n,n — 4,4],3 code for a set of type C, and an [n,n — 4,5]43
quasi-perfect MDS code for a complete arc.

Let ¢(3, q) be the smallest size of a complete arc in PG (3, ¢). Denote
by n.(4, ¢) the smallest length of a nonlengthening [n, n— 4, 5],3 MDS
code, see Introduction. Let #(3, ¢) and 72(4, q) be the smallest known
values of (3, ¢) and n(4, ¢). Obviously, t(3,¢) = n(4,q), and

1(4,3:9) = k(3,4,2) < #(3,9) = n(4,q) <3,q) =7(4,9).

In [11] for ¢ < 16, a table of k(3,¢, 2) is given without notes on
the corresponding code distances. Therefore, we performed a com-
puter search [9] by the three directions mentioned for 2 < ¢ < 59.
We again applied randomized greedy algorithms, see [7], [8]. Besides,
other approaches close to [7], [8], [17] were used. For small ¢, exhaus-
tive algorithms based on backtracking have been applied. To reduce the
search space, equivalence properties among sets of points of PG (3, ¢)
have been exploited. To find interesting examples for greater values of
q we used a backtracking algorithm that works with sets of points of
PG (3, q) consisting of orbits of special subgroups of the collineation
group PT'L(4,q).

The results of computer search of [9] for ¢ < 59 are summarized
in Table II. Besides, some results having independent importance
are given in the Appendix. In Table I, we denote ¥ = #(3,q),
1 = 1(4,3;¢). Subscripts indicate the minimum distance d of corre-
sponding [1(4,3; q),1(4,3; ¢) — 4, d],3 codes. Entries “3, 4, 5,” “3,4,”
“4,5” mean that distinct types of 2-saturating sets give the same
result. The point indicates the exact bounds with 1(4, 3; ¢) = 1(4, 3; ¢)
ort(3,q) = #(3, q). Bounds with /(4,3; ¢) = 1(4,3; ¢) are known by
[16], quoted in [11], and confirmed by exhaustive computer search in
this work [9], see the Appendix. Bounds with #(3.q) = #(3,q) are
obtained in this work, again see the Appendix.

Let Q3 = {401,499}. For 61 < ¢ < 343, ¢ € (3, a computer
search is executed in [9] only for complete arcs to save computer time.
In this case, #(3, ¢) = 1(4, 3; ¢). The results are summarized in Table III
where I = 1(4,3; q) = #(3,¢) and all code distances d = 5. Note that
all 2-saturating sets used for determining values in Tables II and III are
minimal.

Using Tables IT and III one can obtain (counting 4 ¢/q and 5 /q) the
following.
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o TABLE 1I
UppPER Bounps [ = [(4, 3; ¢) oN THE LENGTH FuNCTION [(4, 3; ¢)
FOR ¢ < 59
q 1 t q 1 t q 1 t
2 534 16 9345 9|37 1245 12
3 ba5 5. 17 93,4,5 9 41 133,45 13
4  bBs. 5. 19 94,5 9 | 43 1345 13
5 6345 6|23 1045 10 | 47 14345 14
7 Tsa. 8. | 25 llgas 11 | 49 14345 14
8 Tsas. 7. |27 1lzas 11 | 53 15345 15
9 T4 8 |20 1145 11 |59 1545 15
11 8345 8 |31 114 12
13 845 8 | 32 12345 12
o TABLE III
UpPER BoUNDs I = [(4,3; ¢) ON THE LENGTH FUNCTION (4, 3; q)
FOR ¢ > 61
q 1 q 1 q 1 q 1 qg 1
61 16 109 20 | 167 24 | 233 27 | 289 30
64 16 113 20 | 169 24 | 239 28 | 293 30
67 16 121 21 173 24 | 241 28 | 307 30
71 16 125 21 179 24 | 243 28 | 311 31
73 17 127 21 181 25 | 251 28 | 313 31
79 17 128 21 191 25 | 256 28 | 317 31
81 18 131 22 193 25| 257 28 | 331 32
83 18 137 22 197 25 | 263 28 | 337 33
89 18 | 139 22 | 199 25| 269 29 | 343 33
97 19 149 23 | 211 27 | 271 29 | 401 34
101 19 151 23 | 223 27 | 277 29 | 499 37
103 19 | 157 23 | 227 27 | 281 30
107 20 | 163 24 | 229 27 | 283 29

Theorem 2: For l[(4,3;q9) = k(3,¢,2) and t(3,q) = n(4,q) it

holds that
by <5, if61<¢<343, ¢ € Qs
1(3,q) Ceqdfq, cq <4, f4<qg<B9, ¢#£T
cq <5, ifqg=7, 61 <q<343, g € Q3. (5)

IV. FAMILIES OF CODES WITH COVERING RADIUS 3 AND
CODIMENSION 3t + 1

All matrices and columns below are g-ary. An element of Fym
written in a g-ary matrix denotes an m-dimensional column vector
that is a g-ary representation of this element, and vice versa, we can
treat an m-dimensional column vector as an element of Fiym .

We give a ¢"*-concatenating construction based on the ideas of [4,
Theorem 3.1]. We use an [no, ng —ro] 3 starting code Vy with a parity-
check matrix Ho = [fif2--- fn,] Where columns f; € F,ro. Let
m > 1 be an integer such that ¢"* — 1 > ng. The parity-check matrix
H of anew code V' contains 79 + 3 rows and has the form

H-[A B, B B, ©)
where A and B; are matrices which we now define.

Let 0" be the zero matrix with v rows. Denote by W ,,, a parity-check
matrix of the [w.n ¢, Wy ,q —m],; 1 Hamming code with w,,, o = (¢™ —
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1)/(q¢ — 1). Let T3y, be a parity-check matrix of a [t2m,q, t2m,q —
2m],2 code Vz,,,. Then

0"° 0o
A=W, | o”
02m T2m

We denote {&1,&a,...,&m} = Fym, Bj € Fym,j = 1,2,...,nq,
qm = Fem\{0}. We put 3; # §; when i # j (it is possible since
q" — 1 > no). Then

fi i
& 3 Eqm
B, = =1,2, n
T sG BE e Biem ’ ’
CHINH S CHIE

Theorem 3: The matrix H of (6) is a parity-check matrix of an
[n, n—r],3 code V with covering radius 3 and parameters n = ¢ no+
Wm,q + tom g, 7 = 10 + 3m.

Proof: We prove that the code V' has covering radius 3. We show
that any arbitrary nonzero column (a, b, ¢, d) € Fyro Fym Fym Fym can
be represented by a linear combination of at most three columns of
H. Since the starting code V5 has covering radius 3, we always have
a=sfi+tf;+ufr withdistinctz, j, k and s, ¢, v € F},. We consider
four cases.

Case 1) s # 0,t # 0, u # 0. We find the values of &, &, £- from

the equation system

SE.T + tEy + “’E: =10
S/B‘i&.r + tﬁ]fy + 'u,kaz =c
sB2E, + 1036, +upit. =d

the determinant of which
stu(B; = B:)(Bk — Bi)(Br — B5) #0
since 3; # 3, if i # j. As aresult
(a,b,¢,d) = s(fis &o, Bika, B 60)
+ 85 600 B8y, B7€0) + ulfi &o, Br€e BRE2).

Case2) s # 0,t # 0, w = 0. We find the values of &, £, from the
system

58:6r + 10,6y =
026, + tﬂ?‘ﬁy =d.

The determinant st3;3;(53; — 8:) # 0 as 3, B; € Fym,
Bi # B, 16b = s&, + t€, then

(a,b,c,d) = s(fi, o, Bibas B762) +H(Fis Eys Bi€y. By

Else to get b we add to the linear combination for (a, b, ¢, d)
one column of the left submatrix of A with some g-ary

coefficient.

Case3) s # 0,t = « = 0. We find ¢, putting s§, = b. If
c = s3:& andd = 587, then

(a,b,¢,d) = 5(fir Eur Biko, L)

Else, to get ¢ and d we add to the linear combination for
(a,b,c,d) one or two columns from the right submatrix of
A with some g-ary coefficients.

Case4) s =t = u = 0. Hence a = 0. By the direct sum construc-

tion [3], the last 3m rows of A are a parity-check matrix
of a code with covering radius 3 and (0, b, ¢, d) is a linear
combination of at most three columns of A. O
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TABLE 1V
ALL SIZES k OF MINIMAL 2-SATURATING k-SETS IN PG (3, ¢) AND
VALUES OF N; k

q 2 3 4 5
k| N3 g N o N33 | N3 Na g N3 i | NE i Nig N2 | N3 i Noi N5 g
51 1 1 0 0 1 1 0 0 1
6 1 0 0 1 0 0 1 2 1
7 2 2 0 6 2 0
8 1 0 0
9 1 0 0
TABLE V
CLASSIFICATION OF THE SMALLEST MINIMAL 2 -SATURATING A -SETS
INPG(3,q)
q k mno. Iz I3 w3 ma Sth 6th  Order d
point  point of stab.
2 5 1 10 - 1 1110 4
2 7 1 2 1100 3
3 5 1 10 - 10 - 1111 120 5
2 10 - 1 1220 48 4
4 1 10 - 10 - 1112 240 5
5 1 5 - 20 - 1232 1443 120 5
2 15 - 16 1 1220 1343 4
3 15 - 12 1220 0122 4
4 12 1 10 3 1232 1141 3

As the codes Vs, one can use results of [5, Example 5], [13] where
by ¢ -concatenating constructions infinity families of [¢2.,q, t21m,q —
2m],2 codes are obtained with parameters

R = 2, th,q — qufl =+ qm727
ifm=2,3,5andm >7, ¢q=7,8andqg > 11 (@)
R — 27 t2m,q — 2qm71 =+ qu2 + quS’
ifm=3,5,89andm > 11, ¢=4,5,9. ®)

Let there exist an [ng,3,14.3 — 4]43 code with n, 3 < ¢™ — 1. We
can use it as the starting code Vj for Theorem 3, put m > M, and
obtain an infinite family of [n,n — r],3 codes with
q‘rn _ 1
q- 1 + f‘z‘,m,q

(C)]

R=3, r=3m+1)+1,

m
n=mngs3q -+

ngs < 7 —1,m > M.

By Tables II and III, there exist [nq,3, 74,3 — 4]43 codes K, where
ngs =1(4,3;q) = by /7, the estimates of b, are given by (5), 14,3 <
¢—1if8 < ¢ <343,q € Q3,145 < ¢* —1if4 < ¢ < 7. The codes
KCq can be used as the starting codes V; for Theorem 3. We substitute
(7) and (8) into (9), change 3(m + 1) by 3¢, and obtain the infinite
families A3, A4 of [, n — r]y3 codes with parameters

As:R=3, r=3t+1, t=3,4,6andt > 8,
g=7,8and 11 < ¢ <343, ¢ € Qs,
t—3
_ _ _ -1
77:nq,3qt 1+3q" 2+2qt 3—1—7{](1_1 (10)
Ap:R=3,r=3t+1, t=4,6,9,10andt > 12,
¢=4,9,9,
t—1 t—2 t—3 t—4 qt_4 -1
n=nqg3q +3¢ " +2¢ " +2¢ 4+ —7——. (11)
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TABLE VI
CLASSIFICATION OF THE GREATEST MINIMAL 2 -SATURATING % -SETS
N PG (3,q)
q k mo. la I3 la Is w3 ma w5 mwe 5th-9th Order d
points  of stab.
36 19 - 1 - 4 - 2 - 1100 192 3
1200
4 7 1 21 - - - 15 - - 1 1210 2160 4
1120
1330
4 7 2 21 - - - 7 7 - - 1210 336 4
1013
1203
4 7 3 1 - - 1 S5 - - 2 1100 2160 3
1200
1300
4 7 4 9 4 - - 3 4 - 1 1100 144 3
0110
1110
s 9 1 186 - - 6 - 9 - 0011 72 3
0110
1203
1220
1003

By (5), (10), and (11), we can get the estimates
T (3. As) & T1,(3, A1) < nj 3/6q = b /6
ie.,

T, (3. As) 71, (3, As) <11,
ﬁq(sﬂA'J) < 21

if4 <¢<59

if61 < ¢ <343, g€ Qs.

Let ¢ = p®. As the code V5 for Theorem 3 we take the [6p — 2,
6p — 6]43 code based on [11, Theorem 6]. As V., we use codes of (7)
and obtain the infinite code family A5 with

AsiR=3, r=3t41, t=346andt>8,
=", vy=0p—2, [,(3,As5) < vy/6q <36,
n = ’qutfl + 3qt72 + 2qt*3 =+ (qt*?) _ 1)/(q _ 1)

So, for the infinite families A3z, A4 with 4 < ¢ < 343,¢ € Qs,
and As with ¢ = p? the covering density is bounded from above by
constants.

APPENDIX

We give results on the classification of minimal 2-saturating sets in
PG(3,q). Let d € {3,4,5} be the distance of a [k, k — 4, d],;3 code
obtained when points of a 2-saturating k-set are treated as columns of
a parity-check matrix, see Section III. By N(i » we denote in PG (3, ¢)
the number of projectively distinct minimal 2-saturating k-sets corre-
sponding to a [k, k — 4, d],3 code.

In the 2-saturating sets written in tables, similarly to [7], [8], [11], we
represent elements of Fy as follows. If ¢ is prime, F; ={0,1,...,¢—1}
and we operate on these elements modulo ¢. If ¢ is a power of a prime,

we denote
F,={0,1=a"2=0a',....q—1=0a""7}

where « is a primitive element. For ¢ = 4 we use the polynomial
22+ 2+ 1.
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TABLE VII
SiZES k OF THE SMALLEST MINIMAL % -SATURATING k -SETS IN PG (3, q)
AND THE NUMBERS N;{ 1 OF PROJECTIVELY DISTINCT SETS, ¢ = 7, 8,9

q k NS’{V X N;{ X NS’ %
7 7 15 54

8 7 3 19 1

9 7 0 27 0

All 2-saturating sets in tables have 0001, 0010,0100, 1000 as the
first four points. We denote by [; (resp., 7;) the number of lines (resp.,
planes) having ¢ intersections with the given set. “Order of stab.” means
the order of stabilizer group for the given set.

Contents of Tables IV-VII are given in their captions, for Ta-
bles IV-VI we have ¢ < 5.
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Linear Codes From Narrow Ray Class Groups of
Algebraic Curves

Chaoping Xing

Abstract—By employing the narrow ray class groups of algebraic curves
and the Hurwitz genus formula, we construct a class of linear codes over
prime fields with reasonable parameters. In particular, we obtain some new
codes compared with Brouwer’s table [1].

Index Terms—Class number, codes, curves, divisors, ray class group.

I. INTRODUCTION

Since the discovery of the Goppa geometry codes [4], various
constructions of codes from algebraic curves and varieties have been
studied [11], [2], [6], [14]-[16]. In terms of asymptotic results, the
constructions by Goppa [4], Katsman-Tsfasman [11], Vlddut [13],
Elkies [3], and Xing [14] are quite powerful and interesting. However,
not every construction achieving the asymptotically good codes is also
powerful for codes with finite parameters or over small alphabets.
Because of this, researchers have been looking for other constructions
based on algebraic curves to obtain good codes with finite parameters
(see [2], [6], [15], [16]).

In this correspondence, we make use of the narrow ray class groups
to give a construction of linear codes over prime fields. It turns out that
the codes have reasonable parameters and some new codes are found.

II. CONSTRUCTIONS

Before proceeding to our construction, we introduce narrow ray class
groups of algebraic curves.

When we speak of an algebraic curve over the finite field 4, we al-
ways mean a smooth, projective, absolutely irreducible algebraic curve
defined over F',. If X’ is such a curve, simply denoted by X'/ F,, then
we write g(X') for the genus of X'. A point of X’ is called F'4-rational if
it has homogeneous coordinates which all belong to F';. Let N (X' /F,)
denote the number of F,-rational points of X'/F,. According to the
Weil bound

N(X) < q+1+29(X) 7

the following definition makes sense.
For any prime power ¢ and any integer g > 0, put

Ny(g) := max N(X/F,),

where the maximum is extended over all curves X'/ F'y with g(X') = g¢.
We fix an F,-rational point P of X'/ F,. Then every element in the
divisor class group C{(X /F ;) of X / F; can be represented as a divisor
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