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ABSTRACT

Investigation of spatial discretizations, even in simplest cases, is collided with essential difficul-
ties and requires to develop rather non-standard methods, as indicated in [1, 2, 3, 4, 5]. Typical
in this respect is the problem of analysis of discretization of the planar rotation mapping which
demonstrates that often the behaviour of initial continuous mapping may differ dramatically
from that of its discrete counterpart. In the paper it is shown that, while the analysis of discrete
analogs of the planar rotation mapping is quite difficult, the pair “discretization of an original
mapping + discretization of the inverse mapping” may have strongly correlated properties.

INTRODUCTION

As was noted by many authors [1, 2], the research of spatial discretizations even of simplest
mappings is conjugated with significant theoretical difficulties, and often behaviour of initial
continuous mappings differs dramatically from that of their discrete analogs. The task to
research the phase portrait for discretization of the planar linear rotation mapping is typical in
this respect. Some approaches to investigation of originating problems, requiring developments
of rather non-standard methods, are indicated in works [3, 4, 5]. However complete clearness
concerning connection of properties of discretized mappings and their continuous counterparts
is not until now present.

The present work continues investigation of properties of discretizations of the planar ro-
tation mapping. It is shown, in particular that, though an analysis of discrete analogs of the
planar rotation mapping faces serious difficulties, the pair of mappings “discretization T zθ of
the rotation mapping Tθ on an angle θ” plus “discretization T z−θ of the inverse mapping T−θ”
has a strongly correlated behaviour, that can be expressed in a rather simple dynamics of the
mapping T z−θ ◦ T zθ .

Structure of work is as follows. In Section 1 the problem is stated and the main Theorem 1
about a finiteness of trajectories of the mapping T z−θ ◦ T zθ is formulated. In Section 2 the
approach reducing research of the mapping T z−θ◦T zθ on the lattice Z2 to some auxiliary piecewise
continuous mapping Jθ on a square with geometrically clear properties is described. It is
necessary to note, that the initial research of properties of mapping T z−θ ◦T zθ has been based on
geometric constructions “distributed throughout the whole space R2”. The approach presented
below essentially utilizes ideas of I. Vladimirov, indicated by him during discussion of the
mentioned “distributed” constructions. In Section 3 the analysis of trajectories of the mapping
Jθ is carried out. At last, in Section 4 the proof of the basic Theorem 1 is presented.



1 STATEMENT OF THE PROBLEM

Let Z = {m : m = 0,±1,±2, . . .} be the lattice of points with integer coordinates in R1, and let
Z2 := Z×Z = {(m,n) : m,n = 0,±1,±2, . . .} be the lattice of points with integer coordinates
in R2. Denote by [[x]] the operator of rounding off up to nearest integer on the straight line R1

defined in the usual manner: [[x]] = i where i ∈ Z is such that x − 1
2
≤ i < x + 1

2
. Similarly,

define coordinate-wise the operator of rounding off up to nearest integer on the plane R2:

[[x]] = ([[x1]], [[x2]]) ∈ Z2, x = (x1, x2) ∈ R2.

We shall consider the mapping of a rotation of the plane R2 on an angle θ, 0 ≤ θ ≤ π
2
,

around the origin

x 7→ Tθx, where Tθ =

[
cos θ − sin θ
sin θ cos θ

]
.

Associate with the mapping Tθ its discretization1 on the lattice Z2 ⊂ R2 defined as

T zθ x := [[Tθx]], x ∈ Z2.

The problem on correspondence of properties of the mapping Tθx and its discrete analog
T zθ x is far from being simple. Thus properties of mapping

Iθ(x) = [[T−θ[[Tθx]]]], x ∈ Z2

yield to a more detailed research. Taking into account that Iθ ≡ T z−θ ◦T zθ , and that the mapping
T z−θ is possible to treat as the natural applicant to be a “mapping converse to T zθ ”, then the
properties of mapping Iθ are clearly important for understanding of a “degree of reversibility
or irreversibility” of the mapping T zθ on Z2. The main result of the paper is then as follows.

Theorem 1 If θ = kπ
2

then Iθ = I. If 0 < θ < π
2

then for each trajectory {x(n)}∞n=0 of the
mapping Jθ a non-negative number

Nx ≤

[∣∣cos θ
2
− sin θ

2

∣∣
2 cos θ

2
sin θ

]
,

can be found such that x(n) = x(Nx) for n ≥ Nx. If, in addition, Nx > 0 then

x(1)− x(0) = x(2)− x(1) = . . . = x(Nx)− x(Nx − 1). (1)

Geometrically, relations (1) mean, that all the elements {x(n)}∞n=0 lay on the intersection
of some straight line, parallel to one of the coordinate axes, with the lattice Z2.

2 PASSAGE TO A MAPPING ON A SQUARE

In this Section a construction reducing the analysis the mappings Iθ on Z2 to analysis of an
auxiliary piecewise continuous mapping defined on the square

Π =

[
−1

2
,
1

2

)
×
[
−1

2
,
1

2

)
⊂ R2

1In view of obvious “symmetry” of properties of mapping T zθ at a modification of an angle θ on magnitude
multiple to π

2 , we restrict ourselves by reviewing only the case 0 ≤ θ ≤ π
2 .



is described.
Denote by {x} := x − [[x]] the operator of taking the fractional part of a vector; clearly,

{x} ∈ Π for any vector x ∈ R2. Consider also the set

Πθ =
{
x ∈ Π : x = {Tθz} , z ∈ Z2

}
⊂ Π,

associated with the mapping Iθ (or Tθ), and define on it the mapping

Jθ(x) =
{
x− Tθ[[T−1

θ x]]
}
, x ∈ Π.

Lemma 1 The relations (Jθ|Πθ
◦ Sθ) (x) = (Sθ ◦ Iθ) (x) and [[T−θSθ(x)]] = x − Iθ(x), where

Sθ(x) := {Tθx}, are valid for any x ∈ Z2.

According to Lemma 1 the mapping Sθ establishes the relation of semi-conjugacy between
the mappings Jθ|Πθ

and Iθ. Conditions, under which the mapping Sθ is one-to-one are formu-
lated in the following Lemma 2.

Lemma 2 The mapping Sθ establishes a one-to-one correspondence between the lattice Z2 and
the set Πθ only in the case when at least one of the values cos θ or sin θ is irrational.

From Lemma 1 it follows that the analysis of dynamics of the mapping Iθ on Z2 can be
reduced to that of the mapping Jθ on its invariant set Πθ. In turn, for the analysis of properties
of the mapping Jθ on Πθ ⊂ Π it is enough to study properties of this mapping on area Π, as
will be done in the present Section.

Introduce auxiliary notations. Consider the set T−1
θ Π (see Fig. 1); it consists of four non-

overlapping triangles Π(−1,0), Π(1,0), Π(0,−1), Π(0,1), not belonging to square Π, and also of the
octagon Π ∩ T−1

θ Π, entirely lying in the square Π. Therefore the set [[T−1
θ Π]] consists of five

elements of the lattice Z2, points with coordinates (−1, 0), (1, 0), (0,−1), (0, 1) and (0, 0).
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Figure 1: Mutual disposition of the sets Π, Π ∩ T−1
θ Π and Π(i,j).



The pre-images of points (−1, 0), (1, 0), (0,−1), (0, 1) at mapping x 7→ [[T−1
θ x]] are the

triangles (see Fig. 2) Π(nw),Π(ne),Π(sw),Π(se) ⊂ Π, and the pre-image of the point (0, 0) is the
octagon

Π(c) = Π\
{

Π(nw) ∪ Π(ne) ∪ Π(sw) ∪ Π(se)
}
.

Hereinafter some properties of defined above sets will be important for us.
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Figure 2: Action of the mapping Jθ on the square Π.

Lemma 3 In each pair of the triangles
{

Π(−1,0),Π(1,0)

}
,
{

Π(0,−1),Π(0,1)

}
,
{

Π(nw),Π(se)
}

and{
Π(ne),Π(sw)

}
(See Fig. 1 and 2) the hypotenuse of only one of the triangles in the pair belongs

to the corresponding triangle.

From definition of the sets Π(nw), Π(ne), Π(sw), Π(se) and Π(c) it is easy to see, that on each of
these sets the mapping [[T−1

θ x]] (and the mapping Tθ[[T
−1
θ x]] together with it) takes a constant

value, i.e. there can be found vectors s(nw), s(ne), s(sw) s(se) and s(), such that

Tθ[[T
−1
θ x]] =


s(nw) for x ∈ Π(nw),
s(ne) for x ∈ Π(ne),
s(sw) for x ∈ Π(sw),
s(se) for x ∈ Π(se),
s(c) for x ∈ Π(c).

Remark also, that clearly s(c) = 0. At the same time, Euclidean norms of the vectors s(nw),
s(ne), s(sw), s(se) are equal to 1, and each of these vectors is orthogonal to the hypotenuse of the
corresponding triangle Π(nw), Π(ne), Π(sw), Π(se) and is oriented in direction of the center of the
square Π. The proof immediately follows from that fact, that the mapping [[T−1

θ x]] is constant
on each of triangles Π(nw), Π(ne), Π(sw) and Π(se) and takes one of the values (−1, 0), (1, 0),
(0,−1), (0, 1), while the linear mapping Tθ is orthogonal, i.e., preserves angles and distance.

Thus, the following Lemma is proved.



Lemma 4 The mapping Jθ can be represented on the square Π as Jθ(x) = {x − s(x)} where
s(x) ≡ const on each of the sets Π(nw), Π(ne), Π(sw), Π(se) and Π(c). In addition

(i) s(x) ≡ 0 for x ∈ Π(c);
(ii) ‖s(x)‖ = 1 for x ∈ Π(nw) ∪ Π(ne) ∪ Π(sw) ∪ Π(se);
(iii) on each of the triangles Π(nw), Π(ne), Π(sw), Π(se) the vector s(x) is orthogonal to the

diagonal of the corresponding triangle and translates a neighborhood of the right angle of the
corresponding triangle inside of the square Π.

3 FINITENESS OF TRAJECTORIES OF THE MAPPING Jθ

Let now {x(n)} be some trajectory of the mapping Jθ, i.e. the sequence of elements of the set
Π defined by relations:

x(n+ 1) = Jθ(x(n)), n = 0, 1, 2, . . . , x(0) ∈ Π.

Lemma 5 For each trajectory {x(n)}∞n=0 of the mapping Jθ a number Nx can be found such
that all the elements x(n) for n < Nx belong to the same set Π(nw), Π(ne), Π(sw) or Π(se), and
for n ≥ Nx the relations x(n) ≡ x(Nx) ∈ Π(c) hold. In addition, for numbers Nx the following
universal estimate is valid:

Nx ≤

[∣∣cos θ
2
− sin θ

2

∣∣
2 cos θ

2
sin θ

]
.

Proof. If x(0) ∈ Π(c) then, by Statement (i) of Lemma 4, x(1) = Jθ(x(0)) ∈ Π(c), and similarly,
x(n) ∈ Π(c) for all n ≥ 0. Therefore we shall consider only the case, when x(0) ∈ Π(c)\Π. By
definition of the set Π(c), the point x(0) lays in one of the sets Π(nw), Π(ne), Π(sw) or Π(se). Let,
for definiteness, x(0) ∈ Π(nw) (see Fig. 3).
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Figure 3: Behavior of a trajectory of the mapping Jθ.

Form an auxiliary sequence of vectors x̃(n) = x(n − 1) − s(x(n − 1)) for n ≥ 1. Then by
Lemma 4 x(n) = {x̃(n)}. As follows from Statements (ii) and (iii) of Lemma 4 and from Fig. 3



the element x̃(1) is obtained from x(0) by shifting on a vector of unit length along one of sides
of the square TθΠ which is also of unit length. Since, in addition, by Lemma 3 the hypotenuse
of only one of the triangles Π(nw) and Π(se) belongs to the corresponding triangle, then the
element x̃(1) can either hit in the square Π (and to belong thus to the set Π()) or not hit in
this square. In the first case, obviously, x(1) = x̃(1), and then x(1) = x(2) = . . . ∈ Π().

Consider the case when x̃(1) 6∈ Π(). Here either x(1) ∈ Π() and then, as in the previous case
we obtain relations x(1) = x(2) = . . . ∈ Π(), or x(1) = {x̃(1)} 6∈ Π(). In the latter case the only
possible situation is when x(1) = {x̃(1)} ∈ Π(nw).

By repeating above reasonings we obtain that either such a number Nx can be found for
which all the elements x(n), n < Nx, belong to the set Π(nw) and for n ≥ Nx the relations
x(n) ≡ x(Nx) ∈ Π(c) are valid, or x(n) ∈ Π(nw) for all values of n. We shall show that the
second situation is impossible.

As is seen from Fig. 3, |xn(0)− xn+1(0)| = sin θ and the length of the horizontal leg of the
triangle Π(nw) is equal to ∣∣∣∣12 −

(
1

2 sin θ
− 1

2 tan θ

)∣∣∣∣ .
So, not more than [∣∣1

2
−
(

1
2 sin θ

− 1
2 tan θ

)∣∣
sin θ

]
=

[∣∣cos θ
2
− sin θ

2

∣∣
2 cos θ

2
sin θ

]
pairs of points x(n), x(n + 1) can be contained in the set Π(nw) whence the estimate required
in Lemma for the number Nx follows. Lemma is proved.

4 PROOF OF THEOREM 1

The validity of statement of Theorem for θ = kπ
2

is obvious; therefore we shall consider only
the case when 0 < θ < π

2
.

Associate with the trajectory {x(n)} the sequence of vectors u(n) = Sθ(x(n)), n = 0, 1, . . ..
Then from relations x(n+ 1) = Iθ(x(n)) valid for n ≥ 0 we obtain by Lemma 1 that

Jθ(u(n)) = (Jθ ◦ Sθ) (x(n)) = ((Sθ ◦ Iθ) (x(n)) = Sθ(x(n+ 1)) = u(n+ 1).

Therefore, the sequence {u(n)}∞n=0 is a trajectory of the mapping Jθ, and by Lemma 5 a
number Nu can be found such that all the elements u(n), n < Nu, belong to the same set Π(nw),
Π(ne), Π(sw) or Π(se), and for n ≥ Nu relations u(n) ≡ u(Nu) ∈ Π(c) hold. Then by Lemma 1
x(n)− x(n+ 1) = x(n)− Iθ(x(n)) = [[T−θu(n)]] for n ≥ 0 and so, the elements x(n)− x(n+ 1)
for n < Nu belong to one (and the same) of the following one-element sets

[[T−θΠ
(nw)]] or [[T−θΠ

(ne)]] or [[T−θΠ
(sw)]] or [[T−θΠ

(se)]], (2)

and for n ≥ Nu relations x(n) − x(n + 1) ∈ [[T−θΠ
(c)]] hold. For completion of the proof of

Theorem it suffices to note that, by definition, the set of elements (2) coincides with the set of
elements (−1, 0), (1, 0), (0,−1), (0, 1), while the set [[T−θΠ

(c)]] is exactly the point (0, 0).
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