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Abstract

The central problem in machine learning (and statistics) is the problem
of predicting future events xn+1 based on past observations x1x2 . . . xn,
where n = 1, 2 . . .. The main goal is to find a method of prediction
that minimizes the total loss suffered on a sequence x1x2 . . . xn+1 for
n = 1, 2 . . .. We say that a data sequence is “stochastic” if there ex-
ists a simply described prediction algorithm whose performance is close
to the best possible one. This optimal performance is defined in terms
of Vovk’s [8] “predictive complexity”, which is a generalization of the no-
tion of Kolmogorov complexity. Predictive complexity gives a limit on the
predictive performance of simply described prediction algorithms.

In this paper we argue that data sequences normally occurring in the
real world are stochastic; more formally, we prove that Levin’s a priori
semimeasure of non-stochastic sequences is small.

1 Introduction

We present the formal results suggesting some possible explanation of the fol-
lowing phenomenon: for many data sets the performance of the best prediction
algorithms (Support Vector Machines, neural nets, boosting in the prediction
of hand-written digits) is comparable. Possible explanation is based on a new
notion of predictive complexity introduced by Vovk [8], [7] for perfectly mixable
loss functions. We also refer readers to V’yugin [12], Sections 2 and 4, where
some proofs for predictive complexity are given.
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In this paper we consider only perfectly mixable loss functions for which
the optimal predictive complexity exists (see below). The problem of existence
of “sub-optimal measures” of predictive complexity for absolute loss function,
which is not perfectly mixable, is considered in [12].

The predictive complexity of a data sequence gives a lower limit on the
predictive performance of simply described prediction algorithms. We suppose
that the state-of-the-art algorithms attain predictive complexity.

This is not true for all possible data sequences; but we can try to prove this
for “normal”, in some sense, sequences.

Our problem is closely related to Kolmogorov’s theory of stochastic sequences
in probabilistic setting (which corresponds to the log-loss game), see Shen [4].
Similar results for this setting were obtained earlier by V’yugin [9].

The plan of this paper: first we give formal definitions of predictive strategy,
loss function, predictive complexity; then we discuss the notion of a “normal”
sequence (Levin’s philosophy) and define the a priori semimeasure; state our
main results (lower and upper bounds on the a priori semimeasure for non-
stochastic sequences). In Section 5 we prove main results.

2 Background

Suppose we are given a sequence x1, x2, . . . , xi . . . of some data. In this paper
we consider only the simplest case, where xi ∈ {0, 1} (the case, where xi ∈
{0, . . . , L − 1}, L ≥ 2, is considered analogously). Our goal is to predict the
elements of this data set on-line: we predict x1, then predict x2 given x1, . . .,
then predict xi given x1, x2, . . . xi−1, etc. At every step i the loss is measured by
some function λ(xi, pi), where the forecast is a real number pi ∈ [0, 1] and the
actual outcome is xi. We consider only loss functions computable by algorithms.
For example, we consider the squared difference λ(xi, pi) = (xi − pi)2 and the
log-loss function λ(xi, pi) = − log pi if xi = 1 and λ(xi, pi) = − log(1 − pi)
if xi = 0. Here log means logarithm to the base 2. Other loss functions are
considered in Vovk [6].

It is natural to suppose that all predictions are given according to a prediction
strategy (or prediction algorithm) pi = S(x1x2 . . . xi−1), i = 2, . . . (p1 = S(Λ),
where Λ is the empty sequence). The total loss incurred by Predictor who
follows the strategy S over the first n trials x1, x2, . . . , xn is defined

LossS(x1x2 . . . xn) =
n∑
i=1

λ(xi, S(x1x2 . . . xi−1)).

The main task is to minimize the total loss suffered on a sequence x = x1x2 . . . xn
of outcomes. The corresponding game-theoretic interpretation is given in Vovk
[7] or in Vovk and Watkins [8].

Let us fix η > 0 (learning rate) and put β = e−η ∈ (0, 1). A loss function
λ(x, p) is η-mixable if for every sequence p1, p2, . . . of predictions and every
sequence r1, r2, . . . of nonnegative weights, whose sum do not exceed 1, there
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exists a prediction γ such that

λ(j, γ) ≤ logβ
∞∑
i=1

riβ
λ(j,pi)

holds for all j.
The loss function is perfectly mixable if it is η-mixable for some η > 0. It is

known that many popular loss functions such as the log-loss function, square-
loss function, Cover’s loss function, long-short loss function, Kullback–Leibler
loss function, χ2 loss function, Hellinger loss function etc. (see, e.g., [5], [1], [6]
[8]) are perfectly mixable. We can take 0 < η ≤ ln 2 in the case of log-loss
function and 0 < η ≤ 2 in the case of square difference [6].

The important construction in this field is the Vovk’s aggregating algorithm
AA [5], [6]. In the case of perfectly mixable loss functions this algorithm given
a finite sequence of predictive strategies S1, S2, . . . Sk and weights r1, r2 . . . rk,
whose sum do not exceed 1, allows us to define their “mixture” – a prediction
strategy S such that

LossS(x) ≤ logβ
k∑
i=1

riβ
LossSi (x) (1)

for all x, where β = e−η and the corresponding loss function is η-mixable. The
exact construction is given in Section 8.

We fix some universal programming language. Then each computable pre-
diction strategy S is defined by its program, which given a sequence x =
x1, . . . , xi−1, some parameter y and integer number k outputs a rational ap-
proximation of S(x) with accuracy 2−k. By Kolmogorov complexity K(S|y)
of prediction strategy S given parameter y we mean the length of the short-
est program having these properties. Unconditional complexity is defined as
K(S) = K(S|Λ) (for details see [3]).

Now we briefly review the concept of predictive complexity from Vovk and
Gammerman [7] and Vovk and Watkins [8].

It is natural to consider loss processes corresponding to computable pre-
diction strategies S. In this case, the value LossS(x) can be interpreted as
predictive complexity of x. This value, however, depends on S and it is unclear
which S to choose. In the most interesting cases a smallest loss functions does
not exist – given a computable prediction strategy S, it is easy to construct
a computable prediction strategy that greatly outperforms S on at least one
outcome sequence. Levin [13], developing ideas of Kolmogorov and Solomonoff,
suggested (for a particular loss function) a very natural solution to the problem
of nonexistence of a smallest computable loss process. Vovk [7] extended these
ideas in a more general setting – for arbitrary loss prosesses.

A non-negative real-valued function g is called superprediction if there exists
a prediction p such that g(j) ≥ λ(j, p) for all j.

We will say that a function KG(x) is a measure of predictive complexity if
the following two conditions hold:
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1. KG(Λ) = 0 and for each x the function g(j) = KG(xj) − KG(x) is a
superprediction;

2. KG is semicomputable from above, which means that there exists a non-
increasing computable sequence of functions KGt taking rational values
such that for every x, KG(x) = inftKGt(x).

Requirement (1) means that the measure of predictive complexity must be
valid: there must exists a prediction strategy that achieves it. (Notice that if
≥ is replaced by = in the definition of the superprediction a definition of a loss
process will be obtained.) Requirement (2) means that it must be “computable
in the limit”.

Analogously to item (2) a sequence KGi is semicomputable from above, if
there exists a non-increasing by t computable sequence of functions KGti taking
rational values such that, for every i and x it holds KGi(x) = inftKGti(x).

In Vovk and Gammerman [7] and Vovk and Watkins [8] for any η-mixable
loss function an universal measure of predictive complexity was defined

KG(x) = logβ
∞∑
i=1

βKGi(x)2−K(i), (2)

where KGi(x) is semicomputable from above sequence of all measures of pre-
dictive complexity, K(i) is the Kolmogorov prefix complexity of the program i
enumerating KGi from above

For the definition and properties of Kolmogorov prefix complexity we refer
reader to [3], Section 3. This complexity is based on prefix-free code. Any
two programs p1 and p2 under this way of encoding are incompatible as binary
strings. By this reason we have

∑∞
i=1 2−K(i) ≤ 1.

The index i in KGi contains all information needed to enumerate it from
above, so we call i enumerating program of KGi. A sequence KGi is defined in
[12], conditions of items (1) and (2) for KG(x) also are verified in that paper.

By (2) we obtain that for each measure of predictive complexity KGi

KG(x) ≤ KGi(x) + (ln 2/η)K(i), (3)

holds for all x, where ln is the logarithm to the base e.
KG(x) is called the predictive complexity of x.
Let S be any computable predictive strategy and p be a program, which

given a sequence of outcomes x and a degree of accuracy computes a rational
approximation of S(x) with this degree of accuracy. Evidently, there exists a
computable function f translating p to some enumerating program of S such
that

LossS(x) = KGf(p)(x). (4)

In particular, by (3) for every computable prediction strategy S and for every x

KG(x) ≤ LossS(x) + (ln 2/η)(K(S) + c), (5)

where c is a positive constant and K(S) is complexity of S.
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3 A priori semimeasure

The concept of predictive complexity is based on thoughtful ideas of Solomonoff
and Kolmogorov on the existence of the universal objects in some classes of algo-
rithmically effective objects. Solomonoff proposed ideas of defining the a priori
probability distribution on the basis of the general theory of algorithms. The
main problem he met was that the maximal computable probability distribution
does not exist.

Levin [13] gives a precise form of Solomonoff ideas in a concept of a maximal
semimeasure semicomputable from below (see also [3], Section 4.5). A real-
valued function P (x), where x is a finite binary sequence, is called semimeasure
if

• P (Λ) ≤ 1;

• P (x) ≥ P (x0) + P (x1) for all x;

• the function P is semicomputable from below (see item (2) of the analo-
gous definition of predictive complexity).

Levin proved that there exists a maximal to within a multiplicative positive
constant factor semimeasure M semicomputable from below, i.e. for every
semimeasure P semicomputable from below a positive constant c exists such
that the inequality

cM(x) ≥ P (x) (6)

holds for all x.
It is easy to see that the function KL(x) = − logM(x) is a variant of the

predictive complexity for log-loss function (see also [8]). We will prove that
log-loss complexity is the maximal (to within a positive constant factor) among
predictive complexities from a wide class.

Proposition 1 Let λ(ω, p) be any η-mixable loss function satisfying λ(0, 0) =
λ(1, 1) = 0. Then for each δ > 0 a positive constant c exists such that the
following hold

1. KG(x) ≤ (ln 2/η)K(x) + c;

2. KG(x) ≤ (1 + δ)(ln 2/η)KL(x) + c,

where K(x) is the Kolmogorov prefix complexity.

Proof. Let x = x1 . . . xn. To prove the item (1) consider the prediction
strategy S which for every sequence z of length i− 1, where i = 1, . . . , l(x)− 1,
outputs the i-th element xi of x using the shortest program p (in the universal
programming language) generating x and S(z) = 0 for all other z. The length
of p is equal to the prefix complexity K(x). Therefore, K(S) ≤ K(x) + c for
some positive constant c. By definition LossS(x) = 0. The item (1) follows from
(5).
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The item (2) follows from the inequalities between K(x) and KL(x) [3],
Section 4. 2

At the rest of this section we consider some notions needed to give an in-
terpretation of Proposition 3 below. Levin [2] considered combinations of prob-
abilistic and deterministic processes as the most general class of processes of
generating data. With each probabilistic process some computable probability
distribution can be assigned. Each deterministic process is realized by means
of an algorithm. Algorithmic processes transform sequences generated by prob-
abilistic processes into new sequences. More precise, a probabilistic computer
F is a Turing machine supplied with an additional input tape. In the process
of computation this machine reads a sequence ω on this tape and produces a
sequence ω′ = F (ω). We suppose that there is a computable probability distri-
bution µ in the set of all possible ω. So we can calculate the probability

P (x) = µ{ω|x ⊆ F (ω)}

of that the result F (ω) of the computation begins with a finite sequence x.
Strictly speaking, P (x) is not a probability distribution, since F (ω) may be finite
for an infinite ω. It is easy to see that P (x) is a semimeasure semicomputable
from below. The converse result is proved in [13]: for every semimeasure P (x)
semicomputable from below a probabilistic computer F (ω) exists such that

P (x) = µ{ω|x ⊆ F (ω)},

for all x, where µ(x) = 2−l(x) is the uniform probability distribution in the set
of all binary sequences.

Therefore, by (6) M(x) is an universal upper bound of the probability of
generating sequences x by probabilistic computers.

Let A be any set of binary sequences of length n. We define

M(A) =
∑
x∈A

M(x).

Let some property Πn defines for any n a set An of binary sequences of length
n. Then for every probability distribution µ and algorithmic process F there
exists a positive constant c (depending only on µ and F ) such that

µ{ω|F (ω) ∈ An} ≤ cM(An)

for all n. According to our framework, if M(An) −→ 0 as n tends to infinity,
then for all sufficiently large n the sequences of the length n having property
Πn form a scarce part of all objects generating in combinations of deterministic
and probabilistic processes.

4 Stochastic and non-stochastic sequences

Let α and γ be some nonnegative numbers. A sequence x is called (α, γ)-
stochastic if there exists a prediction strategy S such that K(S) ≤ α and

LossS(x)−KG(x) ≤ γ.
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The following Proposition 2 shows that for a wide class of loss functions “non-
stochastic” sequences exist. Consider some conditions for a loss function suffi-
cient to this proposition holds:

1. λ(0, 0) = λ(1, 1) = 0;

2. there exists a positive real number b such that λ(0, p) ≥ b or λ(1, p) ≥ b
for each p;

3. the loss function λ(ω, p) is η-mixable for some η > 0.

The log-loss function and the squared difference satisfy these condition with
b = 1, and b = 1

4 , accordingly.

Proposition 2 For any loss function satisfying the conditions of items (1)–(3)
above a positive constant c exists such that for every n there exists a binary
sequence x of the length n satisfying

1. LossP (x)−KG(x) ≥ bn− (2 ln 2/η)α− (ln 2/η)(log n+ 2 log log n)− c for
each prediction strategy P such that K(P ) ≤ α;

2. M(x) ≥ 2−α−logn−2 log logn−c.

As follows from the proof of Proposition 2 (Section 6.1 below) K(x) ≤ α +
log n+ 2 log log n+ c, i.e. Kolmogorov complexity of x (from Proposition 2) can
be sufficiently small when the total loss of each simple predictive strategy on x
is sufficiently large. This holds since x is defined (in Section 6.1) by diagonal
method in terms of prediction strategies of small complexity.

5 Main result

The predictive complexity determines asymptotically the minimal possible loss
of forecasting. It includes also arbitrarily complex prediction strategies. Here
we impose the restriction K(S) ≤ α, where α reflecting degree of computational
resources allowed. We show that even in the case when α is small with respect
to the length n of binary sequences (for instance α = O(log n)) this can help us
to reach almost the minimal possible total loss incurred over most elements of
the data set.

In this section we estimate how large can be the set of all non-stochastic
sequences of the length n. We prove that the a priori semimeasure of this set is
asymptotically decreases as n increases.

Let Dn
α,γ be the set of all binary sequences of the length n which are not

(α, γ)-stochastic. For every x ∈ Dn
α,γ we have

LossS(x)−KG(x) > γ

for each prediction strategy S such that K(S) ≤ α.
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Proposition 3 • For any perfectly mixable loss function satisfying condi-
tion of item (1) from Section 4 a positive constant c exists such that for
every n, α and 1 ≤ γ ≤ n the estimate

M(Dn
α,γ) =

∑
x∈Dnα,γ

M(x) ≤ 2−α+2 logn+2 log logn−log γ+c (7)

holds;

• If the predictive complexity is based on the log-loss function the correspond-
ing estimate is the following

M(Dn
α,γ) =

∑
x∈Dnα,γ

M(x) ≤ 2−α+logn+2 log logn−log γ+c, (8)

This proposition is a generalization of Theorem 3 [9] for wide class of loss
functions.

Inequality (7) or (8) can be interpreted as an upper bound on the probability
of generating non-stochastic sequences by a probabilistic computer.

For every m by Proposition 3 the probability of generating (α, γ)-stochastic
sequences is ≥ 1− 2−m when α+ log γ > 2 log n+ 2 log log n+ c+m. The last
condition wittingly holds for each 1 ≤ γ ≤ n if

α ≥ 2 log n+ 2 log log n+ c+m. (9)

Proposition 3 shows that given an upper bound α satisfying (9) on the
complexity of prediction strategies most sequences x are stochastic with respect
to a simple prediction strategy Q with K(Q) ≤ α, i.e. LossQ(x) is close to its
minimal value KG(x).

By Proposition 2 non-learnable objects can also exist, but by Proposition 3
and Levin’s philosophy we shall meet them very rarely; non-predictable fluc-
tuations of prices on financial markets form a scarce part in the stream of all
financial data.

Now we formulate the main result which is a corollary from Propositions 2
and 3.

Theorem 1 For any loss function satisfying conditions of items (1)–(3) of Sec-
tion 4 a positive constant c exists such that

2−α−logn−2 log logn−c ≤M(Dn
α,γ) ≤ 2−α+2 logn+2 log logn−log γ+c (10)

for each n, α and 0 ≤ γ ≤ bn− (2 ln 2/η)α− (ln 2/η)(log n+ 2 log log n)− c.

An open problem arises – can we eliminate the logarithmic terms in the
inequalities (10)?

8



6 Proofs

6.1 Proof of Proposition 2

Let the corresponding degree of accuracy sufficient for estimation below is given.
For any α let p1, p2, . . . , pk be all programs of length ≤ α which given this degree
of accuracy terminate for all z, l(z) ≤ n. For any j = 1, . . . k let Pj(z) be an
output of pj on z.

We have k < 2α+1. By means of AA (Section 8) we can define an averaging
prediction strategy Pα such that

LossPα(x) ≤ logβ
k∑
i=1

k−1βLossPi (x). (11)

Let p be a program among p1, p2, . . . , pk with the maximal terminating time.
By means of the program p we recover k and using AA we compute all values
Pα(z), l(z) ≤ n, with corresponding degree of accuracy.

After that we can define a sequence x = x1x2 . . . xn as follows We compute
rational approximations of λ(1, Pα(x1 . . . xs−1)) and λ(0, Pα(x1 . . . xs−1)) from
below until at least one of

λ(1, Pα(x1 . . . xs−1)) > b− 2−(s+1) (12)

or
λ(0, Pα(x1 . . . xs−1)) > b− 2−(s+1) (13)

will hold (it is supposed that x1 . . . xs−1 = Λ for s = 1). By item (2) of
restrictions on loss function the inequality (12) or inequality (13) always will
hold. If (12) was computed the first define xs = 1, and define xs = 0, otherwise.
As follows from the definition LossPα(x) ≥ bn− 1. By (11)

LossPi(x) ≥ bn− (ln 2/η)α− 1

for all i ≤ k (i.e. for all P such that K(P ) ≤ α).
By definition K(x|n) ≤ α + c, for some positive constant c. The ordinary

inequalities between conditional and unconditional prefix complexities (see [3],
Section 3) imply

K(x) ≤ K(x|n) + log n+ 2 log log n+ c (14)

for some positive constant c. Adding item (1) of Proposition 1 we obtain

KG(x) ≤ (ln 2/η)(α+ log n+ 2 log log n) + c

for some positive constant c. Hence, for all P such that K(P ) ≤ α, we have

LossP (x)−KG(x) ≥ bn− (2 ln 2/η)α− (ln 2/η)(log n+ 2 log log n)− c

for some positive constant c.
Since KL(x) ≤ K(x) + c holds for some c (see [3], Section 4.5), by (14) we

have
M(x) ≥ 2−α−logn−2 log logn−c.

2.
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6.2 Proof of Proposition 3

Simple intuitive explanation of the idea of the proof: the α-simple prediction
strategy will be an approximation to the universal “prediction semistrategy”.

Since the universal measure of predictive complexity is semicomputable from
above, the function Q(x) = βKG(x) is lower semicomputable. This means that
there exists a non-decreasing computable sequence of functions ki(x) taking
rational values such that Q(x) = supi ki(x).

The proof is much simpler when KG(x) = KL(x) = − logM(x) is the
Levin’s predictive complexity for log-loss function. In this case β = 1

2 and
Q(x) = M(x). By definition of M we have∑

l(x)=n

βKG(x)(x) =
∑
l(x)=n

M(x) ≤ 1. (15)

Let p be a finite binary sequence representing the rational approximation of the
real number

∑
l(x)=n

M(x) from below with accuracy 2−α. Then using p and n we

can effectively find integer numbers t and k such that the following conditions
hold

1.
∑

l(x)=n

βKG
t,k(x) >

∑
l(x)=n

βKG(x) − 2−α, where

KGt,k(x) = logβ
k∑
i=1

βKG
t
i(x)2−i, and KGti(x) is some rational approxima-

tion from above of KGi(x) computed in t steps.

2. for each x of length ≤ n and for each i ≤ k the difference KGti(xj) −
KGti(x) is a superprediction.

The mixture of superpredictions is also a superprediction (we check this in
Section 8). Then by item (2) the difference KGt,k(xj)−KGt,k(x) is a superpre-
diction for each x of the length ≤ n, and by the definition of the superprediction
and by AA there exists a prediction strategy Q such that

LossQ(x) ≤ KGt,k(x) (16)

for all such x. Since this construction is algorithmically effective,

K(Q|n) ≤ α+ c, (17)

where c is a positive constant.
Temporarily in the definition of Dn

α,γ we will consider prediction strategies
S which is α-simple conditional with respect to n, i.e. such that K(S|n) ≤ α.

By definition for every x ∈ Dn
α,γ we have

LossS(x)−KG(x) > γ

for each prediction strategy S such that K(S|n) ≤ α.
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Therefore, by equation (16) and by item (1) above for every x ∈ Dn
α−c,γ we

obtain

βγ
∑

x∈Dn
α−c,γ

βKG(x) >
∑

x∈Dn
α−c,γ

βLossQ(x) ≥

∑
x∈Dn

α−c,γ

βKG
k,t(x) >

∑
x∈Dn

α−c,γ

βKG(x) − 2−α,

where c is such that (17) holds. This implies

(1− βγ)
∑

x∈Dn
α−c,γ

βKG(x) ≤ 2−α. (18)

In the case of log-loss function β = 1
2 and βKG(x) = M(x), and then by (18) we

have
M(Dn

α−c,γ) ≤ 2−α+1

for every γ ≥ 1.
For other types of predictive complexities the sum

∑
l(x)=n

βKG(x) can exceed 1.

For instance, in the case of square-loss function this sum is of order of exponent
from n. Let us consider the general case. We replace the inequality (15) on∑

l(x)=n

βKG(x)
n M(x) ≤ 1,

where βn = e−
1
n . Let p be a finite binary sequence representing the rational

approximation of the real number
∑

l(x)=n

β
KG(x)
n M(x) from below with accuracy

2−α. After that, as above using p and n we effectively find t and k such that
the conditions of items (1’) and (2) hold, where item

1’.
∑

l(x)=n

β
KGt,k(x)
n M t(x) >

∑
l(x)=n

β
KG(x)
n M(x)− 2−α.

is used instead of item (1) above. Here

KGt,k(x) = logβ
k∑
i=1

βKG
t
i(x)2−i,

where β = e−η and η is such that our loss function is η-mixable, KGti(x) is
some rational approximation from above of KGi(x) and M t(x) is some rational
approximation from below of M(x) computed in t steps.

There exists a prediction strategy Q such that LossQ(x) ≤ KGt,k(x) for all
x of length ≤ n and K(Q|n) ≤ α + c, where c is a positive constant. Then by
(1’) we obtain ∑

l(x)=n

βLossQ(x)
n M(x) >

∑
l(x)=n

βKG(x)
n M(x)− 2−α. (19)
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By definition for every x ∈ Dn
α−c,γ we have

LossQ(x)−KG(x) > γ.

Therefore, by (19) we obtain

βγn
∑

x∈Dn
α−c,γ

βKG(x)
n M(x) >

∑
x∈Dn

α−c,γ

βLossQ(x)
n M(x) >

∑
x∈Dn

α−c,γ

βKG(x)
n M(x)− 2−α.

This implies
(1− βγn)

∑
x∈Dn

α−c,γ

βKG(x)
n M(x) ≤ 2−α. (20)

By item (2) of Proposition 1 for every δ > 0 a positive constant c > 0 exists
such that KG(x) ≤ (1 + δ)(ln 2/η)KL(x) + c. We have also KL(x) ≤ n + c
for all x of length n, where c is a positive constant ([3], Section 4.5). Hence
KG(x) ≤ cn for some c > 0, where n is the length of x.

Since βn = e−
1
n we have

βKG(x)
n = e−

1
nKG(x) ≥ e−c,

and
1− βγn ≥

γ

2n
for 0 < γ ≤ n. Therefore, by (20) we obtain the estimate∑

x∈Dn
α−c,γ

M(x) ≤ 2−α
2n
γ
ec = 2−α+logn−log γ+c log e+1. (21)

To eliminate the condition n in K(Q|n) we consider the following estimate
of prefix Kolmogorov complexity [3], Section 3.

K(Q) ≤ K(Q|n) +K(n) + c′ ≤ α+ log n+ 2 log log n+ c

for some positive constants c′ and c. Replacing α in (21) on α − log n −
2 log log n − c and returning to the previous (unconditional) definition of Dn

α,γ

we obtain the needed estimate∑
x∈Dnα,γ

M(x) ≤ 2−α+2 logn+2 log logn−log γ+c (22)

for some positive constant c. 2
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8 Appendix

In this section we present the Vovk’s aggregating algorithm AA and prove that
the mixture of superpredictions is also a superprediction.

Let a loss function λ(ω, p) be η-mixable and β = e−η. Let also a fi-
nite sequence P1, P2, . . . , Pk of computable prediction strategies and a sequence
r(1), . . . , r(k) of nonnegative real numbers which sum do not exceed 1 are given.

A computable prediction strategy P will be defined such that for each binary
sequence y1 . . . yn the inequality

LossP (y1 . . . ym) ≤ logβ
k∑
i=1

r(i)βLossPi (y1...ym) (23)

holds.
Put initial weghts r0(i) = r(i), i = 1, . . . , k. After each trial yj , j = 1, . . . , n,

the weights are updated as follows

rj(i) = βλ(yj ,Pi(y1...yj−1))rj−1(i).

As follows from this definition

rj(i) = βLossPi (y1...yj)r0(i).

After each trial yj−1 a superprediction gj is defined

gj(ω) = logβ
k∑
i=1

βλ(ω,Pi(y1...yj−1))r∗j−1(i),

where

r∗j−1(i) =
rj−1(i)∑k
s=1 rj−1(s)

are the normalized weights.
Since the loss function is η-mixable for each j = 1, . . . , n a real number pj

exists (can be effectively computed with arbitrary degree of accuracy) such that

λ(ω, pj) ≤ gj(ω)

for all ω. Define P (y1 . . . yj−1) = pj .
By mathematical induction on t = 1, . . . n we shall prove that

t∑
j=1

gj(yj) = logβ
k∑
i=1

βLossPi (y1...yt)r(i). (24)

The inequality (23) follows from (24) when t = n.
When t = 1 we have

g1(y1) = logβ
k∑
i=1

βλ(y1,Pi(Λ))r(i).
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When t > 1 we have

logβ
k∑
i=1

βLossPi (y1...yt)r(i)− logβ
k∑
i=1

βLossPi (y1...yt−1)r(i) =

logβ

∑k

i=1
β

LossPi
(y1...yt−1)+λ(yt,Pi(y1...yt−1))

r(i)

k∑
i=1

β
LossPi

(y1...yt−1)
r(i)

=

logβ
k∑
i=1

βλ(yt,Pi(y1...yt−1))r∗t−1(i) = gt(yt).

Let gi(x), i = 1, . . . , n, be a sequence of superpredictions and r(i), i =
1, . . . , n, be a sequence of nonnegative weights with sum ≤ 1. We prove that
their mixture

g(x) = logβ
n∑
i=1

r(i)βgi(x)

is also a superprediction.
By definition for each 1 ≤ i ≤ n there exists an pi such that gi(xj)−gi(x) ≥

λ(j, pi) for all j. Then for all j

g(xj)− g(x) = logβ
n∑
i=1

r(i)βgi(xj) − logβ
n∑
i=1

r(i)βgi(x) ≥

logβ
n∑
i=1

q(i)βgi(xj)−gi(x) ≥ logβ
n∑
i=1

q(i)βλ(j,pi) ≥ λ(j, p),

where

q(i) =
r(i)βgi(x)

n∑
s=1

r(s)βgs(x)

and a prediction p exists by definition of η-mixable function.
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